]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-core.c
block: make kblockd_schedule_work() take the queue as parameter
[thirdparty/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31
32 #include "blk.h"
33
34 static int __make_request(struct request_queue *q, struct bio *bio);
35
36 /*
37 * For the allocated request tables
38 */
39 static struct kmem_cache *request_cachep;
40
41 /*
42 * For queue allocation
43 */
44 struct kmem_cache *blk_requestq_cachep;
45
46 /*
47 * Controlling structure to kblockd
48 */
49 static struct workqueue_struct *kblockd_workqueue;
50
51 static void drive_stat_acct(struct request *rq, int new_io)
52 {
53 struct hd_struct *part;
54 int rw = rq_data_dir(rq);
55 int cpu;
56
57 if (!blk_fs_request(rq) || !rq->rq_disk)
58 return;
59
60 cpu = part_stat_lock();
61 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
62
63 if (!new_io)
64 part_stat_inc(cpu, part, merges[rw]);
65 else {
66 part_round_stats(cpu, part);
67 part_inc_in_flight(part);
68 }
69
70 part_stat_unlock();
71 }
72
73 void blk_queue_congestion_threshold(struct request_queue *q)
74 {
75 int nr;
76
77 nr = q->nr_requests - (q->nr_requests / 8) + 1;
78 if (nr > q->nr_requests)
79 nr = q->nr_requests;
80 q->nr_congestion_on = nr;
81
82 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
83 if (nr < 1)
84 nr = 1;
85 q->nr_congestion_off = nr;
86 }
87
88 /**
89 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
90 * @bdev: device
91 *
92 * Locates the passed device's request queue and returns the address of its
93 * backing_dev_info
94 *
95 * Will return NULL if the request queue cannot be located.
96 */
97 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
98 {
99 struct backing_dev_info *ret = NULL;
100 struct request_queue *q = bdev_get_queue(bdev);
101
102 if (q)
103 ret = &q->backing_dev_info;
104 return ret;
105 }
106 EXPORT_SYMBOL(blk_get_backing_dev_info);
107
108 void blk_rq_init(struct request_queue *q, struct request *rq)
109 {
110 memset(rq, 0, sizeof(*rq));
111
112 INIT_LIST_HEAD(&rq->queuelist);
113 INIT_LIST_HEAD(&rq->donelist);
114 rq->q = q;
115 rq->sector = rq->hard_sector = (sector_t) -1;
116 INIT_HLIST_NODE(&rq->hash);
117 RB_CLEAR_NODE(&rq->rb_node);
118 rq->cmd = rq->__cmd;
119 rq->tag = -1;
120 rq->ref_count = 1;
121 }
122 EXPORT_SYMBOL(blk_rq_init);
123
124 static void req_bio_endio(struct request *rq, struct bio *bio,
125 unsigned int nbytes, int error)
126 {
127 struct request_queue *q = rq->q;
128
129 if (&q->bar_rq != rq) {
130 if (error)
131 clear_bit(BIO_UPTODATE, &bio->bi_flags);
132 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
133 error = -EIO;
134
135 if (unlikely(nbytes > bio->bi_size)) {
136 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
137 __func__, nbytes, bio->bi_size);
138 nbytes = bio->bi_size;
139 }
140
141 bio->bi_size -= nbytes;
142 bio->bi_sector += (nbytes >> 9);
143
144 if (bio_integrity(bio))
145 bio_integrity_advance(bio, nbytes);
146
147 if (bio->bi_size == 0)
148 bio_endio(bio, error);
149 } else {
150
151 /*
152 * Okay, this is the barrier request in progress, just
153 * record the error;
154 */
155 if (error && !q->orderr)
156 q->orderr = error;
157 }
158 }
159
160 void blk_dump_rq_flags(struct request *rq, char *msg)
161 {
162 int bit;
163
164 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
165 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
166 rq->cmd_flags);
167
168 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
169 (unsigned long long)rq->sector,
170 rq->nr_sectors,
171 rq->current_nr_sectors);
172 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
173 rq->bio, rq->biotail,
174 rq->buffer, rq->data,
175 rq->data_len);
176
177 if (blk_pc_request(rq)) {
178 printk(KERN_INFO " cdb: ");
179 for (bit = 0; bit < BLK_MAX_CDB; bit++)
180 printk("%02x ", rq->cmd[bit]);
181 printk("\n");
182 }
183 }
184 EXPORT_SYMBOL(blk_dump_rq_flags);
185
186 /*
187 * "plug" the device if there are no outstanding requests: this will
188 * force the transfer to start only after we have put all the requests
189 * on the list.
190 *
191 * This is called with interrupts off and no requests on the queue and
192 * with the queue lock held.
193 */
194 void blk_plug_device(struct request_queue *q)
195 {
196 WARN_ON(!irqs_disabled());
197
198 /*
199 * don't plug a stopped queue, it must be paired with blk_start_queue()
200 * which will restart the queueing
201 */
202 if (blk_queue_stopped(q))
203 return;
204
205 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
206 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
207 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
208 }
209 }
210 EXPORT_SYMBOL(blk_plug_device);
211
212 /**
213 * blk_plug_device_unlocked - plug a device without queue lock held
214 * @q: The &struct request_queue to plug
215 *
216 * Description:
217 * Like @blk_plug_device(), but grabs the queue lock and disables
218 * interrupts.
219 **/
220 void blk_plug_device_unlocked(struct request_queue *q)
221 {
222 unsigned long flags;
223
224 spin_lock_irqsave(q->queue_lock, flags);
225 blk_plug_device(q);
226 spin_unlock_irqrestore(q->queue_lock, flags);
227 }
228 EXPORT_SYMBOL(blk_plug_device_unlocked);
229
230 /*
231 * remove the queue from the plugged list, if present. called with
232 * queue lock held and interrupts disabled.
233 */
234 int blk_remove_plug(struct request_queue *q)
235 {
236 WARN_ON(!irqs_disabled());
237
238 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
239 return 0;
240
241 del_timer(&q->unplug_timer);
242 return 1;
243 }
244 EXPORT_SYMBOL(blk_remove_plug);
245
246 /*
247 * remove the plug and let it rip..
248 */
249 void __generic_unplug_device(struct request_queue *q)
250 {
251 if (unlikely(blk_queue_stopped(q)))
252 return;
253
254 if (!blk_remove_plug(q))
255 return;
256
257 q->request_fn(q);
258 }
259 EXPORT_SYMBOL(__generic_unplug_device);
260
261 /**
262 * generic_unplug_device - fire a request queue
263 * @q: The &struct request_queue in question
264 *
265 * Description:
266 * Linux uses plugging to build bigger requests queues before letting
267 * the device have at them. If a queue is plugged, the I/O scheduler
268 * is still adding and merging requests on the queue. Once the queue
269 * gets unplugged, the request_fn defined for the queue is invoked and
270 * transfers started.
