]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-core.c
block: fix use-after-free of q->q_usage_counter
[thirdparty/linux.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52
53 struct dentry *blk_debugfs_root;
54
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
61
62 static DEFINE_IDA(blk_queue_ida);
63
64 /*
65 * For queue allocation
66 */
67 static struct kmem_cache *blk_requestq_cachep;
68
69 /*
70 * Controlling structure to kblockd
71 */
72 static struct workqueue_struct *kblockd_workqueue;
73
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84
85 /**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95
96 /**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
110 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
111 static const char *const blk_op_name[] = {
112 REQ_OP_NAME(READ),
113 REQ_OP_NAME(WRITE),
114 REQ_OP_NAME(FLUSH),
115 REQ_OP_NAME(DISCARD),
116 REQ_OP_NAME(SECURE_ERASE),
117 REQ_OP_NAME(ZONE_RESET),
118 REQ_OP_NAME(ZONE_RESET_ALL),
119 REQ_OP_NAME(ZONE_OPEN),
120 REQ_OP_NAME(ZONE_CLOSE),
121 REQ_OP_NAME(ZONE_FINISH),
122 REQ_OP_NAME(ZONE_APPEND),
123 REQ_OP_NAME(WRITE_ZEROES),
124 REQ_OP_NAME(DRV_IN),
125 REQ_OP_NAME(DRV_OUT),
126 };
127 #undef REQ_OP_NAME
128
129 /**
130 * blk_op_str - Return string XXX in the REQ_OP_XXX.
131 * @op: REQ_OP_XXX.
132 *
133 * Description: Centralize block layer function to convert REQ_OP_XXX into
134 * string format. Useful in the debugging and tracing bio or request. For
135 * invalid REQ_OP_XXX it returns string "UNKNOWN".
136 */
137 inline const char *blk_op_str(enum req_op op)
138 {
139 const char *op_str = "UNKNOWN";
140
141 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
142 op_str = blk_op_name[op];
143
144 return op_str;
145 }
146 EXPORT_SYMBOL_GPL(blk_op_str);
147
148 static const struct {
149 int errno;
150 const char *name;
151 } blk_errors[] = {
152 [BLK_STS_OK] = { 0, "" },
153 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
154 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
155 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
156 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
157 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
158 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
159 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
160 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
161 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
162 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
163 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
164 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
165
166 /* device mapper special case, should not leak out: */
167 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
168
169 /* zone device specific errors */
170 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
171 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
172
173 /* everything else not covered above: */
174 [BLK_STS_IOERR] = { -EIO, "I/O" },
175 };
176
177 blk_status_t errno_to_blk_status(int errno)
178 {
179 int i;
180
181 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
182 if (blk_errors[i].errno == errno)
183 return (__force blk_status_t)i;
184 }
185
186 return BLK_STS_IOERR;
187 }
188 EXPORT_SYMBOL_GPL(errno_to_blk_status);
189
190 int blk_status_to_errno(blk_status_t status)
191 {
192 int idx = (__force int)status;
193
194 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
195 return -EIO;
196 return blk_errors[idx].errno;
197 }
198 EXPORT_SYMBOL_GPL(blk_status_to_errno);
199
200 const char *blk_status_to_str(blk_status_t status)
201 {
202 int idx = (__force int)status;
203
204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
205 return "<null>";
206 return blk_errors[idx].name;
207 }
208
209 /**
210 * blk_sync_queue - cancel any pending callbacks on a queue
211 * @q: the queue
212 *
213 * Description:
214 * The block layer may perform asynchronous callback activity
215 * on a queue, such as calling the unplug function after a timeout.
216 * A block device may call blk_sync_queue to ensure that any
217 * such activity is cancelled, thus allowing it to release resources
218 * that the callbacks might use. The caller must already have made sure
219 * that its ->submit_bio will not re-add plugging prior to calling
220 * this function.
221 *
222 * This function does not cancel any asynchronous activity arising
223 * out of elevator or throttling code. That would require elevator_exit()
224 * and blkcg_exit_queue() to be called with queue lock initialized.
