]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-merge.c
cifs: use the correct max-length for dentry_path_raw()
[thirdparty/linux.git] / block / blk-merge.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
10
11 #include <trace/events/block.h>
12
13 #include "blk.h"
14 #include "blk-rq-qos.h"
15
16 static inline bool bio_will_gap(struct request_queue *q,
17 struct request *prev_rq, struct bio *prev, struct bio *next)
18 {
19 struct bio_vec pb, nb;
20
21 if (!bio_has_data(prev) || !queue_virt_boundary(q))
22 return false;
23
24 /*
25 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
26 * is quite difficult to respect the sg gap limit. We work hard to
27 * merge a huge number of small single bios in case of mkfs.
28 */
29 if (prev_rq)
30 bio_get_first_bvec(prev_rq->bio, &pb);
31 else
32 bio_get_first_bvec(prev, &pb);
33 if (pb.bv_offset & queue_virt_boundary(q))
34 return true;
35
36 /*
37 * We don't need to worry about the situation that the merged segment
38 * ends in unaligned virt boundary:
39 *
40 * - if 'pb' ends aligned, the merged segment ends aligned
41 * - if 'pb' ends unaligned, the next bio must include
42 * one single bvec of 'nb', otherwise the 'nb' can't
43 * merge with 'pb'
44 */
45 bio_get_last_bvec(prev, &pb);
46 bio_get_first_bvec(next, &nb);
47 if (biovec_phys_mergeable(q, &pb, &nb))
48 return false;
49 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
50 }
51
52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
53 {
54 return bio_will_gap(req->q, req, req->biotail, bio);
55 }
56
57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
58 {
59 return bio_will_gap(req->q, NULL, bio, req->bio);
60 }
61
62 static struct bio *blk_bio_discard_split(struct request_queue *q,
63 struct bio *bio,
64 struct bio_set *bs,
65 unsigned *nsegs)
66 {
67 unsigned int max_discard_sectors, granularity;
68 int alignment;
69 sector_t tmp;
70 unsigned split_sectors;
71
72 *nsegs = 1;
73
74 /* Zero-sector (unknown) and one-sector granularities are the same. */
75 granularity = max(q->limits.discard_granularity >> 9, 1U);
76
77 max_discard_sectors = min(q->limits.max_discard_sectors,
78 bio_allowed_max_sectors(q));
79 max_discard_sectors -= max_discard_sectors % granularity;
80
81 if (unlikely(!max_discard_sectors)) {
82 /* XXX: warn */
83 return NULL;
84 }
85
86 if (bio_sectors(bio) <= max_discard_sectors)
87 return NULL;
88
89 split_sectors = max_discard_sectors;
90
91 /*
92 * If the next starting sector would be misaligned, stop the discard at
93 * the previous aligned sector.
94 */
95 alignment = (q->limits.discard_alignment >> 9) % granularity;
96
97 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
98 tmp = sector_div(tmp, granularity);
99
100 if (split_sectors > tmp)
101 split_sectors -= tmp;
102
103 return bio_split(bio, split_sectors, GFP_NOIO, bs);
104 }
105
106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
107 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
108 {
109 *nsegs = 0;
110
111 if (!q->limits.max_write_zeroes_sectors)
112 return NULL;
113
114 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
115 return NULL;
116
117 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
118 }
119
120 static struct bio *blk_bio_write_same_split(struct request_queue *q,
121 struct bio *bio,
122 struct bio_set *bs,
123 unsigned *nsegs)
124 {
125 *nsegs = 1;
126
127 if (!q->limits.max_write_same_sectors)
128 return NULL;
129
130 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
131 return NULL;
132
133 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
134 }
135
136 /*
137 * Return the maximum number of sectors from the start of a bio that may be
138 * submitted as a single request to a block device. If enough sectors remain,
139 * align the end to the physical block size. Otherwise align the end to the
140 * logical block size. This approach minimizes the number of non-aligned
141 * requests that are submitted to a block device if the start of a bio is not
142 * aligned to a physical block boundary.