271 **/
272 void generic_unplug_device(struct request_queue *q)
273 {
274 if (blk_queue_plugged(q)) {
275 spin_lock_irq(q->queue_lock);
276 __generic_unplug_device(q);
277 spin_unlock_irq(q->queue_lock);
278 }
279 }
280 EXPORT_SYMBOL(generic_unplug_device);
281
282 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
283 struct page *page)
284 {
285 struct request_queue *q = bdi->unplug_io_data;
286
287 blk_unplug(q);
288 }
289
290 void blk_unplug_work(struct work_struct *work)
291 {
292 struct request_queue *q =
293 container_of(work, struct request_queue, unplug_work);
294
295 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
296 q->rq.count[READ] + q->rq.count[WRITE]);
297
298 q->unplug_fn(q);
299 }
300
301 void blk_unplug_timeout(unsigned long data)
302 {
303 struct request_queue *q = (struct request_queue *)data;
304
305 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
306 q->rq.count[READ] + q->rq.count[WRITE]);
307
308 kblockd_schedule_work(q, &q->unplug_work);
309 }
310
311 void blk_unplug(struct request_queue *q)
312 {
313 /*
314 * devices don't necessarily have an ->unplug_fn defined
315 */
316 if (q->unplug_fn) {
317 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
318 q->rq.count[READ] + q->rq.count[WRITE]);
319
320 q->unplug_fn(q);
321 }
322 }
323 EXPORT_SYMBOL(blk_unplug);
324
325 /**
326 * blk_start_queue - restart a previously stopped queue
327 * @q: The &struct request_queue in question
328 *
329 * Description:
330 * blk_start_queue() will clear the stop flag on the queue, and call
331 * the request_fn for the queue if it was in a stopped state when
332 * entered. Also see blk_stop_queue(). Queue lock must be held.
333 **/
334 void blk_start_queue(struct request_queue *q)
335 {
336 WARN_ON(!irqs_disabled());
337
338 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
339
340 /*
341 * one level of recursion is ok and is much faster than kicking
342 * the unplug handling
343 */
344 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
345 q->request_fn(q);
346 queue_flag_clear(QUEUE_FLAG_REENTER, q);
347 } else {
348 blk_plug_device(q);
349 kblockd_schedule_work(q, &q->unplug_work);
350 }
351 }
352 EXPORT_SYMBOL(blk_start_queue);
353
354 /**
355 * blk_stop_queue - stop a queue
356 * @q: The &struct request_queue in question
357 *
358 * Description:
359 * The Linux block layer assumes that a block driver will consume all
360 * entries on the request queue when the request_fn strategy is called.
361 * Often this will not happen, because of hardware limitations (queue
362 * depth settings). If a device driver gets a 'queue full' response,
363 * or if it simply chooses not to queue more I/O at one point, it can
364 * call this function to prevent the request_fn from being called until
365 * the driver has signalled it's ready to go again. This happens by calling
366 * blk_start_queue() to restart queue operations. Queue lock must be held.
367 **/
368 void blk_stop_queue(struct request_queue *q)
369 {
370 blk_remove_plug(q);
371 queue_flag_set(QUEUE_FLAG_STOPPED, q);
372 }
373 EXPORT_SYMBOL(blk_stop_queue);
374
375 /**
376 * blk_sync_queue - cancel any pending callbacks on a queue
377 * @q: the queue
378 *
379 * Description:
380 * The block layer may perform asynchronous callback activity
381 * on a queue, such as calling the unplug function after a timeout.
382 * A block device may call blk_sync_queue to ensure that any
383 * such activity is cancelled, thus allowing it to release resources
384 * that the callbacks might use. The caller must already have made sure
385 * that its ->make_request_fn will not re-add plugging prior to calling
386 * this function.
387 *
388 */
389 void blk_sync_queue(struct request_queue *q)
390 {
391 del_timer_sync(&q->unplug_timer);
392 kblockd_flush_work(&q->unplug_work);
393 }
394 EXPORT_SYMBOL(blk_sync_queue);
395
396 /**
397 * blk_run_queue - run a single device queue
398 * @q: The queue to run
399 */
400 void __blk_run_queue(struct request_queue *q)
401 {
402 blk_remove_plug(q);
403
404 /*
405 * Only recurse once to avoid overrunning the stack, let the unplug
406 * handling reinvoke the handler shortly if we already got there.
407 */
408 if (!elv_queue_empty(q)) {
409 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
410 q->request_fn(q);
411 queue_flag_clear(QUEUE_FLAG_REENTER, q);
412 } else {
413 blk_plug_device(q);
414 kblockd_schedule_work(q, &q->unplug_work);
415 }
416 }
417 }
418 EXPORT_SYMBOL(__blk_run_queue);
419
420 /**
421 * blk_run_queue - run a single device queue
422 * @q: The queue to run
423 */
424 void blk_run_queue(struct request_queue *q)
425 {
426 unsigned long flags;
427
428 spin_lock_irqsave(q->queue_lock, flags);
429 __blk_run_queue(q);
430 spin_unlock_irqrestore(q->queue_lock, flags);
431 }
432 EXPORT_SYMBOL(blk_run_queue);
433
434 void blk_put_queue(struct request_queue *q)
435 {
436 kobject_put(&q->kobj);
437 }
438
439 void blk_cleanup_queue(struct request_queue *q)
440 {
441 mutex_lock(&q->sysfs_lock);
442 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
443 mutex_unlock(&q->sysfs_lock);
444
445 if (q->elevator)
446 elevator_exit(q->elevator);
447
448 blk_put_queue(q);
449 }
450 EXPORT_SYMBOL(blk_cleanup_queue);
451
452 static int blk_init_free_list(struct request_queue *q)
453 {
454 struct request_list *rl = &q->rq;
455
456 rl->count[READ] = rl->count[WRITE] = 0;
457 rl->starved[READ] = rl->starved[WRITE] = 0;
458 rl->elvpriv = 0;
459 init_waitqueue_head(&rl->wait[READ]);
460 init_waitqueue_head(&rl->wait[WRITE]);
461
462 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
463 mempool_free_slab, request_cachep, q->node);
464
465 if (!rl->rq_pool)
466 return -ENOMEM;
467
468 return 0;
469 }
470
471 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
472 {
473 return blk_alloc_queue_node(gfp_mask, -1);
474 }
475 EXPORT_SYMBOL(blk_alloc_queue);
476
477 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
478 {
479 struct request_queue *q;
480 int err;
481
482 q = kmem_cache_alloc_node(blk_requestq_cachep,
483 gfp_mask | __GFP_ZERO, node_id);
484 if (!q)
485 return NULL;
486
487 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
488 q->backing_dev_info.unplug_io_data = q;
489 err = bdi_init(&q->backing_dev_info);
490 if (err) {
491 kmem_cache_free(blk_requestq_cachep, q);
492 return NULL;
493 }
494
495 init_timer(&q->unplug_timer);
496
497 kobject_init(&q->kobj, &blk_queue_ktype);
498
499 mutex_init(&q->sysfs_lock);
500 spin_lock_init(&q->__queue_lock);
501
502 return q;
503 }
504 EXPORT_SYMBOL(blk_alloc_queue_node);
505
506 /**
507 * blk_init_queue - prepare a request queue for use with a block device
508 * @rfn: The function to be called to process requests that have been
509 * placed on the queue.
510 * @lock: Request queue spin lock
511 *
512 * Description:
513 * If a block device wishes to use the standard request handling procedures,
514 * which sorts requests and coalesces adjacent requests, then it must
515 * call blk_init_queue(). The function @rfn will be called when there
516 * are requests on the queue that need to be processed. If the device
517 * supports plugging, then @rfn may not be called immediately when requests
518 * are available on the queue, but may be called at some time later instead.
519 * Plugged queues are generally unplugged when a buffer belonging to one
520 * of the requests on the queue is needed, or due to memory pressure.
521 *
522 * @rfn is not required, or even expected, to remove all requests off the
523 * queue, but only as many as it can handle at a time. If it does leave
524 * requests on the queue, it is responsible for arranging that the requests
525 * get dealt with eventually.
526 *
527 * The queue spin lock must be held while manipulating the requests on the
528 * request queue; this lock will be taken also from interrupt context, so irq
529 * disabling is needed for it.
530 *
531 * Function returns a pointer to the initialized request queue, or %NULL if
532 * it didn't succeed.