225 *
226 */
227 void blk_sync_queue(struct request_queue *q)
228 {
229 del_timer_sync(&q->timeout);
230 cancel_work_sync(&q->timeout_work);
231 }
232 EXPORT_SYMBOL(blk_sync_queue);
233
234 /**
235 * blk_set_pm_only - increment pm_only counter
236 * @q: request queue pointer
237 */
238 void blk_set_pm_only(struct request_queue *q)
239 {
240 atomic_inc(&q->pm_only);
241 }
242 EXPORT_SYMBOL_GPL(blk_set_pm_only);
243
244 void blk_clear_pm_only(struct request_queue *q)
245 {
246 int pm_only;
247
248 pm_only = atomic_dec_return(&q->pm_only);
249 WARN_ON_ONCE(pm_only < 0);
250 if (pm_only == 0)
251 wake_up_all(&q->mq_freeze_wq);
252 }
253 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
254
255 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
256 {
257 struct request_queue *q = container_of(rcu_head,
258 struct request_queue, rcu_head);
259
260 percpu_ref_exit(&q->q_usage_counter);
261 kmem_cache_free(blk_requestq_cachep, q);
262 }
263
264 static void blk_free_queue(struct request_queue *q)
265 {
266 if (q->poll_stat)
267 blk_stat_remove_callback(q, q->poll_cb);
268 blk_stat_free_callback(q->poll_cb);
269
270 blk_free_queue_stats(q->stats);
271 kfree(q->poll_stat);
272
273 if (queue_is_mq(q))
274 blk_mq_release(q);
275
276 ida_free(&blk_queue_ida, q->id);
277 call_rcu(&q->rcu_head, blk_free_queue_rcu);
278 }
279
280 /**
281 * blk_put_queue - decrement the request_queue refcount
282 * @q: the request_queue structure to decrement the refcount for
283 *
284 * Decrements the refcount of the request_queue and free it when the refcount
285 * reaches 0.
286 *
287 * Context: Can sleep.
288 */
289 void blk_put_queue(struct request_queue *q)
290 {
291 might_sleep();
292 if (refcount_dec_and_test(&q->refs))
293 blk_free_queue(q);
294 }
295 EXPORT_SYMBOL(blk_put_queue);
296
297 void blk_queue_start_drain(struct request_queue *q)
298 {
299 /*
300 * When queue DYING flag is set, we need to block new req
301 * entering queue, so we call blk_freeze_queue_start() to
302 * prevent I/O from crossing blk_queue_enter().
303 */
304 blk_freeze_queue_start(q);
305 if (queue_is_mq(q))
306 blk_mq_wake_waiters(q);
307 /* Make blk_queue_enter() reexamine the DYING flag. */
308 wake_up_all(&q->mq_freeze_wq);
309 }
310
311 /**
312 * blk_queue_enter() - try to increase q->q_usage_counter
313 * @q: request queue pointer
314 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
315 */
316 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
317 {
318 const bool pm = flags & BLK_MQ_REQ_PM;
319
320 while (!blk_try_enter_queue(q, pm)) {
321 if (flags & BLK_MQ_REQ_NOWAIT)
322 return -EAGAIN;
323
324 /*
325 * read pair of barrier in blk_freeze_queue_start(), we need to
326 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
327 * reading .mq_freeze_depth or queue dying flag, otherwise the
328 * following wait may never return if the two reads are
329 * reordered.
330 */
331 smp_rmb();
332 wait_event(q->mq_freeze_wq,
333 (!q->mq_freeze_depth &&
334 blk_pm_resume_queue(pm, q)) ||
335 blk_queue_dying(q));
336 if (blk_queue_dying(q))
337 return -ENODEV;
338 }
339
340 return 0;
341 }
342
343 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
344 {
345 while (!blk_try_enter_queue(q, false)) {
346 struct gendisk *disk = bio->bi_bdev->bd_disk;
347
348 if (bio->bi_opf & REQ_NOWAIT) {
349 if (test_bit(GD_DEAD, &disk->state))
350 goto dead;
351 bio_wouldblock_error(bio);
352 return -EAGAIN;
353 }
354
355 /*
356 * read pair of barrier in blk_freeze_queue_start(), we need to
357 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
358 * reading .mq_freeze_depth or queue dying flag, otherwise the
359 * following wait may never return if the two reads are
360 * reordered.
