]> git.ipfire.org Git - people/arne_f/kernel.git/blob - block/blk-flush.c
Merge branch 'for-linus' of ../linux-2.6-block into block-for-2.6.39/core
[people/arne_f/kernel.git] / block / blk-flush.c
1 /*
2 * Functions to sequence FLUSH and FUA writes.
3 *
4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11 * properties and hardware capability.
12 *
13 * If a request doesn't have data, only REQ_FLUSH makes sense, which
14 * indicates a simple flush request. If there is data, REQ_FLUSH indicates
15 * that the device cache should be flushed before the data is executed, and
16 * REQ_FUA means that the data must be on non-volatile media on request
17 * completion.
18 *
19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any
20 * difference. The requests are either completed immediately if there's no
21 * data or executed as normal requests otherwise.
22 *
23 * If the device has writeback cache and supports FUA, REQ_FLUSH is
24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25 *
26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28 *
29 * The actual execution of flush is double buffered. Whenever a request
30 * needs to execute PRE or POSTFLUSH, it queues at
31 * q->flush_queue[q->flush_pending_idx]. Once certain criteria are met, a
32 * flush is issued and the pending_idx is toggled. When the flush
33 * completes, all the requests which were pending are proceeded to the next
34 * step. This allows arbitrary merging of different types of FLUSH/FUA
35 * requests.
36 *
37 * Currently, the following conditions are used to determine when to issue
38 * flush.
39 *
40 * C1. At any given time, only one flush shall be in progress. This makes
41 * double buffering sufficient.
42 *
43 * C2. Flush is deferred if any request is executing DATA of its sequence.
44 * This avoids issuing separate POSTFLUSHes for requests which shared
45 * PREFLUSH.
46 *
47 * C3. The second condition is ignored if there is a request which has
48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
49 * starvation in the unlikely case where there are continuous stream of
50 * FUA (without FLUSH) requests.
51 *
52 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53 * is beneficial.
54 *
55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
56 * Once while executing DATA and again after the whole sequence is
57 * complete. The first completion updates the contained bio but doesn't
58 * finish it so that the bio submitter is notified only after the whole
59 * sequence is complete. This is implemented by testing REQ_FLUSH_SEQ in
60 * req_bio_endio().
61 *
62 * The above peculiarity requires that each FLUSH/FUA request has only one
63 * bio attached to it, which is guaranteed as they aren't allowed to be
64 * merged in the usual way.
65 */
66
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72
73 #include "blk.h"
74
75 /* FLUSH/FUA sequences */
76 enum {
77 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
78 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
79 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
80 REQ_FSEQ_DONE = (1 << 3),
81
82 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
83 REQ_FSEQ_POSTFLUSH,
84
85 /*
86 * If flush has been pending longer than the following timeout,
87 * it's issued even if flush_data requests are still in flight.
88 */
89 FLUSH_PENDING_TIMEOUT = 5 * HZ,
90 };
91
92 static bool blk_kick_flush(struct request_queue *q);
93
94 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
95 {
96 unsigned int policy = 0;
97
98 if (fflags & REQ_FLUSH) {
99 if (rq->cmd_flags & REQ_FLUSH)
100 policy |= REQ_FSEQ_PREFLUSH;
101 if (blk_rq_sectors(rq))
102 policy |= REQ_FSEQ_DATA;
103 if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
104 policy |= REQ_FSEQ_POSTFLUSH;
105 }
106 return policy;
107 }
108
109 static unsigned int blk_flush_cur_seq(struct request *rq)
110 {
111 return 1 << ffz(rq->flush.seq);
112 }
113
114 static void blk_flush_restore_request(struct request *rq)
115 {
116 /*
117 * After flush data completion, @rq->bio is %NULL but we need to
118 * complete the bio again. @rq->biotail is guaranteed to equal the
119 * original @rq->bio. Restore it.
120 */
121 rq->bio = rq->biotail;
122
123 /* make @rq a normal request */
124 rq->cmd_flags &= ~REQ_FLUSH_SEQ;
125 rq->end_io = NULL;
126 }
127
128 /**
129 * blk_flush_complete_seq - complete flush sequence
130 * @rq: FLUSH/FUA request being sequenced
131 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
132 * @error: whether an error occurred
133 *
134 * @rq just completed @seq part of its flush sequence, record the
135 * completion and trigger the next step.
136 *
137 * CONTEXT:
138 * spin_lock_irq(q->queue_lock)
139 *
140 * RETURNS:
141 * %true if requests were added to the dispatch queue, %false otherwise.