533 *
534 * Note:
535 * blk_init_queue() must be paired with a blk_cleanup_queue() call
536 * when the block device is deactivated (such as at module unload).
537 **/
538
539 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
540 {
541 return blk_init_queue_node(rfn, lock, -1);
542 }
543 EXPORT_SYMBOL(blk_init_queue);
544
545 struct request_queue *
546 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
547 {
548 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
549
550 if (!q)
551 return NULL;
552
553 q->node = node_id;
554 if (blk_init_free_list(q)) {
555 kmem_cache_free(blk_requestq_cachep, q);
556 return NULL;
557 }
558
559 /*
560 * if caller didn't supply a lock, they get per-queue locking with
561 * our embedded lock
562 */
563 if (!lock)
564 lock = &q->__queue_lock;
565
566 q->request_fn = rfn;
567 q->prep_rq_fn = NULL;
568 q->unplug_fn = generic_unplug_device;
569 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
570 q->queue_lock = lock;
571
572 blk_queue_segment_boundary(q, 0xffffffff);
573
574 blk_queue_make_request(q, __make_request);
575 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
576
577 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
578 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
579
580 q->sg_reserved_size = INT_MAX;
581
582 blk_set_cmd_filter_defaults(&q->cmd_filter);
583
584 /*
585 * all done
586 */
587 if (!elevator_init(q, NULL)) {
588 blk_queue_congestion_threshold(q);
589 return q;
590 }
591
592 blk_put_queue(q);
593 return NULL;
594 }
595 EXPORT_SYMBOL(blk_init_queue_node);
596
597 int blk_get_queue(struct request_queue *q)
598 {
599 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
600 kobject_get(&q->kobj);
601 return 0;
602 }
603
604 return 1;
605 }
606
607 static inline void blk_free_request(struct request_queue *q, struct request *rq)
608 {
609 if (rq->cmd_flags & REQ_ELVPRIV)
610 elv_put_request(q, rq);
611 mempool_free(rq, q->rq.rq_pool);
612 }
613
614 static struct request *
615 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
616 {
617 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
618
619 if (!rq)
620 return NULL;
621
622 blk_rq_init(q, rq);
623
624 rq->cmd_flags = rw | REQ_ALLOCED;
625
626 if (priv) {
627 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
628 mempool_free(rq, q->rq.rq_pool);
629 return NULL;
630 }
631 rq->cmd_flags |= REQ_ELVPRIV;
632 }
633
634 return rq;
635 }
636
637 /*
638 * ioc_batching returns true if the ioc is a valid batching request and
639 * should be given priority access to a request.
640 */
641 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
642 {
643 if (!ioc)
644 return 0;
645
646 /*
647 * Make sure the process is able to allocate at least 1 request
648 * even if the batch times out, otherwise we could theoretically
649 * lose wakeups.
650 */
651 return ioc->nr_batch_requests == q->nr_batching ||
652 (ioc->nr_batch_requests > 0
653 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
654 }
655
656 /*
657 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
658 * will cause the process to be a "batcher" on all queues in the system. This
659 * is the behaviour we want though - once it gets a wakeup it should be given
660 * a nice run.
661 */
662 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
663 {
664 if (!ioc || ioc_batching(q, ioc))
665 return;
666
667 ioc->nr_batch_requests = q->nr_batching;
668 ioc->last_waited = jiffies;
669 }
670
671 static void __freed_request(struct request_queue *q, int rw)
672 {
673 struct request_list *rl = &q->rq;
674
675 if (rl->count[rw] < queue_congestion_off_threshold(q))
676 blk_clear_queue_congested(q, rw);
677
678 if (rl->count[rw] + 1 <= q->nr_requests) {
679 if (waitqueue_active(&rl->wait[rw]))
680 wake_up(&rl->wait[rw]);
681
682 blk_clear_queue_full(q, rw);
683 }
684 }
685
686 /*
687 * A request has just been released. Account for it, update the full and
688 * congestion status, wake up any waiters. Called under q->queue_lock.
689 */
690 static void freed_request(struct request_queue *q, int rw, int priv)
691 {
692 struct request_list *rl = &q->rq;
693
694 rl->count[rw]--;
695 if (priv)
696 rl->elvpriv--;
697
698 __freed_request(q, rw);
699
700 if (unlikely(rl->starved[rw ^ 1]))
701 __freed_request(q, rw ^ 1);
702 }
703
704 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
705 /*
706 * Get a free request, queue_lock must be held.
707 * Returns NULL on failure, with queue_lock held.
708 * Returns !NULL on success, with queue_lock *not held*.
709 */
710 static struct request *get_request(struct request_queue *q, int rw_flags,
711 struct bio *bio, gfp_t gfp_mask)
712 {
713 struct request *rq = NULL;
714 struct request_list *rl = &q->rq;
715 struct io_context *ioc = NULL;
716 const int rw = rw_flags & 0x01;
717 int may_queue, priv;
718
719 may_queue = elv_may_queue(q, rw_flags);
720 if (may_queue == ELV_MQUEUE_NO)
721 goto rq_starved;
722
723 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
724 if (rl->count[rw]+1 >= q->nr_requests) {
725 ioc = current_io_context(GFP_ATOMIC, q->node);
726 /*
727 * The queue will fill after this allocation, so set
728 * it as full, and mark this process as "batching".
729 * This process will be allowed to complete a batch of
730 * requests, others will be blocked.
731 */
732 if (!blk_queue_full(q, rw)) {
733 ioc_set_batching(q, ioc);
734 blk_set_queue_full(q, rw);
735 } else {
736 if (may_queue != ELV_MQUEUE_MUST
737 && !ioc_batching(q, ioc)) {
738 /*
739 * The queue is full and the allocating
740 * process is not a "batcher", and not
741 * exempted by the IO scheduler
742 */
743 goto out;
744 }
745 }
746 }
747 blk_set_queue_congested(q, rw);
748 }
749
750 /*
751 * Only allow batching queuers to allocate up to 50% over the defined
752 * limit of requests, otherwise we could have thousands of requests
753 * allocated with any setting of ->nr_requests
754 */
755 if (rl->count[rw] >= (3 * q->nr_requests / 2))
756 goto out;
757
758 rl->count[rw]++;
759 rl->starved[rw] = 0;
760
761 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
762 if (priv)
763 rl->elvpriv++;
764
765 spin_unlock_irq(q->queue_lock);
766
767 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
768 if (unlikely(!rq)) {
769 /*
770 * Allocation failed presumably due to memory. Undo anything
771 * we might have messed up.
772 *
773 * Allocating task should really be put onto the front of the
774 * wait queue, but this is pretty rare.
775 */
776 spin_lock_irq(q->queue_lock);
777 freed_request(q, rw, priv);
778
779 /*
780 * in the very unlikely event that allocation failed and no
781 * requests for this direction was pending, mark us starved
782 * so that freeing of a request in the other direction will
783 * notice us. another possible fix would be to split the
784 * rq mempool into READ and WRITE
785 */
786 rq_starved:
787 if (unlikely(rl->count[rw] == 0))
788 rl->starved[rw] = 1;
789
790 goto out;
791 }
792
793 /*
794 * ioc may be NULL here, and ioc_batching will be false. That's
795 * OK, if the queue is under the request limit then requests need
796 * not count toward the nr_batch_requests limit. There will always
797 * be some limit enforced by BLK_BATCH_TIME.
798 */
799 if (ioc_batching(q, ioc))
800 ioc->nr_batch_requests--;
801
802 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
803 out:
804 return rq;
805 }
806
807 /*
808 * No available requests for this queue, unplug the device and wait for some
809 * requests to become available.