361 */
362 smp_rmb();
363 wait_event(q->mq_freeze_wq,
364 (!q->mq_freeze_depth &&
365 blk_pm_resume_queue(false, q)) ||
366 test_bit(GD_DEAD, &disk->state));
367 if (test_bit(GD_DEAD, &disk->state))
368 goto dead;
369 }
370
371 return 0;
372 dead:
373 bio_io_error(bio);
374 return -ENODEV;
375 }
376
377 void blk_queue_exit(struct request_queue *q)
378 {
379 percpu_ref_put(&q->q_usage_counter);
380 }
381
382 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
383 {
384 struct request_queue *q =
385 container_of(ref, struct request_queue, q_usage_counter);
386
387 wake_up_all(&q->mq_freeze_wq);
388 }
389
390 static void blk_rq_timed_out_timer(struct timer_list *t)
391 {
392 struct request_queue *q = from_timer(q, t, timeout);
393
394 kblockd_schedule_work(&q->timeout_work);
395 }
396
397 static void blk_timeout_work(struct work_struct *work)
398 {
399 }
400
401 struct request_queue *blk_alloc_queue(int node_id)
402 {
403 struct request_queue *q;
404
405 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
406 node_id);
407 if (!q)
408 return NULL;
409
410 q->last_merge = NULL;
411
412 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
413 if (q->id < 0)
414 goto fail_q;
415
416 q->stats = blk_alloc_queue_stats();
417 if (!q->stats)
418 goto fail_id;
419
420 q->node = node_id;
421
422 atomic_set(&q->nr_active_requests_shared_tags, 0);
423
424 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
425 INIT_WORK(&q->timeout_work, blk_timeout_work);
426 INIT_LIST_HEAD(&q->icq_list);
427
428 refcount_set(&q->refs, 1);
429 mutex_init(&q->debugfs_mutex);
430 mutex_init(&q->sysfs_lock);
431 mutex_init(&q->sysfs_dir_lock);
432 spin_lock_init(&q->queue_lock);
433
434 init_waitqueue_head(&q->mq_freeze_wq);
435 mutex_init(&q->mq_freeze_lock);
436
437 /*
438 * Init percpu_ref in atomic mode so that it's faster to shutdown.
439 * See blk_register_queue() for details.
440 */
441 if (percpu_ref_init(&q->q_usage_counter,
442 blk_queue_usage_counter_release,
443 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
444 goto fail_stats;
445
446 blk_set_default_limits(&q->limits);
447 q->nr_requests = BLKDEV_DEFAULT_RQ;
448
449 return q;
450
451 fail_stats:
452 blk_free_queue_stats(q->stats);
453 fail_id:
454 ida_free(&blk_queue_ida, q->id);
455 fail_q:
456 kmem_cache_free(blk_requestq_cachep, q);
457 return NULL;
458 }
459
460 /**
461 * blk_get_queue - increment the request_queue refcount
462 * @q: the request_queue structure to increment the refcount for
463 *
464 * Increment the refcount of the request_queue kobject.
465 *
466 * Context: Any context.
467 */
468 bool blk_get_queue(struct request_queue *q)
469 {
470 if (unlikely(blk_queue_dying(q)))
471 return false;
472 refcount_inc(&q->refs);
473 return true;
474 }
475 EXPORT_SYMBOL(blk_get_queue);
476
477 #ifdef CONFIG_FAIL_MAKE_REQUEST
478
479 static DECLARE_FAULT_ATTR(fail_make_request);
480
481 static int __init setup_fail_make_request(char *str)
482 {
483 return setup_fault_attr(&fail_make_request, str);
484 }
485 __setup("fail_make_request=", setup_fail_make_request);
486
487 bool should_fail_request(struct block_device *part, unsigned int bytes)
488 {
489 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
490 }
491
492 static int __init fail_make_request_debugfs(void)
493 {
494 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
495 NULL, &fail_make_request);
496
497 return PTR_ERR_OR_ZERO(dir);
498 }
499
500 late_initcall(fail_make_request_debugfs);
501 #endif /* CONFIG_FAIL_MAKE_REQUEST */
502
503 static inline void bio_check_ro(struct bio *bio)
504 {
505 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
506 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
507 return;
508 pr_warn("Trying to write to read-only block-device %pg\n",
509 bio->bi_bdev);
510 /* Older lvm-tools actually trigger this */
511 }
512 }
513
514 static noinline int should_fail_bio(struct bio *bio)
515 {
516 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
517 return -EIO;
518 return 0;
519 }
520 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
521
522 /*
523 * Check whether this bio extends beyond the end of the device or partition.