143 */
144 static inline unsigned get_max_io_size(struct request_queue *q,
145 struct bio *bio)
146 {
147 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
148 unsigned max_sectors = sectors;
149 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
150 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
151 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
152
153 max_sectors += start_offset;
154 max_sectors &= ~(pbs - 1);
155 if (max_sectors > start_offset)
156 return max_sectors - start_offset;
157
158 return sectors & ~(lbs - 1);
159 }
160
161 static inline unsigned get_max_segment_size(const struct request_queue *q,
162 struct page *start_page,
163 unsigned long offset)
164 {
165 unsigned long mask = queue_segment_boundary(q);
166
167 offset = mask & (page_to_phys(start_page) + offset);
168
169 /*
170 * overflow may be triggered in case of zero page physical address
171 * on 32bit arch, use queue's max segment size when that happens.
172 */
173 return min_not_zero(mask - offset + 1,
174 (unsigned long)queue_max_segment_size(q));
175 }
176
177 /**
178 * bvec_split_segs - verify whether or not a bvec should be split in the middle
179 * @q: [in] request queue associated with the bio associated with @bv
180 * @bv: [in] bvec to examine
181 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
182 * by the number of segments from @bv that may be appended to that
183 * bio without exceeding @max_segs
184 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
185 * by the number of sectors from @bv that may be appended to that
186 * bio without exceeding @max_sectors
187 * @max_segs: [in] upper bound for *@nsegs
188 * @max_sectors: [in] upper bound for *@sectors
189 *
190 * When splitting a bio, it can happen that a bvec is encountered that is too
191 * big to fit in a single segment and hence that it has to be split in the
192 * middle. This function verifies whether or not that should happen. The value
193 * %true is returned if and only if appending the entire @bv to a bio with
194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
195 * the block driver.
196 */
197 static bool bvec_split_segs(const struct request_queue *q,
198 const struct bio_vec *bv, unsigned *nsegs,
199 unsigned *sectors, unsigned max_segs,
200 unsigned max_sectors)
201 {
202 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
203 unsigned len = min(bv->bv_len, max_len);
204 unsigned total_len = 0;
205 unsigned seg_size = 0;
206
207 while (len && *nsegs < max_segs) {
208 seg_size = get_max_segment_size(q, bv->bv_page,
209 bv->bv_offset + total_len);
210 seg_size = min(seg_size, len);
211
212 (*nsegs)++;
213 total_len += seg_size;
214 len -= seg_size;
215
216 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
217 break;
218 }
219
220 *sectors += total_len >> 9;
221
222 /* tell the caller to split the bvec if it is too big to fit */
223 return len > 0 || bv->bv_len > max_len;
224 }
225
226 /**
227 * blk_bio_segment_split - split a bio in two bios
228 * @q: [in] request queue pointer
229 * @bio: [in] bio to be split
230 * @bs: [in] bio set to allocate the clone from
231 * @segs: [out] number of segments in the bio with the first half of the sectors
232 *
233 * Clone @bio, update the bi_iter of the clone to represent the first sectors
234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
235 * following is guaranteed for the cloned bio:
236 * - That it has at most get_max_io_size(@q, @bio) sectors.
237 * - That it has at most queue_max_segments(@q) segments.
238 *
239 * Except for discard requests the cloned bio will point at the bi_io_vec of
240 * the original bio. It is the responsibility of the caller to ensure that the
241 * original bio is not freed before the cloned bio. The caller is also
242 * responsible for ensuring that @bs is only destroyed after processing of the
243 * split bio has finished.
244 */
245 static struct bio *blk_bio_segment_split(struct request_queue *q,
246 struct bio *bio,
247 struct bio_set *bs,
248 unsigned *segs)
249 {
250 struct bio_vec bv, bvprv, *bvprvp = NULL;
251 struct bvec_iter iter;
252 unsigned nsegs = 0, sectors = 0;
253 const unsigned max_sectors = get_max_io_size(q, bio);
254 const unsigned max_segs = queue_max_segments(q);
255
256 bio_for_each_bvec(bv, bio, iter) {
257 /*
258 * If the queue doesn't support SG gaps and adding this
259 * offset would create a gap, disallow it.