810 *
811 * Called with q->queue_lock held, and returns with it unlocked.
812 */
813 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
814 struct bio *bio)
815 {
816 const int rw = rw_flags & 0x01;
817 struct request *rq;
818
819 rq = get_request(q, rw_flags, bio, GFP_NOIO);
820 while (!rq) {
821 DEFINE_WAIT(wait);
822 struct io_context *ioc;
823 struct request_list *rl = &q->rq;
824
825 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
826 TASK_UNINTERRUPTIBLE);
827
828 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
829
830 __generic_unplug_device(q);
831 spin_unlock_irq(q->queue_lock);
832 io_schedule();
833
834 /*
835 * After sleeping, we become a "batching" process and
836 * will be able to allocate at least one request, and
837 * up to a big batch of them for a small period time.
838 * See ioc_batching, ioc_set_batching
839 */
840 ioc = current_io_context(GFP_NOIO, q->node);
841 ioc_set_batching(q, ioc);
842
843 spin_lock_irq(q->queue_lock);
844 finish_wait(&rl->wait[rw], &wait);
845
846 rq = get_request(q, rw_flags, bio, GFP_NOIO);
847 };
848
849 return rq;
850 }
851
852 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
853 {
854 struct request *rq;
855
856 BUG_ON(rw != READ && rw != WRITE);
857
858 spin_lock_irq(q->queue_lock);
859 if (gfp_mask & __GFP_WAIT) {
860 rq = get_request_wait(q, rw, NULL);
861 } else {
862 rq = get_request(q, rw, NULL, gfp_mask);
863 if (!rq)
864 spin_unlock_irq(q->queue_lock);
865 }
866 /* q->queue_lock is unlocked at this point */
867
868 return rq;
869 }
870 EXPORT_SYMBOL(blk_get_request);
871
872 /**
873 * blk_start_queueing - initiate dispatch of requests to device
874 * @q: request queue to kick into gear
875 *
876 * This is basically a helper to remove the need to know whether a queue
877 * is plugged or not if someone just wants to initiate dispatch of requests
878 * for this queue.
879 *
880 * The queue lock must be held with interrupts disabled.
881 */
882 void blk_start_queueing(struct request_queue *q)
883 {
884 if (!blk_queue_plugged(q))
885 q->request_fn(q);
886 else
887 __generic_unplug_device(q);
888 }
889 EXPORT_SYMBOL(blk_start_queueing);
890
891 /**
892 * blk_requeue_request - put a request back on queue
893 * @q: request queue where request should be inserted
894 * @rq: request to be inserted
895 *
896 * Description:
897 * Drivers often keep queueing requests until the hardware cannot accept
898 * more, when that condition happens we need to put the request back
899 * on the queue. Must be called with queue lock held.
900 */
901 void blk_requeue_request(struct request_queue *q, struct request *rq)
902 {
903 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
904
905 if (blk_rq_tagged(rq))
906 blk_queue_end_tag(q, rq);
907
908 elv_requeue_request(q, rq);
909 }
910 EXPORT_SYMBOL(blk_requeue_request);
911
912 /**
913 * blk_insert_request - insert a special request into a request queue
914 * @q: request queue where request should be inserted
915 * @rq: request to be inserted
916 * @at_head: insert request at head or tail of queue
917 * @data: private data
918 *
919 * Description:
920 * Many block devices need to execute commands asynchronously, so they don't
921 * block the whole kernel from preemption during request execution. This is
922 * accomplished normally by inserting aritficial requests tagged as
923 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
924 * be scheduled for actual execution by the request queue.
925 *
926 * We have the option of inserting the head or the tail of the queue.
927 * Typically we use the tail for new ioctls and so forth. We use the head
928 * of the queue for things like a QUEUE_FULL message from a device, or a
929 * host that is unable to accept a particular command.
930 */
931 void blk_insert_request(struct request_queue *q, struct request *rq,
932 int at_head, void *data)
933 {
934 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
935 unsigned long flags;
936
937 /*
938 * tell I/O scheduler that this isn't a regular read/write (ie it
939 * must not attempt merges on this) and that it acts as a soft
940 * barrier
941 */
942 rq->cmd_type = REQ_TYPE_SPECIAL;
943 rq->cmd_flags |= REQ_SOFTBARRIER;
944
945 rq->special = data;
946
947 spin_lock_irqsave(q->queue_lock, flags);
948
949 /*
950 * If command is tagged, release the tag
951 */
952 if (blk_rq_tagged(rq))
953 blk_queue_end_tag(q, rq);
954
955 drive_stat_acct(rq, 1);
956 __elv_add_request(q, rq, where, 0);
957 blk_start_queueing(q);
958 spin_unlock_irqrestore(q->queue_lock, flags);
959 }
960 EXPORT_SYMBOL(blk_insert_request);
961
962 /*
963 * add-request adds a request to the linked list.
964 * queue lock is held and interrupts disabled, as we muck with the
965 * request queue list.
966 */
967 static inline void add_request(struct request_queue *q, struct request *req)
968 {
969 drive_stat_acct(req, 1);
970
971 /*
972 * elevator indicated where it wants this request to be
973 * inserted at elevator_merge time
974 */
975 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
976 }
977
978 static void part_round_stats_single(int cpu, struct hd_struct *part,
979 unsigned long now)
980 {
981 if (now == part->stamp)
982 return;
983
984 if (part->in_flight) {
985 __part_stat_add(cpu, part, time_in_queue,
986 part->in_flight * (now - part->stamp));
987 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
988 }
989 part->stamp = now;
990 }
991
992 /**
993 * part_round_stats() - Round off the performance stats on a struct
994 * disk_stats.
995 *
996 * The average IO queue length and utilisation statistics are maintained
997 * by observing the current state of the queue length and the amount of
998 * time it has been in this state for.
999 *
1000 * Normally, that accounting is done on IO completion, but that can result
1001 * in more than a second's worth of IO being accounted for within any one
1002 * second, leading to >100% utilisation. To deal with that, we call this
1003 * function to do a round-off before returning the results when reading
1004 * /proc/diskstats. This accounts immediately for all queue usage up to
1005 * the current jiffies and restarts the counters again.