524 * This may well happen - the kernel calls bread() without checking the size of
525 * the device, e.g., when mounting a file system.
526 */
527 static inline int bio_check_eod(struct bio *bio)
528 {
529 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
530 unsigned int nr_sectors = bio_sectors(bio);
531
532 if (nr_sectors && maxsector &&
533 (nr_sectors > maxsector ||
534 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
535 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
536 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
537 current->comm, bio->bi_bdev, bio->bi_opf,
538 bio->bi_iter.bi_sector, nr_sectors, maxsector);
539 return -EIO;
540 }
541 return 0;
542 }
543
544 /*
545 * Remap block n of partition p to block n+start(p) of the disk.
546 */
547 static int blk_partition_remap(struct bio *bio)
548 {
549 struct block_device *p = bio->bi_bdev;
550
551 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
552 return -EIO;
553 if (bio_sectors(bio)) {
554 bio->bi_iter.bi_sector += p->bd_start_sect;
555 trace_block_bio_remap(bio, p->bd_dev,
556 bio->bi_iter.bi_sector -
557 p->bd_start_sect);
558 }
559 bio_set_flag(bio, BIO_REMAPPED);
560 return 0;
561 }
562
563 /*
564 * Check write append to a zoned block device.
565 */
566 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
567 struct bio *bio)
568 {
569 int nr_sectors = bio_sectors(bio);
570
571 /* Only applicable to zoned block devices */
572 if (!bdev_is_zoned(bio->bi_bdev))
573 return BLK_STS_NOTSUPP;
574
575 /* The bio sector must point to the start of a sequential zone */
576 if (bio->bi_iter.bi_sector & (bdev_zone_sectors(bio->bi_bdev) - 1) ||
577 !bio_zone_is_seq(bio))
578 return BLK_STS_IOERR;
579
580 /*
581 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
582 * split and could result in non-contiguous sectors being written in
583 * different zones.
584 */
585 if (nr_sectors > q->limits.chunk_sectors)
586 return BLK_STS_IOERR;
587
588 /* Make sure the BIO is small enough and will not get split */
589 if (nr_sectors > q->limits.max_zone_append_sectors)
590 return BLK_STS_IOERR;
591
592 bio->bi_opf |= REQ_NOMERGE;
593
594 return BLK_STS_OK;
595 }
596
597 static void __submit_bio(struct bio *bio)
598 {
599 struct gendisk *disk = bio->bi_bdev->bd_disk;
600
601 if (unlikely(!blk_crypto_bio_prep(&bio)))
602 return;
603
604 if (!disk->fops->submit_bio) {
605 blk_mq_submit_bio(bio);
606 } else if (likely(bio_queue_enter(bio) == 0)) {
607 disk->fops->submit_bio(bio);
608 blk_queue_exit(disk->queue);
609 }
610 }
611
612 /*
613 * The loop in this function may be a bit non-obvious, and so deserves some
614 * explanation:
615 *
616 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
617 * that), so we have a list with a single bio.
618 * - We pretend that we have just taken it off a longer list, so we assign
619 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
620 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
621 * bios through a recursive call to submit_bio_noacct. If it did, we find a
622 * non-NULL value in bio_list and re-enter the loop from the top.
623 * - In this case we really did just take the bio of the top of the list (no
624 * pretending) and so remove it from bio_list, and call into ->submit_bio()
625 * again.
626 *
627 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
628 * bio_list_on_stack[1] contains bios that were submitted before the current
629 * ->submit_bio, but that haven't been processed yet.
630 */
631 static void __submit_bio_noacct(struct bio *bio)
632 {
633 struct bio_list bio_list_on_stack[2];
634
635 BUG_ON(bio->bi_next);
636
637 bio_list_init(&bio_list_on_stack[0]);
638 current->bio_list = bio_list_on_stack;
639
640 do {
641 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
642 struct bio_list lower, same;
643
644 /*
645 * Create a fresh bio_list for all subordinate requests.
646 */
647 bio_list_on_stack[1] = bio_list_on_stack[0];
648 bio_list_init(&bio_list_on_stack[0]);
649
650 __submit_bio(bio);
651
652 /*
653 * Sort new bios into those for a lower level and those for the
654 * same level.
