]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-flush.c
block: remove 'q' parameter from kblockd_schedule_*_work()
[thirdparty/linux.git] / block / blk-flush.c
1 /*
2 * Functions to sequence FLUSH and FUA writes.
3 *
4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11 * properties and hardware capability.
12 *
13 * If a request doesn't have data, only REQ_FLUSH makes sense, which
14 * indicates a simple flush request. If there is data, REQ_FLUSH indicates
15 * that the device cache should be flushed before the data is executed, and
16 * REQ_FUA means that the data must be on non-volatile media on request
17 * completion.
18 *
19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any
20 * difference. The requests are either completed immediately if there's no
21 * data or executed as normal requests otherwise.
22 *
23 * If the device has writeback cache and supports FUA, REQ_FLUSH is
24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25 *
26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28 *
29 * The actual execution of flush is double buffered. Whenever a request
30 * needs to execute PRE or POSTFLUSH, it queues at
31 * q->flush_queue[q->flush_pending_idx]. Once certain criteria are met, a
32 * flush is issued and the pending_idx is toggled. When the flush
33 * completes, all the requests which were pending are proceeded to the next
34 * step. This allows arbitrary merging of different types of FLUSH/FUA
35 * requests.
36 *
37 * Currently, the following conditions are used to determine when to issue
38 * flush.
39 *
40 * C1. At any given time, only one flush shall be in progress. This makes
41 * double buffering sufficient.
42 *
43 * C2. Flush is deferred if any request is executing DATA of its sequence.
44 * This avoids issuing separate POSTFLUSHes for requests which shared
45 * PREFLUSH.
46 *
47 * C3. The second condition is ignored if there is a request which has
48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
49 * starvation in the unlikely case where there are continuous stream of
50 * FUA (without FLUSH) requests.
51 *
52 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53 * is beneficial.
54 *
55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
56 * Once while executing DATA and again after the whole sequence is
57 * complete. The first completion updates the contained bio but doesn't
58 * finish it so that the bio submitter is notified only after the whole
59 * sequence is complete. This is implemented by testing REQ_FLUSH_SEQ in
60 * req_bio_endio().
61 *
62 * The above peculiarity requires that each FLUSH/FUA request has only one
63 * bio attached to it, which is guaranteed as they aren't allowed to be
64 * merged in the usual way.
65 */
66
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73
74 #include "blk.h"
75 #include "blk-mq.h"
76
77 /* FLUSH/FUA sequences */
78 enum {
79 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
80 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
81 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
82 REQ_FSEQ_DONE = (1 << 3),
83
84 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 REQ_FSEQ_POSTFLUSH,
86
87 /*
88 * If flush has been pending longer than the following timeout,
89 * it's issued even if flush_data requests are still in flight.
90 */
91 FLUSH_PENDING_TIMEOUT = 5 * HZ,
92 };
93
94 static bool blk_kick_flush(struct request_queue *q);
95
96 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
97 {
98 unsigned int policy = 0;
99
100 if (blk_rq_sectors(rq))
101 policy |= REQ_FSEQ_DATA;
102
103 if (fflags & REQ_FLUSH) {
104 if (rq->cmd_flags & REQ_FLUSH)
105 policy |= REQ_FSEQ_PREFLUSH;
106 if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
107 policy |= REQ_FSEQ_POSTFLUSH;
108 }
109 return policy;
110 }
111
112 static unsigned int blk_flush_cur_seq(struct request *rq)
113 {
114 return 1 << ffz(rq->flush.seq);
115 }
116
117 static void blk_flush_restore_request(struct request *rq)
118 {
119 /*
120 * After flush data completion, @rq->bio is %NULL but we need to
121 * complete the bio again. @rq->biotail is guaranteed to equal the
122 * original @rq->bio. Restore it.