1006 */
1007 void part_round_stats(int cpu, struct hd_struct *part)
1008 {
1009 unsigned long now = jiffies;
1010
1011 if (part->partno)
1012 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1013 part_round_stats_single(cpu, part, now);
1014 }
1015 EXPORT_SYMBOL_GPL(part_round_stats);
1016
1017 /*
1018 * queue lock must be held
1019 */
1020 void __blk_put_request(struct request_queue *q, struct request *req)
1021 {
1022 if (unlikely(!q))
1023 return;
1024 if (unlikely(--req->ref_count))
1025 return;
1026
1027 elv_completed_request(q, req);
1028
1029 /*
1030 * Request may not have originated from ll_rw_blk. if not,
1031 * it didn't come out of our reserved rq pools
1032 */
1033 if (req->cmd_flags & REQ_ALLOCED) {
1034 int rw = rq_data_dir(req);
1035 int priv = req->cmd_flags & REQ_ELVPRIV;
1036
1037 BUG_ON(!list_empty(&req->queuelist));
1038 BUG_ON(!hlist_unhashed(&req->hash));
1039
1040 blk_free_request(q, req);
1041 freed_request(q, rw, priv);
1042 }
1043 }
1044 EXPORT_SYMBOL_GPL(__blk_put_request);
1045
1046 void blk_put_request(struct request *req)
1047 {
1048 unsigned long flags;
1049 struct request_queue *q = req->q;
1050
1051 spin_lock_irqsave(q->queue_lock, flags);
1052 __blk_put_request(q, req);
1053 spin_unlock_irqrestore(q->queue_lock, flags);
1054 }
1055 EXPORT_SYMBOL(blk_put_request);
1056
1057 void init_request_from_bio(struct request *req, struct bio *bio)
1058 {
1059 req->cmd_type = REQ_TYPE_FS;
1060
1061 /*
1062 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1063 */
1064 if (bio_rw_ahead(bio) || bio_failfast(bio))
1065 req->cmd_flags |= REQ_FAILFAST;
1066
1067 /*
1068 * REQ_BARRIER implies no merging, but lets make it explicit
1069 */
1070 if (unlikely(bio_discard(bio))) {
1071 req->cmd_flags |= REQ_DISCARD;
1072 if (bio_barrier(bio))
1073 req->cmd_flags |= REQ_SOFTBARRIER;
1074 req->q->prepare_discard_fn(req->q, req);
1075 } else if (unlikely(bio_barrier(bio)))
1076 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1077
1078 if (bio_sync(bio))
1079 req->cmd_flags |= REQ_RW_SYNC;
1080 if (bio_rw_meta(bio))
1081 req->cmd_flags |= REQ_RW_META;
1082
1083 req->errors = 0;
1084 req->hard_sector = req->sector = bio->bi_sector;
1085 req->ioprio = bio_prio(bio);
1086 req->start_time = jiffies;
1087 blk_rq_bio_prep(req->q, req, bio);
1088 }
1089
1090 static int __make_request(struct request_queue *q, struct bio *bio)
1091 {
1092 struct request *req;
1093 int el_ret, nr_sectors, barrier, discard, err;
1094 const unsigned short prio = bio_prio(bio);
1095 const int sync = bio_sync(bio);
1096 int rw_flags;
1097
1098 nr_sectors = bio_sectors(bio);
1099
1100 /*
1101 * low level driver can indicate that it wants pages above a
1102 * certain limit bounced to low memory (ie for highmem, or even
1103 * ISA dma in theory)
1104 */
1105 blk_queue_bounce(q, &bio);
1106
1107 barrier = bio_barrier(bio);
1108 if (unlikely(barrier) && bio_has_data(bio) &&
1109 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1110 err = -EOPNOTSUPP;
1111 goto end_io;
1112 }
1113
1114 discard = bio_discard(bio);
1115 if (unlikely(discard) && !q->prepare_discard_fn) {
1116 err = -EOPNOTSUPP;
1117 goto end_io;
1118 }
1119
1120 spin_lock_irq(q->queue_lock);
1121
1122 if (unlikely(barrier) || elv_queue_empty(q))
1123 goto get_rq;
1124
1125 el_ret = elv_merge(q, &req, bio);
1126 switch (el_ret) {
1127 case ELEVATOR_BACK_MERGE:
1128 BUG_ON(!rq_mergeable(req));
1129
1130 if (!ll_back_merge_fn(q, req, bio))
1131 break;
1132
1133 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1134
1135 req->biotail->bi_next = bio;
1136 req->biotail = bio;
1137 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1138 req->ioprio = ioprio_best(req->ioprio, prio);
1139 drive_stat_acct(req, 0);
1140 if (!attempt_back_merge(q, req))
1141 elv_merged_request(q, req, el_ret);
1142 goto out;
1143
1144 case ELEVATOR_FRONT_MERGE:
1145 BUG_ON(!rq_mergeable(req));
1146
1147 if (!ll_front_merge_fn(q, req, bio))
1148 break;
1149
1150 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1151
1152 bio->bi_next = req->bio;
1153 req->bio = bio;
1154
1155 /*
1156 * may not be valid. if the low level driver said
1157 * it didn't need a bounce buffer then it better
1158 * not touch req->buffer either...
1159 */
1160 req->buffer = bio_data(bio);
1161 req->current_nr_sectors = bio_cur_sectors(bio);
1162 req->hard_cur_sectors = req->current_nr_sectors;
1163 req->sector = req->hard_sector = bio->bi_sector;
1164 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1165 req->ioprio = ioprio_best(req->ioprio, prio);
1166 drive_stat_acct(req, 0);
1167 if (!attempt_front_merge(q, req))
1168 elv_merged_request(q, req, el_ret);
1169 goto out;
1170
1171 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1172 default:
1173 ;
1174 }
1175
1176 get_rq:
1177 /*
1178 * This sync check and mask will be re-done in init_request_from_bio(),
1179 * but we need to set it earlier to expose the sync flag to the
1180 * rq allocator and io schedulers.
1181 */
1182 rw_flags = bio_data_dir(bio);
1183 if (sync)
1184 rw_flags |= REQ_RW_SYNC;
1185
1186 /*
1187 * Grab a free request. This is might sleep but can not fail.
1188 * Returns with the queue unlocked.
1189 */
1190 req = get_request_wait(q, rw_flags, bio);
1191
1192 /*
1193 * After dropping the lock and possibly sleeping here, our request
1194 * may now be mergeable after it had proven unmergeable (above).
1195 * We don't worry about that case for efficiency. It won't happen
1196 * often, and the elevators are able to handle it.
1197 */
1198 init_request_from_bio(req, bio);
1199
1200 spin_lock_irq(q->queue_lock);
1201 if (elv_queue_empty(q))
1202 blk_plug_device(q);
1203 add_request(q, req);
1204 out:
1205 if (sync)
1206 __generic_unplug_device(q);
1207
1208 spin_unlock_irq(q->queue_lock);
1209 return 0;
1210
1211 end_io:
1212 bio_endio(bio, err);
1213 return 0;
1214 }
1215
1216 /*
1217 * If bio->bi_dev is a partition, remap the location
1218 */
1219 static inline void blk_partition_remap(struct bio *bio)
1220 {
1221 struct block_device *bdev = bio->bi_bdev;
1222
1223 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1224 struct hd_struct *p = bdev->bd_part;
1225
1226 bio->bi_sector += p->start_sect;
1227 bio->bi_bdev = bdev->bd_contains;
1228
1229 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1230 bdev->bd_dev, bio->bi_sector,
1231 bio->bi_sector - p->start_sect);
1232 }
1233 }
1234
1235 static void handle_bad_sector(struct bio *bio)
1236 {
1237 char b[BDEVNAME_SIZE];
1238
1239 printk(KERN_INFO "attempt to access beyond end of device\n");
1240 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1241 bdevname(bio->bi_bdev, b),
1242 bio->bi_rw,
1243 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1244 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1245
1246 set_bit(BIO_EOF, &bio->bi_flags);
1247 }
1248
1249 #ifdef CONFIG_FAIL_MAKE_REQUEST
1250
1251 static DECLARE_FAULT_ATTR(fail_make_request);
1252
1253 static int __init setup_fail_make_request(char *str)
1254 {
1255 return setup_fault_attr(&fail_make_request, str);
1256 }
1257 __setup("fail_make_request=", setup_fail_make_request);
1258
1259 static int should_fail_request(struct bio *bio)
1260 {
1261 struct hd_struct *part = bio->bi_bdev->bd_part;
1262
1263 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1264 return should_fail(&fail_make_request, bio->bi_size);
1265
1266 return 0;
1267 }
1268
1269 static int __init fail_make_request_debugfs(void)
1270 {
1271 return init_fault_attr_dentries(&fail_make_request,
1272 "fail_make_request");
1273 }
1274
1275 late_initcall(fail_make_request_debugfs);
1276
1277 #else /* CONFIG_FAIL_MAKE_REQUEST */
1278
1279 static inline int should_fail_request(struct bio *bio)
1280 {
1281 return 0;
1282 }
1283
1284 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1285
1286 /*
1287 * Check whether this bio extends beyond the end of the device.
