]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-core.c
userfaultfd: check VM_MAYWRITE was set after verifying the uffd is registered
[thirdparty/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-pm.h"
46 #include "blk-rq-qos.h"
47
48 #ifdef CONFIG_DEBUG_FS
49 struct dentry *blk_debugfs_root;
50 #endif
51
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57
58 DEFINE_IDA(blk_queue_ida);
59
60 /*
61 * For the allocated request tables
62 */
63 struct kmem_cache *request_cachep;
64
65 /*
66 * For queue allocation
67 */
68 struct kmem_cache *blk_requestq_cachep;
69
70 /*
71 * Controlling structure to kblockd
72 */
73 static struct workqueue_struct *kblockd_workqueue;
74
75 /**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 unsigned long flags;
83
84 spin_lock_irqsave(q->queue_lock, flags);
85 queue_flag_set(flag, q);
86 spin_unlock_irqrestore(q->queue_lock, flags);
87 }
88 EXPORT_SYMBOL(blk_queue_flag_set);
89
90 /**
91 * blk_queue_flag_clear - atomically clear a queue flag
92 * @flag: flag to be cleared
93 * @q: request queue
94 */
95 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
96 {
97 unsigned long flags;
98
99 spin_lock_irqsave(q->queue_lock, flags);
100 queue_flag_clear(flag, q);
101 spin_unlock_irqrestore(q->queue_lock, flags);
102 }
103 EXPORT_SYMBOL(blk_queue_flag_clear);
104
105 /**
106 * blk_queue_flag_test_and_set - atomically test and set a queue flag
107 * @flag: flag to be set
108 * @q: request queue
109 *
110 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
111 * the flag was already set.
112 */
113 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
114 {
115 unsigned long flags;
116 bool res;
117
118 spin_lock_irqsave(q->queue_lock, flags);
119 res = queue_flag_test_and_set(flag, q);
120 spin_unlock_irqrestore(q->queue_lock, flags);
121
122 return res;
123 }
124 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
125
126 /**
127 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
128 * @flag: flag to be cleared
129 * @q: request queue
130 *
131 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
132 * the flag was set.
133 */
134 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
135 {
136 unsigned long flags;
137 bool res;
138
139 spin_lock_irqsave(q->queue_lock, flags);
140 res = queue_flag_test_and_clear(flag, q);
141 spin_unlock_irqrestore(q->queue_lock, flags);
142
143 return res;
144 }
145 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
146
147 static void blk_clear_congested(struct request_list *rl, int sync)
148 {
149 #ifdef CONFIG_CGROUP_WRITEBACK
150 clear_wb_congested(rl->blkg->wb_congested, sync);
151 #else
152 /*
153 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
154 * flip its congestion state for events on other blkcgs.
155 */
156 if (rl == &rl->q->root_rl)
157 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
158 #endif
159 }
160
161 static void blk_set_congested(struct request_list *rl, int sync)
162 {
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 set_wb_congested(rl->blkg->wb_congested, sync);
165 #else
166 /* see blk_clear_congested() */
167 if (rl == &rl->q->root_rl)
168 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
169 #endif
170 }
171
172 void blk_queue_congestion_threshold(struct request_queue *q)
173 {
174 int nr;
175
176 nr = q->nr_requests - (q->nr_requests / 8) + 1;
177 if (nr > q->nr_requests)
178 nr = q->nr_requests;
179 q->nr_congestion_on = nr;
180
181 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
182 if (nr < 1)
183 nr = 1;
184 q->nr_congestion_off = nr;
185 }
186
187 void blk_rq_init(struct request_queue *q, struct request *rq)
188 {
189 memset(rq, 0, sizeof(*rq));
190
191 INIT_LIST_HEAD(&rq->queuelist);
192 INIT_LIST_HEAD(&rq->timeout_list);
193 rq->cpu = -1;
194 rq->q = q;
195 rq->__sector = (sector_t) -1;
196 INIT_HLIST_NODE(&rq->hash);
197 RB_CLEAR_NODE(&rq->rb_node);
198 rq->tag = -1;
199 rq->internal_tag = -1;
200 rq->start_time_ns = ktime_get_ns();
201 rq->part = NULL;
202 }
203 EXPORT_SYMBOL(blk_rq_init);
204
205 static const struct {
206 int errno;
207 const char *name;
208 } blk_errors[] = {
209 [BLK_STS_OK] = { 0, "" },
210 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
211 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
212 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
213 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
214 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
215 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
216 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
217 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
218 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
219 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
220 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
221
222 /* device mapper special case, should not leak out: */
223 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
224
225 /* everything else not covered above: */
226 [BLK_STS_IOERR] = { -EIO, "I/O" },
227 };
228
229 blk_status_t errno_to_blk_status(int errno)
230 {
231 int i;
232
233 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
234 if (blk_errors[i].errno == errno)
235 return (__force blk_status_t)i;
236 }
237
238 return BLK_STS_IOERR;
239 }
240 EXPORT_SYMBOL_GPL(errno_to_blk_status);
241
242 int blk_status_to_errno(blk_status_t status)
243 {
244 int idx = (__force int)status;
245
246 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
247 return -EIO;
248 return blk_errors[idx].errno;
249 }
250 EXPORT_SYMBOL_GPL(blk_status_to_errno);
251
252 static void print_req_error(struct request *req, blk_status_t status)
253 {
254 int idx = (__force int)status;
255
256 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
257 return;
258
259 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
260 __func__, blk_errors[idx].name, req->rq_disk ?
261 req->rq_disk->disk_name : "?",
262 (unsigned long long)blk_rq_pos(req));
263 }
264
265 static void req_bio_endio(struct request *rq, struct bio *bio,
266 unsigned int nbytes, blk_status_t error)
267 {
268 if (error)
269 bio->bi_status = error;
270
271 if (unlikely(rq->rq_flags & RQF_QUIET))
272 bio_set_flag(bio, BIO_QUIET);
273
274 bio_advance(bio, nbytes);
275
276 /* don't actually finish bio if it's part of flush sequence */
277 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
278 bio_endio(bio);
279 }
280
281 void blk_dump_rq_flags(struct request *rq, char *msg)
282 {
283 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
284 rq->rq_disk ? rq->rq_disk->disk_name : "?",
285 (unsigned long long) rq->cmd_flags);
286
287 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
288 (unsigned long long)blk_rq_pos(rq),
289 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
290 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
291 rq->bio, rq->biotail, blk_rq_bytes(rq));
292 }
293 EXPORT_SYMBOL(blk_dump_rq_flags);
294
295 static void blk_delay_work(struct work_struct *work)
296 {
297 struct request_queue *q;
298
299 q = container_of(work, struct request_queue, delay_work.work);
300 spin_lock_irq(q->queue_lock);
301 __blk_run_queue(q);
302 spin_unlock_irq(q->queue_lock);
303 }
304
305 /**
306 * blk_delay_queue - restart queueing after defined interval
307 * @q: The &struct request_queue in question
308 * @msecs: Delay in msecs
309 *
310 * Description:
311 * Sometimes queueing needs to be postponed for a little while, to allow
312 * resources to come back. This function will make sure that queueing is
313 * restarted around the specified time.
314 */
315 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
316 {
317 lockdep_assert_held(q->queue_lock);
318 WARN_ON_ONCE(q->mq_ops);
319
320 if (likely(!blk_queue_dead(q)))
321 queue_delayed_work(kblockd_workqueue, &q->delay_work,
322 msecs_to_jiffies(msecs));
323 }
324 EXPORT_SYMBOL(blk_delay_queue);
325
326 /**
327 * blk_start_queue_async - asynchronously restart a previously stopped queue
328 * @q: The &struct request_queue in question
329 *
330 * Description:
331 * blk_start_queue_async() will clear the stop flag on the queue, and
332 * ensure that the request_fn for the queue is run from an async
333 * context.
334 **/
335 void blk_start_queue_async(struct request_queue *q)
336 {
337 lockdep_assert_held(q->queue_lock);
338 WARN_ON_ONCE(q->mq_ops);
339
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 blk_run_queue_async(q);
342 }
343 EXPORT_SYMBOL(blk_start_queue_async);
344
345 /**
346 * blk_start_queue - restart a previously stopped queue
347 * @q: The &struct request_queue in question
348 *
349 * Description:
350 * blk_start_queue() will clear the stop flag on the queue, and call
351 * the request_fn for the queue if it was in a stopped state when
352 * entered. Also see blk_stop_queue().
353 **/
354 void blk_start_queue(struct request_queue *q)
355 {
356 lockdep_assert_held(q->queue_lock);
357 WARN_ON_ONCE(q->mq_ops);
358
359 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
360 __blk_run_queue(q);
361 }
362 EXPORT_SYMBOL(blk_start_queue);
363
364 /**
365 * blk_stop_queue - stop a queue
366 * @q: The &struct request_queue in question
367 *
368 * Description:
369 * The Linux block layer assumes that a block driver will consume all
370 * entries on the request queue when the request_fn strategy is called.
371 * Often this will not happen, because of hardware limitations (queue
372 * depth settings). If a device driver gets a 'queue full' response,
373 * or if it simply chooses not to queue more I/O at one point, it can
374 * call this function to prevent the request_fn from being called until
375 * the driver has signalled it's ready to go again. This happens by calling
376 * blk_start_queue() to restart queue operations.
377 **/
378 void blk_stop_queue(struct request_queue *q)
379 {
380 lockdep_assert_held(q->queue_lock);
381 WARN_ON_ONCE(q->mq_ops);
382
383 cancel_delayed_work(&q->delay_work);
384 queue_flag_set(QUEUE_FLAG_STOPPED, q);
385 }
386 EXPORT_SYMBOL(blk_stop_queue);
387
388 /**
389 * blk_sync_queue - cancel any pending callbacks on a queue
390 * @q: the queue
391 *
392 * Description:
393 * The block layer may perform asynchronous callback activity
394 * on a queue, such as calling the unplug function after a timeout.
395 * A block device may call blk_sync_queue to ensure that any
396 * such activity is cancelled, thus allowing it to release resources
397 * that the callbacks might use. The caller must already have made sure
398 * that its ->make_request_fn will not re-add plugging prior to calling
399 * this function.
400 *
401 * This function does not cancel any asynchronous activity arising
402 * out of elevator or throttling code. That would require elevator_exit()
403 * and blkcg_exit_queue() to be called with queue lock initialized.
404 *
405 */
406 void blk_sync_queue(struct request_queue *q)
407 {
408 del_timer_sync(&q->timeout);
409 cancel_work_sync(&q->timeout_work);
410
411 if (q->mq_ops) {
412 struct blk_mq_hw_ctx *hctx;
413 int i;
414
415 cancel_delayed_work_sync(&q->requeue_work);
416 queue_for_each_hw_ctx(q, hctx, i)
417 cancel_delayed_work_sync(&hctx->run_work);
418 } else {
419 cancel_delayed_work_sync(&q->delay_work);
420 }
421 }
422 EXPORT_SYMBOL(blk_sync_queue);
423
424 /**
425 * blk_set_pm_only - increment pm_only counter
426 * @q: request queue pointer
427 */
428 void blk_set_pm_only(struct request_queue *q)
429 {
430 atomic_inc(&q->pm_only);
431 }
432 EXPORT_SYMBOL_GPL(blk_set_pm_only);
433
434 void blk_clear_pm_only(struct request_queue *q)
435 {
436 int pm_only;
437
438 pm_only = atomic_dec_return(&q->pm_only);
439 WARN_ON_ONCE(pm_only < 0);
440 if (pm_only == 0)
441 wake_up_all(&q->mq_freeze_wq);
442 }
443 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
444
445 /**
446 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
447 * @q: The queue to run
448 *
449 * Description:
450 * Invoke request handling on a queue if there are any pending requests.
451 * May be used to restart request handling after a request has completed.
452 * This variant runs the queue whether or not the queue has been
453 * stopped. Must be called with the queue lock held and interrupts
454 * disabled. See also @blk_run_queue.
455 */
456 inline void __blk_run_queue_uncond(struct request_queue *q)
457 {
458 lockdep_assert_held(q->queue_lock);
459 WARN_ON_ONCE(q->mq_ops);
460
461 if (unlikely(blk_queue_dead(q)))
462 return;
463
464 /*
465 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
466 * the queue lock internally. As a result multiple threads may be
467 * running such a request function concurrently. Keep track of the
468 * number of active request_fn invocations such that blk_drain_queue()
469 * can wait until all these request_fn calls have finished.
470 */
471 q->request_fn_active++;
472 q->request_fn(q);
473 q->request_fn_active--;
474 }
475 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
476
477 /**
478 * __blk_run_queue - run a single device queue
479 * @q: The queue to run
480 *
481 * Description:
482 * See @blk_run_queue.
483 */
484 void __blk_run_queue(struct request_queue *q)
485 {
486 lockdep_assert_held(q->queue_lock);
487 WARN_ON_ONCE(q->mq_ops);
488
489 if (unlikely(blk_queue_stopped(q)))
490 return;
491
492 __blk_run_queue_uncond(q);
493 }
494 EXPORT_SYMBOL(__blk_run_queue);
495
496 /**
497 * blk_run_queue_async - run a single device queue in workqueue context
498 * @q: The queue to run
499 *
500 * Description:
501 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
502 * of us.
503 *
504 * Note:
505 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
506 * has canceled q->delay_work, callers must hold the queue lock to avoid
507 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
508 */
509 void blk_run_queue_async(struct request_queue *q)
510 {
511 lockdep_assert_held(q->queue_lock);
512 WARN_ON_ONCE(q->mq_ops);
513
514 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
515 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
516 }
517 EXPORT_SYMBOL(blk_run_queue_async);
518
519 /**
520 * blk_run_queue - run a single device queue
521 * @q: The queue to run
522 *
523 * Description:
524 * Invoke request handling on this queue, if it has pending work to do.
525 * May be used to restart queueing when a request has completed.
526 */
527 void blk_run_queue(struct request_queue *q)
528 {
529 unsigned long flags;
530
531 WARN_ON_ONCE(q->mq_ops);
532
533 spin_lock_irqsave(q->queue_lock, flags);
534 __blk_run_queue(q);
535 spin_unlock_irqrestore(q->queue_lock, flags);
536 }
537 EXPORT_SYMBOL(blk_run_queue);
538
539 void blk_put_queue(struct request_queue *q)
540 {
541 kobject_put(&q->kobj);
542 }
543 EXPORT_SYMBOL(blk_put_queue);
544
545 /**
546 * __blk_drain_queue - drain requests from request_queue
547 * @q: queue to drain
548 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
549 *
550 * Drain requests from @q. If @drain_all is set, all requests are drained.
