]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-core.c
Merge tag 'drm-intel-fixes-2019-02-20' of git://anongit.freedesktop.org/drm/drm-intel...
[thirdparty/kernel/stable.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-pm.h"
46 #include "blk-rq-qos.h"
47
48 #ifdef CONFIG_DEBUG_FS
49 struct dentry *blk_debugfs_root;
50 #endif
51
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57
58 DEFINE_IDA(blk_queue_ida);
59
60 /*
61 * For queue allocation
62 */
63 struct kmem_cache *blk_requestq_cachep;
64
65 /*
66 * Controlling structure to kblockd
67 */
68 static struct workqueue_struct *kblockd_workqueue;
69
70 /**
71 * blk_queue_flag_set - atomically set a queue flag
72 * @flag: flag to be set
73 * @q: request queue
74 */
75 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
76 {
77 set_bit(flag, &q->queue_flags);
78 }
79 EXPORT_SYMBOL(blk_queue_flag_set);
80
81 /**
82 * blk_queue_flag_clear - atomically clear a queue flag
83 * @flag: flag to be cleared
84 * @q: request queue
85 */
86 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
87 {
88 clear_bit(flag, &q->queue_flags);
89 }
90 EXPORT_SYMBOL(blk_queue_flag_clear);
91
92 /**
93 * blk_queue_flag_test_and_set - atomically test and set a queue flag
94 * @flag: flag to be set
95 * @q: request queue
96 *
97 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
98 * the flag was already set.
99 */
100 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
101 {
102 return test_and_set_bit(flag, &q->queue_flags);
103 }
104 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
105
106 void blk_rq_init(struct request_queue *q, struct request *rq)
107 {
108 memset(rq, 0, sizeof(*rq));
109
110 INIT_LIST_HEAD(&rq->queuelist);
111 rq->q = q;
112 rq->__sector = (sector_t) -1;
113 INIT_HLIST_NODE(&rq->hash);
114 RB_CLEAR_NODE(&rq->rb_node);
115 rq->tag = -1;
116 rq->internal_tag = -1;
117 rq->start_time_ns = ktime_get_ns();
118 rq->part = NULL;
119 }
120 EXPORT_SYMBOL(blk_rq_init);
121
122 static const struct {
123 int errno;
124 const char *name;
125 } blk_errors[] = {
126 [BLK_STS_OK] = { 0, "" },
127 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
128 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
129 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
130 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
131 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
132 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
133 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
134 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
135 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
136 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
137 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
138
139 /* device mapper special case, should not leak out: */
140 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
141
142 /* everything else not covered above: */
143 [BLK_STS_IOERR] = { -EIO, "I/O" },
144 };
145
146 blk_status_t errno_to_blk_status(int errno)
147 {
148 int i;
149
150 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
151 if (blk_errors[i].errno == errno)
152 return (__force blk_status_t)i;
153 }
154
155 return BLK_STS_IOERR;
156 }
157 EXPORT_SYMBOL_GPL(errno_to_blk_status);
158
159 int blk_status_to_errno(blk_status_t status)
160 {
161 int idx = (__force int)status;
162
163 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
164 return -EIO;
165 return blk_errors[idx].errno;
166 }
167 EXPORT_SYMBOL_GPL(blk_status_to_errno);
168
169 static void print_req_error(struct request *req, blk_status_t status)
170 {
171 int idx = (__force int)status;
172
173 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
174 return;
175
176 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
177 __func__, blk_errors[idx].name,
178 req->rq_disk ? req->rq_disk->disk_name : "?",
179 (unsigned long long)blk_rq_pos(req),
180 req->cmd_flags);
181 }
182
183 static void req_bio_endio(struct request *rq, struct bio *bio,
184 unsigned int nbytes, blk_status_t error)
185 {
186 if (error)
187 bio->bi_status = error;
188
189 if (unlikely(rq->rq_flags & RQF_QUIET))
190 bio_set_flag(bio, BIO_QUIET);
191
192 bio_advance(bio, nbytes);
193
194 /* don't actually finish bio if it's part of flush sequence */
195 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
196 bio_endio(bio);
197 }
198
199 void blk_dump_rq_flags(struct request *rq, char *msg)
200 {
201 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
202 rq->rq_disk ? rq->rq_disk->disk_name : "?",
203 (unsigned long long) rq->cmd_flags);
204
205 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
206 (unsigned long long)blk_rq_pos(rq),
207 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
208 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
209 rq->bio, rq->biotail, blk_rq_bytes(rq));
210 }
211 EXPORT_SYMBOL(blk_dump_rq_flags);
212
213 /**
214 * blk_sync_queue - cancel any pending callbacks on a queue
215 * @q: the queue
216 *
217 * Description:
218 * The block layer may perform asynchronous callback activity
219 * on a queue, such as calling the unplug function after a timeout.
220 * A block device may call blk_sync_queue to ensure that any
221 * such activity is cancelled, thus allowing it to release resources
222 * that the callbacks might use. The caller must already have made sure
223 * that its ->make_request_fn will not re-add plugging prior to calling
224 * this function.
225 *
226 * This function does not cancel any asynchronous activity arising
227 * out of elevator or throttling code. That would require elevator_exit()
228 * and blkcg_exit_queue() to be called with queue lock initialized.
229 *
230 */
231 void blk_sync_queue(struct request_queue *q)
232 {
233 del_timer_sync(&q->timeout);
234 cancel_work_sync(&q->timeout_work);
235
236 if (queue_is_mq(q)) {
237 struct blk_mq_hw_ctx *hctx;
238 int i;
239
240 cancel_delayed_work_sync(&q->requeue_work);
241 queue_for_each_hw_ctx(q, hctx, i)
242 cancel_delayed_work_sync(&hctx->run_work);
243 }
244 }
245 EXPORT_SYMBOL(blk_sync_queue);
246
247 /**
248 * blk_set_pm_only - increment pm_only counter
249 * @q: request queue pointer
250 */
251 void blk_set_pm_only(struct request_queue *q)
252 {
253 atomic_inc(&q->pm_only);
254 }
255 EXPORT_SYMBOL_GPL(blk_set_pm_only);
256
257 void blk_clear_pm_only(struct request_queue *q)
258 {
259 int pm_only;
260
261 pm_only = atomic_dec_return(&q->pm_only);
262 WARN_ON_ONCE(pm_only < 0);
263 if (pm_only == 0)
264 wake_up_all(&q->mq_freeze_wq);
265 }
266 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
267
268 void blk_put_queue(struct request_queue *q)
269 {
270 kobject_put(&q->kobj);
271 }
272 EXPORT_SYMBOL(blk_put_queue);
273
274 void blk_set_queue_dying(struct request_queue *q)
275 {
276 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
277
278 /*
279 * When queue DYING flag is set, we need to block new req
280 * entering queue, so we call blk_freeze_queue_start() to
281 * prevent I/O from crossing blk_queue_enter().