260 */
261 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
262 goto split;
263
264 if (nsegs < max_segs &&
265 sectors + (bv.bv_len >> 9) <= max_sectors &&
266 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
267 nsegs++;
268 sectors += bv.bv_len >> 9;
269 } else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
270 max_sectors)) {
271 goto split;
272 }
273
274 bvprv = bv;
275 bvprvp = &bvprv;
276 }
277
278 *segs = nsegs;
279 return NULL;
280 split:
281 *segs = nsegs;
282
283 /*
284 * Bio splitting may cause subtle trouble such as hang when doing sync
285 * iopoll in direct IO routine. Given performance gain of iopoll for
286 * big IO can be trival, disable iopoll when split needed.
287 */
288 bio->bi_opf &= ~REQ_HIPRI;
289
290 return bio_split(bio, sectors, GFP_NOIO, bs);
291 }
292
293 /**
294 * __blk_queue_split - split a bio and submit the second half
295 * @bio: [in, out] bio to be split
296 * @nr_segs: [out] number of segments in the first bio
297 *
298 * Split a bio into two bios, chain the two bios, submit the second half and
299 * store a pointer to the first half in *@bio. If the second bio is still too
300 * big it will be split by a recursive call to this function. Since this
301 * function may allocate a new bio from q->bio_split, it is the responsibility
302 * of the caller to ensure that q->bio_split is only released after processing
303 * of the split bio has finished.
304 */
305 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
306 {
307 struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue;
308 struct bio *split = NULL;
309
310 switch (bio_op(*bio)) {
311 case REQ_OP_DISCARD:
312 case REQ_OP_SECURE_ERASE:
313 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
314 break;
315 case REQ_OP_WRITE_ZEROES:
316 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
317 nr_segs);
318 break;
319 case REQ_OP_WRITE_SAME:
320 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
321 nr_segs);
322 break;
323 default:
324 /*
325 * All drivers must accept single-segments bios that are <=
326 * PAGE_SIZE. This is a quick and dirty check that relies on
327 * the fact that bi_io_vec[0] is always valid if a bio has data.
328 * The check might lead to occasional false negatives when bios
329 * are cloned, but compared to the performance impact of cloned
330 * bios themselves the loop below doesn't matter anyway.
331 */
332 if (!q->limits.chunk_sectors &&
333 (*bio)->bi_vcnt == 1 &&
334 ((*bio)->bi_io_vec[0].bv_len +
335 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
336 *nr_segs = 1;
337 break;
338 }
339 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
340 break;
341 }
342
343 if (split) {
344 /* there isn't chance to merge the splitted bio */
345 split->bi_opf |= REQ_NOMERGE;
346
347 bio_chain(split, *bio);
348 trace_block_split(split, (*bio)->bi_iter.bi_sector);
349 submit_bio_noacct(*bio);
350 *bio = split;
351 }
352 }
353
354 /**
355 * blk_queue_split - split a bio and submit the second half
356 * @bio: [in, out] bio to be split
357 *
358 * Split a bio into two bios, chains the two bios, submit the second half and
359 * store a pointer to the first half in *@bio. Since this function may allocate
360 * a new bio from q->bio_split, it is the responsibility of the caller to ensure
361 * that q->bio_split is only released after processing of the split bio has
362 * finished.
363 */
364 void blk_queue_split(struct bio **bio)
365 {
366 unsigned int nr_segs;
367
368 __blk_queue_split(bio, &nr_segs);
369 }
370 EXPORT_SYMBOL(blk_queue_split);
371
372 unsigned int blk_recalc_rq_segments(struct request *rq)
373 {
374 unsigned int nr_phys_segs = 0;
375 unsigned int nr_sectors = 0;
376 struct req_iterator iter;
377 struct bio_vec bv;
378
379 if (!rq->bio)
380 return 0;
381
382 switch (bio_op(rq->bio)) {
383 case REQ_OP_DISCARD:
384 case REQ_OP_SECURE_ERASE:
385 if (queue_max_discard_segments(rq->q) > 1) {
386 struct bio *bio = rq->bio;
387
388 for_each_bio(bio)
389 nr_phys_segs++;
390 return nr_phys_segs;
391 }
392 return 1;
393 case REQ_OP_WRITE_ZEROES:
394 return 0;
395 case REQ_OP_WRITE_SAME:
396 return 1;
397 }
398
399 rq_for_each_bvec(bv, rq, iter)
400 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
401 UINT_MAX, UINT_MAX);
402 return nr_phys_segs;
403 }
404
405 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
406 struct scatterlist *sglist)
407 {
408 if (!*sg)
409 return sglist;
410
411 /*
412 * If the driver previously mapped a shorter list, we could see a
413 * termination bit prematurely unless it fully inits the sg table
414 * on each mapping. We KNOW that there must be more entries here
415 * or the driver would be buggy, so force clear the termination bit
416 * to avoid doing a full sg_init_table() in drivers for each command.