123 */
124 rq->bio = rq->biotail;
125
126 /* make @rq a normal request */
127 rq->cmd_flags &= ~REQ_FLUSH_SEQ;
128 rq->end_io = rq->flush.saved_end_io;
129
130 blk_clear_rq_complete(rq);
131 }
132
133 static void mq_flush_run(struct work_struct *work)
134 {
135 struct request *rq;
136
137 rq = container_of(work, struct request, mq_flush_work);
138
139 memset(&rq->csd, 0, sizeof(rq->csd));
140 blk_mq_insert_request(rq, false, true, false);
141 }
142
143 static bool blk_flush_queue_rq(struct request *rq, bool add_front)
144 {
145 if (rq->q->mq_ops) {
146 INIT_WORK(&rq->mq_flush_work, mq_flush_run);
147 kblockd_schedule_work(&rq->mq_flush_work);
148 return false;
149 } else {
150 if (add_front)
151 list_add(&rq->queuelist, &rq->q->queue_head);
152 else
153 list_add_tail(&rq->queuelist, &rq->q->queue_head);
154 return true;
155 }
156 }
157
158 /**
159 * blk_flush_complete_seq - complete flush sequence
160 * @rq: FLUSH/FUA request being sequenced
161 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
162 * @error: whether an error occurred
163 *
164 * @rq just completed @seq part of its flush sequence, record the
165 * completion and trigger the next step.
166 *
167 * CONTEXT:
168 * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
169 *
170 * RETURNS:
171 * %true if requests were added to the dispatch queue, %false otherwise.
172 */
173 static bool blk_flush_complete_seq(struct request *rq, unsigned int seq,
174 int error)
175 {
176 struct request_queue *q = rq->q;
177 struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
178 bool queued = false, kicked;
179
180 BUG_ON(rq->flush.seq & seq);
181 rq->flush.seq |= seq;
182
183 if (likely(!error))
184 seq = blk_flush_cur_seq(rq);
185 else
186 seq = REQ_FSEQ_DONE;
187
188 switch (seq) {
189 case REQ_FSEQ_PREFLUSH:
190 case REQ_FSEQ_POSTFLUSH:
191 /* queue for flush */
192 if (list_empty(pending))
193 q->flush_pending_since = jiffies;
194 list_move_tail(&rq->flush.list, pending);
195 break;
196
197 case REQ_FSEQ_DATA:
198 list_move_tail(&rq->flush.list, &q->flush_data_in_flight);
199 queued = blk_flush_queue_rq(rq, true);
200 break;
201
202 case REQ_FSEQ_DONE:
203 /*
204 * @rq was previously adjusted by blk_flush_issue() for
205 * flush sequencing and may already have gone through the
206 * flush data request completion path. Restore @rq for
207 * normal completion and end it.
208 */
209 BUG_ON(!list_empty(&rq->queuelist));
210 list_del_init(&rq->flush.list);
211 blk_flush_restore_request(rq);
212 if (q->mq_ops)
213 blk_mq_end_io(rq, error);
214 else
215 __blk_end_request_all(rq, error);
216 break;
217
218 default:
219 BUG();
220 }
221
222 kicked = blk_kick_flush(q);
223 return kicked | queued;
224 }
225
226 static void flush_end_io(struct request *flush_rq, int error)
227 {
228 struct request_queue *q = flush_rq->q;
229 struct list_head *running;
230 bool queued = false;
231 struct request *rq, *n;
232 unsigned long flags = 0;
233
234 if (q->mq_ops)
235 spin_lock_irqsave(&q->mq_flush_lock, flags);
236
237 running = &q->flush_queue[q->flush_running_idx];
238 BUG_ON(q->flush_pending_idx == q->flush_running_idx);
239
240 /* account completion of the flush request */
241 q->flush_running_idx ^= 1;
242
243 if (!q->mq_ops)
244 elv_completed_request(q, flush_rq);
245
246 /* and push the waiting requests to the next stage */
247 list_for_each_entry_safe(rq, n, running, flush.list) {
248 unsigned int seq = blk_flush_cur_seq(rq);
249
250 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
251 queued |= blk_flush_complete_seq(rq, seq, error);
252 }
253
254 /*
255 * Kick the queue to avoid stall for two cases:
256 * 1. Moving a request silently to empty queue_head may stall the
257 * queue.
258 * 2. When flush request is running in non-queueable queue, the
259 * queue is hold. Restart the queue after flush request is finished
260 * to avoid stall.
261 * This function is called from request completion path and calling
262 * directly into request_fn may confuse the driver. Always use
263 * kblockd.
264 */
265 if (queued || q->flush_queue_delayed) {
266 WARN_ON(q->mq_ops);
267 blk_run_queue_async(q);
268 }
269 q->flush_queue_delayed = 0;
270 if (q->mq_ops)
271 spin_unlock_irqrestore(&q->mq_flush_lock, flags);
272 }
273
274 /**
275 * blk_kick_flush - consider issuing flush request
276 * @q: request_queue being kicked
277 *
278 * Flush related states of @q have changed, consider issuing flush request.