282 */
283 blk_freeze_queue_start(q);
284
285 if (queue_is_mq(q))
286 blk_mq_wake_waiters(q);
287
288 /* Make blk_queue_enter() reexamine the DYING flag. */
289 wake_up_all(&q->mq_freeze_wq);
290 }
291 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
292
293 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
294 void blk_exit_queue(struct request_queue *q)
295 {
296 /*
297 * Since the I/O scheduler exit code may access cgroup information,
298 * perform I/O scheduler exit before disassociating from the block
299 * cgroup controller.
300 */
301 if (q->elevator) {
302 ioc_clear_queue(q);
303 elevator_exit(q, q->elevator);
304 q->elevator = NULL;
305 }
306
307 /*
308 * Remove all references to @q from the block cgroup controller before
309 * restoring @q->queue_lock to avoid that restoring this pointer causes
310 * e.g. blkcg_print_blkgs() to crash.
311 */
312 blkcg_exit_queue(q);
313
314 /*
315 * Since the cgroup code may dereference the @q->backing_dev_info
316 * pointer, only decrease its reference count after having removed the
317 * association with the block cgroup controller.
318 */
319 bdi_put(q->backing_dev_info);
320 }
321
322 /**
323 * blk_cleanup_queue - shutdown a request queue
324 * @q: request queue to shutdown
325 *
326 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
327 * put it. All future requests will be failed immediately with -ENODEV.
328 */
329 void blk_cleanup_queue(struct request_queue *q)
330 {
331 /* mark @q DYING, no new request or merges will be allowed afterwards */
332 mutex_lock(&q->sysfs_lock);
333 blk_set_queue_dying(q);
334
335 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
336 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
337 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
338 mutex_unlock(&q->sysfs_lock);
339
340 /*
341 * Drain all requests queued before DYING marking. Set DEAD flag to
342 * prevent that q->request_fn() gets invoked after draining finished.
343 */
344 blk_freeze_queue(q);
345
346 rq_qos_exit(q);
347
348 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
349
350 /*
351 * make sure all in-progress dispatch are completed because
352 * blk_freeze_queue() can only complete all requests, and
353 * dispatch may still be in-progress since we dispatch requests
354 * from more than one contexts.
355 *
356 * We rely on driver to deal with the race in case that queue
357 * initialization isn't done.
358 */
359 if (queue_is_mq(q) && blk_queue_init_done(q))
360 blk_mq_quiesce_queue(q);
361
362 /* for synchronous bio-based driver finish in-flight integrity i/o */
363 blk_flush_integrity();
364
365 /* @q won't process any more request, flush async actions */
366 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
367 blk_sync_queue(q);
368
369 /*
370 * I/O scheduler exit is only safe after the sysfs scheduler attribute
371 * has been removed.
372 */
373 WARN_ON_ONCE(q->kobj.state_in_sysfs);
374
375 blk_exit_queue(q);
376
377 if (queue_is_mq(q))
378 blk_mq_free_queue(q);
379
380 percpu_ref_exit(&q->q_usage_counter);
381
382 /* @q is and will stay empty, shutdown and put */
383 blk_put_queue(q);
384 }
385 EXPORT_SYMBOL(blk_cleanup_queue);
386
387 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
388 {
389 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
390 }
391 EXPORT_SYMBOL(blk_alloc_queue);
392
393 /**
394 * blk_queue_enter() - try to increase q->q_usage_counter
395 * @q: request queue pointer
396 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
397 */
398 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
399 {
400 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
401
402 while (true) {
403 bool success = false;
404
405 rcu_read_lock();
406 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
407 /*
408 * The code that increments the pm_only counter is
409 * responsible for ensuring that that counter is
410 * globally visible before the queue is unfrozen.
411 */
412 if (pm || !blk_queue_pm_only(q)) {
413 success = true;
414 } else {
415 percpu_ref_put(&q->q_usage_counter);
416 }
417 }
418 rcu_read_unlock();
419
420 if (success)
421 return 0;
422
423 if (flags & BLK_MQ_REQ_NOWAIT)
424 return -EBUSY;
425
426 /*
427 * read pair of barrier in blk_freeze_queue_start(),
428 * we need to order reading __PERCPU_REF_DEAD flag of
429 * .q_usage_counter and reading .mq_freeze_depth or
430 * queue dying flag, otherwise the following wait may
431 * never return if the two reads are reordered.
432 */
433 smp_rmb();
434
435 wait_event(q->mq_freeze_wq,
436 (atomic_read(&q->mq_freeze_depth) == 0 &&
437 (pm || (blk_pm_request_resume(q),
438 !blk_queue_pm_only(q)))) ||
439 blk_queue_dying(q));
440 if (blk_queue_dying(q))
441 return -ENODEV;
442 }
443 }
444
445 void blk_queue_exit(struct request_queue *q)
446 {
447 percpu_ref_put(&q->q_usage_counter);
448 }
449
450 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
451 {
452 struct request_queue *q =
453 container_of(ref, struct request_queue, q_usage_counter);
454
455 wake_up_all(&q->mq_freeze_wq);
456 }
457
458 static void blk_rq_timed_out_timer(struct timer_list *t)
459 {
460 struct request_queue *q = from_timer(q, t, timeout);
461
462 kblockd_schedule_work(&q->timeout_work);
463 }
464
465 static void blk_timeout_work(struct work_struct *work)
466 {
467 }
468
469 /**
470 * blk_alloc_queue_node - allocate a request queue
471 * @gfp_mask: memory allocation flags
472 * @node_id: NUMA node to allocate memory from
473 */
474 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
475 {
476 struct request_queue *q;
477 int ret;
478
479 q = kmem_cache_alloc_node(blk_requestq_cachep,
480 gfp_mask | __GFP_ZERO, node_id);
481 if (!q)
482 return NULL;
483
484 INIT_LIST_HEAD(&q->queue_head);
485 q->last_merge = NULL;
486
487 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
488 if (q->id < 0)
489 goto fail_q;
490
491 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
492 if (ret)
493 goto fail_id;
494
495 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
496 if (!q->backing_dev_info)
497 goto fail_split;
498
499 q->stats = blk_alloc_queue_stats();
500 if (!q->stats)
501 goto fail_stats;
502
503 q->backing_dev_info->ra_pages =
504 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
505 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
506 q->backing_dev_info->name = "block";
507 q->node = node_id;
508
509 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
510 laptop_mode_timer_fn, 0);
511 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
512 INIT_WORK(&q->timeout_work, blk_timeout_work);
513 INIT_LIST_HEAD(&q->icq_list);
514 #ifdef CONFIG_BLK_CGROUP
515 INIT_LIST_HEAD(&q->blkg_list);
516 #endif
517
518 kobject_init(&q->kobj, &blk_queue_ktype);
519
520 #ifdef CONFIG_BLK_DEV_IO_TRACE
521 mutex_init(&q->blk_trace_mutex);
522 #endif
523 mutex_init(&q->sysfs_lock);
524 spin_lock_init(&q->queue_lock);
525
526 init_waitqueue_head(&q->mq_freeze_wq);
527
528 /*
529 * Init percpu_ref in atomic mode so that it's faster to shutdown.
