]> git.ipfire.org Git - people/arne_f/kernel.git/blob - block/blk-flush.c
block: move flush initialization to blk_flush_init
[people/arne_f/kernel.git] / block / blk-flush.c
1 /*
2 * Functions to sequence FLUSH and FUA writes.
3 *
4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11 * properties and hardware capability.
12 *
13 * If a request doesn't have data, only REQ_FLUSH makes sense, which
14 * indicates a simple flush request. If there is data, REQ_FLUSH indicates
15 * that the device cache should be flushed before the data is executed, and
16 * REQ_FUA means that the data must be on non-volatile media on request
17 * completion.
18 *
19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any
20 * difference. The requests are either completed immediately if there's no
21 * data or executed as normal requests otherwise.
22 *
23 * If the device has writeback cache and supports FUA, REQ_FLUSH is
24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25 *
26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28 *
29 * The actual execution of flush is double buffered. Whenever a request
30 * needs to execute PRE or POSTFLUSH, it queues at
31 * q->flush_queue[q->flush_pending_idx]. Once certain criteria are met, a
32 * flush is issued and the pending_idx is toggled. When the flush
33 * completes, all the requests which were pending are proceeded to the next
34 * step. This allows arbitrary merging of different types of FLUSH/FUA
35 * requests.
36 *
37 * Currently, the following conditions are used to determine when to issue
38 * flush.
39 *
40 * C1. At any given time, only one flush shall be in progress. This makes
41 * double buffering sufficient.
42 *
43 * C2. Flush is deferred if any request is executing DATA of its sequence.
44 * This avoids issuing separate POSTFLUSHes for requests which shared
45 * PREFLUSH.
46 *
47 * C3. The second condition is ignored if there is a request which has
48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
49 * starvation in the unlikely case where there are continuous stream of
50 * FUA (without FLUSH) requests.
51 *
52 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53 * is beneficial.
54 *
55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
56 * Once while executing DATA and again after the whole sequence is
57 * complete. The first completion updates the contained bio but doesn't
58 * finish it so that the bio submitter is notified only after the whole
59 * sequence is complete. This is implemented by testing REQ_FLUSH_SEQ in
60 * req_bio_endio().
61 *
62 * The above peculiarity requires that each FLUSH/FUA request has only one
63 * bio attached to it, which is guaranteed as they aren't allowed to be
64 * merged in the usual way.
65 */
66
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73
74 #include "blk.h"
75 #include "blk-mq.h"
76
77 /* FLUSH/FUA sequences */
78 enum {
79 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
80 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
81 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
82 REQ_FSEQ_DONE = (1 << 3),
83
84 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 REQ_FSEQ_POSTFLUSH,
86
87 /*
88 * If flush has been pending longer than the following timeout,
89 * it's issued even if flush_data requests are still in flight.
90 */
91 FLUSH_PENDING_TIMEOUT = 5 * HZ,
92 };
93
94 static bool blk_kick_flush(struct request_queue *q);
95
96 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
97 {
98 unsigned int policy = 0;
99
100 if (blk_rq_sectors(rq))
101 policy |= REQ_FSEQ_DATA;
102
103 if (fflags & REQ_FLUSH) {
104 if (rq->cmd_flags & REQ_FLUSH)
105 policy |= REQ_FSEQ_PREFLUSH;
106 if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
107 policy |= REQ_FSEQ_POSTFLUSH;
108 }
109 return policy;
110 }
111
112 static unsigned int blk_flush_cur_seq(struct request *rq)
113 {
114 return 1 << ffz(rq->flush.seq);
115 }
116
117 static void blk_flush_restore_request(struct request *rq)
118 {
119 /*
120 * After flush data completion, @rq->bio is %NULL but we need to
121 * complete the bio again. @rq->biotail is guaranteed to equal the
122 * original @rq->bio. Restore it.