1288 */
1289 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1290 {
1291 sector_t maxsector;
1292
1293 if (!nr_sectors)
1294 return 0;
1295
1296 /* Test device or partition size, when known. */
1297 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1298 if (maxsector) {
1299 sector_t sector = bio->bi_sector;
1300
1301 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1302 /*
1303 * This may well happen - the kernel calls bread()
1304 * without checking the size of the device, e.g., when
1305 * mounting a device.
1306 */
1307 handle_bad_sector(bio);
1308 return 1;
1309 }
1310 }
1311
1312 return 0;
1313 }
1314
1315 /**
1316 * generic_make_request - hand a buffer to its device driver for I/O
1317 * @bio: The bio describing the location in memory and on the device.
1318 *
1319 * generic_make_request() is used to make I/O requests of block
1320 * devices. It is passed a &struct bio, which describes the I/O that needs
1321 * to be done.
1322 *
1323 * generic_make_request() does not return any status. The
1324 * success/failure status of the request, along with notification of
1325 * completion, is delivered asynchronously through the bio->bi_end_io
1326 * function described (one day) else where.
1327 *
1328 * The caller of generic_make_request must make sure that bi_io_vec
1329 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1330 * set to describe the device address, and the
1331 * bi_end_io and optionally bi_private are set to describe how
1332 * completion notification should be signaled.
1333 *
1334 * generic_make_request and the drivers it calls may use bi_next if this
1335 * bio happens to be merged with someone else, and may change bi_dev and
1336 * bi_sector for remaps as it sees fit. So the values of these fields
1337 * should NOT be depended on after the call to generic_make_request.
1338 */
1339 static inline void __generic_make_request(struct bio *bio)
1340 {
1341 struct request_queue *q;
1342 sector_t old_sector;
1343 int ret, nr_sectors = bio_sectors(bio);
1344 dev_t old_dev;
1345 int err = -EIO;
1346
1347 might_sleep();
1348
1349 if (bio_check_eod(bio, nr_sectors))
1350 goto end_io;
1351
1352 /*
1353 * Resolve the mapping until finished. (drivers are
1354 * still free to implement/resolve their own stacking
1355 * by explicitly returning 0)
1356 *
1357 * NOTE: we don't repeat the blk_size check for each new device.
1358 * Stacking drivers are expected to know what they are doing.
1359 */
1360 old_sector = -1;
1361 old_dev = 0;
1362 do {
1363 char b[BDEVNAME_SIZE];
1364
1365 q = bdev_get_queue(bio->bi_bdev);
1366 if (!q) {
1367 printk(KERN_ERR
1368 "generic_make_request: Trying to access "
1369 "nonexistent block-device %s (%Lu)\n",
1370 bdevname(bio->bi_bdev, b),
1371 (long long) bio->bi_sector);
1372 end_io:
1373 bio_endio(bio, err);
1374 break;
1375 }
1376
1377 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1378 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1379 bdevname(bio->bi_bdev, b),
1380 bio_sectors(bio),
1381 q->max_hw_sectors);
1382 goto end_io;
1383 }
1384
1385 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1386 goto end_io;
1387
1388 if (should_fail_request(bio))
1389 goto end_io;
1390
1391 /*
1392 * If this device has partitions, remap block n
1393 * of partition p to block n+start(p) of the disk.
1394 */
1395 blk_partition_remap(bio);
1396
1397 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1398 goto end_io;
1399
1400 if (old_sector != -1)
1401 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1402 old_sector);
1403
1404 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1405
1406 old_sector = bio->bi_sector;
1407 old_dev = bio->bi_bdev->bd_dev;
1408
1409 if (bio_check_eod(bio, nr_sectors))
1410 goto end_io;
1411 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1412 (bio_discard(bio) && !q->prepare_discard_fn)) {
1413 err = -EOPNOTSUPP;
1414 goto end_io;
1415 }
1416
1417 ret = q->make_request_fn(q, bio);
1418 } while (ret);
1419 }
1420
1421 /*
1422 * We only want one ->make_request_fn to be active at a time,
1423 * else stack usage with stacked devices could be a problem.
1424 * So use current->bio_{list,tail} to keep a list of requests
1425 * submited by a make_request_fn function.
1426 * current->bio_tail is also used as a flag to say if
1427 * generic_make_request is currently active in this task or not.
1428 * If it is NULL, then no make_request is active. If it is non-NULL,
1429 * then a make_request is active, and new requests should be added
1430 * at the tail
1431 */
1432 void generic_make_request(struct bio *bio)
1433 {
1434 if (current->bio_tail) {
1435 /* make_request is active */
1436 *(current->bio_tail) = bio;
1437 bio->bi_next = NULL;
1438 current->bio_tail = &bio->bi_next;
1439 return;
1440 }
1441 /* following loop may be a bit non-obvious, and so deserves some
1442 * explanation.
1443 * Before entering the loop, bio->bi_next is NULL (as all callers
1444 * ensure that) so we have a list with a single bio.
1445 * We pretend that we have just taken it off a longer list, so
1446 * we assign bio_list to the next (which is NULL) and bio_tail
1447 * to &bio_list, thus initialising the bio_list of new bios to be
1448 * added. __generic_make_request may indeed add some more bios
1449 * through a recursive call to generic_make_request. If it
1450 * did, we find a non-NULL value in bio_list and re-enter the loop
1451 * from the top. In this case we really did just take the bio
1452 * of the top of the list (no pretending) and so fixup bio_list and
1453 * bio_tail or bi_next, and call into __generic_make_request again.
1454 *
1455 * The loop was structured like this to make only one call to
1456 * __generic_make_request (which is important as it is large and
1457 * inlined) and to keep the structure simple.
1458 */
1459 BUG_ON(bio->bi_next);
1460 do {
1461 current->bio_list = bio->bi_next;
1462 if (bio->bi_next == NULL)
1463 current->bio_tail = &current->bio_list;
1464 else
1465 bio->bi_next = NULL;
1466 __generic_make_request(bio);
1467 bio = current->bio_list;
1468 } while (bio);
1469 current->bio_tail = NULL; /* deactivate */
1470 }
1471 EXPORT_SYMBOL(generic_make_request);
1472
1473 /**
1474 * submit_bio - submit a bio to the block device layer for I/O
1475 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1476 * @bio: The &struct bio which describes the I/O
1477 *
1478 * submit_bio() is very similar in purpose to generic_make_request(), and
1479 * uses that function to do most of the work. Both are fairly rough
1480 * interfaces; @bio must be presetup and ready for I/O.
1481 *
1482 */
1483 void submit_bio(int rw, struct bio *bio)
1484 {
1485 int count = bio_sectors(bio);
1486
1487 bio->bi_rw |= rw;
1488
1489 /*
1490 * If it's a regular read/write or a barrier with data attached,
1491 * go through the normal accounting stuff before submission.
1492 */
1493 if (bio_has_data(bio)) {
1494 if (rw & WRITE) {
1495 count_vm_events(PGPGOUT, count);
1496 } else {
1497 task_io_account_read(bio->bi_size);
1498 count_vm_events(PGPGIN, count);
1499 }
1500
1501 if (unlikely(block_dump)) {
1502 char b[BDEVNAME_SIZE];
1503 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1504 current->comm, task_pid_nr(current),
1505 (rw & WRITE) ? "WRITE" : "READ",
1506 (unsigned long long)bio->bi_sector,
1507 bdevname(bio->bi_bdev, b));
1508 }
1509 }
1510
1511 generic_make_request(bio);
1512 }
1513 EXPORT_SYMBOL(submit_bio);
1514
1515 /**
1516 * __end_that_request_first - end I/O on a request
1517 * @req: the request being processed
1518 * @error: %0 for success, < %0 for error
1519 * @nr_bytes: number of bytes to complete
1520 *
1521 * Description:
1522 * Ends I/O on a number of bytes attached to @req, and sets it up
1523 * for the next range of segments (if any) in the cluster.