142 */
143 static bool blk_flush_complete_seq(struct request *rq, unsigned int seq,
144 int error)
145 {
146 struct request_queue *q = rq->q;
147 struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
148 bool queued = false;
149
150 BUG_ON(rq->flush.seq & seq);
151 rq->flush.seq |= seq;
152
153 if (likely(!error))
154 seq = blk_flush_cur_seq(rq);
155 else
156 seq = REQ_FSEQ_DONE;
157
158 switch (seq) {
159 case REQ_FSEQ_PREFLUSH:
160 case REQ_FSEQ_POSTFLUSH:
161 /* queue for flush */
162 if (list_empty(pending))
163 q->flush_pending_since = jiffies;
164 list_move_tail(&rq->flush.list, pending);
165 break;
166
167 case REQ_FSEQ_DATA:
168 list_move_tail(&rq->flush.list, &q->flush_data_in_flight);
169 list_add(&rq->queuelist, &q->queue_head);
170 queued = true;
171 break;
172
173 case REQ_FSEQ_DONE:
174 /*
175 * @rq was previously adjusted by blk_flush_issue() for
176 * flush sequencing and may already have gone through the
177 * flush data request completion path. Restore @rq for
178 * normal completion and end it.
179 */
180 BUG_ON(!list_empty(&rq->queuelist));
181 list_del_init(&rq->flush.list);
182 blk_flush_restore_request(rq);
183 __blk_end_request_all(rq, error);
184 break;
185
186 default:
187 BUG();
188 }
189
190 return blk_kick_flush(q) | queued;
191 }
192
193 static void flush_end_io(struct request *flush_rq, int error)
194 {
195 struct request_queue *q = flush_rq->q;
196 struct list_head *running = &q->flush_queue[q->flush_running_idx];
197 bool was_empty = elv_queue_empty(q);
198 bool queued = false;
199 struct request *rq, *n;
200
201 BUG_ON(q->flush_pending_idx == q->flush_running_idx);
202
203 /* account completion of the flush request */
204 q->flush_running_idx ^= 1;
205 elv_completed_request(q, flush_rq);
206
207 /* and push the waiting requests to the next stage */
208 list_for_each_entry_safe(rq, n, running, flush.list) {
209 unsigned int seq = blk_flush_cur_seq(rq);
210
211 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
212 queued |= blk_flush_complete_seq(rq, seq, error);
213 }
214
215 /*
216 * Moving a request silently to empty queue_head may stall the
217 * queue. Kick the queue in those cases. This function is called
218 * from request completion path and calling directly into
219 * request_fn may confuse the driver. Always use kblockd.
220 */
221 if (queued && was_empty)
222 __blk_run_queue(q, true);
223 }
224
225 /**
226 * blk_kick_flush - consider issuing flush request
227 * @q: request_queue being kicked
228 *
229 * Flush related states of @q have changed, consider issuing flush request.
230 * Please read the comment at the top of this file for more info.
231 *
232 * CONTEXT:
233 * spin_lock_irq(q->queue_lock)
234 *
235 * RETURNS:
236 * %true if flush was issued, %false otherwise.
237 */
238 static bool blk_kick_flush(struct request_queue *q)
239 {
240 struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
241 struct request *first_rq =
242 list_first_entry(pending, struct request, flush.list);
243
244 /* C1 described at the top of this file */
245 if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending))
246 return false;
247
248 /* C2 and C3 */
249 if (!list_empty(&q->flush_data_in_flight) &&
250 time_before(jiffies,
251 q->flush_pending_since + FLUSH_PENDING_TIMEOUT))
252 return false;
253
254 /*
255 * Issue flush and toggle pending_idx. This makes pending_idx
256 * different from running_idx, which means flush is in flight.
257 */
258 blk_rq_init(q, &q->flush_rq);
259 q->flush_rq.cmd_type = REQ_TYPE_FS;
260 q->flush_rq.cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
261 q->flush_rq.rq_disk = first_rq->rq_disk;
262 q->flush_rq.end_io = flush_end_io;
263
264 q->flush_pending_idx ^= 1;
265 elv_insert(q, &q->flush_rq, ELEVATOR_INSERT_REQUEUE);
266 return true;
267 }
268
269 static void flush_data_end_io(struct request *rq, int error)
270 {
271 struct request_queue *q = rq->q;
272 bool was_empty = elv_queue_empty(q);
273
274 /*
275 * After populating an empty queue, kick it to avoid stall. Read
276 * the comment in flush_end_io().
277 */
278 if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error) && was_empty)
279 __blk_run_queue(q, true);
280 }
281
282 /**
283 * blk_insert_flush - insert a new FLUSH/FUA request
284 * @rq: request to insert
285 *
286 * To be called from elv_insert() for %ELEVATOR_INSERT_FLUSH insertions.
287 * @rq is being submitted. Analyze what needs to be done and put it on the
288 * right queue.