655 */
656 bio_list_init(&lower);
657 bio_list_init(&same);
658 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
659 if (q == bdev_get_queue(bio->bi_bdev))
660 bio_list_add(&same, bio);
661 else
662 bio_list_add(&lower, bio);
663
664 /*
665 * Now assemble so we handle the lowest level first.
666 */
667 bio_list_merge(&bio_list_on_stack[0], &lower);
668 bio_list_merge(&bio_list_on_stack[0], &same);
669 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
670 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
671
672 current->bio_list = NULL;
673 }
674
675 static void __submit_bio_noacct_mq(struct bio *bio)
676 {
677 struct bio_list bio_list[2] = { };
678
679 current->bio_list = bio_list;
680
681 do {
682 __submit_bio(bio);
683 } while ((bio = bio_list_pop(&bio_list[0])));
684
685 current->bio_list = NULL;
686 }
687
688 void submit_bio_noacct_nocheck(struct bio *bio)
689 {
690 /*
691 * We only want one ->submit_bio to be active at a time, else stack
692 * usage with stacked devices could be a problem. Use current->bio_list
693 * to collect a list of requests submited by a ->submit_bio method while
694 * it is active, and then process them after it returned.
695 */
696 if (current->bio_list)
697 bio_list_add(&current->bio_list[0], bio);
698 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
699 __submit_bio_noacct_mq(bio);
700 else
701 __submit_bio_noacct(bio);
702 }
703
704 /**
705 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
706 * @bio: The bio describing the location in memory and on the device.
707 *
708 * This is a version of submit_bio() that shall only be used for I/O that is
709 * resubmitted to lower level drivers by stacking block drivers. All file
710 * systems and other upper level users of the block layer should use
711 * submit_bio() instead.
712 */
713 void submit_bio_noacct(struct bio *bio)
714 {
715 struct block_device *bdev = bio->bi_bdev;
716 struct request_queue *q = bdev_get_queue(bdev);
717 blk_status_t status = BLK_STS_IOERR;
718 struct blk_plug *plug;
719
720 might_sleep();
721
722 plug = blk_mq_plug(bio);
723 if (plug && plug->nowait)
724 bio->bi_opf |= REQ_NOWAIT;
725
726 /*
727 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
728 * if queue does not support NOWAIT.
729 */
730 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
731 goto not_supported;
732
733 if (should_fail_bio(bio))
734 goto end_io;
735 bio_check_ro(bio);
736 if (!bio_flagged(bio, BIO_REMAPPED)) {
737 if (unlikely(bio_check_eod(bio)))
738 goto end_io;
739 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
740 goto end_io;
741 }
742
743 /*
744 * Filter flush bio's early so that bio based drivers without flush
745 * support don't have to worry about them.
746 */
747 if (op_is_flush(bio->bi_opf) &&
748 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
749 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
750 if (!bio_sectors(bio)) {
751 status = BLK_STS_OK;
752 goto end_io;
753 }
754 }
755
756 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
757 bio_clear_polled(bio);
758
759 switch (bio_op(bio)) {
760 case REQ_OP_DISCARD:
761 if (!bdev_max_discard_sectors(bdev))
762 goto not_supported;
763 break;
764 case REQ_OP_SECURE_ERASE:
765 if (!bdev_max_secure_erase_sectors(bdev))
766 goto not_supported;
767 break;
768 case REQ_OP_ZONE_APPEND:
769 status = blk_check_zone_append(q, bio);
770 if (status != BLK_STS_OK)
771 goto end_io;
772 break;
773 case REQ_OP_ZONE_RESET:
774 case REQ_OP_ZONE_OPEN:
775 case REQ_OP_ZONE_CLOSE:
776 case REQ_OP_ZONE_FINISH:
777 if (!bdev_is_zoned(bio->bi_bdev))
778 goto not_supported;
779 break;
780 case REQ_OP_ZONE_RESET_ALL:
781 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
782 goto not_supported;
783 break;
784 case REQ_OP_WRITE_ZEROES:
785 if (!q->limits.max_write_zeroes_sectors)
786 goto not_supported;
787 break;
788 default:
789 break;
790 }
791
792 if (blk_throtl_bio(bio))
793 return;
794
795 blk_cgroup_bio_start(bio);
796 blkcg_bio_issue_init(bio);
797
798 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
799 trace_block_bio_queue(bio);
800 /* Now that enqueuing has been traced, we need to trace
801 * completion as well.