551 * If not, only ELVPRIV requests are drained. The caller is responsible
552 * for ensuring that no new requests which need to be drained are queued.
553 */
554 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
555 __releases(q->queue_lock)
556 __acquires(q->queue_lock)
557 {
558 int i;
559
560 lockdep_assert_held(q->queue_lock);
561 WARN_ON_ONCE(q->mq_ops);
562
563 while (true) {
564 bool drain = false;
565
566 /*
567 * The caller might be trying to drain @q before its
568 * elevator is initialized.
569 */
570 if (q->elevator)
571 elv_drain_elevator(q);
572
573 blkcg_drain_queue(q);
574
575 /*
576 * This function might be called on a queue which failed
577 * driver init after queue creation or is not yet fully
578 * active yet. Some drivers (e.g. fd and loop) get unhappy
579 * in such cases. Kick queue iff dispatch queue has
580 * something on it and @q has request_fn set.
581 */
582 if (!list_empty(&q->queue_head) && q->request_fn)
583 __blk_run_queue(q);
584
585 drain |= q->nr_rqs_elvpriv;
586 drain |= q->request_fn_active;
587
588 /*
589 * Unfortunately, requests are queued at and tracked from
590 * multiple places and there's no single counter which can
591 * be drained. Check all the queues and counters.
592 */
593 if (drain_all) {
594 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
595 drain |= !list_empty(&q->queue_head);
596 for (i = 0; i < 2; i++) {
597 drain |= q->nr_rqs[i];
598 drain |= q->in_flight[i];
599 if (fq)
600 drain |= !list_empty(&fq->flush_queue[i]);
601 }
602 }
603
604 if (!drain)
605 break;
606
607 spin_unlock_irq(q->queue_lock);
608
609 msleep(10);
610
611 spin_lock_irq(q->queue_lock);
612 }
613
614 /*
615 * With queue marked dead, any woken up waiter will fail the
616 * allocation path, so the wakeup chaining is lost and we're
617 * left with hung waiters. We need to wake up those waiters.
618 */
619 if (q->request_fn) {
620 struct request_list *rl;
621
622 blk_queue_for_each_rl(rl, q)
623 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
624 wake_up_all(&rl->wait[i]);
625 }
626 }
627
628 void blk_drain_queue(struct request_queue *q)
629 {
630 spin_lock_irq(q->queue_lock);
631 __blk_drain_queue(q, true);
632 spin_unlock_irq(q->queue_lock);
633 }
634
635 /**
636 * blk_queue_bypass_start - enter queue bypass mode
637 * @q: queue of interest
638 *
639 * In bypass mode, only the dispatch FIFO queue of @q is used. This
640 * function makes @q enter bypass mode and drains all requests which were
641 * throttled or issued before. On return, it's guaranteed that no request
642 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
643 * inside queue or RCU read lock.
644 */
645 void blk_queue_bypass_start(struct request_queue *q)
646 {
647 WARN_ON_ONCE(q->mq_ops);
648
649 spin_lock_irq(q->queue_lock);
650 q->bypass_depth++;
651 queue_flag_set(QUEUE_FLAG_BYPASS, q);
652 spin_unlock_irq(q->queue_lock);
653
654 /*
655 * Queues start drained. Skip actual draining till init is
656 * complete. This avoids lenghty delays during queue init which
657 * can happen many times during boot.
658 */
659 if (blk_queue_init_done(q)) {
660 spin_lock_irq(q->queue_lock);
661 __blk_drain_queue(q, false);
662 spin_unlock_irq(q->queue_lock);
663
664 /* ensure blk_queue_bypass() is %true inside RCU read lock */
665 synchronize_rcu();
666 }
667 }
668 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
669
670 /**
671 * blk_queue_bypass_end - leave queue bypass mode
672 * @q: queue of interest
673 *
674 * Leave bypass mode and restore the normal queueing behavior.
675 *
676 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
677 * this function is called for both blk-sq and blk-mq queues.
678 */
679 void blk_queue_bypass_end(struct request_queue *q)
680 {
681 spin_lock_irq(q->queue_lock);
682 if (!--q->bypass_depth)
683 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
684 WARN_ON_ONCE(q->bypass_depth < 0);
685 spin_unlock_irq(q->queue_lock);
686 }
687 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
688
689 void blk_set_queue_dying(struct request_queue *q)
690 {
691 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
692
693 /*
694 * When queue DYING flag is set, we need to block new req
695 * entering queue, so we call blk_freeze_queue_start() to
696 * prevent I/O from crossing blk_queue_enter().
697 */
698 blk_freeze_queue_start(q);
699
700 if (q->mq_ops)
701 blk_mq_wake_waiters(q);
702 else {
703 struct request_list *rl;
704
705 spin_lock_irq(q->queue_lock);
706 blk_queue_for_each_rl(rl, q) {
707 if (rl->rq_pool) {
708 wake_up_all(&rl->wait[BLK_RW_SYNC]);
709 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
710 }
711 }
712 spin_unlock_irq(q->queue_lock);
713 }
714
715 /* Make blk_queue_enter() reexamine the DYING flag. */
716 wake_up_all(&q->mq_freeze_wq);
717 }
718 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
719
720 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
721 void blk_exit_queue(struct request_queue *q)
722 {
723 /*
724 * Since the I/O scheduler exit code may access cgroup information,
725 * perform I/O scheduler exit before disassociating from the block
726 * cgroup controller.
727 */
728 if (q->elevator) {
729 ioc_clear_queue(q);
730 elevator_exit(q, q->elevator);
731 q->elevator = NULL;
732 }
733
734 /*
735 * Remove all references to @q from the block cgroup controller before
736 * restoring @q->queue_lock to avoid that restoring this pointer causes
737 * e.g. blkcg_print_blkgs() to crash.
738 */
739 blkcg_exit_queue(q);
740
741 /*
742 * Since the cgroup code may dereference the @q->backing_dev_info
743 * pointer, only decrease its reference count after having removed the
744 * association with the block cgroup controller.
745 */
746 bdi_put(q->backing_dev_info);
747 }
748
749 /**
750 * blk_cleanup_queue - shutdown a request queue
751 * @q: request queue to shutdown
752 *
753 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
754 * put it. All future requests will be failed immediately with -ENODEV.
755 */
756 void blk_cleanup_queue(struct request_queue *q)
757 {
758 spinlock_t *lock = q->queue_lock;
759
760 /* mark @q DYING, no new request or merges will be allowed afterwards */
761 mutex_lock(&q->sysfs_lock);
762 blk_set_queue_dying(q);
763 spin_lock_irq(lock);
764
765 /*
766 * A dying queue is permanently in bypass mode till released. Note
767 * that, unlike blk_queue_bypass_start(), we aren't performing
768 * synchronize_rcu() after entering bypass mode to avoid the delay
769 * as some drivers create and destroy a lot of queues while
770 * probing. This is still safe because blk_release_queue() will be
771 * called only after the queue refcnt drops to zero and nothing,
772 * RCU or not, would be traversing the queue by then.
773 */
774 q->bypass_depth++;
775 queue_flag_set(QUEUE_FLAG_BYPASS, q);
776
777 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
778 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
779 queue_flag_set(QUEUE_FLAG_DYING, q);
780 spin_unlock_irq(lock);
781 mutex_unlock(&q->sysfs_lock);
782
783 /*
784 * Drain all requests queued before DYING marking. Set DEAD flag to
785 * prevent that q->request_fn() gets invoked after draining finished.
786 */
787 blk_freeze_queue(q);
788
789 rq_qos_exit(q);
790
791 spin_lock_irq(lock);
792 queue_flag_set(QUEUE_FLAG_DEAD, q);
793 spin_unlock_irq(lock);
794
795 /*
796 * make sure all in-progress dispatch are completed because
797 * blk_freeze_queue() can only complete all requests, and
798 * dispatch may still be in-progress since we dispatch requests
799 * from more than one contexts.
800 *
801 * We rely on driver to deal with the race in case that queue
802 * initialization isn't done.
803 */
804 if (q->mq_ops && blk_queue_init_done(q))
805 blk_mq_quiesce_queue(q);
806
807 /* for synchronous bio-based driver finish in-flight integrity i/o */
808 blk_flush_integrity();
809
810 /* @q won't process any more request, flush async actions */
811 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
812 blk_sync_queue(q);
813
814 /*
815 * I/O scheduler exit is only safe after the sysfs scheduler attribute
816 * has been removed.
817 */
818 WARN_ON_ONCE(q->kobj.state_in_sysfs);
819
820 blk_exit_queue(q);
821
822 if (q->mq_ops)
823 blk_mq_free_queue(q);
824 percpu_ref_exit(&q->q_usage_counter);
825
826 spin_lock_irq(lock);
827 if (q->queue_lock != &q->__queue_lock)
828 q->queue_lock = &q->__queue_lock;
829 spin_unlock_irq(lock);
830
831 /* @q is and will stay empty, shutdown and put */
832 blk_put_queue(q);
833 }
834 EXPORT_SYMBOL(blk_cleanup_queue);
835
836 /* Allocate memory local to the request queue */
837 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
838 {
839 struct request_queue *q = data;
840
841 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
842 }
843
844 static void free_request_simple(void *element, void *data)
845 {
846 kmem_cache_free(request_cachep, element);
847 }
848
849 static void *alloc_request_size(gfp_t gfp_mask, void *data)
850 {
851 struct request_queue *q = data;
852 struct request *rq;
853
854 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
855 q->node);
856 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
857 kfree(rq);
858 rq = NULL;
859 }
860 return rq;
861 }
862
863 static void free_request_size(void *element, void *data)
864 {
865 struct request_queue *q = data;
866
867 if (q->exit_rq_fn)
868 q->exit_rq_fn(q, element);
869 kfree(element);
870 }
871
872 int blk_init_rl(struct request_list *rl, struct request_queue *q,
873 gfp_t gfp_mask)
874 {
875 if (unlikely(rl->rq_pool) || q->mq_ops)
876 return 0;
877
878 rl->q = q;
879 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
880 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
881 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
882 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
883
884 if (q->cmd_size) {
885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 alloc_request_size, free_request_size,
887 q, gfp_mask, q->node);
888 } else {
889 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
890 alloc_request_simple, free_request_simple,
891 q, gfp_mask, q->node);
892 }
893 if (!rl->rq_pool)
894 return -ENOMEM;
895
896 if (rl != &q->root_rl)
897 WARN_ON_ONCE(!blk_get_queue(q));
898
899 return 0;
900 }
901
902 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
903 {
904 if (rl->rq_pool) {
905 mempool_destroy(rl->rq_pool);
906 if (rl != &q->root_rl)
907 blk_put_queue(q);
908 }
909 }
910
911 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
912 {
913 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
914 }
915 EXPORT_SYMBOL(blk_alloc_queue);
916
917 /**
918 * blk_queue_enter() - try to increase q->q_usage_counter
919 * @q: request queue pointer
920 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
921 */
922 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
923 {
924 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
925
926 while (true) {
927 bool success = false;
928
929 rcu_read_lock();
930 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
931 /*
932 * The code that increments the pm_only counter is
933 * responsible for ensuring that that counter is
934 * globally visible before the queue is unfrozen.
935 */
936 if (pm || !blk_queue_pm_only(q)) {
937 success = true;
938 } else {
939 percpu_ref_put(&q->q_usage_counter);
940 }
941 }
942 rcu_read_unlock();
943
944 if (success)
945 return 0;
946
947 if (flags & BLK_MQ_REQ_NOWAIT)
948 return -EBUSY;
949
950 /*
951 * read pair of barrier in blk_freeze_queue_start(),
952 * we need to order reading __PERCPU_REF_DEAD flag of
953 * .q_usage_counter and reading .mq_freeze_depth or
954 * queue dying flag, otherwise the following wait may
955 * never return if the two reads are reordered.
956 */
957 smp_rmb();
958
959 wait_event(q->mq_freeze_wq,
960 (atomic_read(&q->mq_freeze_depth) == 0 &&
961 (pm || (blk_pm_request_resume(q),
962 !blk_queue_pm_only(q)))) ||
963 blk_queue_dying(q));
964 if (blk_queue_dying(q))
965 return -ENODEV;
966 }
967 }
968
969 void blk_queue_exit(struct request_queue *q)
970 {
971 percpu_ref_put(&q->q_usage_counter);
972 }
973
974 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
975 {
976 struct request_queue *q =
977 container_of(ref, struct request_queue, q_usage_counter);
978
979 wake_up_all(&q->mq_freeze_wq);
980 }
981
982 static void blk_rq_timed_out_timer(struct timer_list *t)
983 {
984 struct request_queue *q = from_timer(q, t, timeout);
985
986 kblockd_schedule_work(&q->timeout_work);
987 }
988
989 /**
990 * blk_alloc_queue_node - allocate a request queue
991 * @gfp_mask: memory allocation flags
992 * @node_id: NUMA node to allocate memory from
993 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
994 * serialize calls to the legacy .request_fn() callback. Ignored for
995 * blk-mq request queues.
996 *
997 * Note: pass the queue lock as the third argument to this function instead of
998 * setting the queue lock pointer explicitly to avoid triggering a sporadic
999 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
1000 * the queue lock pointer must be set before blkcg_init_queue() is called.