279 * Please read the comment at the top of this file for more info.
280 *
281 * CONTEXT:
282 * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
283 *
284 * RETURNS:
285 * %true if flush was issued, %false otherwise.
286 */
287 static bool blk_kick_flush(struct request_queue *q)
288 {
289 struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
290 struct request *first_rq =
291 list_first_entry(pending, struct request, flush.list);
292
293 /* C1 described at the top of this file */
294 if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending))
295 return false;
296
297 /* C2 and C3 */
298 if (!list_empty(&q->flush_data_in_flight) &&
299 time_before(jiffies,
300 q->flush_pending_since + FLUSH_PENDING_TIMEOUT))
301 return false;
302
303 /*
304 * Issue flush and toggle pending_idx. This makes pending_idx
305 * different from running_idx, which means flush is in flight.
306 */
307 q->flush_pending_idx ^= 1;
308
309 if (q->mq_ops) {
310 struct blk_mq_ctx *ctx = first_rq->mq_ctx;
311 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
312
313 blk_mq_rq_init(hctx, q->flush_rq);
314 q->flush_rq->mq_ctx = ctx;
315
316 /*
317 * Reuse the tag value from the fist waiting request,
318 * with blk-mq the tag is generated during request
319 * allocation and drivers can rely on it being inside
320 * the range they asked for.
321 */
322 q->flush_rq->tag = first_rq->tag;
323 } else {
324 blk_rq_init(q, q->flush_rq);
325 }
326
327 q->flush_rq->cmd_type = REQ_TYPE_FS;
328 q->flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
329 q->flush_rq->rq_disk = first_rq->rq_disk;
330 q->flush_rq->end_io = flush_end_io;
331
332 return blk_flush_queue_rq(q->flush_rq, false);
333 }
334
335 static void flush_data_end_io(struct request *rq, int error)
336 {
337 struct request_queue *q = rq->q;
338
339 /*
340 * After populating an empty queue, kick it to avoid stall. Read
341 * the comment in flush_end_io().
342 */
343 if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
344 blk_run_queue_async(q);
345 }
346
347 static void mq_flush_data_end_io(struct request *rq, int error)
348 {
349 struct request_queue *q = rq->q;
350 struct blk_mq_hw_ctx *hctx;
351 struct blk_mq_ctx *ctx;
352 unsigned long flags;
353
354 ctx = rq->mq_ctx;
355 hctx = q->mq_ops->map_queue(q, ctx->cpu);
356
357 /*
358 * After populating an empty queue, kick it to avoid stall. Read
359 * the comment in flush_end_io().
360 */
361 spin_lock_irqsave(&q->mq_flush_lock, flags);
362 if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
363 blk_mq_run_hw_queue(hctx, true);
364 spin_unlock_irqrestore(&q->mq_flush_lock, flags);
365 }
366
367 /**
368 * blk_insert_flush - insert a new FLUSH/FUA request
369 * @rq: request to insert
370 *
371 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
372 * or __blk_mq_run_hw_queue() to dispatch request.
373 * @rq is being submitted. Analyze what needs to be done and put it on the
374 * right queue.
375 *
376 * CONTEXT:
377 * spin_lock_irq(q->queue_lock) in !mq case
378 */
379 void blk_insert_flush(struct request *rq)
380 {
381 struct request_queue *q = rq->q;
382 unsigned int fflags = q->flush_flags; /* may change, cache */
383 unsigned int policy = blk_flush_policy(fflags, rq);
384
385 /*
386 * @policy now records what operations need to be done. Adjust
387 * REQ_FLUSH and FUA for the driver.
388 */
389 rq->cmd_flags &= ~REQ_FLUSH;
390 if (!(fflags & REQ_FUA))
391 rq->cmd_flags &= ~REQ_FUA;
392
393 /*
394 * An empty flush handed down from a stacking driver may
395 * translate into nothing if the underlying device does not
396 * advertise a write-back cache. In this case, simply
397 * complete the request.