802 */
803 bio_set_flag(bio, BIO_TRACE_COMPLETION);
804 }
805 submit_bio_noacct_nocheck(bio);
806 return;
807
808 not_supported:
809 status = BLK_STS_NOTSUPP;
810 end_io:
811 bio->bi_status = status;
812 bio_endio(bio);
813 }
814 EXPORT_SYMBOL(submit_bio_noacct);
815
816 /**
817 * submit_bio - submit a bio to the block device layer for I/O
818 * @bio: The &struct bio which describes the I/O
819 *
820 * submit_bio() is used to submit I/O requests to block devices. It is passed a
821 * fully set up &struct bio that describes the I/O that needs to be done. The
822 * bio will be send to the device described by the bi_bdev field.
823 *
824 * The success/failure status of the request, along with notification of
825 * completion, is delivered asynchronously through the ->bi_end_io() callback
826 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
827 * been called.
828 */
829 void submit_bio(struct bio *bio)
830 {
831 if (blkcg_punt_bio_submit(bio))
832 return;
833
834 if (bio_op(bio) == REQ_OP_READ) {
835 task_io_account_read(bio->bi_iter.bi_size);
836 count_vm_events(PGPGIN, bio_sectors(bio));
837 } else if (bio_op(bio) == REQ_OP_WRITE) {
838 count_vm_events(PGPGOUT, bio_sectors(bio));
839 }
840
841 submit_bio_noacct(bio);
842 }
843 EXPORT_SYMBOL(submit_bio);
844
845 /**
846 * bio_poll - poll for BIO completions
847 * @bio: bio to poll for
848 * @iob: batches of IO
849 * @flags: BLK_POLL_* flags that control the behavior
850 *
851 * Poll for completions on queue associated with the bio. Returns number of
852 * completed entries found.
853 *
854 * Note: the caller must either be the context that submitted @bio, or
855 * be in a RCU critical section to prevent freeing of @bio.
856 */
857 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
858 {
859 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
860 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
861 int ret = 0;
862
863 if (cookie == BLK_QC_T_NONE ||
864 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
865 return 0;
866
867 /*
868 * As the requests that require a zone lock are not plugged in the
869 * first place, directly accessing the plug instead of using
870 * blk_mq_plug() should not have any consequences during flushing for
871 * zoned devices.
872 */
873 blk_flush_plug(current->plug, false);
874
875 if (bio_queue_enter(bio))
876 return 0;
877 if (queue_is_mq(q)) {
878 ret = blk_mq_poll(q, cookie, iob, flags);
879 } else {
880 struct gendisk *disk = q->disk;
881
882 if (disk && disk->fops->poll_bio)
883 ret = disk->fops->poll_bio(bio, iob, flags);
884 }
885 blk_queue_exit(q);
886 return ret;
887 }
888 EXPORT_SYMBOL_GPL(bio_poll);
889
890 /*
891 * Helper to implement file_operations.iopoll. Requires the bio to be stored
892 * in iocb->private, and cleared before freeing the bio.
893 */
894 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
895 unsigned int flags)
896 {
897 struct bio *bio;
898 int ret = 0;
899
900 /*
901 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
902 * point to a freshly allocated bio at this point. If that happens
903 * we have a few cases to consider:
904 *
905 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
906 * simply nothing in this case
907 * 2) the bio points to a not poll enabled device. bio_poll will catch
908 * this and return 0
909 * 3) the bio points to a poll capable device, including but not
910 * limited to the one that the original bio pointed to. In this
911 * case we will call into the actual poll method and poll for I/O,
912 * even if we don't need to, but it won't cause harm either.
913 *
914 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
915 * is still allocated. Because partitions hold a reference to the whole
916 * device bdev and thus disk, the disk is also still valid. Grabbing
917 * a reference to the queue in bio_poll() ensures the hctxs and requests
918 * are still valid as well.