417 */
418 sg_unmark_end(*sg);
419 return sg_next(*sg);
420 }
421
422 static unsigned blk_bvec_map_sg(struct request_queue *q,
423 struct bio_vec *bvec, struct scatterlist *sglist,
424 struct scatterlist **sg)
425 {
426 unsigned nbytes = bvec->bv_len;
427 unsigned nsegs = 0, total = 0;
428
429 while (nbytes > 0) {
430 unsigned offset = bvec->bv_offset + total;
431 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
432 offset), nbytes);
433 struct page *page = bvec->bv_page;
434
435 /*
436 * Unfortunately a fair number of drivers barf on scatterlists
437 * that have an offset larger than PAGE_SIZE, despite other
438 * subsystems dealing with that invariant just fine. For now
439 * stick to the legacy format where we never present those from
440 * the block layer, but the code below should be removed once
441 * these offenders (mostly MMC/SD drivers) are fixed.
442 */
443 page += (offset >> PAGE_SHIFT);
444 offset &= ~PAGE_MASK;
445
446 *sg = blk_next_sg(sg, sglist);
447 sg_set_page(*sg, page, len, offset);
448
449 total += len;
450 nbytes -= len;
451 nsegs++;
452 }
453
454 return nsegs;
455 }
456
457 static inline int __blk_bvec_map_sg(struct bio_vec bv,
458 struct scatterlist *sglist, struct scatterlist **sg)
459 {
460 *sg = blk_next_sg(sg, sglist);
461 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
462 return 1;
463 }
464
465 /* only try to merge bvecs into one sg if they are from two bios */
466 static inline bool
467 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
468 struct bio_vec *bvprv, struct scatterlist **sg)
469 {
470
471 int nbytes = bvec->bv_len;
472
473 if (!*sg)
474 return false;
475
476 if ((*sg)->length + nbytes > queue_max_segment_size(q))
477 return false;
478
479 if (!biovec_phys_mergeable(q, bvprv, bvec))
480 return false;
481
482 (*sg)->length += nbytes;
483
484 return true;
485 }
486
487 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
488 struct scatterlist *sglist,
489 struct scatterlist **sg)
490 {
491 struct bio_vec bvec, bvprv = { NULL };
492 struct bvec_iter iter;
493 int nsegs = 0;
494 bool new_bio = false;
495
496 for_each_bio(bio) {
497 bio_for_each_bvec(bvec, bio, iter) {
498 /*
499 * Only try to merge bvecs from two bios given we
500 * have done bio internal merge when adding pages
501 * to bio
502 */
503 if (new_bio &&
504 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
505 goto next_bvec;
506
507 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
508 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
509 else
510 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
511 next_bvec:
512 new_bio = false;
513 }
514 if (likely(bio->bi_iter.bi_size)) {
515 bvprv = bvec;
516 new_bio = true;
517 }
518 }
519
520 return nsegs;
521 }
522
523 /*
524 * map a request to scatterlist, return number of sg entries setup. Caller
525 * must make sure sg can hold rq->nr_phys_segments entries
526 */
527 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
528 struct scatterlist *sglist, struct scatterlist **last_sg)
529 {
530 int nsegs = 0;
531
532 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
533 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
534 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
535 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
536 else if (rq->bio)
537 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
538
539 if (*last_sg)
540 sg_mark_end(*last_sg);
541
542 /*
543 * Something must have been wrong if the figured number of
544 * segment is bigger than number of req's physical segments
545 */
546 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
547
548 return nsegs;
549 }
550 EXPORT_SYMBOL(__blk_rq_map_sg);
551
552 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
553 {
554 if (req_op(rq) == REQ_OP_DISCARD)
555 return queue_max_discard_segments(rq->q);
556 return queue_max_segments(rq->q);
557 }
558
559 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
560 unsigned int nr_phys_segs)
561 {
562 if (blk_integrity_merge_bio(req->q, req, bio) == false)
563 goto no_merge;
564
565 /* discard request merge won't add new segment */
566 if (req_op(req) == REQ_OP_DISCARD)
567 return 1;
568
569 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
570 goto no_merge;
571
572 /*
573 * This will form the start of a new hw segment. Bump both
574 * counters.