1524 *
1525 * Return:
1526 * %0 - we are done with this request, call end_that_request_last()
1527 * %1 - still buffers pending for this request
1528 **/
1529 static int __end_that_request_first(struct request *req, int error,
1530 int nr_bytes)
1531 {
1532 int total_bytes, bio_nbytes, next_idx = 0;
1533 struct bio *bio;
1534
1535 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1536
1537 /*
1538 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1539 * sense key with us all the way through
1540 */
1541 if (!blk_pc_request(req))
1542 req->errors = 0;
1543
1544 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1545 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1546 req->rq_disk ? req->rq_disk->disk_name : "?",
1547 (unsigned long long)req->sector);
1548 }
1549
1550 if (blk_fs_request(req) && req->rq_disk) {
1551 const int rw = rq_data_dir(req);
1552 struct hd_struct *part;
1553 int cpu;
1554
1555 cpu = part_stat_lock();
1556 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1557 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1558 part_stat_unlock();
1559 }
1560
1561 total_bytes = bio_nbytes = 0;
1562 while ((bio = req->bio) != NULL) {
1563 int nbytes;
1564
1565 /*
1566 * For an empty barrier request, the low level driver must
1567 * store a potential error location in ->sector. We pass
1568 * that back up in ->bi_sector.
1569 */
1570 if (blk_empty_barrier(req))
1571 bio->bi_sector = req->sector;
1572
1573 if (nr_bytes >= bio->bi_size) {
1574 req->bio = bio->bi_next;
1575 nbytes = bio->bi_size;
1576 req_bio_endio(req, bio, nbytes, error);
1577 next_idx = 0;
1578 bio_nbytes = 0;
1579 } else {
1580 int idx = bio->bi_idx + next_idx;
1581
1582 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1583 blk_dump_rq_flags(req, "__end_that");
1584 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1585 __func__, bio->bi_idx, bio->bi_vcnt);
1586 break;
1587 }
1588
1589 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1590 BIO_BUG_ON(nbytes > bio->bi_size);
1591
1592 /*
1593 * not a complete bvec done
1594 */
1595 if (unlikely(nbytes > nr_bytes)) {
1596 bio_nbytes += nr_bytes;
1597 total_bytes += nr_bytes;
1598 break;
1599 }
1600
1601 /*
1602 * advance to the next vector
1603 */
1604 next_idx++;
1605 bio_nbytes += nbytes;
1606 }
1607
1608 total_bytes += nbytes;
1609 nr_bytes -= nbytes;
1610
1611 bio = req->bio;
1612 if (bio) {
1613 /*
1614 * end more in this run, or just return 'not-done'
1615 */
1616 if (unlikely(nr_bytes <= 0))
1617 break;
1618 }
1619 }
1620
1621 /*
1622 * completely done
1623 */
1624 if (!req->bio)
1625 return 0;
1626
1627 /*
1628 * if the request wasn't completed, update state
1629 */
1630 if (bio_nbytes) {
1631 req_bio_endio(req, bio, bio_nbytes, error);
1632 bio->bi_idx += next_idx;
1633 bio_iovec(bio)->bv_offset += nr_bytes;
1634 bio_iovec(bio)->bv_len -= nr_bytes;
1635 }
1636
1637 blk_recalc_rq_sectors(req, total_bytes >> 9);
1638 blk_recalc_rq_segments(req);
1639 return 1;
1640 }
1641
1642 /*
1643 * queue lock must be held
1644 */
1645 static void end_that_request_last(struct request *req, int error)
1646 {
1647 struct gendisk *disk = req->rq_disk;
1648
1649 if (blk_rq_tagged(req))
1650 blk_queue_end_tag(req->q, req);
1651
1652 if (blk_queued_rq(req))
1653 blkdev_dequeue_request(req);
1654
1655 if (unlikely(laptop_mode) && blk_fs_request(req))
1656 laptop_io_completion();
1657
1658 /*
1659 * Account IO completion. bar_rq isn't accounted as a normal
1660 * IO on queueing nor completion. Accounting the containing
1661 * request is enough.
1662 */
1663 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1664 unsigned long duration = jiffies - req->start_time;
1665 const int rw = rq_data_dir(req);
1666 struct hd_struct *part;
1667 int cpu;
1668
1669 cpu = part_stat_lock();
1670 part = disk_map_sector_rcu(disk, req->sector);
1671
1672 part_stat_inc(cpu, part, ios[rw]);
1673 part_stat_add(cpu, part, ticks[rw], duration);
1674 part_round_stats(cpu, part);
1675 part_dec_in_flight(part);
1676
1677 part_stat_unlock();
1678 }
1679
1680 if (req->end_io)
1681 req->end_io(req, error);
1682 else {
1683 if (blk_bidi_rq(req))
1684 __blk_put_request(req->next_rq->q, req->next_rq);
1685
1686 __blk_put_request(req->q, req);
1687 }
1688 }
1689
1690 static inline void __end_request(struct request *rq, int uptodate,
1691 unsigned int nr_bytes)
1692 {
1693 int error = 0;
1694
1695 if (uptodate <= 0)
1696 error = uptodate ? uptodate : -EIO;
1697
1698 __blk_end_request(rq, error, nr_bytes);
1699 }
1700
1701 /**
1702 * blk_rq_bytes - Returns bytes left to complete in the entire request
1703 * @rq: the request being processed
1704 **/
1705 unsigned int blk_rq_bytes(struct request *rq)
1706 {
1707 if (blk_fs_request(rq))
1708 return rq->hard_nr_sectors << 9;
1709
1710 return rq->data_len;
1711 }
1712 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1713
1714 /**
1715 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1716 * @rq: the request being processed
1717 **/
1718 unsigned int blk_rq_cur_bytes(struct request *rq)
1719 {
1720 if (blk_fs_request(rq))
1721 return rq->current_nr_sectors << 9;
1722
1723 if (rq->bio)
1724 return rq->bio->bi_size;
1725
1726 return rq->data_len;
1727 }
1728 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1729
1730 /**
1731 * end_queued_request - end all I/O on a queued request
1732 * @rq: the request being processed
1733 * @uptodate: error value or %0/%1 uptodate flag
1734 *
1735 * Description:
1736 * Ends all I/O on a request, and removes it from the block layer queues.
1737 * Not suitable for normal I/O completion, unless the driver still has
1738 * the request attached to the block layer.
1739 *
1740 **/
1741 void end_queued_request(struct request *rq, int uptodate)
1742 {
1743 __end_request(rq, uptodate, blk_rq_bytes(rq));
1744 }
1745 EXPORT_SYMBOL(end_queued_request);
1746
1747 /**
1748 * end_dequeued_request - end all I/O on a dequeued request
1749 * @rq: the request being processed
1750 * @uptodate: error value or %0/%1 uptodate flag
1751 *
1752 * Description:
1753 * Ends all I/O on a request. The request must already have been
1754 * dequeued using blkdev_dequeue_request(), as is normally the case
1755 * for most drivers.