530 * See blk_register_queue() for details.
531 */
532 if (percpu_ref_init(&q->q_usage_counter,
533 blk_queue_usage_counter_release,
534 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
535 goto fail_bdi;
536
537 if (blkcg_init_queue(q))
538 goto fail_ref;
539
540 return q;
541
542 fail_ref:
543 percpu_ref_exit(&q->q_usage_counter);
544 fail_bdi:
545 blk_free_queue_stats(q->stats);
546 fail_stats:
547 bdi_put(q->backing_dev_info);
548 fail_split:
549 bioset_exit(&q->bio_split);
550 fail_id:
551 ida_simple_remove(&blk_queue_ida, q->id);
552 fail_q:
553 kmem_cache_free(blk_requestq_cachep, q);
554 return NULL;
555 }
556 EXPORT_SYMBOL(blk_alloc_queue_node);
557
558 bool blk_get_queue(struct request_queue *q)
559 {
560 if (likely(!blk_queue_dying(q))) {
561 __blk_get_queue(q);
562 return true;
563 }
564
565 return false;
566 }
567 EXPORT_SYMBOL(blk_get_queue);
568
569 /**
570 * blk_get_request - allocate a request
571 * @q: request queue to allocate a request for
572 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
573 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
574 */
575 struct request *blk_get_request(struct request_queue *q, unsigned int op,
576 blk_mq_req_flags_t flags)
577 {
578 struct request *req;
579
580 WARN_ON_ONCE(op & REQ_NOWAIT);
581 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
582
583 req = blk_mq_alloc_request(q, op, flags);
584 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
585 q->mq_ops->initialize_rq_fn(req);
586
587 return req;
588 }
589 EXPORT_SYMBOL(blk_get_request);
590
591 void blk_put_request(struct request *req)
592 {
593 blk_mq_free_request(req);
594 }
595 EXPORT_SYMBOL(blk_put_request);
596
597 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
598 struct bio *bio)
599 {
600 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
601
602 if (!ll_back_merge_fn(q, req, bio))
603 return false;
604
605 trace_block_bio_backmerge(q, req, bio);
606
607 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
608 blk_rq_set_mixed_merge(req);
609
610 req->biotail->bi_next = bio;
611 req->biotail = bio;
612 req->__data_len += bio->bi_iter.bi_size;
613
614 blk_account_io_start(req, false);
615 return true;
616 }
617
618 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
619 struct bio *bio)
620 {
621 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
622
623 if (!ll_front_merge_fn(q, req, bio))
624 return false;
625
626 trace_block_bio_frontmerge(q, req, bio);
627
628 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
629 blk_rq_set_mixed_merge(req);
630
631 bio->bi_next = req->bio;
632 req->bio = bio;
633
634 req->__sector = bio->bi_iter.bi_sector;
635 req->__data_len += bio->bi_iter.bi_size;
636
637 blk_account_io_start(req, false);
638 return true;
639 }
640
641 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
642 struct bio *bio)
643 {
644 unsigned short segments = blk_rq_nr_discard_segments(req);
645
646 if (segments >= queue_max_discard_segments(q))
647 goto no_merge;
648 if (blk_rq_sectors(req) + bio_sectors(bio) >
649 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
650 goto no_merge;
651
652 req->biotail->bi_next = bio;
653 req->biotail = bio;
654 req->__data_len += bio->bi_iter.bi_size;
655 req->nr_phys_segments = segments + 1;
656
657 blk_account_io_start(req, false);
658 return true;
659 no_merge:
660 req_set_nomerge(q, req);
661 return false;
662 }
663
664 /**
665 * blk_attempt_plug_merge - try to merge with %current's plugged list
666 * @q: request_queue new bio is being queued at
667 * @bio: new bio being queued
668 * @same_queue_rq: pointer to &struct request that gets filled in when
669 * another request associated with @q is found on the plug list
670 * (optional, may be %NULL)
671 *
672 * Determine whether @bio being queued on @q can be merged with a request
673 * on %current's plugged list. Returns %true if merge was successful,
674 * otherwise %false.
675 *
676 * Plugging coalesces IOs from the same issuer for the same purpose without
677 * going through @q->queue_lock. As such it's more of an issuing mechanism
678 * than scheduling, and the request, while may have elvpriv data, is not
679 * added on the elevator at this point. In addition, we don't have
680 * reliable access to the elevator outside queue lock. Only check basic
681 * merging parameters without querying the elevator.
682 *
683 * Caller must ensure !blk_queue_nomerges(q) beforehand.