1001 */
1002 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1003 spinlock_t *lock)
1004 {
1005 struct request_queue *q;
1006 int ret;
1007
1008 q = kmem_cache_alloc_node(blk_requestq_cachep,
1009 gfp_mask | __GFP_ZERO, node_id);
1010 if (!q)
1011 return NULL;
1012
1013 INIT_LIST_HEAD(&q->queue_head);
1014 q->last_merge = NULL;
1015 q->end_sector = 0;
1016 q->boundary_rq = NULL;
1017
1018 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1019 if (q->id < 0)
1020 goto fail_q;
1021
1022 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1023 if (ret)
1024 goto fail_id;
1025
1026 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1027 if (!q->backing_dev_info)
1028 goto fail_split;
1029
1030 q->stats = blk_alloc_queue_stats();
1031 if (!q->stats)
1032 goto fail_stats;
1033
1034 q->backing_dev_info->ra_pages =
1035 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1036 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1037 q->backing_dev_info->name = "block";
1038 q->node = node_id;
1039
1040 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1041 laptop_mode_timer_fn, 0);
1042 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1043 INIT_WORK(&q->timeout_work, NULL);
1044 INIT_LIST_HEAD(&q->timeout_list);
1045 INIT_LIST_HEAD(&q->icq_list);
1046 #ifdef CONFIG_BLK_CGROUP
1047 INIT_LIST_HEAD(&q->blkg_list);
1048 #endif
1049 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1050
1051 kobject_init(&q->kobj, &blk_queue_ktype);
1052
1053 #ifdef CONFIG_BLK_DEV_IO_TRACE
1054 mutex_init(&q->blk_trace_mutex);
1055 #endif
1056 mutex_init(&q->sysfs_lock);
1057 spin_lock_init(&q->__queue_lock);
1058
1059 q->queue_lock = lock ? : &q->__queue_lock;
1060
1061 /*
1062 * A queue starts its life with bypass turned on to avoid
1063 * unnecessary bypass on/off overhead and nasty surprises during
1064 * init. The initial bypass will be finished when the queue is
1065 * registered by blk_register_queue().
1066 */
1067 q->bypass_depth = 1;
1068 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1069
1070 init_waitqueue_head(&q->mq_freeze_wq);
1071
1072 /*
1073 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1074 * See blk_register_queue() for details.
1075 */
1076 if (percpu_ref_init(&q->q_usage_counter,
1077 blk_queue_usage_counter_release,
1078 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1079 goto fail_bdi;
1080
1081 if (blkcg_init_queue(q))
1082 goto fail_ref;
1083
1084 return q;
1085
1086 fail_ref:
1087 percpu_ref_exit(&q->q_usage_counter);
1088 fail_bdi:
1089 blk_free_queue_stats(q->stats);
1090 fail_stats:
1091 bdi_put(q->backing_dev_info);
1092 fail_split:
1093 bioset_exit(&q->bio_split);
1094 fail_id:
1095 ida_simple_remove(&blk_queue_ida, q->id);
1096 fail_q:
1097 kmem_cache_free(blk_requestq_cachep, q);
1098 return NULL;
1099 }
1100 EXPORT_SYMBOL(blk_alloc_queue_node);
1101
1102 /**
1103 * blk_init_queue - prepare a request queue for use with a block device
1104 * @rfn: The function to be called to process requests that have been
1105 * placed on the queue.
1106 * @lock: Request queue spin lock
1107 *
1108 * Description:
1109 * If a block device wishes to use the standard request handling procedures,
1110 * which sorts requests and coalesces adjacent requests, then it must
1111 * call blk_init_queue(). The function @rfn will be called when there
1112 * are requests on the queue that need to be processed. If the device
1113 * supports plugging, then @rfn may not be called immediately when requests
1114 * are available on the queue, but may be called at some time later instead.
1115 * Plugged queues are generally unplugged when a buffer belonging to one
1116 * of the requests on the queue is needed, or due to memory pressure.
1117 *
1118 * @rfn is not required, or even expected, to remove all requests off the
1119 * queue, but only as many as it can handle at a time. If it does leave
1120 * requests on the queue, it is responsible for arranging that the requests
1121 * get dealt with eventually.
1122 *
1123 * The queue spin lock must be held while manipulating the requests on the
1124 * request queue; this lock will be taken also from interrupt context, so irq
1125 * disabling is needed for it.
1126 *
1127 * Function returns a pointer to the initialized request queue, or %NULL if
1128 * it didn't succeed.
1129 *
1130 * Note:
1131 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1132 * when the block device is deactivated (such as at module unload).
1133 **/
1134
1135 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1136 {
1137 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1138 }
1139 EXPORT_SYMBOL(blk_init_queue);
1140
1141 struct request_queue *
1142 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1143 {
1144 struct request_queue *q;
1145
1146 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1147 if (!q)
1148 return NULL;
1149
1150 q->request_fn = rfn;
1151 if (blk_init_allocated_queue(q) < 0) {
1152 blk_cleanup_queue(q);
1153 return NULL;
1154 }
1155
1156 return q;
1157 }
1158 EXPORT_SYMBOL(blk_init_queue_node);
1159
1160 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1161
1162
1163 int blk_init_allocated_queue(struct request_queue *q)
1164 {
1165 WARN_ON_ONCE(q->mq_ops);
1166
1167 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
1168 if (!q->fq)
1169 return -ENOMEM;
1170
1171 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1172 goto out_free_flush_queue;
1173
1174 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1175 goto out_exit_flush_rq;
1176
1177 INIT_WORK(&q->timeout_work, blk_timeout_work);
1178 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1179
1180 /*
1181 * This also sets hw/phys segments, boundary and size
1182 */
1183 blk_queue_make_request(q, blk_queue_bio);
1184
1185 q->sg_reserved_size = INT_MAX;
1186
1187 if (elevator_init(q))
1188 goto out_exit_flush_rq;
1189 return 0;
1190
1191 out_exit_flush_rq:
1192 if (q->exit_rq_fn)
1193 q->exit_rq_fn(q, q->fq->flush_rq);
1194 out_free_flush_queue:
1195 blk_free_flush_queue(q->fq);
1196 q->fq = NULL;
1197 return -ENOMEM;
1198 }
1199 EXPORT_SYMBOL(blk_init_allocated_queue);
1200
1201 bool blk_get_queue(struct request_queue *q)
1202 {
1203 if (likely(!blk_queue_dying(q))) {
1204 __blk_get_queue(q);
1205 return true;
1206 }
1207
1208 return false;
1209 }
1210 EXPORT_SYMBOL(blk_get_queue);
1211
1212 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1213 {
1214 if (rq->rq_flags & RQF_ELVPRIV) {
1215 elv_put_request(rl->q, rq);
1216 if (rq->elv.icq)
1217 put_io_context(rq->elv.icq->ioc);
1218 }
1219
1220 mempool_free(rq, rl->rq_pool);
1221 }
1222
1223 /*
1224 * ioc_batching returns true if the ioc is a valid batching request and
1225 * should be given priority access to a request.
1226 */
1227 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1228 {
1229 if (!ioc)
1230 return 0;
1231
1232 /*
1233 * Make sure the process is able to allocate at least 1 request
1234 * even if the batch times out, otherwise we could theoretically
1235 * lose wakeups.
1236 */
1237 return ioc->nr_batch_requests == q->nr_batching ||
1238 (ioc->nr_batch_requests > 0
1239 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1240 }
1241
1242 /*
1243 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1244 * will cause the process to be a "batcher" on all queues in the system. This
1245 * is the behaviour we want though - once it gets a wakeup it should be given
1246 * a nice run.
1247 */
1248 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1249 {
1250 if (!ioc || ioc_batching(q, ioc))
1251 return;
1252
1253 ioc->nr_batch_requests = q->nr_batching;
1254 ioc->last_waited = jiffies;
1255 }
1256
1257 static void __freed_request(struct request_list *rl, int sync)
1258 {
1259 struct request_queue *q = rl->q;
1260
1261 if (rl->count[sync] < queue_congestion_off_threshold(q))
1262 blk_clear_congested(rl, sync);
1263
1264 if (rl->count[sync] + 1 <= q->nr_requests) {
1265 if (waitqueue_active(&rl->wait[sync]))
1266 wake_up(&rl->wait[sync]);
1267
1268 blk_clear_rl_full(rl, sync);
1269 }
1270 }
1271
1272 /*
1273 * A request has just been released. Account for it, update the full and
1274 * congestion status, wake up any waiters. Called under q->queue_lock.
1275 */
1276 static void freed_request(struct request_list *rl, bool sync,
1277 req_flags_t rq_flags)
1278 {
1279 struct request_queue *q = rl->q;
1280
1281 q->nr_rqs[sync]--;
1282 rl->count[sync]--;
1283 if (rq_flags & RQF_ELVPRIV)
1284 q->nr_rqs_elvpriv--;
1285
1286 __freed_request(rl, sync);
1287
1288 if (unlikely(rl->starved[sync ^ 1]))
1289 __freed_request(rl, sync ^ 1);
1290 }
1291
1292 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1293 {
1294 struct request_list *rl;
1295 int on_thresh, off_thresh;
1296
1297 WARN_ON_ONCE(q->mq_ops);
1298
1299 spin_lock_irq(q->queue_lock);
1300 q->nr_requests = nr;
1301 blk_queue_congestion_threshold(q);
1302 on_thresh = queue_congestion_on_threshold(q);
1303 off_thresh = queue_congestion_off_threshold(q);
1304
1305 blk_queue_for_each_rl(rl, q) {
1306 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1307 blk_set_congested(rl, BLK_RW_SYNC);
1308 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1309 blk_clear_congested(rl, BLK_RW_SYNC);
1310
1311 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1312 blk_set_congested(rl, BLK_RW_ASYNC);
1313 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1314 blk_clear_congested(rl, BLK_RW_ASYNC);
1315
1316 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1317 blk_set_rl_full(rl, BLK_RW_SYNC);
1318 } else {
1319 blk_clear_rl_full(rl, BLK_RW_SYNC);
1320 wake_up(&rl->wait[BLK_RW_SYNC]);
1321 }
1322
1323 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1324 blk_set_rl_full(rl, BLK_RW_ASYNC);
1325 } else {
1326 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1327 wake_up(&rl->wait[BLK_RW_ASYNC]);
1328 }
1329 }
1330
1331 spin_unlock_irq(q->queue_lock);
1332 return 0;
1333 }
1334
1335 /**
1336 * __get_request - get a free request
1337 * @rl: request list to allocate from
1338 * @op: operation and flags
1339 * @bio: bio to allocate request for (can be %NULL)
1340 * @flags: BLQ_MQ_REQ_* flags
1341 * @gfp_mask: allocator flags
1342 *
1343 * Get a free request from @q. This function may fail under memory
1344 * pressure or if @q is dead.
1345 *
1346 * Must be called with @q->queue_lock held and,
1347 * Returns ERR_PTR on failure, with @q->queue_lock held.
1348 * Returns request pointer on success, with @q->queue_lock *not held*.
1349 */
1350 static struct request *__get_request(struct request_list *rl, unsigned int op,
1351 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1352 {
1353 struct request_queue *q = rl->q;
1354 struct request *rq;
1355 struct elevator_type *et = q->elevator->type;
1356 struct io_context *ioc = rq_ioc(bio);
1357 struct io_cq *icq = NULL;
1358 const bool is_sync = op_is_sync(op);
1359 int may_queue;
1360 req_flags_t rq_flags = RQF_ALLOCED;
1361
1362 lockdep_assert_held(q->queue_lock);
1363
1364 if (unlikely(blk_queue_dying(q)))
1365 return ERR_PTR(-ENODEV);
1366
1367 may_queue = elv_may_queue(q, op);
1368 if (may_queue == ELV_MQUEUE_NO)
1369 goto rq_starved;
1370
1371 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1372 if (rl->count[is_sync]+1 >= q->nr_requests) {
1373 /*
1374 * The queue will fill after this allocation, so set
1375 * it as full, and mark this process as "batching".
1376 * This process will be allowed to complete a batch of
1377 * requests, others will be blocked.
1378 */
1379 if (!blk_rl_full(rl, is_sync)) {
1380 ioc_set_batching(q, ioc);
1381 blk_set_rl_full(rl, is_sync);
1382 } else {
1383 if (may_queue != ELV_MQUEUE_MUST
1384 && !ioc_batching(q, ioc)) {
1385 /*
1386 * The queue is full and the allocating
1387 * process is not a "batcher", and not
1388 * exempted by the IO scheduler
1389 */
1390 return ERR_PTR(-ENOMEM);
1391 }
1392 }
1393 }
1394 blk_set_congested(rl, is_sync);
1395 }
1396
1397 /*
1398 * Only allow batching queuers to allocate up to 50% over the defined
1399 * limit of requests, otherwise we could have thousands of requests
1400 * allocated with any setting of ->nr_requests
1401 */
1402 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1403 return ERR_PTR(-ENOMEM);
1404
1405 q->nr_rqs[is_sync]++;
1406 rl->count[is_sync]++;
1407 rl->starved[is_sync] = 0;
1408
1409 /*
1410 * Decide whether the new request will be managed by elevator. If
1411 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1412 * prevent the current elevator from being destroyed until the new
1413 * request is freed. This guarantees icq's won't be destroyed and
1414 * makes creating new ones safe.
1415 *
1416 * Flush requests do not use the elevator so skip initialization.
1417 * This allows a request to share the flush and elevator data.
1418 *
1419 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1420 * it will be created after releasing queue_lock.
1421 */
1422 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1423 rq_flags |= RQF_ELVPRIV;
1424 q->nr_rqs_elvpriv++;
1425 if (et->icq_cache && ioc)
1426 icq = ioc_lookup_icq(ioc, q);
1427 }
1428
1429 if (blk_queue_io_stat(q))
1430 rq_flags |= RQF_IO_STAT;
1431 spin_unlock_irq(q->queue_lock);
1432
1433 /* allocate and init request */
1434 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1435 if (!rq)
1436 goto fail_alloc;
1437
1438 blk_rq_init(q, rq);
1439 blk_rq_set_rl(rq, rl);
1440 rq->cmd_flags = op;
1441 rq->rq_flags = rq_flags;
1442 if (flags & BLK_MQ_REQ_PREEMPT)
1443 rq->rq_flags |= RQF_PREEMPT;
1444
1445 /* init elvpriv */
1446 if (rq_flags & RQF_ELVPRIV) {
1447 if (unlikely(et->icq_cache && !icq)) {
1448 if (ioc)
1449 icq = ioc_create_icq(ioc, q, gfp_mask);
1450 if (!icq)
1451 goto fail_elvpriv;
1452 }
1453
1454 rq->elv.icq = icq;
1455 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1456 goto fail_elvpriv;
1457
1458 /* @rq->elv.icq holds io_context until @rq is freed */
1459 if (icq)
1460 get_io_context(icq->ioc);
1461 }
1462 out:
1463 /*
1464 * ioc may be NULL here, and ioc_batching will be false. That's
1465 * OK, if the queue is under the request limit then requests need
1466 * not count toward the nr_batch_requests limit. There will always
1467 * be some limit enforced by BLK_BATCH_TIME.