123 */
124 rq->bio = rq->biotail;
125
126 /* make @rq a normal request */
127 rq->cmd_flags &= ~REQ_FLUSH_SEQ;
128 rq->end_io = rq->flush.saved_end_io;
129 }
130
131 static bool blk_flush_queue_rq(struct request *rq, bool add_front)
132 {
133 if (rq->q->mq_ops) {
134 struct request_queue *q = rq->q;
135
136 blk_mq_add_to_requeue_list(rq, add_front);
137 blk_mq_kick_requeue_list(q);
138 return false;
139 } else {
140 if (add_front)
141 list_add(&rq->queuelist, &rq->q->queue_head);
142 else
143 list_add_tail(&rq->queuelist, &rq->q->queue_head);
144 return true;
145 }
146 }
147
148 /**
149 * blk_flush_complete_seq - complete flush sequence
150 * @rq: FLUSH/FUA request being sequenced
151 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
152 * @error: whether an error occurred
153 *
154 * @rq just completed @seq part of its flush sequence, record the
155 * completion and trigger the next step.
156 *
157 * CONTEXT:
158 * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
159 *
160 * RETURNS:
161 * %true if requests were added to the dispatch queue, %false otherwise.
162 */
163 static bool blk_flush_complete_seq(struct request *rq, unsigned int seq,
164 int error)
165 {
166 struct request_queue *q = rq->q;
167 struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
168 bool queued = false, kicked;
169
170 BUG_ON(rq->flush.seq & seq);
171 rq->flush.seq |= seq;
172
173 if (likely(!error))
174 seq = blk_flush_cur_seq(rq);
175 else
176 seq = REQ_FSEQ_DONE;
177
178 switch (seq) {
179 case REQ_FSEQ_PREFLUSH:
180 case REQ_FSEQ_POSTFLUSH:
181 /* queue for flush */
182 if (list_empty(pending))
183 q->flush_pending_since = jiffies;
184 list_move_tail(&rq->flush.list, pending);
185 break;
186
187 case REQ_FSEQ_DATA:
188 list_move_tail(&rq->flush.list, &q->flush_data_in_flight);
189 queued = blk_flush_queue_rq(rq, true);
190 break;
191
192 case REQ_FSEQ_DONE:
193 /*
194 * @rq was previously adjusted by blk_flush_issue() for
195 * flush sequencing and may already have gone through the
196 * flush data request completion path. Restore @rq for
197 * normal completion and end it.
198 */
199 BUG_ON(!list_empty(&rq->queuelist));
200 list_del_init(&rq->flush.list);
201 blk_flush_restore_request(rq);
202 if (q->mq_ops)
203 blk_mq_end_request(rq, error);
204 else
205 __blk_end_request_all(rq, error);
206 break;
207
208 default:
209 BUG();
210 }
211
212 kicked = blk_kick_flush(q);
213 return kicked | queued;
214 }
215
216 static void flush_end_io(struct request *flush_rq, int error)
217 {
218 struct request_queue *q = flush_rq->q;
219 struct list_head *running;
220 bool queued = false;
221 struct request *rq, *n;
222 unsigned long flags = 0;
223
224 if (q->mq_ops) {
225 spin_lock_irqsave(&q->mq_flush_lock, flags);
226 q->flush_rq->tag = -1;
227 }
228
229 running = &q->flush_queue[q->flush_running_idx];
230 BUG_ON(q->flush_pending_idx == q->flush_running_idx);
231
232 /* account completion of the flush request */
233 q->flush_running_idx ^= 1;
234
235 if (!q->mq_ops)
236 elv_completed_request(q, flush_rq);
237
238 /* and push the waiting requests to the next stage */
239 list_for_each_entry_safe(rq, n, running, flush.list) {
240 unsigned int seq = blk_flush_cur_seq(rq);
241
242 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
243 queued |= blk_flush_complete_seq(rq, seq, error);
244 }
245
246 /*
247 * Kick the queue to avoid stall for two cases:
248 * 1. Moving a request silently to empty queue_head may stall the
249 * queue.
250 * 2. When flush request is running in non-queueable queue, the
251 * queue is hold. Restart the queue after flush request is finished
252 * to avoid stall.
253 * This function is called from request completion path and calling
254 * directly into request_fn may confuse the driver. Always use
255 * kblockd.