919 */
920 rcu_read_lock();
921 bio = READ_ONCE(kiocb->private);
922 if (bio && bio->bi_bdev)
923 ret = bio_poll(bio, iob, flags);
924 rcu_read_unlock();
925
926 return ret;
927 }
928 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
929
930 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
931 {
932 unsigned long stamp;
933 again:
934 stamp = READ_ONCE(part->bd_stamp);
935 if (unlikely(time_after(now, stamp))) {
936 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
937 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
938 }
939 if (part->bd_partno) {
940 part = bdev_whole(part);
941 goto again;
942 }
943 }
944
945 unsigned long bdev_start_io_acct(struct block_device *bdev,
946 unsigned int sectors, enum req_op op,
947 unsigned long start_time)
948 {
949 const int sgrp = op_stat_group(op);
950
951 part_stat_lock();
952 update_io_ticks(bdev, start_time, false);
953 part_stat_inc(bdev, ios[sgrp]);
954 part_stat_add(bdev, sectors[sgrp], sectors);
955 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
956 part_stat_unlock();
957
958 return start_time;
959 }
960 EXPORT_SYMBOL(bdev_start_io_acct);
961
962 /**
963 * bio_start_io_acct - start I/O accounting for bio based drivers
964 * @bio: bio to start account for
965 *
966 * Returns the start time that should be passed back to bio_end_io_acct().
967 */
968 unsigned long bio_start_io_acct(struct bio *bio)
969 {
970 return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
971 bio_op(bio), jiffies);
972 }
973 EXPORT_SYMBOL_GPL(bio_start_io_acct);
974
975 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
976 unsigned long start_time)
977 {
978 const int sgrp = op_stat_group(op);
979 unsigned long now = READ_ONCE(jiffies);
980 unsigned long duration = now - start_time;
981
982 part_stat_lock();
983 update_io_ticks(bdev, now, true);
984 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
985 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
986 part_stat_unlock();
987 }
988 EXPORT_SYMBOL(bdev_end_io_acct);
989
990 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
991 struct block_device *orig_bdev)
992 {
993 bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
994 }
995 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
996
997 /**
998 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
999 * @q : the queue of the device being checked
1000 *
1001 * Description:
1002 * Check if underlying low-level drivers of a device are busy.
1003 * If the drivers want to export their busy state, they must set own
1004 * exporting function using blk_queue_lld_busy() first.
1005 *
1006 * Basically, this function is used only by request stacking drivers
1007 * to stop dispatching requests to underlying devices when underlying
1008 * devices are busy. This behavior helps more I/O merging on the queue
1009 * of the request stacking driver and prevents I/O throughput regression
1010 * on burst I/O load.
1011 *
1012 * Return:
1013 * 0 - Not busy (The request stacking driver should dispatch request)
1014 * 1 - Busy (The request stacking driver should stop dispatching request)
1015 */
1016 int blk_lld_busy(struct request_queue *q)
1017 {
1018 if (queue_is_mq(q) && q->mq_ops->busy)
1019 return q->mq_ops->busy(q);
1020
1021 return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(blk_lld_busy);
1024
1025 int kblockd_schedule_work(struct work_struct *work)
1026 {
1027 return queue_work(kblockd_workqueue, work);
1028 }
1029 EXPORT_SYMBOL(kblockd_schedule_work);
1030
1031 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1032 unsigned long delay)
1033 {
1034 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1035 }
1036 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1037
1038 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1039 {
1040 struct task_struct *tsk = current;
1041
1042 /*
1043 * If this is a nested plug, don't actually assign it.
1044 */
1045 if (tsk->plug)
1046 return;
1047
1048 plug->mq_list = NULL;
1049 plug->cached_rq = NULL;
1050 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1051 plug->rq_count = 0;
1052 plug->multiple_queues = false;
1053 plug->has_elevator = false;
1054 plug->nowait = false;
1055 INIT_LIST_HEAD(&plug->cb_list);
1056
1057 /*
1058 * Store ordering should not be needed here, since a potential
1059 * preempt will imply a full memory barrier
1060 */
1061 tsk->plug = plug;
1062 }
1063
1064 /**
1065 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1066 * @plug: The &struct blk_plug that needs to be initialized
1067 *
1068 * Description:
1069 * blk_start_plug() indicates to the block layer an intent by the caller
1070 * to submit multiple I/O requests in a batch. The block layer may use
1071 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1072 * is called. However, the block layer may choose to submit requests
1073 * before a call to blk_finish_plug() if the number of queued I/Os
1074 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1075 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1076 * the task schedules (see below).