684 */
685 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
686 struct request **same_queue_rq)
687 {
688 struct blk_plug *plug;
689 struct request *rq;
690 struct list_head *plug_list;
691
692 plug = current->plug;
693 if (!plug)
694 return false;
695
696 plug_list = &plug->mq_list;
697
698 list_for_each_entry_reverse(rq, plug_list, queuelist) {
699 bool merged = false;
700
701 if (rq->q == q && same_queue_rq) {
702 /*
703 * Only blk-mq multiple hardware queues case checks the
704 * rq in the same queue, there should be only one such
705 * rq in a queue
706 **/
707 *same_queue_rq = rq;
708 }
709
710 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
711 continue;
712
713 switch (blk_try_merge(rq, bio)) {
714 case ELEVATOR_BACK_MERGE:
715 merged = bio_attempt_back_merge(q, rq, bio);
716 break;
717 case ELEVATOR_FRONT_MERGE:
718 merged = bio_attempt_front_merge(q, rq, bio);
719 break;
720 case ELEVATOR_DISCARD_MERGE:
721 merged = bio_attempt_discard_merge(q, rq, bio);
722 break;
723 default:
724 break;
725 }
726
727 if (merged)
728 return true;
729 }
730
731 return false;
732 }
733
734 void blk_init_request_from_bio(struct request *req, struct bio *bio)
735 {
736 if (bio->bi_opf & REQ_RAHEAD)
737 req->cmd_flags |= REQ_FAILFAST_MASK;
738
739 req->__sector = bio->bi_iter.bi_sector;
740 req->ioprio = bio_prio(bio);
741 req->write_hint = bio->bi_write_hint;
742 blk_rq_bio_prep(req->q, req, bio);
743 }
744 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
745
746 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
747 {
748 char b[BDEVNAME_SIZE];
749
750 printk(KERN_INFO "attempt to access beyond end of device\n");
751 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
752 bio_devname(bio, b), bio->bi_opf,
753 (unsigned long long)bio_end_sector(bio),
754 (long long)maxsector);
755 }
756
757 #ifdef CONFIG_FAIL_MAKE_REQUEST
758
759 static DECLARE_FAULT_ATTR(fail_make_request);
760
761 static int __init setup_fail_make_request(char *str)
762 {
763 return setup_fault_attr(&fail_make_request, str);
764 }
765 __setup("fail_make_request=", setup_fail_make_request);
766
767 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
768 {
769 return part->make_it_fail && should_fail(&fail_make_request, bytes);
770 }
771
772 static int __init fail_make_request_debugfs(void)
773 {
774 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
775 NULL, &fail_make_request);
776
777 return PTR_ERR_OR_ZERO(dir);
778 }
779
780 late_initcall(fail_make_request_debugfs);
781
782 #else /* CONFIG_FAIL_MAKE_REQUEST */
783
784 static inline bool should_fail_request(struct hd_struct *part,
785 unsigned int bytes)
786 {
787 return false;
788 }
789
790 #endif /* CONFIG_FAIL_MAKE_REQUEST */
791
792 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
793 {
794 const int op = bio_op(bio);
795
796 if (part->policy && op_is_write(op)) {
797 char b[BDEVNAME_SIZE];
798
799 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
800 return false;
801
802 WARN_ONCE(1,
803 "generic_make_request: Trying to write "
804 "to read-only block-device %s (partno %d)\n",
805 bio_devname(bio, b), part->partno);
806 /* Older lvm-tools actually trigger this */
807 return false;
808 }
809
810 return false;
811 }
812
813 static noinline int should_fail_bio(struct bio *bio)
814 {
815 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
816 return -EIO;
817 return 0;
818 }
819 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
820
821 /*
822 * Check whether this bio extends beyond the end of the device or partition.
823 * This may well happen - the kernel calls bread() without checking the size of
824 * the device, e.g., when mounting a file system.
825 */
826 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
827 {
828 unsigned int nr_sectors = bio_sectors(bio);
829
830 if (nr_sectors && maxsector &&
831 (nr_sectors > maxsector ||
832 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
833 handle_bad_sector(bio, maxsector);
834 return -EIO;
835 }
836 return 0;
837 }
838
839 /*
840 * Remap block n of partition p to block n+start(p) of the disk.
841 */
842 static inline int blk_partition_remap(struct bio *bio)
843 {
844 struct hd_struct *p;
845 int ret = -EIO;
846
847 rcu_read_lock();
848 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
849 if (unlikely(!p))
850 goto out;
851 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
852 goto out;
853 if (unlikely(bio_check_ro(bio, p)))
854 goto out;
855
856 /*
857 * Zone reset does not include bi_size so bio_sectors() is always 0.
858 * Include a test for the reset op code and perform the remap if needed.
859 */
860 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
861 if (bio_check_eod(bio, part_nr_sects_read(p)))
862 goto out;
863 bio->bi_iter.bi_sector += p->start_sect;
864 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
865 bio->bi_iter.bi_sector - p->start_sect);
866 }
867 bio->bi_partno = 0;
868 ret = 0;
869 out:
870 rcu_read_unlock();
871 return ret;
872 }
873
874 static noinline_for_stack bool
875 generic_make_request_checks(struct bio *bio)
876 {
877 struct request_queue *q;
878 int nr_sectors = bio_sectors(bio);
879 blk_status_t status = BLK_STS_IOERR;
880 char b[BDEVNAME_SIZE];
881
882 might_sleep();
883
884 q = bio->bi_disk->queue;
885 if (unlikely(!q)) {
886 printk(KERN_ERR
887 "generic_make_request: Trying to access "
888 "nonexistent block-device %s (%Lu)\n",
889 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
890 goto end_io;
891 }
892
893 /*
894 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
895 * if queue is not a request based queue.
896 */
897 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
898 goto not_supported;
899
900 if (should_fail_bio(bio))
901 goto end_io;
902
903 if (bio->bi_partno) {
904 if (unlikely(blk_partition_remap(bio)))
905 goto end_io;
906 } else {
907 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
908 goto end_io;
909 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
910 goto end_io;
911 }
912
913 /*
914 * Filter flush bio's early so that make_request based
915 * drivers without flush support don't have to worry
916 * about them.
917 */
918 if (op_is_flush(bio->bi_opf) &&
919 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
920 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
921 if (!nr_sectors) {
922 status = BLK_STS_OK;
923 goto end_io;
924 }
925 }
926
927 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
928 bio->bi_opf &= ~REQ_HIPRI;
929
930 switch (bio_op(bio)) {
931 case REQ_OP_DISCARD:
932 if (!blk_queue_discard(q))
933 goto not_supported;
934 break;
935 case REQ_OP_SECURE_ERASE:
936 if (!blk_queue_secure_erase(q))
937 goto not_supported;
938 break;
939 case REQ_OP_WRITE_SAME:
940 if (!q->limits.max_write_same_sectors)
941 goto not_supported;
942 break;
943 case REQ_OP_ZONE_RESET:
944 if (!blk_queue_is_zoned(q))
945 goto not_supported;
946 break;
947 case REQ_OP_WRITE_ZEROES:
948 if (!q->limits.max_write_zeroes_sectors)
949 goto not_supported;
950 break;
951 default:
952 break;
953 }
954
955 /*
956 * Various block parts want %current->io_context and lazy ioc
957 * allocation ends up trading a lot of pain for a small amount of
958 * memory. Just allocate it upfront. This may fail and block
959 * layer knows how to live with it.
960 */
961 create_io_context(GFP_ATOMIC, q->node);
962
963 if (!blkcg_bio_issue_check(q, bio))
964 return false;
965
966 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
967 trace_block_bio_queue(q, bio);
968 /* Now that enqueuing has been traced, we need to trace
969 * completion as well.
970 */
971 bio_set_flag(bio, BIO_TRACE_COMPLETION);
972 }
973 return true;
974
975 not_supported:
976 status = BLK_STS_NOTSUPP;
977 end_io:
978 bio->bi_status = status;
979 bio_endio(bio);
980 return false;
981 }
982
983 /**
984 * generic_make_request - hand a buffer to its device driver for I/O
985 * @bio: The bio describing the location in memory and on the device.
986 *
987 * generic_make_request() is used to make I/O requests of block
988 * devices. It is passed a &struct bio, which describes the I/O that needs
989 * to be done.