256 */
257 if (queued || q->flush_queue_delayed) {
258 WARN_ON(q->mq_ops);
259 blk_run_queue_async(q);
260 }
261 q->flush_queue_delayed = 0;
262 if (q->mq_ops)
263 spin_unlock_irqrestore(&q->mq_flush_lock, flags);
264 }
265
266 /**
267 * blk_kick_flush - consider issuing flush request
268 * @q: request_queue being kicked
269 *
270 * Flush related states of @q have changed, consider issuing flush request.
271 * Please read the comment at the top of this file for more info.
272 *
273 * CONTEXT:
274 * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
275 *
276 * RETURNS:
277 * %true if flush was issued, %false otherwise.
278 */
279 static bool blk_kick_flush(struct request_queue *q)
280 {
281 struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
282 struct request *first_rq =
283 list_first_entry(pending, struct request, flush.list);
284
285 /* C1 described at the top of this file */
286 if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending))
287 return false;
288
289 /* C2 and C3 */
290 if (!list_empty(&q->flush_data_in_flight) &&
291 time_before(jiffies,
292 q->flush_pending_since + FLUSH_PENDING_TIMEOUT))
293 return false;
294
295 /*
296 * Issue flush and toggle pending_idx. This makes pending_idx
297 * different from running_idx, which means flush is in flight.
298 */
299 q->flush_pending_idx ^= 1;
300
301 blk_rq_init(q, q->flush_rq);
302 if (q->mq_ops)
303 blk_mq_clone_flush_request(q->flush_rq, first_rq);
304
305 q->flush_rq->cmd_type = REQ_TYPE_FS;
306 q->flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
307 q->flush_rq->rq_disk = first_rq->rq_disk;
308 q->flush_rq->end_io = flush_end_io;
309
310 return blk_flush_queue_rq(q->flush_rq, false);
311 }
312
313 static void flush_data_end_io(struct request *rq, int error)
314 {
315 struct request_queue *q = rq->q;
316
317 /*
318 * After populating an empty queue, kick it to avoid stall. Read
319 * the comment in flush_end_io().
320 */
321 if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
322 blk_run_queue_async(q);
323 }
324
325 static void mq_flush_data_end_io(struct request *rq, int error)
326 {
327 struct request_queue *q = rq->q;
328 struct blk_mq_hw_ctx *hctx;
329 struct blk_mq_ctx *ctx;
330 unsigned long flags;
331
332 ctx = rq->mq_ctx;
333 hctx = q->mq_ops->map_queue(q, ctx->cpu);
334
335 /*
336 * After populating an empty queue, kick it to avoid stall. Read
337 * the comment in flush_end_io().
338 */
339 spin_lock_irqsave(&q->mq_flush_lock, flags);
340 if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
341 blk_mq_run_hw_queue(hctx, true);
342 spin_unlock_irqrestore(&q->mq_flush_lock, flags);
343 }
344
345 /**
346 * blk_insert_flush - insert a new FLUSH/FUA request
347 * @rq: request to insert
348 *
349 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
350 * or __blk_mq_run_hw_queue() to dispatch request.
351 * @rq is being submitted. Analyze what needs to be done and put it on the
352 * right queue.
353 *
354 * CONTEXT:
355 * spin_lock_irq(q->queue_lock) in !mq case
356 */
357 void blk_insert_flush(struct request *rq)
358 {
359 struct request_queue *q = rq->q;
360 unsigned int fflags = q->flush_flags; /* may change, cache */
361 unsigned int policy = blk_flush_policy(fflags, rq);
362
363 /*
364 * @policy now records what operations need to be done. Adjust
365 * REQ_FLUSH and FUA for the driver.
366 */
367 rq->cmd_flags &= ~REQ_FLUSH;
368 if (!(fflags & REQ_FUA))
369 rq->cmd_flags &= ~REQ_FUA;
370
371 /*
372 * An empty flush handed down from a stacking driver may
373 * translate into nothing if the underlying device does not
374 * advertise a write-back cache. In this case, simply
375 * complete the request.