1468 */
1469 if (ioc_batching(q, ioc))
1470 ioc->nr_batch_requests--;
1471
1472 trace_block_getrq(q, bio, op);
1473 return rq;
1474
1475 fail_elvpriv:
1476 /*
1477 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1478 * and may fail indefinitely under memory pressure and thus
1479 * shouldn't stall IO. Treat this request as !elvpriv. This will
1480 * disturb iosched and blkcg but weird is bettern than dead.
1481 */
1482 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1483 __func__, dev_name(q->backing_dev_info->dev));
1484
1485 rq->rq_flags &= ~RQF_ELVPRIV;
1486 rq->elv.icq = NULL;
1487
1488 spin_lock_irq(q->queue_lock);
1489 q->nr_rqs_elvpriv--;
1490 spin_unlock_irq(q->queue_lock);
1491 goto out;
1492
1493 fail_alloc:
1494 /*
1495 * Allocation failed presumably due to memory. Undo anything we
1496 * might have messed up.
1497 *
1498 * Allocating task should really be put onto the front of the wait
1499 * queue, but this is pretty rare.
1500 */
1501 spin_lock_irq(q->queue_lock);
1502 freed_request(rl, is_sync, rq_flags);
1503
1504 /*
1505 * in the very unlikely event that allocation failed and no
1506 * requests for this direction was pending, mark us starved so that
1507 * freeing of a request in the other direction will notice
1508 * us. another possible fix would be to split the rq mempool into
1509 * READ and WRITE
1510 */
1511 rq_starved:
1512 if (unlikely(rl->count[is_sync] == 0))
1513 rl->starved[is_sync] = 1;
1514 return ERR_PTR(-ENOMEM);
1515 }
1516
1517 /**
1518 * get_request - get a free request
1519 * @q: request_queue to allocate request from
1520 * @op: operation and flags
1521 * @bio: bio to allocate request for (can be %NULL)
1522 * @flags: BLK_MQ_REQ_* flags.
1523 * @gfp: allocator flags
1524 *
1525 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1526 * this function keeps retrying under memory pressure and fails iff @q is dead.
1527 *
1528 * Must be called with @q->queue_lock held and,
1529 * Returns ERR_PTR on failure, with @q->queue_lock held.
1530 * Returns request pointer on success, with @q->queue_lock *not held*.
1531 */
1532 static struct request *get_request(struct request_queue *q, unsigned int op,
1533 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1534 {
1535 const bool is_sync = op_is_sync(op);
1536 DEFINE_WAIT(wait);
1537 struct request_list *rl;
1538 struct request *rq;
1539
1540 lockdep_assert_held(q->queue_lock);
1541 WARN_ON_ONCE(q->mq_ops);
1542
1543 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1544 retry:
1545 rq = __get_request(rl, op, bio, flags, gfp);
1546 if (!IS_ERR(rq))
1547 return rq;
1548
1549 if (op & REQ_NOWAIT) {
1550 blk_put_rl(rl);
1551 return ERR_PTR(-EAGAIN);
1552 }
1553
1554 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1555 blk_put_rl(rl);
1556 return rq;
1557 }
1558
1559 /* wait on @rl and retry */
1560 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1561 TASK_UNINTERRUPTIBLE);
1562
1563 trace_block_sleeprq(q, bio, op);
1564
1565 spin_unlock_irq(q->queue_lock);
1566 io_schedule();
1567
1568 /*
1569 * After sleeping, we become a "batching" process and will be able
1570 * to allocate at least one request, and up to a big batch of them
1571 * for a small period time. See ioc_batching, ioc_set_batching
1572 */
1573 ioc_set_batching(q, current->io_context);
1574
1575 spin_lock_irq(q->queue_lock);
1576 finish_wait(&rl->wait[is_sync], &wait);
1577
1578 goto retry;
1579 }
1580
1581 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1582 static struct request *blk_old_get_request(struct request_queue *q,
1583 unsigned int op, blk_mq_req_flags_t flags)
1584 {
1585 struct request *rq;
1586 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1587 int ret = 0;
1588
1589 WARN_ON_ONCE(q->mq_ops);
1590
1591 /* create ioc upfront */
1592 create_io_context(gfp_mask, q->node);
1593
1594 ret = blk_queue_enter(q, flags);
1595 if (ret)
1596 return ERR_PTR(ret);
1597 spin_lock_irq(q->queue_lock);
1598 rq = get_request(q, op, NULL, flags, gfp_mask);
1599 if (IS_ERR(rq)) {
1600 spin_unlock_irq(q->queue_lock);
1601 blk_queue_exit(q);
1602 return rq;
1603 }
1604
1605 /* q->queue_lock is unlocked at this point */
1606 rq->__data_len = 0;
1607 rq->__sector = (sector_t) -1;
1608 rq->bio = rq->biotail = NULL;
1609 return rq;
1610 }
1611
1612 /**
1613 * blk_get_request - allocate a request
1614 * @q: request queue to allocate a request for
1615 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1616 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1617 */
1618 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1619 blk_mq_req_flags_t flags)
1620 {
1621 struct request *req;
1622
1623 WARN_ON_ONCE(op & REQ_NOWAIT);
1624 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1625
1626 if (q->mq_ops) {
1627 req = blk_mq_alloc_request(q, op, flags);
1628 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1629 q->mq_ops->initialize_rq_fn(req);
1630 } else {
1631 req = blk_old_get_request(q, op, flags);
1632 if (!IS_ERR(req) && q->initialize_rq_fn)
1633 q->initialize_rq_fn(req);
1634 }
1635
1636 return req;
1637 }
1638 EXPORT_SYMBOL(blk_get_request);
1639
1640 /**
1641 * blk_requeue_request - put a request back on queue
1642 * @q: request queue where request should be inserted
1643 * @rq: request to be inserted
1644 *
1645 * Description:
1646 * Drivers often keep queueing requests until the hardware cannot accept
1647 * more, when that condition happens we need to put the request back
1648 * on the queue. Must be called with queue lock held.
1649 */
1650 void blk_requeue_request(struct request_queue *q, struct request *rq)
1651 {
1652 lockdep_assert_held(q->queue_lock);
1653 WARN_ON_ONCE(q->mq_ops);
1654
1655 blk_delete_timer(rq);
1656 blk_clear_rq_complete(rq);
1657 trace_block_rq_requeue(q, rq);
1658 rq_qos_requeue(q, rq);
1659
1660 if (rq->rq_flags & RQF_QUEUED)
1661 blk_queue_end_tag(q, rq);
1662
1663 BUG_ON(blk_queued_rq(rq));
1664
1665 elv_requeue_request(q, rq);
1666 }
1667 EXPORT_SYMBOL(blk_requeue_request);
1668
1669 static void add_acct_request(struct request_queue *q, struct request *rq,
1670 int where)
1671 {
1672 blk_account_io_start(rq, true);
1673 __elv_add_request(q, rq, where);
1674 }
1675
1676 static void part_round_stats_single(struct request_queue *q, int cpu,
1677 struct hd_struct *part, unsigned long now,
1678 unsigned int inflight)
1679 {
1680 if (inflight) {
1681 __part_stat_add(cpu, part, time_in_queue,
1682 inflight * (now - part->stamp));
1683 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1684 }
1685 part->stamp = now;
1686 }
1687
1688 /**
1689 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1690 * @q: target block queue
1691 * @cpu: cpu number for stats access
1692 * @part: target partition
1693 *
1694 * The average IO queue length and utilisation statistics are maintained
1695 * by observing the current state of the queue length and the amount of
1696 * time it has been in this state for.
1697 *
1698 * Normally, that accounting is done on IO completion, but that can result
1699 * in more than a second's worth of IO being accounted for within any one
1700 * second, leading to >100% utilisation. To deal with that, we call this
1701 * function to do a round-off before returning the results when reading
1702 * /proc/diskstats. This accounts immediately for all queue usage up to
1703 * the current jiffies and restarts the counters again.
1704 */
1705 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1706 {
1707 struct hd_struct *part2 = NULL;
1708 unsigned long now = jiffies;
1709 unsigned int inflight[2];
1710 int stats = 0;
1711
1712 if (part->stamp != now)
1713 stats |= 1;
1714
1715 if (part->partno) {
1716 part2 = &part_to_disk(part)->part0;
1717 if (part2->stamp != now)
1718 stats |= 2;
1719 }
1720
1721 if (!stats)
1722 return;
1723
1724 part_in_flight(q, part, inflight);
1725
1726 if (stats & 2)
1727 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1728 if (stats & 1)
1729 part_round_stats_single(q, cpu, part, now, inflight[0]);
1730 }
1731 EXPORT_SYMBOL_GPL(part_round_stats);
1732
1733 void __blk_put_request(struct request_queue *q, struct request *req)
1734 {
1735 req_flags_t rq_flags = req->rq_flags;
1736
1737 if (unlikely(!q))
1738 return;
1739
1740 if (q->mq_ops) {
1741 blk_mq_free_request(req);
1742 return;
1743 }
1744
1745 lockdep_assert_held(q->queue_lock);
1746
1747 blk_req_zone_write_unlock(req);
1748 blk_pm_put_request(req);
1749 blk_pm_mark_last_busy(req);
1750
1751 elv_completed_request(q, req);
1752
1753 /* this is a bio leak */
1754 WARN_ON(req->bio != NULL);
1755
1756 rq_qos_done(q, req);
1757
1758 /*
1759 * Request may not have originated from ll_rw_blk. if not,
1760 * it didn't come out of our reserved rq pools
1761 */
1762 if (rq_flags & RQF_ALLOCED) {
1763 struct request_list *rl = blk_rq_rl(req);
1764 bool sync = op_is_sync(req->cmd_flags);
1765
1766 BUG_ON(!list_empty(&req->queuelist));
1767 BUG_ON(ELV_ON_HASH(req));
1768
1769 blk_free_request(rl, req);
1770 freed_request(rl, sync, rq_flags);
1771 blk_put_rl(rl);
1772 blk_queue_exit(q);
1773 }
1774 }
1775 EXPORT_SYMBOL_GPL(__blk_put_request);
1776
1777 void blk_put_request(struct request *req)
1778 {
1779 struct request_queue *q = req->q;
1780
1781 if (q->mq_ops)
1782 blk_mq_free_request(req);
1783 else {
1784 unsigned long flags;
1785
1786 spin_lock_irqsave(q->queue_lock, flags);
1787 __blk_put_request(q, req);
1788 spin_unlock_irqrestore(q->queue_lock, flags);
1789 }
1790 }
1791 EXPORT_SYMBOL(blk_put_request);
1792
1793 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1794 struct bio *bio)
1795 {
1796 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1797
1798 if (!ll_back_merge_fn(q, req, bio))
1799 return false;
1800
1801 trace_block_bio_backmerge(q, req, bio);
1802
1803 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1804 blk_rq_set_mixed_merge(req);
1805
1806 req->biotail->bi_next = bio;
1807 req->biotail = bio;
1808 req->__data_len += bio->bi_iter.bi_size;
1809 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1810
1811 blk_account_io_start(req, false);
1812 return true;
1813 }
1814
1815 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1816 struct bio *bio)
1817 {
1818 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1819
1820 if (!ll_front_merge_fn(q, req, bio))
1821 return false;
1822
1823 trace_block_bio_frontmerge(q, req, bio);
1824
1825 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1826 blk_rq_set_mixed_merge(req);
1827
1828 bio->bi_next = req->bio;
1829 req->bio = bio;
1830
1831 req->__sector = bio->bi_iter.bi_sector;
1832 req->__data_len += bio->bi_iter.bi_size;
1833 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1834
1835 blk_account_io_start(req, false);
1836 return true;
1837 }
1838
1839 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1840 struct bio *bio)
1841 {
1842 unsigned short segments = blk_rq_nr_discard_segments(req);
1843
1844 if (segments >= queue_max_discard_segments(q))
1845 goto no_merge;
1846 if (blk_rq_sectors(req) + bio_sectors(bio) >
1847 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1848 goto no_merge;
1849
1850 req->biotail->bi_next = bio;
1851 req->biotail = bio;
1852 req->__data_len += bio->bi_iter.bi_size;
1853 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1854 req->nr_phys_segments = segments + 1;
1855
1856 blk_account_io_start(req, false);
1857 return true;
1858 no_merge:
1859 req_set_nomerge(q, req);
1860 return false;
1861 }
1862
1863 /**
1864 * blk_attempt_plug_merge - try to merge with %current's plugged list
1865 * @q: request_queue new bio is being queued at
1866 * @bio: new bio being queued
1867 * @request_count: out parameter for number of traversed plugged requests
1868 * @same_queue_rq: pointer to &struct request that gets filled in when
1869 * another request associated with @q is found on the plug list
1870 * (optional, may be %NULL)
1871 *
1872 * Determine whether @bio being queued on @q can be merged with a request
1873 * on %current's plugged list. Returns %true if merge was successful,
1874 * otherwise %false.
1875 *
1876 * Plugging coalesces IOs from the same issuer for the same purpose without
1877 * going through @q->queue_lock. As such it's more of an issuing mechanism
1878 * than scheduling, and the request, while may have elvpriv data, is not
1879 * added on the elevator at this point. In addition, we don't have
1880 * reliable access to the elevator outside queue lock. Only check basic
1881 * merging parameters without querying the elevator.