990 *
991 * generic_make_request() does not return any status. The
992 * success/failure status of the request, along with notification of
993 * completion, is delivered asynchronously through the bio->bi_end_io
994 * function described (one day) else where.
995 *
996 * The caller of generic_make_request must make sure that bi_io_vec
997 * are set to describe the memory buffer, and that bi_dev and bi_sector are
998 * set to describe the device address, and the
999 * bi_end_io and optionally bi_private are set to describe how
1000 * completion notification should be signaled.
1001 *
1002 * generic_make_request and the drivers it calls may use bi_next if this
1003 * bio happens to be merged with someone else, and may resubmit the bio to
1004 * a lower device by calling into generic_make_request recursively, which
1005 * means the bio should NOT be touched after the call to ->make_request_fn.
1006 */
1007 blk_qc_t generic_make_request(struct bio *bio)
1008 {
1009 /*
1010 * bio_list_on_stack[0] contains bios submitted by the current
1011 * make_request_fn.
1012 * bio_list_on_stack[1] contains bios that were submitted before
1013 * the current make_request_fn, but that haven't been processed
1014 * yet.
1015 */
1016 struct bio_list bio_list_on_stack[2];
1017 blk_mq_req_flags_t flags = 0;
1018 struct request_queue *q = bio->bi_disk->queue;
1019 blk_qc_t ret = BLK_QC_T_NONE;
1020
1021 if (bio->bi_opf & REQ_NOWAIT)
1022 flags = BLK_MQ_REQ_NOWAIT;
1023 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1024 blk_queue_enter_live(q);
1025 else if (blk_queue_enter(q, flags) < 0) {
1026 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1027 bio_wouldblock_error(bio);
1028 else
1029 bio_io_error(bio);
1030 return ret;
1031 }
1032
1033 if (!generic_make_request_checks(bio))
1034 goto out;
1035
1036 /*
1037 * We only want one ->make_request_fn to be active at a time, else
1038 * stack usage with stacked devices could be a problem. So use
1039 * current->bio_list to keep a list of requests submited by a
1040 * make_request_fn function. current->bio_list is also used as a
1041 * flag to say if generic_make_request is currently active in this
1042 * task or not. If it is NULL, then no make_request is active. If
1043 * it is non-NULL, then a make_request is active, and new requests
1044 * should be added at the tail
1045 */
1046 if (current->bio_list) {
1047 bio_list_add(&current->bio_list[0], bio);
1048 goto out;
1049 }
1050
1051 /* following loop may be a bit non-obvious, and so deserves some
1052 * explanation.
1053 * Before entering the loop, bio->bi_next is NULL (as all callers
1054 * ensure that) so we have a list with a single bio.
1055 * We pretend that we have just taken it off a longer list, so
1056 * we assign bio_list to a pointer to the bio_list_on_stack,
1057 * thus initialising the bio_list of new bios to be
1058 * added. ->make_request() may indeed add some more bios
1059 * through a recursive call to generic_make_request. If it
1060 * did, we find a non-NULL value in bio_list and re-enter the loop
1061 * from the top. In this case we really did just take the bio
1062 * of the top of the list (no pretending) and so remove it from
1063 * bio_list, and call into ->make_request() again.
1064 */
1065 BUG_ON(bio->bi_next);
1066 bio_list_init(&bio_list_on_stack[0]);
1067 current->bio_list = bio_list_on_stack;
1068 do {
1069 bool enter_succeeded = true;
1070
1071 if (unlikely(q != bio->bi_disk->queue)) {
1072 if (q)
1073 blk_queue_exit(q);
1074 q = bio->bi_disk->queue;
1075 flags = 0;
1076 if (bio->bi_opf & REQ_NOWAIT)
1077 flags = BLK_MQ_REQ_NOWAIT;
1078 if (blk_queue_enter(q, flags) < 0) {
1079 enter_succeeded = false;
1080 q = NULL;
1081 }
1082 }
1083
1084 if (enter_succeeded) {
1085 struct bio_list lower, same;
1086
1087 /* Create a fresh bio_list for all subordinate requests */
1088 bio_list_on_stack[1] = bio_list_on_stack[0];
1089 bio_list_init(&bio_list_on_stack[0]);
1090 ret = q->make_request_fn(q, bio);
1091
1092 /* sort new bios into those for a lower level
1093 * and those for the same level
1094 */
1095 bio_list_init(&lower);
1096 bio_list_init(&same);
1097 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1098 if (q == bio->bi_disk->queue)
1099 bio_list_add(&same, bio);
1100 else
1101 bio_list_add(&lower, bio);
1102 /* now assemble so we handle the lowest level first */
1103 bio_list_merge(&bio_list_on_stack[0], &lower);
1104 bio_list_merge(&bio_list_on_stack[0], &same);
1105 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1106 } else {
1107 if (unlikely(!blk_queue_dying(q) &&
1108 (bio->bi_opf & REQ_NOWAIT)))
1109 bio_wouldblock_error(bio);
1110 else
1111 bio_io_error(bio);
1112 }
1113 bio = bio_list_pop(&bio_list_on_stack[0]);
1114 } while (bio);
1115 current->bio_list = NULL; /* deactivate */
1116
1117 out:
1118 if (q)
1119 blk_queue_exit(q);
1120 return ret;
1121 }
1122 EXPORT_SYMBOL(generic_make_request);
1123
1124 /**
1125 * direct_make_request - hand a buffer directly to its device driver for I/O
1126 * @bio: The bio describing the location in memory and on the device.
1127 *
1128 * This function behaves like generic_make_request(), but does not protect
1129 * against recursion. Must only be used if the called driver is known
1130 * to not call generic_make_request (or direct_make_request) again from
1131 * its make_request function. (Calling direct_make_request again from
1132 * a workqueue is perfectly fine as that doesn't recurse).
1133 */
1134 blk_qc_t direct_make_request(struct bio *bio)
1135 {
1136 struct request_queue *q = bio->bi_disk->queue;
1137 bool nowait = bio->bi_opf & REQ_NOWAIT;
1138 blk_qc_t ret;
1139
1140 if (!generic_make_request_checks(bio))
1141 return BLK_QC_T_NONE;
1142
1143 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1144 if (nowait && !blk_queue_dying(q))
1145 bio->bi_status = BLK_STS_AGAIN;
1146 else
1147 bio->bi_status = BLK_STS_IOERR;
1148 bio_endio(bio);
1149 return BLK_QC_T_NONE;
1150 }
1151
1152 ret = q->make_request_fn(q, bio);
1153 blk_queue_exit(q);
1154 return ret;
1155 }
1156 EXPORT_SYMBOL_GPL(direct_make_request);
1157
1158 /**
1159 * submit_bio - submit a bio to the block device layer for I/O
1160 * @bio: The &struct bio which describes the I/O
1161 *
1162 * submit_bio() is very similar in purpose to generic_make_request(), and
1163 * uses that function to do most of the work. Both are fairly rough
1164 * interfaces; @bio must be presetup and ready for I/O.