575 */
576 req->nr_phys_segments += nr_phys_segs;
577 return 1;
578
579 no_merge:
580 req_set_nomerge(req->q, req);
581 return 0;
582 }
583
584 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
585 {
586 if (req_gap_back_merge(req, bio))
587 return 0;
588 if (blk_integrity_rq(req) &&
589 integrity_req_gap_back_merge(req, bio))
590 return 0;
591 if (!bio_crypt_ctx_back_mergeable(req, bio))
592 return 0;
593 if (blk_rq_sectors(req) + bio_sectors(bio) >
594 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
595 req_set_nomerge(req->q, req);
596 return 0;
597 }
598
599 return ll_new_hw_segment(req, bio, nr_segs);
600 }
601
602 static int ll_front_merge_fn(struct request *req, struct bio *bio,
603 unsigned int nr_segs)
604 {
605 if (req_gap_front_merge(req, bio))
606 return 0;
607 if (blk_integrity_rq(req) &&
608 integrity_req_gap_front_merge(req, bio))
609 return 0;
610 if (!bio_crypt_ctx_front_mergeable(req, bio))
611 return 0;
612 if (blk_rq_sectors(req) + bio_sectors(bio) >
613 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
614 req_set_nomerge(req->q, req);
615 return 0;
616 }
617
618 return ll_new_hw_segment(req, bio, nr_segs);
619 }
620
621 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
622 struct request *next)
623 {
624 unsigned short segments = blk_rq_nr_discard_segments(req);
625
626 if (segments >= queue_max_discard_segments(q))
627 goto no_merge;
628 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
629 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
630 goto no_merge;
631
632 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
633 return true;
634 no_merge:
635 req_set_nomerge(q, req);
636 return false;
637 }
638
639 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
640 struct request *next)
641 {
642 int total_phys_segments;
643
644 if (req_gap_back_merge(req, next->bio))
645 return 0;
646
647 /*
648 * Will it become too large?
649 */
650 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
651 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
652 return 0;
653
654 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
655 if (total_phys_segments > blk_rq_get_max_segments(req))
656 return 0;
657
658 if (blk_integrity_merge_rq(q, req, next) == false)
659 return 0;
660
661 if (!bio_crypt_ctx_merge_rq(req, next))
662 return 0;
663
664 /* Merge is OK... */
665 req->nr_phys_segments = total_phys_segments;
666 return 1;
667 }
668
669 /**
670 * blk_rq_set_mixed_merge - mark a request as mixed merge
671 * @rq: request to mark as mixed merge
672 *
673 * Description:
674 * @rq is about to be mixed merged. Make sure the attributes
675 * which can be mixed are set in each bio and mark @rq as mixed
676 * merged.
677 */
678 void blk_rq_set_mixed_merge(struct request *rq)
679 {
680 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
681 struct bio *bio;
682
683 if (rq->rq_flags & RQF_MIXED_MERGE)
684 return;
685
686 /*
687 * @rq will no longer represent mixable attributes for all the
688 * contained bios. It will just track those of the first one.
689 * Distributes the attributs to each bio.
690 */
691 for (bio = rq->bio; bio; bio = bio->bi_next) {
692 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
693 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
694 bio->bi_opf |= ff;
695 }
696 rq->rq_flags |= RQF_MIXED_MERGE;
697 }
698
699 static void blk_account_io_merge_request(struct request *req)
700 {
701 if (blk_do_io_stat(req)) {
702 part_stat_lock();
703 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
704 part_stat_unlock();
705 }
706 }
707
708 /*
709 * Two cases of handling DISCARD merge:
710 * If max_discard_segments > 1, the driver takes every bio
711 * as a range and send them to controller together. The ranges
712 * needn't to be contiguous.
713 * Otherwise, the bios/requests will be handled as same as
714 * others which should be contiguous.