1882 *
1883 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1884 */
1885 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1886 unsigned int *request_count,
1887 struct request **same_queue_rq)
1888 {
1889 struct blk_plug *plug;
1890 struct request *rq;
1891 struct list_head *plug_list;
1892
1893 plug = current->plug;
1894 if (!plug)
1895 return false;
1896 *request_count = 0;
1897
1898 if (q->mq_ops)
1899 plug_list = &plug->mq_list;
1900 else
1901 plug_list = &plug->list;
1902
1903 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1904 bool merged = false;
1905
1906 if (rq->q == q) {
1907 (*request_count)++;
1908 /*
1909 * Only blk-mq multiple hardware queues case checks the
1910 * rq in the same queue, there should be only one such
1911 * rq in a queue
1912 **/
1913 if (same_queue_rq)
1914 *same_queue_rq = rq;
1915 }
1916
1917 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1918 continue;
1919
1920 switch (blk_try_merge(rq, bio)) {
1921 case ELEVATOR_BACK_MERGE:
1922 merged = bio_attempt_back_merge(q, rq, bio);
1923 break;
1924 case ELEVATOR_FRONT_MERGE:
1925 merged = bio_attempt_front_merge(q, rq, bio);
1926 break;
1927 case ELEVATOR_DISCARD_MERGE:
1928 merged = bio_attempt_discard_merge(q, rq, bio);
1929 break;
1930 default:
1931 break;
1932 }
1933
1934 if (merged)
1935 return true;
1936 }
1937
1938 return false;
1939 }
1940
1941 unsigned int blk_plug_queued_count(struct request_queue *q)
1942 {
1943 struct blk_plug *plug;
1944 struct request *rq;
1945 struct list_head *plug_list;
1946 unsigned int ret = 0;
1947
1948 plug = current->plug;
1949 if (!plug)
1950 goto out;
1951
1952 if (q->mq_ops)
1953 plug_list = &plug->mq_list;
1954 else
1955 plug_list = &plug->list;
1956
1957 list_for_each_entry(rq, plug_list, queuelist) {
1958 if (rq->q == q)
1959 ret++;
1960 }
1961 out:
1962 return ret;
1963 }
1964
1965 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1966 {
1967 struct io_context *ioc = rq_ioc(bio);
1968
1969 if (bio->bi_opf & REQ_RAHEAD)
1970 req->cmd_flags |= REQ_FAILFAST_MASK;
1971
1972 req->__sector = bio->bi_iter.bi_sector;
1973 if (ioprio_valid(bio_prio(bio)))
1974 req->ioprio = bio_prio(bio);
1975 else if (ioc)
1976 req->ioprio = ioc->ioprio;
1977 else
1978 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1979 req->write_hint = bio->bi_write_hint;
1980 blk_rq_bio_prep(req->q, req, bio);
1981 }
1982 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1983
1984 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1985 {
1986 struct blk_plug *plug;
1987 int where = ELEVATOR_INSERT_SORT;
1988 struct request *req, *free;
1989 unsigned int request_count = 0;
1990
1991 /*
1992 * low level driver can indicate that it wants pages above a
1993 * certain limit bounced to low memory (ie for highmem, or even
1994 * ISA dma in theory)
1995 */
1996 blk_queue_bounce(q, &bio);
1997
1998 blk_queue_split(q, &bio);
1999
2000 if (!bio_integrity_prep(bio))
2001 return BLK_QC_T_NONE;
2002
2003 if (op_is_flush(bio->bi_opf)) {
2004 spin_lock_irq(q->queue_lock);
2005 where = ELEVATOR_INSERT_FLUSH;
2006 goto get_rq;
2007 }
2008
2009 /*
2010 * Check if we can merge with the plugged list before grabbing
2011 * any locks.
2012 */
2013 if (!blk_queue_nomerges(q)) {
2014 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2015 return BLK_QC_T_NONE;
2016 } else
2017 request_count = blk_plug_queued_count(q);
2018
2019 spin_lock_irq(q->queue_lock);
2020
2021 switch (elv_merge(q, &req, bio)) {
2022 case ELEVATOR_BACK_MERGE:
2023 if (!bio_attempt_back_merge(q, req, bio))
2024 break;
2025 elv_bio_merged(q, req, bio);
2026 free = attempt_back_merge(q, req);
2027 if (free)
2028 __blk_put_request(q, free);
2029 else
2030 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2031 goto out_unlock;
2032 case ELEVATOR_FRONT_MERGE:
2033 if (!bio_attempt_front_merge(q, req, bio))
2034 break;
2035 elv_bio_merged(q, req, bio);
2036 free = attempt_front_merge(q, req);
2037 if (free)
2038 __blk_put_request(q, free);
2039 else
2040 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2041 goto out_unlock;
2042 default:
2043 break;
2044 }
2045
2046 get_rq:
2047 rq_qos_throttle(q, bio, q->queue_lock);
2048
2049 /*
2050 * Grab a free request. This is might sleep but can not fail.
2051 * Returns with the queue unlocked.
2052 */
2053 blk_queue_enter_live(q);
2054 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2055 if (IS_ERR(req)) {
2056 blk_queue_exit(q);
2057 rq_qos_cleanup(q, bio);
2058 if (PTR_ERR(req) == -ENOMEM)
2059 bio->bi_status = BLK_STS_RESOURCE;
2060 else
2061 bio->bi_status = BLK_STS_IOERR;
2062 bio_endio(bio);
2063 goto out_unlock;
2064 }
2065
2066 rq_qos_track(q, req, bio);
2067
2068 /*
2069 * After dropping the lock and possibly sleeping here, our request
2070 * may now be mergeable after it had proven unmergeable (above).
2071 * We don't worry about that case for efficiency. It won't happen
2072 * often, and the elevators are able to handle it.
2073 */
2074 blk_init_request_from_bio(req, bio);
2075
2076 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2077 req->cpu = raw_smp_processor_id();
2078
2079 plug = current->plug;
2080 if (plug) {
2081 /*
2082 * If this is the first request added after a plug, fire
2083 * of a plug trace.
2084 *
2085 * @request_count may become stale because of schedule
2086 * out, so check plug list again.
2087 */
2088 if (!request_count || list_empty(&plug->list))
2089 trace_block_plug(q);
2090 else {
2091 struct request *last = list_entry_rq(plug->list.prev);
2092 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2093 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2094 blk_flush_plug_list(plug, false);
2095 trace_block_plug(q);
2096 }
2097 }
2098 list_add_tail(&req->queuelist, &plug->list);
2099 blk_account_io_start(req, true);
2100 } else {
2101 spin_lock_irq(q->queue_lock);
2102 add_acct_request(q, req, where);
2103 __blk_run_queue(q);
2104 out_unlock:
2105 spin_unlock_irq(q->queue_lock);
2106 }
2107
2108 return BLK_QC_T_NONE;
2109 }
2110
2111 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2112 {
2113 char b[BDEVNAME_SIZE];
2114
2115 printk(KERN_INFO "attempt to access beyond end of device\n");
2116 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2117 bio_devname(bio, b), bio->bi_opf,
2118 (unsigned long long)bio_end_sector(bio),
2119 (long long)maxsector);
2120 }
2121
2122 #ifdef CONFIG_FAIL_MAKE_REQUEST
2123
2124 static DECLARE_FAULT_ATTR(fail_make_request);
2125
2126 static int __init setup_fail_make_request(char *str)
2127 {
2128 return setup_fault_attr(&fail_make_request, str);
2129 }
2130 __setup("fail_make_request=", setup_fail_make_request);
2131
2132 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2133 {
2134 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2135 }
2136
2137 static int __init fail_make_request_debugfs(void)
2138 {
2139 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2140 NULL, &fail_make_request);
2141
2142 return PTR_ERR_OR_ZERO(dir);
2143 }
2144
2145 late_initcall(fail_make_request_debugfs);
2146
2147 #else /* CONFIG_FAIL_MAKE_REQUEST */
2148
2149 static inline bool should_fail_request(struct hd_struct *part,
2150 unsigned int bytes)
2151 {
2152 return false;
2153 }
2154
2155 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2156
2157 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2158 {
2159 const int op = bio_op(bio);
2160
2161 if (part->policy && op_is_write(op)) {
2162 char b[BDEVNAME_SIZE];
2163
2164 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2165 return false;
2166
2167 WARN_ONCE(1,
2168 "generic_make_request: Trying to write "
2169 "to read-only block-device %s (partno %d)\n",
2170 bio_devname(bio, b), part->partno);
2171 /* Older lvm-tools actually trigger this */
2172 return false;
2173 }
2174
2175 return false;
2176 }
2177
2178 static noinline int should_fail_bio(struct bio *bio)
2179 {
2180 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2181 return -EIO;
2182 return 0;
2183 }
2184 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2185
2186 /*
2187 * Check whether this bio extends beyond the end of the device or partition.
2188 * This may well happen - the kernel calls bread() without checking the size of
2189 * the device, e.g., when mounting a file system.
2190 */
2191 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2192 {
2193 unsigned int nr_sectors = bio_sectors(bio);
2194
2195 if (nr_sectors && maxsector &&
2196 (nr_sectors > maxsector ||
2197 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2198 handle_bad_sector(bio, maxsector);
2199 return -EIO;
2200 }
2201 return 0;
2202 }
2203
2204 /*
2205 * Remap block n of partition p to block n+start(p) of the disk.
2206 */
2207 static inline int blk_partition_remap(struct bio *bio)
2208 {
2209 struct hd_struct *p;
2210 int ret = -EIO;
2211
2212 rcu_read_lock();
2213 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2214 if (unlikely(!p))
2215 goto out;
2216 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2217 goto out;
2218 if (unlikely(bio_check_ro(bio, p)))
2219 goto out;
2220
2221 /*
2222 * Zone reset does not include bi_size so bio_sectors() is always 0.
2223 * Include a test for the reset op code and perform the remap if needed.
2224 */
2225 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2226 if (bio_check_eod(bio, part_nr_sects_read(p)))
2227 goto out;
2228 bio->bi_iter.bi_sector += p->start_sect;
2229 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2230 bio->bi_iter.bi_sector - p->start_sect);
2231 }
2232 bio->bi_partno = 0;
2233 ret = 0;
2234 out:
2235 rcu_read_unlock();
2236 return ret;
2237 }
2238
2239 static noinline_for_stack bool
2240 generic_make_request_checks(struct bio *bio)
2241 {
2242 struct request_queue *q;
2243 int nr_sectors = bio_sectors(bio);
2244 blk_status_t status = BLK_STS_IOERR;
2245 char b[BDEVNAME_SIZE];
2246
2247 might_sleep();
2248
2249 q = bio->bi_disk->queue;
2250 if (unlikely(!q)) {
2251 printk(KERN_ERR
2252 "generic_make_request: Trying to access "
2253 "nonexistent block-device %s (%Lu)\n",
2254 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2255 goto end_io;
2256 }
2257
2258 /*
2259 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2260 * if queue is not a request based queue.
2261 */
2262 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2263 goto not_supported;
2264
2265 if (should_fail_bio(bio))
2266 goto end_io;
2267
2268 if (bio->bi_partno) {
2269 if (unlikely(blk_partition_remap(bio)))
2270 goto end_io;
2271 } else {
2272 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2273 goto end_io;
2274 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2275 goto end_io;
2276 }
2277
2278 /*
2279 * Filter flush bio's early so that make_request based
2280 * drivers without flush support don't have to worry
2281 * about them.
2282 */
2283 if (op_is_flush(bio->bi_opf) &&
2284 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2285 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2286 if (!nr_sectors) {
2287 status = BLK_STS_OK;
2288 goto end_io;
2289 }
2290 }
2291
2292 switch (bio_op(bio)) {
2293 case REQ_OP_DISCARD:
2294 if (!blk_queue_discard(q))
2295 goto not_supported;
2296 break;
2297 case REQ_OP_SECURE_ERASE:
2298 if (!blk_queue_secure_erase(q))
2299 goto not_supported;
2300 break;
2301 case REQ_OP_WRITE_SAME:
2302 if (!q->limits.max_write_same_sectors)
2303 goto not_supported;
2304 break;
2305 case REQ_OP_ZONE_RESET:
2306 if (!blk_queue_is_zoned(q))
2307 goto not_supported;
2308 break;
2309 case REQ_OP_WRITE_ZEROES:
2310 if (!q->limits.max_write_zeroes_sectors)
2311 goto not_supported;
2312 break;
2313 default:
2314 break;
2315 }
2316
2317 /*
2318 * Various block parts want %current->io_context and lazy ioc
2319 * allocation ends up trading a lot of pain for a small amount of
2320 * memory. Just allocate it upfront. This may fail and block
2321 * layer knows how to live with it.
2322 */
2323 create_io_context(GFP_ATOMIC, q->node);
2324
2325 if (!blkcg_bio_issue_check(q, bio))
2326 return false;
2327
2328 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2329 trace_block_bio_queue(q, bio);
2330 /* Now that enqueuing has been traced, we need to trace
2331 * completion as well.
2332 */
2333 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2334 }
2335 return true;
2336
2337 not_supported:
2338 status = BLK_STS_NOTSUPP;
2339 end_io:
2340 bio->bi_status = status;
2341 bio_endio(bio);
2342 return false;
2343 }
2344
2345 /**
2346 * generic_make_request - hand a buffer to its device driver for I/O
2347 * @bio: The bio describing the location in memory and on the device.
2348 *
2349 * generic_make_request() is used to make I/O requests of block
2350 * devices. It is passed a &struct bio, which describes the I/O that needs
2351 * to be done.
2352 *
2353 * generic_make_request() does not return any status. The
2354 * success/failure status of the request, along with notification of
2355 * completion, is delivered asynchronously through the bio->bi_end_io
2356 * function described (one day) else where.
2357 *
2358 * The caller of generic_make_request must make sure that bi_io_vec
2359 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2360 * set to describe the device address, and the
2361 * bi_end_io and optionally bi_private are set to describe how
2362 * completion notification should be signaled.
2363 *
2364 * generic_make_request and the drivers it calls may use bi_next if this
2365 * bio happens to be merged with someone else, and may resubmit the bio to
2366 * a lower device by calling into generic_make_request recursively, which
2367 * means the bio should NOT be touched after the call to ->make_request_fn.
2368 */
2369 blk_qc_t generic_make_request(struct bio *bio)
2370 {
2371 /*
2372 * bio_list_on_stack[0] contains bios submitted by the current
2373 * make_request_fn.
2374 * bio_list_on_stack[1] contains bios that were submitted before
2375 * the current make_request_fn, but that haven't been processed
2376 * yet.