1165 *
1166 */
1167 blk_qc_t submit_bio(struct bio *bio)
1168 {
1169 /*
1170 * If it's a regular read/write or a barrier with data attached,
1171 * go through the normal accounting stuff before submission.
1172 */
1173 if (bio_has_data(bio)) {
1174 unsigned int count;
1175
1176 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1177 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1178 else
1179 count = bio_sectors(bio);
1180
1181 if (op_is_write(bio_op(bio))) {
1182 count_vm_events(PGPGOUT, count);
1183 } else {
1184 task_io_account_read(bio->bi_iter.bi_size);
1185 count_vm_events(PGPGIN, count);
1186 }
1187
1188 if (unlikely(block_dump)) {
1189 char b[BDEVNAME_SIZE];
1190 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1191 current->comm, task_pid_nr(current),
1192 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1193 (unsigned long long)bio->bi_iter.bi_sector,
1194 bio_devname(bio, b), count);
1195 }
1196 }
1197
1198 return generic_make_request(bio);
1199 }
1200 EXPORT_SYMBOL(submit_bio);
1201
1202 /**
1203 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1204 * for new the queue limits
1205 * @q: the queue
1206 * @rq: the request being checked
1207 *
1208 * Description:
1209 * @rq may have been made based on weaker limitations of upper-level queues
1210 * in request stacking drivers, and it may violate the limitation of @q.
1211 * Since the block layer and the underlying device driver trust @rq
1212 * after it is inserted to @q, it should be checked against @q before
1213 * the insertion using this generic function.
1214 *
1215 * Request stacking drivers like request-based dm may change the queue
1216 * limits when retrying requests on other queues. Those requests need
1217 * to be checked against the new queue limits again during dispatch.
1218 */
1219 static int blk_cloned_rq_check_limits(struct request_queue *q,
1220 struct request *rq)
1221 {
1222 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1223 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1224 return -EIO;
1225 }
1226
1227 /*
1228 * queue's settings related to segment counting like q->bounce_pfn
1229 * may differ from that of other stacking queues.
1230 * Recalculate it to check the request correctly on this queue's
1231 * limitation.
1232 */
1233 blk_recalc_rq_segments(rq);
1234 if (rq->nr_phys_segments > queue_max_segments(q)) {
1235 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1236 return -EIO;
1237 }
1238
1239 return 0;
1240 }
1241
1242 /**
1243 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1244 * @q: the queue to submit the request
1245 * @rq: the request being queued
1246 */
1247 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1248 {
1249 blk_qc_t unused;
1250
1251 if (blk_cloned_rq_check_limits(q, rq))
1252 return BLK_STS_IOERR;
1253
1254 if (rq->rq_disk &&
1255 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1256 return BLK_STS_IOERR;
1257
1258 if (blk_queue_io_stat(q))
1259 blk_account_io_start(rq, true);
1260
1261 /*
1262 * Since we have a scheduler attached on the top device,
1263 * bypass a potential scheduler on the bottom device for
1264 * insert.
1265 */
1266 return blk_mq_try_issue_directly(rq->mq_hctx, rq, &unused, true, true);
1267 }
1268 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1269
1270 /**
1271 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1272 * @rq: request to examine
1273 *
1274 * Description:
1275 * A request could be merge of IOs which require different failure
1276 * handling. This function determines the number of bytes which
1277 * can be failed from the beginning of the request without
1278 * crossing into area which need to be retried further.
1279 *
1280 * Return:
1281 * The number of bytes to fail.
1282 */
1283 unsigned int blk_rq_err_bytes(const struct request *rq)
1284 {
1285 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1286 unsigned int bytes = 0;
1287 struct bio *bio;
1288
1289 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1290 return blk_rq_bytes(rq);
1291
1292 /*
1293 * Currently the only 'mixing' which can happen is between
1294 * different fastfail types. We can safely fail portions
1295 * which have all the failfast bits that the first one has -
1296 * the ones which are at least as eager to fail as the first
1297 * one.
1298 */
1299 for (bio = rq->bio; bio; bio = bio->bi_next) {
1300 if ((bio->bi_opf & ff) != ff)
1301 break;
1302 bytes += bio->bi_iter.bi_size;
1303 }
1304
1305 /* this could lead to infinite loop */
1306 BUG_ON(blk_rq_bytes(rq) && !bytes);
1307 return bytes;
1308 }
1309 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1310
1311 void blk_account_io_completion(struct request *req, unsigned int bytes)
1312 {
1313 if (blk_do_io_stat(req)) {
1314 const int sgrp = op_stat_group(req_op(req));
1315 struct hd_struct *part;
1316
1317 part_stat_lock();
1318 part = req->part;
1319 part_stat_add(part, sectors[sgrp], bytes >> 9);
1320 part_stat_unlock();
1321 }
1322 }
1323
1324 void blk_account_io_done(struct request *req, u64 now)
1325 {
1326 /*
1327 * Account IO completion. flush_rq isn't accounted as a
1328 * normal IO on queueing nor completion. Accounting the
1329 * containing request is enough.
1330 */
1331 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1332 const int sgrp = op_stat_group(req_op(req));
1333 struct hd_struct *part;
1334
1335 part_stat_lock();
1336 part = req->part;
1337
1338 update_io_ticks(part, jiffies);
1339 part_stat_inc(part, ios[sgrp]);
1340 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1341 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1342 part_dec_in_flight(req->q, part, rq_data_dir(req));
1343
1344 hd_struct_put(part);
1345 part_stat_unlock();
1346 }
1347 }
1348
1349 void blk_account_io_start(struct request *rq, bool new_io)
1350 {
1351 struct hd_struct *part;
1352 int rw = rq_data_dir(rq);
1353
1354 if (!blk_do_io_stat(rq))
1355 return;
1356
1357 part_stat_lock();
1358
1359 if (!new_io) {
1360 part = rq->part;
1361 part_stat_inc(part, merges[rw]);
1362 } else {
1363 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1364 if (!hd_struct_try_get(part)) {
1365 /*
1366 * The partition is already being removed,
1367 * the request will be accounted on the disk only
1368 *
1369 * We take a reference on disk->part0 although that
1370 * partition will never be deleted, so we can treat
1371 * it as any other partition.
1372 */
1373 part = &rq->rq_disk->part0;
1374 hd_struct_get(part);
1375 }
1376 part_inc_in_flight(rq->q, part, rw);
1377 rq->part = part;
1378 }
1379
1380 update_io_ticks(part, jiffies);
1381
1382 part_stat_unlock();
1383 }
1384
1385 /*
1386 * Steal bios from a request and add them to a bio list.