289 *
290 * CONTEXT:
291 * spin_lock_irq(q->queue_lock)
292 */
293 void blk_insert_flush(struct request *rq)
294 {
295 struct request_queue *q = rq->q;
296 unsigned int fflags = q->flush_flags; /* may change, cache */
297 unsigned int policy = blk_flush_policy(fflags, rq);
298
299 BUG_ON(rq->end_io);
300 BUG_ON(!rq->bio || rq->bio != rq->biotail);
301
302 /*
303 * @policy now records what operations need to be done. Adjust
304 * REQ_FLUSH and FUA for the driver.
305 */
306 rq->cmd_flags &= ~REQ_FLUSH;
307 if (!(fflags & REQ_FUA))
308 rq->cmd_flags &= ~REQ_FUA;
309
310 /*
311 * If there's data but flush is not necessary, the request can be
312 * processed directly without going through flush machinery. Queue
313 * for normal execution.
314 */
315 if ((policy & REQ_FSEQ_DATA) &&
316 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
317 list_add(&rq->queuelist, &q->queue_head);
318 return;
319 }
320
321 /*
322 * @rq should go through flush machinery. Mark it part of flush
323 * sequence and submit for further processing.
324 */
325 memset(&rq->flush, 0, sizeof(rq->flush));
326 INIT_LIST_HEAD(&rq->flush.list);
327 rq->cmd_flags |= REQ_FLUSH_SEQ;
328 rq->end_io = flush_data_end_io;
329
330 blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
331 }
332
333 /**
334 * blk_abort_flushes - @q is being aborted, abort flush requests
335 * @q: request_queue being aborted
336 *
337 * To be called from elv_abort_queue(). @q is being aborted. Prepare all
338 * FLUSH/FUA requests for abortion.
339 *
340 * CONTEXT:
341 * spin_lock_irq(q->queue_lock)
342 */
343 void blk_abort_flushes(struct request_queue *q)
344 {
345 struct request *rq, *n;
346 int i;
347
348 /*
349 * Requests in flight for data are already owned by the dispatch
350 * queue or the device driver. Just restore for normal completion.
351 */
352 list_for_each_entry_safe(rq, n, &q->flush_data_in_flight, flush.list) {
353 list_del_init(&rq->flush.list);
354 blk_flush_restore_request(rq);
355 }
356
357 /*
358 * We need to give away requests on flush queues. Restore for
359 * normal completion and put them on the dispatch queue.
360 */
361 for (i = 0; i < ARRAY_SIZE(q->flush_queue); i++) {
362 list_for_each_entry_safe(rq, n, &q->flush_queue[i],
363 flush.list) {
364 list_del_init(&rq->flush.list);
365 blk_flush_restore_request(rq);
366 list_add_tail(&rq->queuelist, &q->queue_head);
367 }
368 }
369 }
370
371 static void bio_end_flush(struct bio *bio, int err)
372 {
373 if (err)
374 clear_bit(BIO_UPTODATE, &bio->bi_flags);
375 if (bio->bi_private)
376 complete(bio->bi_private);
377 bio_put(bio);
378 }
379
380 /**
381 * blkdev_issue_flush - queue a flush
382 * @bdev: blockdev to issue flush for
383 * @gfp_mask: memory allocation flags (for bio_alloc)
384 * @error_sector: error sector
385 *
386 * Description:
387 * Issue a flush for the block device in question. Caller can supply
388 * room for storing the error offset in case of a flush error, if they
389 * wish to. If WAIT flag is not passed then caller may check only what
390 * request was pushed in some internal queue for later handling.
391 */
392 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
393 sector_t *error_sector)
394 {
395 DECLARE_COMPLETION_ONSTACK(wait);
396 struct request_queue *q;
397 struct bio *bio;
398 int ret = 0;
399
400 if (bdev->bd_disk == NULL)
401 return -ENXIO;
402
403 q = bdev_get_queue(bdev);
404 if (!q)
405 return -ENXIO;
406
407 /*
408 * some block devices may not have their queue correctly set up here
409 * (e.g. loop device without a backing file) and so issuing a flush
410 * here will panic. Ensure there is a request function before issuing
411 * the flush.
412 */
413 if (!q->make_request_fn)
414 return -ENXIO;
415
416 bio = bio_alloc(gfp_mask, 0);
417 bio->bi_end_io = bio_end_flush;
418 bio->bi_bdev = bdev;
419 bio->bi_private = &wait;
420
421 bio_get(bio);
422 submit_bio(WRITE_FLUSH, bio);
423 wait_for_completion(&wait);
424
425 /*
426 * The driver must store the error location in ->bi_sector, if
427 * it supports it. For non-stacked drivers, this should be
428 * copied from blk_rq_pos(rq).
429 */
430 if (error_sector)
431 *error_sector = bio->bi_sector;
432
433 if (!bio_flagged(bio, BIO_UPTODATE))
434 ret = -EIO;
435
436 bio_put(bio);
437 return ret;
438 }
439 EXPORT_SYMBOL(blkdev_issue_flush);