2377 */
2378 struct bio_list bio_list_on_stack[2];
2379 blk_mq_req_flags_t flags = 0;
2380 struct request_queue *q = bio->bi_disk->queue;
2381 blk_qc_t ret = BLK_QC_T_NONE;
2382
2383 if (bio->bi_opf & REQ_NOWAIT)
2384 flags = BLK_MQ_REQ_NOWAIT;
2385 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2386 blk_queue_enter_live(q);
2387 else if (blk_queue_enter(q, flags) < 0) {
2388 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2389 bio_wouldblock_error(bio);
2390 else
2391 bio_io_error(bio);
2392 return ret;
2393 }
2394
2395 if (!generic_make_request_checks(bio))
2396 goto out;
2397
2398 /*
2399 * We only want one ->make_request_fn to be active at a time, else
2400 * stack usage with stacked devices could be a problem. So use
2401 * current->bio_list to keep a list of requests submited by a
2402 * make_request_fn function. current->bio_list is also used as a
2403 * flag to say if generic_make_request is currently active in this
2404 * task or not. If it is NULL, then no make_request is active. If
2405 * it is non-NULL, then a make_request is active, and new requests
2406 * should be added at the tail
2407 */
2408 if (current->bio_list) {
2409 bio_list_add(&current->bio_list[0], bio);
2410 goto out;
2411 }
2412
2413 /* following loop may be a bit non-obvious, and so deserves some
2414 * explanation.
2415 * Before entering the loop, bio->bi_next is NULL (as all callers
2416 * ensure that) so we have a list with a single bio.
2417 * We pretend that we have just taken it off a longer list, so
2418 * we assign bio_list to a pointer to the bio_list_on_stack,
2419 * thus initialising the bio_list of new bios to be
2420 * added. ->make_request() may indeed add some more bios
2421 * through a recursive call to generic_make_request. If it
2422 * did, we find a non-NULL value in bio_list and re-enter the loop
2423 * from the top. In this case we really did just take the bio
2424 * of the top of the list (no pretending) and so remove it from
2425 * bio_list, and call into ->make_request() again.
2426 */
2427 BUG_ON(bio->bi_next);
2428 bio_list_init(&bio_list_on_stack[0]);
2429 current->bio_list = bio_list_on_stack;
2430 do {
2431 bool enter_succeeded = true;
2432
2433 if (unlikely(q != bio->bi_disk->queue)) {
2434 if (q)
2435 blk_queue_exit(q);
2436 q = bio->bi_disk->queue;
2437 flags = 0;
2438 if (bio->bi_opf & REQ_NOWAIT)
2439 flags = BLK_MQ_REQ_NOWAIT;
2440 if (blk_queue_enter(q, flags) < 0) {
2441 enter_succeeded = false;
2442 q = NULL;
2443 }
2444 }
2445
2446 if (enter_succeeded) {
2447 struct bio_list lower, same;
2448
2449 /* Create a fresh bio_list for all subordinate requests */
2450 bio_list_on_stack[1] = bio_list_on_stack[0];
2451 bio_list_init(&bio_list_on_stack[0]);
2452 ret = q->make_request_fn(q, bio);
2453
2454 /* sort new bios into those for a lower level
2455 * and those for the same level
2456 */
2457 bio_list_init(&lower);
2458 bio_list_init(&same);
2459 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2460 if (q == bio->bi_disk->queue)
2461 bio_list_add(&same, bio);
2462 else
2463 bio_list_add(&lower, bio);
2464 /* now assemble so we handle the lowest level first */
2465 bio_list_merge(&bio_list_on_stack[0], &lower);
2466 bio_list_merge(&bio_list_on_stack[0], &same);
2467 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2468 } else {
2469 if (unlikely(!blk_queue_dying(q) &&
2470 (bio->bi_opf & REQ_NOWAIT)))
2471 bio_wouldblock_error(bio);
2472 else
2473 bio_io_error(bio);
2474 }
2475 bio = bio_list_pop(&bio_list_on_stack[0]);
2476 } while (bio);
2477 current->bio_list = NULL; /* deactivate */
2478
2479 out:
2480 if (q)
2481 blk_queue_exit(q);
2482 return ret;
2483 }
2484 EXPORT_SYMBOL(generic_make_request);
2485
2486 /**
2487 * direct_make_request - hand a buffer directly to its device driver for I/O
2488 * @bio: The bio describing the location in memory and on the device.
2489 *
2490 * This function behaves like generic_make_request(), but does not protect
2491 * against recursion. Must only be used if the called driver is known
2492 * to not call generic_make_request (or direct_make_request) again from
2493 * its make_request function. (Calling direct_make_request again from
2494 * a workqueue is perfectly fine as that doesn't recurse).
2495 */
2496 blk_qc_t direct_make_request(struct bio *bio)
2497 {
2498 struct request_queue *q = bio->bi_disk->queue;
2499 bool nowait = bio->bi_opf & REQ_NOWAIT;
2500 blk_qc_t ret;
2501
2502 if (!generic_make_request_checks(bio))
2503 return BLK_QC_T_NONE;
2504
2505 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2506 if (nowait && !blk_queue_dying(q))
2507 bio->bi_status = BLK_STS_AGAIN;
2508 else
2509 bio->bi_status = BLK_STS_IOERR;
2510 bio_endio(bio);
2511 return BLK_QC_T_NONE;
2512 }
2513
2514 ret = q->make_request_fn(q, bio);
2515 blk_queue_exit(q);
2516 return ret;
2517 }
2518 EXPORT_SYMBOL_GPL(direct_make_request);
2519
2520 /**
2521 * submit_bio - submit a bio to the block device layer for I/O
2522 * @bio: The &struct bio which describes the I/O
2523 *
2524 * submit_bio() is very similar in purpose to generic_make_request(), and
2525 * uses that function to do most of the work. Both are fairly rough
2526 * interfaces; @bio must be presetup and ready for I/O.
2527 *
2528 */
2529 blk_qc_t submit_bio(struct bio *bio)
2530 {
2531 /*
2532 * If it's a regular read/write or a barrier with data attached,
2533 * go through the normal accounting stuff before submission.
2534 */
2535 if (bio_has_data(bio)) {
2536 unsigned int count;
2537
2538 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2539 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2540 else
2541 count = bio_sectors(bio);
2542
2543 if (op_is_write(bio_op(bio))) {
2544 count_vm_events(PGPGOUT, count);
2545 } else {
2546 task_io_account_read(bio->bi_iter.bi_size);
2547 count_vm_events(PGPGIN, count);
2548 }
2549
2550 if (unlikely(block_dump)) {
2551 char b[BDEVNAME_SIZE];
2552 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2553 current->comm, task_pid_nr(current),
2554 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2555 (unsigned long long)bio->bi_iter.bi_sector,
2556 bio_devname(bio, b), count);
2557 }
2558 }
2559
2560 return generic_make_request(bio);
2561 }
2562 EXPORT_SYMBOL(submit_bio);
2563
2564 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2565 {
2566 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2567 return false;
2568
2569 if (current->plug)
2570 blk_flush_plug_list(current->plug, false);
2571 return q->poll_fn(q, cookie);
2572 }
2573 EXPORT_SYMBOL_GPL(blk_poll);
2574
2575 /**
2576 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2577 * for new the queue limits
2578 * @q: the queue
2579 * @rq: the request being checked
2580 *
2581 * Description:
2582 * @rq may have been made based on weaker limitations of upper-level queues
2583 * in request stacking drivers, and it may violate the limitation of @q.
2584 * Since the block layer and the underlying device driver trust @rq
2585 * after it is inserted to @q, it should be checked against @q before
2586 * the insertion using this generic function.
2587 *
2588 * Request stacking drivers like request-based dm may change the queue
2589 * limits when retrying requests on other queues. Those requests need
2590 * to be checked against the new queue limits again during dispatch.
2591 */
2592 static int blk_cloned_rq_check_limits(struct request_queue *q,
2593 struct request *rq)
2594 {
2595 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2596 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2597 return -EIO;
2598 }
2599
2600 /*
2601 * queue's settings related to segment counting like q->bounce_pfn
2602 * may differ from that of other stacking queues.
2603 * Recalculate it to check the request correctly on this queue's
2604 * limitation.
2605 */
2606 blk_recalc_rq_segments(rq);
2607 if (rq->nr_phys_segments > queue_max_segments(q)) {
2608 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2609 return -EIO;
2610 }
2611
2612 return 0;
2613 }
2614
2615 /**
2616 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2617 * @q: the queue to submit the request
2618 * @rq: the request being queued
2619 */
2620 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2621 {
2622 unsigned long flags;
2623 int where = ELEVATOR_INSERT_BACK;
2624
2625 if (blk_cloned_rq_check_limits(q, rq))
2626 return BLK_STS_IOERR;
2627
2628 if (rq->rq_disk &&
2629 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2630 return BLK_STS_IOERR;
2631
2632 if (q->mq_ops) {
2633 if (blk_queue_io_stat(q))
2634 blk_account_io_start(rq, true);
2635 /*
2636 * Since we have a scheduler attached on the top device,
2637 * bypass a potential scheduler on the bottom device for
2638 * insert.
2639 */
2640 return blk_mq_request_issue_directly(rq);
2641 }
2642
2643 spin_lock_irqsave(q->queue_lock, flags);
2644 if (unlikely(blk_queue_dying(q))) {
2645 spin_unlock_irqrestore(q->queue_lock, flags);
2646 return BLK_STS_IOERR;
2647 }
2648
2649 /*
2650 * Submitting request must be dequeued before calling this function
2651 * because it will be linked to another request_queue
2652 */
2653 BUG_ON(blk_queued_rq(rq));
2654
2655 if (op_is_flush(rq->cmd_flags))
2656 where = ELEVATOR_INSERT_FLUSH;
2657
2658 add_acct_request(q, rq, where);
2659 if (where == ELEVATOR_INSERT_FLUSH)
2660 __blk_run_queue(q);
2661 spin_unlock_irqrestore(q->queue_lock, flags);
2662
2663 return BLK_STS_OK;
2664 }
2665 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2666
2667 /**
2668 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2669 * @rq: request to examine
2670 *
2671 * Description:
2672 * A request could be merge of IOs which require different failure
2673 * handling. This function determines the number of bytes which
2674 * can be failed from the beginning of the request without
2675 * crossing into area which need to be retried further.
2676 *
2677 * Return:
2678 * The number of bytes to fail.
2679 */
2680 unsigned int blk_rq_err_bytes(const struct request *rq)
2681 {
2682 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2683 unsigned int bytes = 0;
2684 struct bio *bio;
2685
2686 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2687 return blk_rq_bytes(rq);
2688
2689 /*
2690 * Currently the only 'mixing' which can happen is between
2691 * different fastfail types. We can safely fail portions
2692 * which have all the failfast bits that the first one has -
2693 * the ones which are at least as eager to fail as the first
2694 * one.
2695 */
2696 for (bio = rq->bio; bio; bio = bio->bi_next) {
2697 if ((bio->bi_opf & ff) != ff)
2698 break;
2699 bytes += bio->bi_iter.bi_size;
2700 }
2701
2702 /* this could lead to infinite loop */
2703 BUG_ON(blk_rq_bytes(rq) && !bytes);
2704 return bytes;
2705 }
2706 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2707
2708 void blk_account_io_completion(struct request *req, unsigned int bytes)
2709 {
2710 if (blk_do_io_stat(req)) {
2711 const int sgrp = op_stat_group(req_op(req));
2712 struct hd_struct *part;
2713 int cpu;
2714
2715 cpu = part_stat_lock();
2716 part = req->part;
2717 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2718 part_stat_unlock();
2719 }
2720 }
2721
2722 void blk_account_io_done(struct request *req, u64 now)
2723 {
2724 /*
2725 * Account IO completion. flush_rq isn't accounted as a
2726 * normal IO on queueing nor completion. Accounting the
2727 * containing request is enough.
2728 */
2729 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2730 const int sgrp = op_stat_group(req_op(req));
2731 struct hd_struct *part;
2732 int cpu;
2733
2734 cpu = part_stat_lock();
2735 part = req->part;
2736
2737 part_stat_inc(cpu, part, ios[sgrp]);
2738 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
2739 part_round_stats(req->q, cpu, part);
2740 part_dec_in_flight(req->q, part, rq_data_dir(req));
2741
2742 hd_struct_put(part);
2743 part_stat_unlock();
2744 }
2745 }
2746
2747 void blk_account_io_start(struct request *rq, bool new_io)
2748 {
2749 struct hd_struct *part;
2750 int rw = rq_data_dir(rq);
2751 int cpu;
2752
2753 if (!blk_do_io_stat(rq))
2754 return;
2755
2756 cpu = part_stat_lock();
2757
2758 if (!new_io) {
2759 part = rq->part;
2760 part_stat_inc(cpu, part, merges[rw]);
2761 } else {
2762 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2763 if (!hd_struct_try_get(part)) {
2764 /*
2765 * The partition is already being removed,
2766 * the request will be accounted on the disk only
2767 *
2768 * We take a reference on disk->part0 although that
2769 * partition will never be deleted, so we can treat
2770 * it as any other partition.
2771 */
2772 part = &rq->rq_disk->part0;
2773 hd_struct_get(part);
2774 }
2775 part_round_stats(rq->q, cpu, part);
2776 part_inc_in_flight(rq->q, part, rw);
2777 rq->part = part;
2778 }
2779
2780 part_stat_unlock();
2781 }
2782
2783 static struct request *elv_next_request(struct request_queue *q)
2784 {
2785 struct request *rq;
2786 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2787
2788 WARN_ON_ONCE(q->mq_ops);
2789
2790 while (1) {
2791 list_for_each_entry(rq, &q->queue_head, queuelist) {
2792 #ifdef CONFIG_PM
2793 /*
2794 * If a request gets queued in state RPM_SUSPENDED
2795 * then that's a kernel bug.
2796 */
2797 WARN_ON_ONCE(q->rpm_status == RPM_SUSPENDED);
2798 #endif
2799 return rq;
2800 }
2801
2802 /*
2803 * Flush request is running and flush request isn't queueable
2804 * in the drive, we can hold the queue till flush request is
2805 * finished. Even we don't do this, driver can't dispatch next
2806 * requests and will requeue them. And this can improve
2807 * throughput too. For example, we have request flush1, write1,
2808 * flush 2. flush1 is dispatched, then queue is hold, write1
2809 * isn't inserted to queue. After flush1 is finished, flush2
2810 * will be dispatched. Since disk cache is already clean,
2811 * flush2 will be finished very soon, so looks like flush2 is
2812 * folded to flush1.
2813 * Since the queue is hold, a flag is set to indicate the queue
2814 * should be restarted later. Please see flush_end_io() for
2815 * details.