1756 *
1757 **/
1758 void end_dequeued_request(struct request *rq, int uptodate)
1759 {
1760 __end_request(rq, uptodate, blk_rq_bytes(rq));
1761 }
1762 EXPORT_SYMBOL(end_dequeued_request);
1763
1764
1765 /**
1766 * end_request - end I/O on the current segment of the request
1767 * @req: the request being processed
1768 * @uptodate: error value or %0/%1 uptodate flag
1769 *
1770 * Description:
1771 * Ends I/O on the current segment of a request. If that is the only
1772 * remaining segment, the request is also completed and freed.
1773 *
1774 * This is a remnant of how older block drivers handled I/O completions.
1775 * Modern drivers typically end I/O on the full request in one go, unless
1776 * they have a residual value to account for. For that case this function
1777 * isn't really useful, unless the residual just happens to be the
1778 * full current segment. In other words, don't use this function in new
1779 * code. Either use end_request_completely(), or the
1780 * end_that_request_chunk() (along with end_that_request_last()) for
1781 * partial completions.
1782 *
1783 **/
1784 void end_request(struct request *req, int uptodate)
1785 {
1786 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1787 }
1788 EXPORT_SYMBOL(end_request);
1789
1790 /**
1791 * blk_end_io - Generic end_io function to complete a request.
1792 * @rq: the request being processed
1793 * @error: %0 for success, < %0 for error
1794 * @nr_bytes: number of bytes to complete @rq
1795 * @bidi_bytes: number of bytes to complete @rq->next_rq
1796 * @drv_callback: function called between completion of bios in the request
1797 * and completion of the request.
1798 * If the callback returns non %0, this helper returns without
1799 * completion of the request.
1800 *
1801 * Description:
1802 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1803 * If @rq has leftover, sets it up for the next range of segments.
1804 *
1805 * Return:
1806 * %0 - we are done with this request
1807 * %1 - this request is not freed yet, it still has pending buffers.
1808 **/
1809 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1810 unsigned int bidi_bytes,
1811 int (drv_callback)(struct request *))
1812 {
1813 struct request_queue *q = rq->q;
1814 unsigned long flags = 0UL;
1815
1816 if (bio_has_data(rq->bio) || blk_discard_rq(rq)) {
1817 if (__end_that_request_first(rq, error, nr_bytes))
1818 return 1;
1819
1820 /* Bidi request must be completed as a whole */
1821 if (blk_bidi_rq(rq) &&
1822 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1823 return 1;
1824 }
1825
1826 /* Special feature for tricky drivers */
1827 if (drv_callback && drv_callback(rq))
1828 return 1;
1829
1830 add_disk_randomness(rq->rq_disk);
1831
1832 spin_lock_irqsave(q->queue_lock, flags);
1833 end_that_request_last(rq, error);
1834 spin_unlock_irqrestore(q->queue_lock, flags);
1835
1836 return 0;
1837 }
1838
1839 /**
1840 * blk_end_request - Helper function for drivers to complete the request.
1841 * @rq: the request being processed
1842 * @error: %0 for success, < %0 for error
1843 * @nr_bytes: number of bytes to complete
1844 *
1845 * Description:
1846 * Ends I/O on a number of bytes attached to @rq.
1847 * If @rq has leftover, sets it up for the next range of segments.
1848 *
1849 * Return:
1850 * %0 - we are done with this request
1851 * %1 - still buffers pending for this request
1852 **/
1853 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1854 {
1855 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1856 }
1857 EXPORT_SYMBOL_GPL(blk_end_request);
1858
1859 /**
1860 * __blk_end_request - Helper function for drivers to complete the request.
1861 * @rq: the request being processed
1862 * @error: %0 for success, < %0 for error
1863 * @nr_bytes: number of bytes to complete
1864 *
1865 * Description:
1866 * Must be called with queue lock held unlike blk_end_request().
1867 *
1868 * Return:
1869 * %0 - we are done with this request
1870 * %1 - still buffers pending for this request
1871 **/
1872 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1873 {
1874 if ((bio_has_data(rq->bio) || blk_discard_rq(rq)) &&
1875 __end_that_request_first(rq, error, nr_bytes))
1876 return 1;
1877
1878 add_disk_randomness(rq->rq_disk);
1879
1880 end_that_request_last(rq, error);
1881
1882 return 0;
1883 }
1884 EXPORT_SYMBOL_GPL(__blk_end_request);
1885
1886 /**
1887 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1888 * @rq: the bidi request being processed
1889 * @error: %0 for success, < %0 for error
1890 * @nr_bytes: number of bytes to complete @rq
1891 * @bidi_bytes: number of bytes to complete @rq->next_rq
1892 *
1893 * Description:
1894 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1895 *
1896 * Return:
1897 * %0 - we are done with this request
1898 * %1 - still buffers pending for this request
1899 **/
1900 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1901 unsigned int bidi_bytes)
1902 {
1903 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1904 }
1905 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1906
1907 /**
1908 * blk_end_request_callback - Special helper function for tricky drivers
1909 * @rq: the request being processed
1910 * @error: %0 for success, < %0 for error
1911 * @nr_bytes: number of bytes to complete
1912 * @drv_callback: function called between completion of bios in the request
1913 * and completion of the request.
1914 * If the callback returns non %0, this helper returns without
1915 * completion of the request.
1916 *
1917 * Description:
1918 * Ends I/O on a number of bytes attached to @rq.
1919 * If @rq has leftover, sets it up for the next range of segments.
1920 *
1921 * This special helper function is used only for existing tricky drivers.
1922 * (e.g. cdrom_newpc_intr() of ide-cd)
1923 * This interface will be removed when such drivers are rewritten.
1924 * Don't use this interface in other places anymore.
1925 *
1926 * Return:
1927 * %0 - we are done with this request
1928 * %1 - this request is not freed yet.
1929 * this request still has pending buffers or
1930 * the driver doesn't want to finish this request yet.
1931 **/
1932 int blk_end_request_callback(struct request *rq, int error,
1933 unsigned int nr_bytes,
1934 int (drv_callback)(struct request *))
1935 {
1936 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
1937 }
1938 EXPORT_SYMBOL_GPL(blk_end_request_callback);
1939
1940 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1941 struct bio *bio)
1942 {
1943 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
1944 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
1945 rq->cmd_flags |= (bio->bi_rw & 3);
1946
1947 if (bio_has_data(bio)) {
1948 rq->nr_phys_segments = bio_phys_segments(q, bio);
1949 rq->buffer = bio_data(bio);
1950 }
1951 rq->current_nr_sectors = bio_cur_sectors(bio);
1952 rq->hard_cur_sectors = rq->current_nr_sectors;
1953 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
1954 rq->data_len = bio->bi_size;
1955
1956 rq->bio = rq->biotail = bio;
1957
1958 if (bio->bi_bdev)
1959 rq->rq_disk = bio->bi_bdev->bd_disk;
1960 }
1961
1962 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1963 {
1964 return queue_work(kblockd_workqueue, work);
1965 }
1966 EXPORT_SYMBOL(kblockd_schedule_work);
1967
1968 void kblockd_flush_work(struct work_struct *work)
1969 {
1970 cancel_work_sync(work);
1971 }
1972 EXPORT_SYMBOL(kblockd_flush_work);
1973
1974 int __init blk_dev_init(void)
1975 {
1976 kblockd_workqueue = create_workqueue("kblockd");
1977 if (!kblockd_workqueue)
1978 panic("Failed to create kblockd\n");
1979
1980 request_cachep = kmem_cache_create("blkdev_requests",
1981 sizeof(struct request), 0, SLAB_PANIC, NULL);
1982
1983 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
1984 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1985
1986 return 0;
1987 }
1988