398 */
399 if (!policy) {
400 if (q->mq_ops)
401 blk_mq_end_io(rq, 0);
402 else
403 __blk_end_bidi_request(rq, 0, 0, 0);
404 return;
405 }
406
407 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
408
409 /*
410 * If there's data but flush is not necessary, the request can be
411 * processed directly without going through flush machinery. Queue
412 * for normal execution.
413 */
414 if ((policy & REQ_FSEQ_DATA) &&
415 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
416 if (q->mq_ops) {
417 blk_mq_insert_request(rq, false, false, true);
418 } else
419 list_add_tail(&rq->queuelist, &q->queue_head);
420 return;
421 }
422
423 /*
424 * @rq should go through flush machinery. Mark it part of flush
425 * sequence and submit for further processing.
426 */
427 memset(&rq->flush, 0, sizeof(rq->flush));
428 INIT_LIST_HEAD(&rq->flush.list);
429 rq->cmd_flags |= REQ_FLUSH_SEQ;
430 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
431 if (q->mq_ops) {
432 rq->end_io = mq_flush_data_end_io;
433
434 spin_lock_irq(&q->mq_flush_lock);
435 blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
436 spin_unlock_irq(&q->mq_flush_lock);
437 return;
438 }
439 rq->end_io = flush_data_end_io;
440
441 blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
442 }
443
444 /**
445 * blk_abort_flushes - @q is being aborted, abort flush requests
446 * @q: request_queue being aborted
447 *
448 * To be called from elv_abort_queue(). @q is being aborted. Prepare all
449 * FLUSH/FUA requests for abortion.
450 *
451 * CONTEXT:
452 * spin_lock_irq(q->queue_lock)
453 */
454 void blk_abort_flushes(struct request_queue *q)
455 {
456 struct request *rq, *n;
457 int i;
458
459 /*
460 * Requests in flight for data are already owned by the dispatch
461 * queue or the device driver. Just restore for normal completion.
462 */
463 list_for_each_entry_safe(rq, n, &q->flush_data_in_flight, flush.list) {
464 list_del_init(&rq->flush.list);
465 blk_flush_restore_request(rq);
466 }
467
468 /*
469 * We need to give away requests on flush queues. Restore for
470 * normal completion and put them on the dispatch queue.
471 */
472 for (i = 0; i < ARRAY_SIZE(q->flush_queue); i++) {
473 list_for_each_entry_safe(rq, n, &q->flush_queue[i],
474 flush.list) {
475 list_del_init(&rq->flush.list);
476 blk_flush_restore_request(rq);
477 list_add_tail(&rq->queuelist, &q->queue_head);
478 }
479 }
480 }
481
482 /**
483 * blkdev_issue_flush - queue a flush
484 * @bdev: blockdev to issue flush for
485 * @gfp_mask: memory allocation flags (for bio_alloc)
486 * @error_sector: error sector
487 *
488 * Description:
489 * Issue a flush for the block device in question. Caller can supply
490 * room for storing the error offset in case of a flush error, if they
491 * wish to. If WAIT flag is not passed then caller may check only what
492 * request was pushed in some internal queue for later handling.
493 */
494 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
495 sector_t *error_sector)
496 {
497 struct request_queue *q;
498 struct bio *bio;
499 int ret = 0;
500
501 if (bdev->bd_disk == NULL)
502 return -ENXIO;
503
504 q = bdev_get_queue(bdev);
505 if (!q)
506 return -ENXIO;
507
508 /*
509 * some block devices may not have their queue correctly set up here
510 * (e.g. loop device without a backing file) and so issuing a flush
511 * here will panic. Ensure there is a request function before issuing
512 * the flush.
513 */
514 if (!q->make_request_fn)
515 return -ENXIO;
516
517 bio = bio_alloc(gfp_mask, 0);
518 bio->bi_bdev = bdev;
519
520 ret = submit_bio_wait(WRITE_FLUSH, bio);
521
522 /*
523 * The driver must store the error location in ->bi_sector, if
524 * it supports it. For non-stacked drivers, this should be
525 * copied from blk_rq_pos(rq).
526 */
527 if (error_sector)
528 *error_sector = bio->bi_iter.bi_sector;
529
530 bio_put(bio);
531 return ret;
532 }
533 EXPORT_SYMBOL(blkdev_issue_flush);
534
535 void blk_mq_init_flush(struct request_queue *q)
536 {
537 spin_lock_init(&q->mq_flush_lock);
538 }