2816 */
2817 if (fq->flush_pending_idx != fq->flush_running_idx &&
2818 !queue_flush_queueable(q)) {
2819 fq->flush_queue_delayed = 1;
2820 return NULL;
2821 }
2822 if (unlikely(blk_queue_bypass(q)) ||
2823 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2824 return NULL;
2825 }
2826 }
2827
2828 /**
2829 * blk_peek_request - peek at the top of a request queue
2830 * @q: request queue to peek at
2831 *
2832 * Description:
2833 * Return the request at the top of @q. The returned request
2834 * should be started using blk_start_request() before LLD starts
2835 * processing it.
2836 *
2837 * Return:
2838 * Pointer to the request at the top of @q if available. Null
2839 * otherwise.
2840 */
2841 struct request *blk_peek_request(struct request_queue *q)
2842 {
2843 struct request *rq;
2844 int ret;
2845
2846 lockdep_assert_held(q->queue_lock);
2847 WARN_ON_ONCE(q->mq_ops);
2848
2849 while ((rq = elv_next_request(q)) != NULL) {
2850 if (!(rq->rq_flags & RQF_STARTED)) {
2851 /*
2852 * This is the first time the device driver
2853 * sees this request (possibly after
2854 * requeueing). Notify IO scheduler.
2855 */
2856 if (rq->rq_flags & RQF_SORTED)
2857 elv_activate_rq(q, rq);
2858
2859 /*
2860 * just mark as started even if we don't start
2861 * it, a request that has been delayed should
2862 * not be passed by new incoming requests
2863 */
2864 rq->rq_flags |= RQF_STARTED;
2865 trace_block_rq_issue(q, rq);
2866 }
2867
2868 if (!q->boundary_rq || q->boundary_rq == rq) {
2869 q->end_sector = rq_end_sector(rq);
2870 q->boundary_rq = NULL;
2871 }
2872
2873 if (rq->rq_flags & RQF_DONTPREP)
2874 break;
2875
2876 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2877 /*
2878 * make sure space for the drain appears we
2879 * know we can do this because max_hw_segments
2880 * has been adjusted to be one fewer than the
2881 * device can handle
2882 */
2883 rq->nr_phys_segments++;
2884 }
2885
2886 if (!q->prep_rq_fn)
2887 break;
2888
2889 ret = q->prep_rq_fn(q, rq);
2890 if (ret == BLKPREP_OK) {
2891 break;
2892 } else if (ret == BLKPREP_DEFER) {
2893 /*
2894 * the request may have been (partially) prepped.
2895 * we need to keep this request in the front to
2896 * avoid resource deadlock. RQF_STARTED will
2897 * prevent other fs requests from passing this one.
2898 */
2899 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2900 !(rq->rq_flags & RQF_DONTPREP)) {
2901 /*
2902 * remove the space for the drain we added
2903 * so that we don't add it again
2904 */
2905 --rq->nr_phys_segments;
2906 }
2907
2908 rq = NULL;
2909 break;
2910 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2911 rq->rq_flags |= RQF_QUIET;
2912 /*
2913 * Mark this request as started so we don't trigger
2914 * any debug logic in the end I/O path.
2915 */
2916 blk_start_request(rq);
2917 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2918 BLK_STS_TARGET : BLK_STS_IOERR);
2919 } else {
2920 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2921 break;
2922 }
2923 }
2924
2925 return rq;
2926 }
2927 EXPORT_SYMBOL(blk_peek_request);
2928
2929 static void blk_dequeue_request(struct request *rq)
2930 {
2931 struct request_queue *q = rq->q;
2932
2933 BUG_ON(list_empty(&rq->queuelist));
2934 BUG_ON(ELV_ON_HASH(rq));
2935
2936 list_del_init(&rq->queuelist);
2937
2938 /*
2939 * the time frame between a request being removed from the lists
2940 * and to it is freed is accounted as io that is in progress at
2941 * the driver side.
2942 */
2943 if (blk_account_rq(rq))
2944 q->in_flight[rq_is_sync(rq)]++;
2945 }
2946
2947 /**
2948 * blk_start_request - start request processing on the driver
2949 * @req: request to dequeue
2950 *
2951 * Description:
2952 * Dequeue @req and start timeout timer on it. This hands off the
2953 * request to the driver.
2954 */
2955 void blk_start_request(struct request *req)
2956 {
2957 lockdep_assert_held(req->q->queue_lock);
2958 WARN_ON_ONCE(req->q->mq_ops);
2959
2960 blk_dequeue_request(req);
2961
2962 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2963 req->io_start_time_ns = ktime_get_ns();
2964 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2965 req->throtl_size = blk_rq_sectors(req);
2966 #endif
2967 req->rq_flags |= RQF_STATS;
2968 rq_qos_issue(req->q, req);
2969 }
2970
2971 BUG_ON(blk_rq_is_complete(req));
2972 blk_add_timer(req);
2973 }
2974 EXPORT_SYMBOL(blk_start_request);
2975
2976 /**
2977 * blk_fetch_request - fetch a request from a request queue
2978 * @q: request queue to fetch a request from
2979 *
2980 * Description:
2981 * Return the request at the top of @q. The request is started on
2982 * return and LLD can start processing it immediately.
2983 *
2984 * Return:
2985 * Pointer to the request at the top of @q if available. Null
2986 * otherwise.
2987 */
2988 struct request *blk_fetch_request(struct request_queue *q)
2989 {
2990 struct request *rq;
2991
2992 lockdep_assert_held(q->queue_lock);
2993 WARN_ON_ONCE(q->mq_ops);
2994
2995 rq = blk_peek_request(q);
2996 if (rq)
2997 blk_start_request(rq);
2998 return rq;
2999 }
3000 EXPORT_SYMBOL(blk_fetch_request);
3001
3002 /*
3003 * Steal bios from a request and add them to a bio list.
3004 * The request must not have been partially completed before.
3005 */
3006 void blk_steal_bios(struct bio_list *list, struct request *rq)
3007 {
3008 if (rq->bio) {
3009 if (list->tail)
3010 list->tail->bi_next = rq->bio;
3011 else
3012 list->head = rq->bio;
3013 list->tail = rq->biotail;
3014
3015 rq->bio = NULL;
3016 rq->biotail = NULL;
3017 }
3018
3019 rq->__data_len = 0;
3020 }
3021 EXPORT_SYMBOL_GPL(blk_steal_bios);
3022
3023 /**
3024 * blk_update_request - Special helper function for request stacking drivers
3025 * @req: the request being processed
3026 * @error: block status code
3027 * @nr_bytes: number of bytes to complete @req
3028 *
3029 * Description:
3030 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3031 * the request structure even if @req doesn't have leftover.
3032 * If @req has leftover, sets it up for the next range of segments.
3033 *
3034 * This special helper function is only for request stacking drivers
3035 * (e.g. request-based dm) so that they can handle partial completion.
3036 * Actual device drivers should use blk_end_request instead.
3037 *
3038 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3039 * %false return from this function.
3040 *
3041 * Note:
3042 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3043 * blk_rq_bytes() and in blk_update_request().
3044 *
3045 * Return:
3046 * %false - this request doesn't have any more data
3047 * %true - this request has more data
3048 **/
3049 bool blk_update_request(struct request *req, blk_status_t error,
3050 unsigned int nr_bytes)
3051 {
3052 int total_bytes;
3053
3054 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3055
3056 if (!req->bio)
3057 return false;
3058
3059 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3060 !(req->rq_flags & RQF_QUIET)))
3061 print_req_error(req, error);
3062
3063 blk_account_io_completion(req, nr_bytes);
3064
3065 total_bytes = 0;
3066 while (req->bio) {
3067 struct bio *bio = req->bio;
3068 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3069
3070 if (bio_bytes == bio->bi_iter.bi_size)
3071 req->bio = bio->bi_next;
3072
3073 /* Completion has already been traced */
3074 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3075 req_bio_endio(req, bio, bio_bytes, error);
3076
3077 total_bytes += bio_bytes;
3078 nr_bytes -= bio_bytes;
3079
3080 if (!nr_bytes)
3081 break;
3082 }
3083
3084 /*
3085 * completely done
3086 */
3087 if (!req->bio) {
3088 /*
3089 * Reset counters so that the request stacking driver
3090 * can find how many bytes remain in the request
3091 * later.
3092 */
3093 req->__data_len = 0;
3094 return false;
3095 }
3096
3097 req->__data_len -= total_bytes;
3098
3099 /* update sector only for requests with clear definition of sector */
3100 if (!blk_rq_is_passthrough(req))
3101 req->__sector += total_bytes >> 9;
3102
3103 /* mixed attributes always follow the first bio */
3104 if (req->rq_flags & RQF_MIXED_MERGE) {
3105 req->cmd_flags &= ~REQ_FAILFAST_MASK;
3106 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3107 }
3108
3109 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3110 /*
3111 * If total number of sectors is less than the first segment
3112 * size, something has gone terribly wrong.
3113 */
3114 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3115 blk_dump_rq_flags(req, "request botched");
3116 req->__data_len = blk_rq_cur_bytes(req);
3117 }
3118
3119 /* recalculate the number of segments */
3120 blk_recalc_rq_segments(req);
3121 }
3122
3123 return true;
3124 }
3125 EXPORT_SYMBOL_GPL(blk_update_request);
3126
3127 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3128 unsigned int nr_bytes,
3129 unsigned int bidi_bytes)
3130 {
3131 if (blk_update_request(rq, error, nr_bytes))
3132 return true;
3133
3134 /* Bidi request must be completed as a whole */
3135 if (unlikely(blk_bidi_rq(rq)) &&
3136 blk_update_request(rq->next_rq, error, bidi_bytes))
3137 return true;
3138
3139 if (blk_queue_add_random(rq->q))
3140 add_disk_randomness(rq->rq_disk);
3141
3142 return false;
3143 }
3144
3145 /**
3146 * blk_unprep_request - unprepare a request
3147 * @req: the request
3148 *
3149 * This function makes a request ready for complete resubmission (or
3150 * completion). It happens only after all error handling is complete,
3151 * so represents the appropriate moment to deallocate any resources
3152 * that were allocated to the request in the prep_rq_fn. The queue
3153 * lock is held when calling this.
3154 */
3155 void blk_unprep_request(struct request *req)
3156 {
3157 struct request_queue *q = req->q;
3158
3159 req->rq_flags &= ~RQF_DONTPREP;
3160 if (q->unprep_rq_fn)
3161 q->unprep_rq_fn(q, req);
3162 }
3163 EXPORT_SYMBOL_GPL(blk_unprep_request);
3164
3165 void blk_finish_request(struct request *req, blk_status_t error)
3166 {
3167 struct request_queue *q = req->q;
3168 u64 now = ktime_get_ns();
3169
3170 lockdep_assert_held(req->q->queue_lock);
3171 WARN_ON_ONCE(q->mq_ops);
3172
3173 if (req->rq_flags & RQF_STATS)
3174 blk_stat_add(req, now);
3175
3176 if (req->rq_flags & RQF_QUEUED)
3177 blk_queue_end_tag(q, req);
3178
3179 BUG_ON(blk_queued_rq(req));
3180
3181 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3182 laptop_io_completion(req->q->backing_dev_info);
3183
3184 blk_delete_timer(req);
3185
3186 if (req->rq_flags & RQF_DONTPREP)
3187 blk_unprep_request(req);
3188
3189 blk_account_io_done(req, now);
3190
3191 if (req->end_io) {
3192 rq_qos_done(q, req);
3193 req->end_io(req, error);
3194 } else {
3195 if (blk_bidi_rq(req))
3196 __blk_put_request(req->next_rq->q, req->next_rq);
3197
3198 __blk_put_request(q, req);
3199 }
3200 }
3201 EXPORT_SYMBOL(blk_finish_request);
3202
3203 /**
3204 * blk_end_bidi_request - Complete a bidi request
3205 * @rq: the request to complete
3206 * @error: block status code
3207 * @nr_bytes: number of bytes to complete @rq
3208 * @bidi_bytes: number of bytes to complete @rq->next_rq
3209 *
3210 * Description:
3211 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3212 * Drivers that supports bidi can safely call this member for any
3213 * type of request, bidi or uni. In the later case @bidi_bytes is
3214 * just ignored.
3215 *
3216 * Return:
3217 * %false - we are done with this request
3218 * %true - still buffers pending for this request
3219 **/
3220 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3221 unsigned int nr_bytes, unsigned int bidi_bytes)
3222 {
3223 struct request_queue *q = rq->q;
3224 unsigned long flags;
3225
3226 WARN_ON_ONCE(q->mq_ops);
3227
3228 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3229 return true;
3230
3231 spin_lock_irqsave(q->queue_lock, flags);
3232 blk_finish_request(rq, error);
3233 spin_unlock_irqrestore(q->queue_lock, flags);
3234
3235 return false;
3236 }
3237
3238 /**
3239 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3240 * @rq: the request to complete
3241 * @error: block status code
3242 * @nr_bytes: number of bytes to complete @rq
3243 * @bidi_bytes: number of bytes to complete @rq->next_rq
3244 *
3245 * Description:
3246 * Identical to blk_end_bidi_request() except that queue lock is
3247 * assumed to be locked on entry and remains so on return.
3248 *
3249 * Return:
3250 * %false - we are done with this request
3251 * %true - still buffers pending for this request
3252 **/
3253 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3254 unsigned int nr_bytes, unsigned int bidi_bytes)
3255 {
3256 lockdep_assert_held(rq->q->queue_lock);
3257 WARN_ON_ONCE(rq->q->mq_ops);
3258
3259 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3260 return true;
3261
3262 blk_finish_request(rq, error);
3263
3264 return false;
3265 }
3266
3267 /**
3268 * blk_end_request - Helper function for drivers to complete the request.
3269 * @rq: the request being processed
3270 * @error: block status code
3271 * @nr_bytes: number of bytes to complete
3272 *
3273 * Description:
3274 * Ends I/O on a number of bytes attached to @rq.
3275 * If @rq has leftover, sets it up for the next range of segments.
3276 *
3277 * Return:
3278 * %false - we are done with this request
3279 * %true - still buffers pending for this request
3280 **/
3281 bool blk_end_request(struct request *rq, blk_status_t error,
3282 unsigned int nr_bytes)
3283 {
3284 WARN_ON_ONCE(rq->q->mq_ops);
3285 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3286 }
3287 EXPORT_SYMBOL(blk_end_request);
3288
3289 /**
3290 * blk_end_request_all - Helper function for drives to finish the request.