715 */
716 static inline bool blk_discard_mergable(struct request *req)
717 {
718 if (req_op(req) == REQ_OP_DISCARD &&
719 queue_max_discard_segments(req->q) > 1)
720 return true;
721 return false;
722 }
723
724 static enum elv_merge blk_try_req_merge(struct request *req,
725 struct request *next)
726 {
727 if (blk_discard_mergable(req))
728 return ELEVATOR_DISCARD_MERGE;
729 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
730 return ELEVATOR_BACK_MERGE;
731
732 return ELEVATOR_NO_MERGE;
733 }
734
735 /*
736 * For non-mq, this has to be called with the request spinlock acquired.
737 * For mq with scheduling, the appropriate queue wide lock should be held.
738 */
739 static struct request *attempt_merge(struct request_queue *q,
740 struct request *req, struct request *next)
741 {
742 if (!rq_mergeable(req) || !rq_mergeable(next))
743 return NULL;
744
745 if (req_op(req) != req_op(next))
746 return NULL;
747
748 if (rq_data_dir(req) != rq_data_dir(next)
749 || req->rq_disk != next->rq_disk)
750 return NULL;
751
752 if (req_op(req) == REQ_OP_WRITE_SAME &&
753 !blk_write_same_mergeable(req->bio, next->bio))
754 return NULL;
755
756 /*
757 * Don't allow merge of different write hints, or for a hint with
758 * non-hint IO.
759 */
760 if (req->write_hint != next->write_hint)
761 return NULL;
762
763 if (req->ioprio != next->ioprio)
764 return NULL;
765
766 /*
767 * If we are allowed to merge, then append bio list
768 * from next to rq and release next. merge_requests_fn
769 * will have updated segment counts, update sector
770 * counts here. Handle DISCARDs separately, as they
771 * have separate settings.
772 */
773
774 switch (blk_try_req_merge(req, next)) {
775 case ELEVATOR_DISCARD_MERGE:
776 if (!req_attempt_discard_merge(q, req, next))
777 return NULL;
778 break;
779 case ELEVATOR_BACK_MERGE:
780 if (!ll_merge_requests_fn(q, req, next))
781 return NULL;
782 break;
783 default:
784 return NULL;
785 }
786
787 /*
788 * If failfast settings disagree or any of the two is already
789 * a mixed merge, mark both as mixed before proceeding. This
790 * makes sure that all involved bios have mixable attributes
791 * set properly.
792 */
793 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
794 (req->cmd_flags & REQ_FAILFAST_MASK) !=
795 (next->cmd_flags & REQ_FAILFAST_MASK)) {
796 blk_rq_set_mixed_merge(req);
797 blk_rq_set_mixed_merge(next);
798 }
799
800 /*
801 * At this point we have either done a back merge or front merge. We
802 * need the smaller start_time_ns of the merged requests to be the
803 * current request for accounting purposes.
804 */
805 if (next->start_time_ns < req->start_time_ns)
806 req->start_time_ns = next->start_time_ns;
807
808 req->biotail->bi_next = next->bio;
809 req->biotail = next->biotail;
810
811 req->__data_len += blk_rq_bytes(next);
812
813 if (!blk_discard_mergable(req))
814 elv_merge_requests(q, req, next);
815
816 /*
817 * 'next' is going away, so update stats accordingly
818 */
819 blk_account_io_merge_request(next);
820
821 trace_block_rq_merge(next);
822
823 /*
824 * ownership of bio passed from next to req, return 'next' for
825 * the caller to free
826 */
827 next->bio = NULL;
828 return next;
829 }
830
831 static struct request *attempt_back_merge(struct request_queue *q,
832 struct request *rq)
833 {
834 struct request *next = elv_latter_request(q, rq);
835
836 if (next)
837 return attempt_merge(q, rq, next);
838
839 return NULL;
840 }
841
842 static struct request *attempt_front_merge(struct request_queue *q,
843 struct request *rq)
844 {
845 struct request *prev = elv_former_request(q, rq);
846
847 if (prev)
848 return attempt_merge(q, prev, rq);
849
850 return NULL;
851 }
852
853 /*
854 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
855 * otherwise. The caller is responsible for freeing 'next' if the merge
856 * happened.