1077 *
1078 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1079 * pending I/O should the task end up blocking between blk_start_plug() and
1080 * blk_finish_plug(). This is important from a performance perspective, but
1081 * also ensures that we don't deadlock. For instance, if the task is blocking
1082 * for a memory allocation, memory reclaim could end up wanting to free a
1083 * page belonging to that request that is currently residing in our private
1084 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1085 * this kind of deadlock.
1086 */
1087 void blk_start_plug(struct blk_plug *plug)
1088 {
1089 blk_start_plug_nr_ios(plug, 1);
1090 }
1091 EXPORT_SYMBOL(blk_start_plug);
1092
1093 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1094 {
1095 LIST_HEAD(callbacks);
1096
1097 while (!list_empty(&plug->cb_list)) {
1098 list_splice_init(&plug->cb_list, &callbacks);
1099
1100 while (!list_empty(&callbacks)) {
1101 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1102 struct blk_plug_cb,
1103 list);
1104 list_del(&cb->list);
1105 cb->callback(cb, from_schedule);
1106 }
1107 }
1108 }
1109
1110 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1111 int size)
1112 {
1113 struct blk_plug *plug = current->plug;
1114 struct blk_plug_cb *cb;
1115
1116 if (!plug)
1117 return NULL;
1118
1119 list_for_each_entry(cb, &plug->cb_list, list)
1120 if (cb->callback == unplug && cb->data == data)
1121 return cb;
1122
1123 /* Not currently on the callback list */
1124 BUG_ON(size < sizeof(*cb));
1125 cb = kzalloc(size, GFP_ATOMIC);
1126 if (cb) {
1127 cb->data = data;
1128 cb->callback = unplug;
1129 list_add(&cb->list, &plug->cb_list);
1130 }
1131 return cb;
1132 }
1133 EXPORT_SYMBOL(blk_check_plugged);
1134
1135 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1136 {
1137 if (!list_empty(&plug->cb_list))
1138 flush_plug_callbacks(plug, from_schedule);
1139 if (!rq_list_empty(plug->mq_list))
1140 blk_mq_flush_plug_list(plug, from_schedule);
1141 /*
1142 * Unconditionally flush out cached requests, even if the unplug
1143 * event came from schedule. Since we know hold references to the
1144 * queue for cached requests, we don't want a blocked task holding
1145 * up a queue freeze/quiesce event.
1146 */
1147 if (unlikely(!rq_list_empty(plug->cached_rq)))
1148 blk_mq_free_plug_rqs(plug);
1149 }
1150
1151 /**
1152 * blk_finish_plug - mark the end of a batch of submitted I/O
1153 * @plug: The &struct blk_plug passed to blk_start_plug()
1154 *
1155 * Description:
1156 * Indicate that a batch of I/O submissions is complete. This function
1157 * must be paired with an initial call to blk_start_plug(). The intent
1158 * is to allow the block layer to optimize I/O submission. See the
1159 * documentation for blk_start_plug() for more information.
1160 */
1161 void blk_finish_plug(struct blk_plug *plug)
1162 {
1163 if (plug == current->plug) {
1164 __blk_flush_plug(plug, false);
1165 current->plug = NULL;
1166 }
1167 }
1168 EXPORT_SYMBOL(blk_finish_plug);
1169
1170 void blk_io_schedule(void)
1171 {
1172 /* Prevent hang_check timer from firing at us during very long I/O */
1173 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1174
1175 if (timeout)
1176 io_schedule_timeout(timeout);
1177 else
1178 io_schedule();
1179 }
1180 EXPORT_SYMBOL_GPL(blk_io_schedule);
1181
1182 int __init blk_dev_init(void)
1183 {
1184 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1185 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1186 sizeof_field(struct request, cmd_flags));
1187 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1188 sizeof_field(struct bio, bi_opf));
1189
1190 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1191 kblockd_workqueue = alloc_workqueue("kblockd",
1192 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1193 if (!kblockd_workqueue)
1194 panic("Failed to create kblockd\n");
1195
1196 blk_requestq_cachep = kmem_cache_create("request_queue",
1197 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1198
1199 blk_debugfs_root = debugfs_create_dir("block", NULL);
1200
1201 return 0;
1202 }