376 */
377 if (!policy) {
378 if (q->mq_ops)
379 blk_mq_end_request(rq, 0);
380 else
381 __blk_end_bidi_request(rq, 0, 0, 0);
382 return;
383 }
384
385 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
386
387 /*
388 * If there's data but flush is not necessary, the request can be
389 * processed directly without going through flush machinery. Queue
390 * for normal execution.
391 */
392 if ((policy & REQ_FSEQ_DATA) &&
393 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
394 if (q->mq_ops) {
395 blk_mq_insert_request(rq, false, false, true);
396 } else
397 list_add_tail(&rq->queuelist, &q->queue_head);
398 return;
399 }
400
401 /*
402 * @rq should go through flush machinery. Mark it part of flush
403 * sequence and submit for further processing.
404 */
405 memset(&rq->flush, 0, sizeof(rq->flush));
406 INIT_LIST_HEAD(&rq->flush.list);
407 rq->cmd_flags |= REQ_FLUSH_SEQ;
408 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
409 if (q->mq_ops) {
410 rq->end_io = mq_flush_data_end_io;
411
412 spin_lock_irq(&q->mq_flush_lock);
413 blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
414 spin_unlock_irq(&q->mq_flush_lock);
415 return;
416 }
417 rq->end_io = flush_data_end_io;
418
419 blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
420 }
421
422 /**
423 * blkdev_issue_flush - queue a flush
424 * @bdev: blockdev to issue flush for
425 * @gfp_mask: memory allocation flags (for bio_alloc)
426 * @error_sector: error sector
427 *
428 * Description:
429 * Issue a flush for the block device in question. Caller can supply
430 * room for storing the error offset in case of a flush error, if they
431 * wish to. If WAIT flag is not passed then caller may check only what
432 * request was pushed in some internal queue for later handling.
433 */
434 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
435 sector_t *error_sector)
436 {
437 struct request_queue *q;
438 struct bio *bio;
439 int ret = 0;
440
441 if (bdev->bd_disk == NULL)
442 return -ENXIO;
443
444 q = bdev_get_queue(bdev);
445 if (!q)
446 return -ENXIO;
447
448 /*
449 * some block devices may not have their queue correctly set up here
450 * (e.g. loop device without a backing file) and so issuing a flush
451 * here will panic. Ensure there is a request function before issuing
452 * the flush.
453 */
454 if (!q->make_request_fn)
455 return -ENXIO;
456
457 bio = bio_alloc(gfp_mask, 0);
458 bio->bi_bdev = bdev;
459
460 ret = submit_bio_wait(WRITE_FLUSH, bio);
461
462 /*
463 * The driver must store the error location in ->bi_sector, if
464 * it supports it. For non-stacked drivers, this should be
465 * copied from blk_rq_pos(rq).
466 */
467 if (error_sector)
468 *error_sector = bio->bi_iter.bi_sector;
469
470 bio_put(bio);
471 return ret;
472 }
473 EXPORT_SYMBOL(blkdev_issue_flush);
474
475 static int blk_mq_init_flush(struct request_queue *q)
476 {
477 struct blk_mq_tag_set *set = q->tag_set;
478
479 spin_lock_init(&q->mq_flush_lock);
480
481 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
482 set->cmd_size, cache_line_size()),
483 GFP_KERNEL);
484 if (!q->flush_rq)
485 return -ENOMEM;
486 return 0;
487 }
488
489 int blk_init_flush(struct request_queue *q)
490 {
491 INIT_LIST_HEAD(&q->flush_queue[0]);
492 INIT_LIST_HEAD(&q->flush_queue[1]);
493 INIT_LIST_HEAD(&q->flush_data_in_flight);
494
495 if (q->mq_ops)
496 return blk_mq_init_flush(q);
497
498 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
499 if (!q->flush_rq)
500 return -ENOMEM;
501
502 return 0;
503 }
504
505 void blk_exit_flush(struct request_queue *q)
506 {
507 kfree(q->flush_rq);
508 }