857 */
858 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
859 struct request *next)
860 {
861 return attempt_merge(q, rq, next);
862 }
863
864 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
865 {
866 if (!rq_mergeable(rq) || !bio_mergeable(bio))
867 return false;
868
869 if (req_op(rq) != bio_op(bio))
870 return false;
871
872 /* different data direction or already started, don't merge */
873 if (bio_data_dir(bio) != rq_data_dir(rq))
874 return false;
875
876 /* must be same device */
877 if (rq->rq_disk != bio->bi_bdev->bd_disk)
878 return false;
879
880 /* only merge integrity protected bio into ditto rq */
881 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
882 return false;
883
884 /* Only merge if the crypt contexts are compatible */
885 if (!bio_crypt_rq_ctx_compatible(rq, bio))
886 return false;
887
888 /* must be using the same buffer */
889 if (req_op(rq) == REQ_OP_WRITE_SAME &&
890 !blk_write_same_mergeable(rq->bio, bio))
891 return false;
892
893 /*
894 * Don't allow merge of different write hints, or for a hint with
895 * non-hint IO.
896 */
897 if (rq->write_hint != bio->bi_write_hint)
898 return false;
899
900 if (rq->ioprio != bio_prio(bio))
901 return false;
902
903 return true;
904 }
905
906 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
907 {
908 if (blk_discard_mergable(rq))
909 return ELEVATOR_DISCARD_MERGE;
910 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
911 return ELEVATOR_BACK_MERGE;
912 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
913 return ELEVATOR_FRONT_MERGE;
914 return ELEVATOR_NO_MERGE;
915 }
916
917 static void blk_account_io_merge_bio(struct request *req)
918 {
919 if (!blk_do_io_stat(req))
920 return;
921
922 part_stat_lock();
923 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
924 part_stat_unlock();
925 }
926
927 enum bio_merge_status {
928 BIO_MERGE_OK,
929 BIO_MERGE_NONE,
930 BIO_MERGE_FAILED,
931 };
932
933 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
934 struct bio *bio, unsigned int nr_segs)
935 {
936 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
937
938 if (!ll_back_merge_fn(req, bio, nr_segs))
939 return BIO_MERGE_FAILED;
940
941 trace_block_bio_backmerge(bio);
942 rq_qos_merge(req->q, req, bio);
943
944 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
945 blk_rq_set_mixed_merge(req);
946
947 req->biotail->bi_next = bio;
948 req->biotail = bio;
949 req->__data_len += bio->bi_iter.bi_size;
950
951 bio_crypt_free_ctx(bio);
952
953 blk_account_io_merge_bio(req);
954 return BIO_MERGE_OK;
955 }
956
957 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
958 struct bio *bio, unsigned int nr_segs)
959 {
960 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
961
962 if (!ll_front_merge_fn(req, bio, nr_segs))
963 return BIO_MERGE_FAILED;
964
965 trace_block_bio_frontmerge(bio);
966 rq_qos_merge(req->q, req, bio);
967
968 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
969 blk_rq_set_mixed_merge(req);
970
971 bio->bi_next = req->bio;
972 req->bio = bio;
973
974 req->__sector = bio->bi_iter.bi_sector;
975 req->__data_len += bio->bi_iter.bi_size;
976
977 bio_crypt_do_front_merge(req, bio);
978
979 blk_account_io_merge_bio(req);
980 return BIO_MERGE_OK;
981 }
982
983 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
984 struct request *req, struct bio *bio)
985 {
986 unsigned short segments = blk_rq_nr_discard_segments(req);
987
988 if (segments >= queue_max_discard_segments(q))
989 goto no_merge;
990 if (blk_rq_sectors(req) + bio_sectors(bio) >
991 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
992 goto no_merge;
993
994 rq_qos_merge(q, req, bio);
995
996 req->biotail->bi_next = bio;
997 req->biotail = bio;
998 req->__data_len += bio->bi_iter.bi_size;
999 req->nr_phys_segments = segments + 1;
1000
1001 blk_account_io_merge_bio(req);
1002 return BIO_MERGE_OK;
1003 no_merge:
1004 req_set_nomerge(q, req);
1005 return BIO_MERGE_FAILED;
1006 }
1007
1008 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1009 struct request *rq,
1010 struct bio *bio,
1011 unsigned int nr_segs,
1012 bool sched_allow_merge)
1013 {
1014 if (!blk_rq_merge_ok(rq, bio))