1387 * The request must not have been partially completed before.
1388 */
1389 void blk_steal_bios(struct bio_list *list, struct request *rq)
1390 {
1391 if (rq->bio) {
1392 if (list->tail)
1393 list->tail->bi_next = rq->bio;
1394 else
1395 list->head = rq->bio;
1396 list->tail = rq->biotail;
1397
1398 rq->bio = NULL;
1399 rq->biotail = NULL;
1400 }
1401
1402 rq->__data_len = 0;
1403 }
1404 EXPORT_SYMBOL_GPL(blk_steal_bios);
1405
1406 /**
1407 * blk_update_request - Special helper function for request stacking drivers
1408 * @req: the request being processed
1409 * @error: block status code
1410 * @nr_bytes: number of bytes to complete @req
1411 *
1412 * Description:
1413 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1414 * the request structure even if @req doesn't have leftover.
1415 * If @req has leftover, sets it up for the next range of segments.
1416 *
1417 * This special helper function is only for request stacking drivers
1418 * (e.g. request-based dm) so that they can handle partial completion.
1419 * Actual device drivers should use blk_end_request instead.
1420 *
1421 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1422 * %false return from this function.
1423 *
1424 * Note:
1425 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1426 * blk_rq_bytes() and in blk_update_request().
1427 *
1428 * Return:
1429 * %false - this request doesn't have any more data
1430 * %true - this request has more data
1431 **/
1432 bool blk_update_request(struct request *req, blk_status_t error,
1433 unsigned int nr_bytes)
1434 {
1435 int total_bytes;
1436
1437 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1438
1439 if (!req->bio)
1440 return false;
1441
1442 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1443 !(req->rq_flags & RQF_QUIET)))
1444 print_req_error(req, error);
1445
1446 blk_account_io_completion(req, nr_bytes);
1447
1448 total_bytes = 0;
1449 while (req->bio) {
1450 struct bio *bio = req->bio;
1451 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1452
1453 if (bio_bytes == bio->bi_iter.bi_size)
1454 req->bio = bio->bi_next;
1455
1456 /* Completion has already been traced */
1457 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1458 req_bio_endio(req, bio, bio_bytes, error);
1459
1460 total_bytes += bio_bytes;
1461 nr_bytes -= bio_bytes;
1462
1463 if (!nr_bytes)
1464 break;
1465 }
1466
1467 /*
1468 * completely done
1469 */
1470 if (!req->bio) {
1471 /*
1472 * Reset counters so that the request stacking driver
1473 * can find how many bytes remain in the request
1474 * later.
1475 */
1476 req->__data_len = 0;
1477 return false;
1478 }
1479
1480 req->__data_len -= total_bytes;
1481
1482 /* update sector only for requests with clear definition of sector */
1483 if (!blk_rq_is_passthrough(req))
1484 req->__sector += total_bytes >> 9;
1485
1486 /* mixed attributes always follow the first bio */
1487 if (req->rq_flags & RQF_MIXED_MERGE) {
1488 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1489 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1490 }
1491
1492 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1493 /*
1494 * If total number of sectors is less than the first segment
1495 * size, something has gone terribly wrong.
1496 */
1497 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1498 blk_dump_rq_flags(req, "request botched");
1499 req->__data_len = blk_rq_cur_bytes(req);
1500 }
1501
1502 /* recalculate the number of segments */
1503 blk_recalc_rq_segments(req);
1504 }
1505
1506 return true;
1507 }
1508 EXPORT_SYMBOL_GPL(blk_update_request);
1509
1510 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1511 struct bio *bio)
1512 {
1513 if (bio_has_data(bio))
1514 rq->nr_phys_segments = bio_phys_segments(q, bio);
1515 else if (bio_op(bio) == REQ_OP_DISCARD)
1516 rq->nr_phys_segments = 1;
1517
1518 rq->__data_len = bio->bi_iter.bi_size;
1519 rq->bio = rq->biotail = bio;
1520
1521 if (bio->bi_disk)
1522 rq->rq_disk = bio->bi_disk;
1523 }
1524
1525 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1526 /**
1527 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1528 * @rq: the request to be flushed
1529 *
1530 * Description:
1531 * Flush all pages in @rq.
1532 */
1533 void rq_flush_dcache_pages(struct request *rq)
1534 {
1535 struct req_iterator iter;
1536 struct bio_vec bvec;
1537
1538 rq_for_each_segment(bvec, rq, iter)
1539 flush_dcache_page(bvec.bv_page);
1540 }
1541 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1542 #endif
1543
1544 /**
1545 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1546 * @q : the queue of the device being checked
1547 *
1548 * Description:
1549 * Check if underlying low-level drivers of a device are busy.
1550 * If the drivers want to export their busy state, they must set own
1551 * exporting function using blk_queue_lld_busy() first.
1552 *
1553 * Basically, this function is used only by request stacking drivers
1554 * to stop dispatching requests to underlying devices when underlying
1555 * devices are busy. This behavior helps more I/O merging on the queue
1556 * of the request stacking driver and prevents I/O throughput regression
1557 * on burst I/O load.
1558 *
1559 * Return:
1560 * 0 - Not busy (The request stacking driver should dispatch request)
1561 * 1 - Busy (The request stacking driver should stop dispatching request)
1562 */
1563 int blk_lld_busy(struct request_queue *q)
1564 {
1565 if (queue_is_mq(q) && q->mq_ops->busy)
1566 return q->mq_ops->busy(q);
1567
1568 return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(blk_lld_busy);
1571
1572 /**
1573 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1574 * @rq: the clone request to be cleaned up
1575 *
1576 * Description:
1577 * Free all bios in @rq for a cloned request.
1578 */
1579 void blk_rq_unprep_clone(struct request *rq)
1580 {
1581 struct bio *bio;
1582
1583 while ((bio = rq->bio) != NULL) {
1584 rq->bio = bio->bi_next;
1585
1586 bio_put(bio);
1587 }
1588 }
1589 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1590
1591 /*
1592 * Copy attributes of the original request to the clone request.
1593 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1594 */
1595 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1596 {
1597 dst->__sector = blk_rq_pos(src);
1598 dst->__data_len = blk_rq_bytes(src);
1599 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1600 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1601 dst->special_vec = src->special_vec;
1602 }
1603 dst->nr_phys_segments = src->nr_phys_segments;
1604 dst->ioprio = src->ioprio;
1605 dst->extra_len = src->extra_len;
1606 }
1607
1608 /**
1609 * blk_rq_prep_clone - Helper function to setup clone request
1610 * @rq: the request to be setup
1611 * @rq_src: original request to be cloned
1612 * @bs: bio_set that bios for clone are allocated from
1613 * @gfp_mask: memory allocation mask for bio
1614 * @bio_ctr: setup function to be called for each clone bio.