3291 * @rq: the request to finish
3292 * @error: block status code
3293 *
3294 * Description:
3295 * Completely finish @rq.
3296 */
3297 void blk_end_request_all(struct request *rq, blk_status_t error)
3298 {
3299 bool pending;
3300 unsigned int bidi_bytes = 0;
3301
3302 if (unlikely(blk_bidi_rq(rq)))
3303 bidi_bytes = blk_rq_bytes(rq->next_rq);
3304
3305 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3306 BUG_ON(pending);
3307 }
3308 EXPORT_SYMBOL(blk_end_request_all);
3309
3310 /**
3311 * __blk_end_request - Helper function for drivers to complete the request.
3312 * @rq: the request being processed
3313 * @error: block status code
3314 * @nr_bytes: number of bytes to complete
3315 *
3316 * Description:
3317 * Must be called with queue lock held unlike blk_end_request().
3318 *
3319 * Return:
3320 * %false - we are done with this request
3321 * %true - still buffers pending for this request
3322 **/
3323 bool __blk_end_request(struct request *rq, blk_status_t error,
3324 unsigned int nr_bytes)
3325 {
3326 lockdep_assert_held(rq->q->queue_lock);
3327 WARN_ON_ONCE(rq->q->mq_ops);
3328
3329 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3330 }
3331 EXPORT_SYMBOL(__blk_end_request);
3332
3333 /**
3334 * __blk_end_request_all - Helper function for drives to finish the request.
3335 * @rq: the request to finish
3336 * @error: block status code
3337 *
3338 * Description:
3339 * Completely finish @rq. Must be called with queue lock held.
3340 */
3341 void __blk_end_request_all(struct request *rq, blk_status_t error)
3342 {
3343 bool pending;
3344 unsigned int bidi_bytes = 0;
3345
3346 lockdep_assert_held(rq->q->queue_lock);
3347 WARN_ON_ONCE(rq->q->mq_ops);
3348
3349 if (unlikely(blk_bidi_rq(rq)))
3350 bidi_bytes = blk_rq_bytes(rq->next_rq);
3351
3352 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3353 BUG_ON(pending);
3354 }
3355 EXPORT_SYMBOL(__blk_end_request_all);
3356
3357 /**
3358 * __blk_end_request_cur - Helper function to finish the current request chunk.
3359 * @rq: the request to finish the current chunk for
3360 * @error: block status code
3361 *
3362 * Description:
3363 * Complete the current consecutively mapped chunk from @rq. Must
3364 * be called with queue lock held.
3365 *
3366 * Return:
3367 * %false - we are done with this request
3368 * %true - still buffers pending for this request
3369 */
3370 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3371 {
3372 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3373 }
3374 EXPORT_SYMBOL(__blk_end_request_cur);
3375
3376 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3377 struct bio *bio)
3378 {
3379 if (bio_has_data(bio))
3380 rq->nr_phys_segments = bio_phys_segments(q, bio);
3381 else if (bio_op(bio) == REQ_OP_DISCARD)
3382 rq->nr_phys_segments = 1;
3383
3384 rq->__data_len = bio->bi_iter.bi_size;
3385 rq->bio = rq->biotail = bio;
3386
3387 if (bio->bi_disk)
3388 rq->rq_disk = bio->bi_disk;
3389 }
3390
3391 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3392 /**
3393 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3394 * @rq: the request to be flushed
3395 *
3396 * Description:
3397 * Flush all pages in @rq.
3398 */
3399 void rq_flush_dcache_pages(struct request *rq)
3400 {
3401 struct req_iterator iter;
3402 struct bio_vec bvec;
3403
3404 rq_for_each_segment(bvec, rq, iter)
3405 flush_dcache_page(bvec.bv_page);
3406 }
3407 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3408 #endif
3409
3410 /**
3411 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3412 * @q : the queue of the device being checked
3413 *
3414 * Description:
3415 * Check if underlying low-level drivers of a device are busy.
3416 * If the drivers want to export their busy state, they must set own
3417 * exporting function using blk_queue_lld_busy() first.
3418 *
3419 * Basically, this function is used only by request stacking drivers
3420 * to stop dispatching requests to underlying devices when underlying
3421 * devices are busy. This behavior helps more I/O merging on the queue
3422 * of the request stacking driver and prevents I/O throughput regression
3423 * on burst I/O load.
3424 *
3425 * Return:
3426 * 0 - Not busy (The request stacking driver should dispatch request)
3427 * 1 - Busy (The request stacking driver should stop dispatching request)
3428 */
3429 int blk_lld_busy(struct request_queue *q)
3430 {
3431 if (q->lld_busy_fn)
3432 return q->lld_busy_fn(q);
3433
3434 return 0;
3435 }
3436 EXPORT_SYMBOL_GPL(blk_lld_busy);
3437
3438 /**
3439 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3440 * @rq: the clone request to be cleaned up
3441 *
3442 * Description:
3443 * Free all bios in @rq for a cloned request.
3444 */
3445 void blk_rq_unprep_clone(struct request *rq)
3446 {
3447 struct bio *bio;
3448
3449 while ((bio = rq->bio) != NULL) {
3450 rq->bio = bio->bi_next;
3451
3452 bio_put(bio);
3453 }
3454 }
3455 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3456
3457 /*
3458 * Copy attributes of the original request to the clone request.
3459 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3460 */
3461 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3462 {
3463 dst->cpu = src->cpu;
3464 dst->__sector = blk_rq_pos(src);
3465 dst->__data_len = blk_rq_bytes(src);
3466 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3467 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3468 dst->special_vec = src->special_vec;
3469 }
3470 dst->nr_phys_segments = src->nr_phys_segments;
3471 dst->ioprio = src->ioprio;
3472 dst->extra_len = src->extra_len;
3473 }
3474
3475 /**
3476 * blk_rq_prep_clone - Helper function to setup clone request
3477 * @rq: the request to be setup
3478 * @rq_src: original request to be cloned
3479 * @bs: bio_set that bios for clone are allocated from
3480 * @gfp_mask: memory allocation mask for bio
3481 * @bio_ctr: setup function to be called for each clone bio.
3482 * Returns %0 for success, non %0 for failure.
3483 * @data: private data to be passed to @bio_ctr
3484 *
3485 * Description:
3486 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3487 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3488 * are not copied, and copying such parts is the caller's responsibility.
3489 * Also, pages which the original bios are pointing to are not copied
3490 * and the cloned bios just point same pages.
3491 * So cloned bios must be completed before original bios, which means
3492 * the caller must complete @rq before @rq_src.
3493 */
3494 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3495 struct bio_set *bs, gfp_t gfp_mask,
3496 int (*bio_ctr)(struct bio *, struct bio *, void *),
3497 void *data)
3498 {
3499 struct bio *bio, *bio_src;
3500
3501 if (!bs)
3502 bs = &fs_bio_set;
3503
3504 __rq_for_each_bio(bio_src, rq_src) {
3505 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3506 if (!bio)
3507 goto free_and_out;
3508
3509 if (bio_ctr && bio_ctr(bio, bio_src, data))
3510 goto free_and_out;
3511
3512 if (rq->bio) {
3513 rq->biotail->bi_next = bio;
3514 rq->biotail = bio;
3515 } else
3516 rq->bio = rq->biotail = bio;
3517 }
3518
3519 __blk_rq_prep_clone(rq, rq_src);
3520
3521 return 0;
3522
3523 free_and_out:
3524 if (bio)
3525 bio_put(bio);
3526 blk_rq_unprep_clone(rq);
3527
3528 return -ENOMEM;
3529 }
3530 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3531
3532 int kblockd_schedule_work(struct work_struct *work)
3533 {
3534 return queue_work(kblockd_workqueue, work);
3535 }
3536 EXPORT_SYMBOL(kblockd_schedule_work);
3537
3538 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3539 {
3540 return queue_work_on(cpu, kblockd_workqueue, work);
3541 }
3542 EXPORT_SYMBOL(kblockd_schedule_work_on);
3543
3544 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3545 unsigned long delay)
3546 {
3547 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3548 }
3549 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3550
3551 /**
3552 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3553 * @plug: The &struct blk_plug that needs to be initialized
3554 *
3555 * Description:
3556 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3557 * pending I/O should the task end up blocking between blk_start_plug() and
3558 * blk_finish_plug(). This is important from a performance perspective, but
3559 * also ensures that we don't deadlock. For instance, if the task is blocking
3560 * for a memory allocation, memory reclaim could end up wanting to free a
3561 * page belonging to that request that is currently residing in our private
3562 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3563 * this kind of deadlock.
3564 */
3565 void blk_start_plug(struct blk_plug *plug)
3566 {
3567 struct task_struct *tsk = current;
3568
3569 /*
3570 * If this is a nested plug, don't actually assign it.
3571 */
3572 if (tsk->plug)
3573 return;
3574
3575 INIT_LIST_HEAD(&plug->list);
3576 INIT_LIST_HEAD(&plug->mq_list);
3577 INIT_LIST_HEAD(&plug->cb_list);
3578 /*
3579 * Store ordering should not be needed here, since a potential
3580 * preempt will imply a full memory barrier
3581 */
3582 tsk->plug = plug;
3583 }
3584 EXPORT_SYMBOL(blk_start_plug);
3585
3586 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3587 {
3588 struct request *rqa = container_of(a, struct request, queuelist);
3589 struct request *rqb = container_of(b, struct request, queuelist);
3590
3591 return !(rqa->q < rqb->q ||
3592 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3593 }
3594
3595 /*
3596 * If 'from_schedule' is true, then postpone the dispatch of requests
3597 * until a safe kblockd context. We due this to avoid accidental big
3598 * additional stack usage in driver dispatch, in places where the originally
3599 * plugger did not intend it.
3600 */
3601 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3602 bool from_schedule)
3603 __releases(q->queue_lock)
3604 {
3605 lockdep_assert_held(q->queue_lock);
3606
3607 trace_block_unplug(q, depth, !from_schedule);
3608
3609 if (from_schedule)
3610 blk_run_queue_async(q);
3611 else
3612 __blk_run_queue(q);
3613 spin_unlock_irq(q->queue_lock);
3614 }
3615
3616 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3617 {
3618 LIST_HEAD(callbacks);
3619
3620 while (!list_empty(&plug->cb_list)) {
3621 list_splice_init(&plug->cb_list, &callbacks);
3622
3623 while (!list_empty(&callbacks)) {
3624 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3625 struct blk_plug_cb,
3626 list);
3627 list_del(&cb->list);
3628 cb->callback(cb, from_schedule);
3629 }
3630 }
3631 }
3632
3633 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3634 int size)
3635 {
3636 struct blk_plug *plug = current->plug;
3637 struct blk_plug_cb *cb;
3638
3639 if (!plug)
3640 return NULL;
3641
3642 list_for_each_entry(cb, &plug->cb_list, list)
3643 if (cb->callback == unplug && cb->data == data)
3644 return cb;
3645
3646 /* Not currently on the callback list */
3647 BUG_ON(size < sizeof(*cb));
3648 cb = kzalloc(size, GFP_ATOMIC);
3649 if (cb) {
3650 cb->data = data;
3651 cb->callback = unplug;
3652 list_add(&cb->list, &plug->cb_list);
3653 }
3654 return cb;
3655 }
3656 EXPORT_SYMBOL(blk_check_plugged);
3657
3658 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3659 {
3660 struct request_queue *q;
3661 struct request *rq;
3662 LIST_HEAD(list);
3663 unsigned int depth;
3664
3665 flush_plug_callbacks(plug, from_schedule);
3666
3667 if (!list_empty(&plug->mq_list))
3668 blk_mq_flush_plug_list(plug, from_schedule);
3669
3670 if (list_empty(&plug->list))
3671 return;
3672
3673 list_splice_init(&plug->list, &list);
3674
3675 list_sort(NULL, &list, plug_rq_cmp);
3676
3677 q = NULL;
3678 depth = 0;
3679
3680 while (!list_empty(&list)) {
3681 rq = list_entry_rq(list.next);
3682 list_del_init(&rq->queuelist);
3683 BUG_ON(!rq->q);
3684 if (rq->q != q) {
3685 /*
3686 * This drops the queue lock
3687 */
3688 if (q)
3689 queue_unplugged(q, depth, from_schedule);
3690 q = rq->q;
3691 depth = 0;
3692 spin_lock_irq(q->queue_lock);
3693 }
3694
3695 /*
3696 * Short-circuit if @q is dead
3697 */
3698 if (unlikely(blk_queue_dying(q))) {
3699 __blk_end_request_all(rq, BLK_STS_IOERR);
3700 continue;
3701 }
3702
3703 /*
3704 * rq is already accounted, so use raw insert
3705 */
3706 if (op_is_flush(rq->cmd_flags))
3707 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3708 else
3709 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3710
3711 depth++;
3712 }
3713
3714 /*
3715 * This drops the queue lock
3716 */
3717 if (q)
3718 queue_unplugged(q, depth, from_schedule);
3719 }
3720
3721 void blk_finish_plug(struct blk_plug *plug)
3722 {
3723 if (plug != current->plug)
3724 return;
3725 blk_flush_plug_list(plug, false);
3726
3727 current->plug = NULL;
3728 }
3729 EXPORT_SYMBOL(blk_finish_plug);
3730
3731 int __init blk_dev_init(void)
3732 {
3733 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3734 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3735 FIELD_SIZEOF(struct request, cmd_flags));
3736 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3737 FIELD_SIZEOF(struct bio, bi_opf));
3738
3739 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3740 kblockd_workqueue = alloc_workqueue("kblockd",
3741 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3742 if (!kblockd_workqueue)
3743 panic("Failed to create kblockd\n");
3744
3745 request_cachep = kmem_cache_create("blkdev_requests",
3746 sizeof(struct request), 0, SLAB_PANIC, NULL);
3747
3748 blk_requestq_cachep = kmem_cache_create("request_queue",
3749 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3750
3751 #ifdef CONFIG_DEBUG_FS
3752 blk_debugfs_root = debugfs_create_dir("block", NULL);
3753 #endif
3754
3755 return 0;
3756 }