1015 return BIO_MERGE_NONE;
1016
1017 switch (blk_try_merge(rq, bio)) {
1018 case ELEVATOR_BACK_MERGE:
1019 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1020 return bio_attempt_back_merge(rq, bio, nr_segs);
1021 break;
1022 case ELEVATOR_FRONT_MERGE:
1023 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1024 return bio_attempt_front_merge(rq, bio, nr_segs);
1025 break;
1026 case ELEVATOR_DISCARD_MERGE:
1027 return bio_attempt_discard_merge(q, rq, bio);
1028 default:
1029 return BIO_MERGE_NONE;
1030 }
1031
1032 return BIO_MERGE_FAILED;
1033 }
1034
1035 /**
1036 * blk_attempt_plug_merge - try to merge with %current's plugged list
1037 * @q: request_queue new bio is being queued at
1038 * @bio: new bio being queued
1039 * @nr_segs: number of segments in @bio
1040 * @same_queue_rq: pointer to &struct request that gets filled in when
1041 * another request associated with @q is found on the plug list
1042 * (optional, may be %NULL)
1043 *
1044 * Determine whether @bio being queued on @q can be merged with a request
1045 * on %current's plugged list. Returns %true if merge was successful,
1046 * otherwise %false.
1047 *
1048 * Plugging coalesces IOs from the same issuer for the same purpose without
1049 * going through @q->queue_lock. As such it's more of an issuing mechanism
1050 * than scheduling, and the request, while may have elvpriv data, is not
1051 * added on the elevator at this point. In addition, we don't have
1052 * reliable access to the elevator outside queue lock. Only check basic
1053 * merging parameters without querying the elevator.
1054 *
1055 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1056 */
1057 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1058 unsigned int nr_segs, struct request **same_queue_rq)
1059 {
1060 struct blk_plug *plug;
1061 struct request *rq;
1062 struct list_head *plug_list;
1063
1064 plug = blk_mq_plug(q, bio);
1065 if (!plug)
1066 return false;
1067
1068 plug_list = &plug->mq_list;
1069
1070 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1071 if (rq->q == q && same_queue_rq) {
1072 /*
1073 * Only blk-mq multiple hardware queues case checks the
1074 * rq in the same queue, there should be only one such
1075 * rq in a queue
1076 **/
1077 *same_queue_rq = rq;
1078 }
1079
1080 if (rq->q != q)
1081 continue;
1082
1083 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1084 BIO_MERGE_OK)
1085 return true;
1086 }
1087
1088 return false;
1089 }
1090
1091 /*
1092 * Iterate list of requests and see if we can merge this bio with any
1093 * of them.
1094 */
1095 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1096 struct bio *bio, unsigned int nr_segs)
1097 {
1098 struct request *rq;
1099 int checked = 8;
1100
1101 list_for_each_entry_reverse(rq, list, queuelist) {
1102 if (!checked--)
1103 break;
1104
1105 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1106 case BIO_MERGE_NONE:
1107 continue;
1108 case BIO_MERGE_OK:
1109 return true;
1110 case BIO_MERGE_FAILED:
1111 return false;
1112 }
1113
1114 }
1115
1116 return false;
1117 }
1118 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1119
1120 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1121 unsigned int nr_segs, struct request **merged_request)
1122 {
1123 struct request *rq;
1124
1125 switch (elv_merge(q, &rq, bio)) {
1126 case ELEVATOR_BACK_MERGE:
1127 if (!blk_mq_sched_allow_merge(q, rq, bio))
1128 return false;
1129 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1130 return false;
1131 *merged_request = attempt_back_merge(q, rq);
1132 if (!*merged_request)
1133 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1134 return true;
1135 case ELEVATOR_FRONT_MERGE:
1136 if (!blk_mq_sched_allow_merge(q, rq, bio))
1137 return false;
1138 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1139 return false;
1140 *merged_request = attempt_front_merge(q, rq);
1141 if (!*merged_request)
1142 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1143 return true;
1144 case ELEVATOR_DISCARD_MERGE:
1145 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1146 default:
1147 return false;
1148 }
1149 }
1150 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);