1615 * Returns %0 for success, non %0 for failure.
1616 * @data: private data to be passed to @bio_ctr
1617 *
1618 * Description:
1619 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1620 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1621 * are not copied, and copying such parts is the caller's responsibility.
1622 * Also, pages which the original bios are pointing to are not copied
1623 * and the cloned bios just point same pages.
1624 * So cloned bios must be completed before original bios, which means
1625 * the caller must complete @rq before @rq_src.
1626 */
1627 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1628 struct bio_set *bs, gfp_t gfp_mask,
1629 int (*bio_ctr)(struct bio *, struct bio *, void *),
1630 void *data)
1631 {
1632 struct bio *bio, *bio_src;
1633
1634 if (!bs)
1635 bs = &fs_bio_set;
1636
1637 __rq_for_each_bio(bio_src, rq_src) {
1638 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1639 if (!bio)
1640 goto free_and_out;
1641
1642 if (bio_ctr && bio_ctr(bio, bio_src, data))
1643 goto free_and_out;
1644
1645 if (rq->bio) {
1646 rq->biotail->bi_next = bio;
1647 rq->biotail = bio;
1648 } else
1649 rq->bio = rq->biotail = bio;
1650 }
1651
1652 __blk_rq_prep_clone(rq, rq_src);
1653
1654 return 0;
1655
1656 free_and_out:
1657 if (bio)
1658 bio_put(bio);
1659 blk_rq_unprep_clone(rq);
1660
1661 return -ENOMEM;
1662 }
1663 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1664
1665 int kblockd_schedule_work(struct work_struct *work)
1666 {
1667 return queue_work(kblockd_workqueue, work);
1668 }
1669 EXPORT_SYMBOL(kblockd_schedule_work);
1670
1671 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1672 {
1673 return queue_work_on(cpu, kblockd_workqueue, work);
1674 }
1675 EXPORT_SYMBOL(kblockd_schedule_work_on);
1676
1677 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1678 unsigned long delay)
1679 {
1680 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1681 }
1682 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1683
1684 /**
1685 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1686 * @plug: The &struct blk_plug that needs to be initialized
1687 *
1688 * Description:
1689 * blk_start_plug() indicates to the block layer an intent by the caller
1690 * to submit multiple I/O requests in a batch. The block layer may use
1691 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1692 * is called. However, the block layer may choose to submit requests
1693 * before a call to blk_finish_plug() if the number of queued I/Os
1694 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1695 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1696 * the task schedules (see below).
1697 *
1698 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1699 * pending I/O should the task end up blocking between blk_start_plug() and
1700 * blk_finish_plug(). This is important from a performance perspective, but
1701 * also ensures that we don't deadlock. For instance, if the task is blocking
1702 * for a memory allocation, memory reclaim could end up wanting to free a
1703 * page belonging to that request that is currently residing in our private
1704 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1705 * this kind of deadlock.
1706 */
1707 void blk_start_plug(struct blk_plug *plug)
1708 {
1709 struct task_struct *tsk = current;
1710
1711 /*
1712 * If this is a nested plug, don't actually assign it.
1713 */
1714 if (tsk->plug)
1715 return;
1716
1717 INIT_LIST_HEAD(&plug->mq_list);
1718 INIT_LIST_HEAD(&plug->cb_list);
1719 plug->rq_count = 0;
1720 plug->multiple_queues = false;
1721
1722 /*
1723 * Store ordering should not be needed here, since a potential
1724 * preempt will imply a full memory barrier
1725 */
1726 tsk->plug = plug;
1727 }
1728 EXPORT_SYMBOL(blk_start_plug);
1729
1730 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1731 {
1732 LIST_HEAD(callbacks);
1733
1734 while (!list_empty(&plug->cb_list)) {
1735 list_splice_init(&plug->cb_list, &callbacks);
1736
1737 while (!list_empty(&callbacks)) {
1738 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1739 struct blk_plug_cb,
1740 list);
1741 list_del(&cb->list);
1742 cb->callback(cb, from_schedule);
1743 }
1744 }
1745 }
1746
1747 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1748 int size)
1749 {
1750 struct blk_plug *plug = current->plug;
1751 struct blk_plug_cb *cb;
1752
1753 if (!plug)
1754 return NULL;
1755
1756 list_for_each_entry(cb, &plug->cb_list, list)
1757 if (cb->callback == unplug && cb->data == data)
1758 return cb;
1759
1760 /* Not currently on the callback list */
1761 BUG_ON(size < sizeof(*cb));
1762 cb = kzalloc(size, GFP_ATOMIC);
1763 if (cb) {
1764 cb->data = data;
1765 cb->callback = unplug;
1766 list_add(&cb->list, &plug->cb_list);
1767 }
1768 return cb;
1769 }
1770 EXPORT_SYMBOL(blk_check_plugged);
1771
1772 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1773 {
1774 flush_plug_callbacks(plug, from_schedule);
1775
1776 if (!list_empty(&plug->mq_list))
1777 blk_mq_flush_plug_list(plug, from_schedule);
1778 }
1779
1780 /**
1781 * blk_finish_plug - mark the end of a batch of submitted I/O
1782 * @plug: The &struct blk_plug passed to blk_start_plug()
1783 *
1784 * Description:
1785 * Indicate that a batch of I/O submissions is complete. This function
1786 * must be paired with an initial call to blk_start_plug(). The intent
1787 * is to allow the block layer to optimize I/O submission. See the
1788 * documentation for blk_start_plug() for more information.
1789 */
1790 void blk_finish_plug(struct blk_plug *plug)
1791 {
1792 if (plug != current->plug)
1793 return;
1794 blk_flush_plug_list(plug, false);
1795
1796 current->plug = NULL;
1797 }
1798 EXPORT_SYMBOL(blk_finish_plug);
1799
1800 int __init blk_dev_init(void)
1801 {
1802 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1803 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1804 FIELD_SIZEOF(struct request, cmd_flags));
1805 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1806 FIELD_SIZEOF(struct bio, bi_opf));
1807
1808 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1809 kblockd_workqueue = alloc_workqueue("kblockd",
1810 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1811 if (!kblockd_workqueue)
1812 panic("Failed to create kblockd\n");
1813
1814 blk_requestq_cachep = kmem_cache_create("request_queue",
1815 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1816
1817 #ifdef CONFIG_DEBUG_FS
1818 blk_debugfs_root = debugfs_create_dir("block", NULL);
1819 #endif
1820
1821 return 0;
1822 }