]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq-sched.c
blk-mq: don't allocate driver tag upfront for flush rq
[thirdparty/kernel/stable.git] / block / blk-mq-sched.c
1 /*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 struct blk_mq_hw_ctx *hctx;
23 int i;
24
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
30 }
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33
34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35 {
36 struct request_queue *q = rq->q;
37 struct io_context *ioc = rq_ioc(bio);
38 struct io_cq *icq;
39
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
43
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
48 }
49 get_io_context(icq->ioc);
50 rq->elv.icq = icq;
51 }
52
53 /*
54 * Mark a hardware queue as needing a restart. For shared queues, maintain
55 * a count of how many hardware queues are marked for restart.
56 */
57 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
58 {
59 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 return;
61
62 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
63 struct request_queue *q = hctx->queue;
64
65 if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
66 atomic_inc(&q->shared_hctx_restart);
67 } else
68 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
69 }
70
71 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
72 {
73 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
74 return;
75
76 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
77
78 if (blk_mq_hctx_has_pending(hctx)) {
79 blk_mq_run_hw_queue(hctx, true);
80 return;
81 }
82 }
83
84 /*
85 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
86 * its queue by itself in its completion handler, so we don't need to
87 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
88 */
89 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
90 {
91 struct request_queue *q = hctx->queue;
92 struct elevator_queue *e = q->elevator;
93 LIST_HEAD(rq_list);
94
95 do {
96 struct request *rq;
97
98 if (e->type->ops.mq.has_work &&
99 !e->type->ops.mq.has_work(hctx))
100 break;
101
102 if (!blk_mq_get_dispatch_budget(hctx))
103 break;
104
105 rq = e->type->ops.mq.dispatch_request(hctx);
106 if (!rq) {
107 blk_mq_put_dispatch_budget(hctx);
108 break;
109 }
110
111 /*
112 * Now this rq owns the budget which has to be released
113 * if this rq won't be queued to driver via .queue_rq()
114 * in blk_mq_dispatch_rq_list().
115 */
116 list_add(&rq->queuelist, &rq_list);
117 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
118 }
119
120 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
121 struct blk_mq_ctx *ctx)
122 {
123 unsigned idx = ctx->index_hw;
124
125 if (++idx == hctx->nr_ctx)
126 idx = 0;
127
128 return hctx->ctxs[idx];
129 }
130
131 /*
132 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
133 * its queue by itself in its completion handler, so we don't need to
134 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
135 */
136 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
137 {
138 struct request_queue *q = hctx->queue;
139 LIST_HEAD(rq_list);
140 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
141
142 do {
143 struct request *rq;
144
145 if (!sbitmap_any_bit_set(&hctx->ctx_map))
146 break;
147
148 if (!blk_mq_get_dispatch_budget(hctx))
149 break;
150
151 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
152 if (!rq) {
153 blk_mq_put_dispatch_budget(hctx);
154 break;
155 }
156
157 /*
158 * Now this rq owns the budget which has to be released
159 * if this rq won't be queued to driver via .queue_rq()
160 * in blk_mq_dispatch_rq_list().
161 */
162 list_add(&rq->queuelist, &rq_list);
163
164 /* round robin for fair dispatch */
165 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
166
167 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
168
169 WRITE_ONCE(hctx->dispatch_from, ctx);
170 }
171
172 /* return true if hw queue need to be run again */
173 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
174 {
175 struct request_queue *q = hctx->queue;
176 struct elevator_queue *e = q->elevator;
177 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
178 LIST_HEAD(rq_list);
179
180 /* RCU or SRCU read lock is needed before checking quiesced flag */
181 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
182 return;
183
184 hctx->run++;
185
186 /*
187 * If we have previous entries on our dispatch list, grab them first for
188 * more fair dispatch.
189 */
190 if (!list_empty_careful(&hctx->dispatch)) {
191 spin_lock(&hctx->lock);
192 if (!list_empty(&hctx->dispatch))
193 list_splice_init(&hctx->dispatch, &rq_list);
194 spin_unlock(&hctx->lock);
195 }
196
197 /*
198 * Only ask the scheduler for requests, if we didn't have residual
199 * requests from the dispatch list. This is to avoid the case where
200 * we only ever dispatch a fraction of the requests available because
201 * of low device queue depth. Once we pull requests out of the IO
202 * scheduler, we can no longer merge or sort them. So it's best to
203 * leave them there for as long as we can. Mark the hw queue as
204 * needing a restart in that case.
205 *
206 * We want to dispatch from the scheduler if there was nothing
207 * on the dispatch list or we were able to dispatch from the
208 * dispatch list.
209 */
210 if (!list_empty(&rq_list)) {
211 blk_mq_sched_mark_restart_hctx(hctx);
212 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
213 if (has_sched_dispatch)
214 blk_mq_do_dispatch_sched(hctx);
215 else
216 blk_mq_do_dispatch_ctx(hctx);
217 }
218 } else if (has_sched_dispatch) {
219 blk_mq_do_dispatch_sched(hctx);
220 } else if (q->mq_ops->get_budget) {
221 /*
222 * If we need to get budget before queuing request, we
223 * dequeue request one by one from sw queue for avoiding
224 * to mess up I/O merge when dispatch runs out of resource.
225 *
226 * TODO: get more budgets, and dequeue more requests in
227 * one time.
228 */
229 blk_mq_do_dispatch_ctx(hctx);
230 } else {
231 blk_mq_flush_busy_ctxs(hctx, &rq_list);
232 blk_mq_dispatch_rq_list(q, &rq_list, false);
233 }
234 }
235
236 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
237 struct request **merged_request)
238 {
239 struct request *rq;
240
241 switch (elv_merge(q, &rq, bio)) {
242 case ELEVATOR_BACK_MERGE:
243 if (!blk_mq_sched_allow_merge(q, rq, bio))
244 return false;
245 if (!bio_attempt_back_merge(q, rq, bio))
246 return false;
247 *merged_request = attempt_back_merge(q, rq);
248 if (!*merged_request)
249 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
250 return true;
251 case ELEVATOR_FRONT_MERGE:
252 if (!blk_mq_sched_allow_merge(q, rq, bio))
253 return false;
254 if (!bio_attempt_front_merge(q, rq, bio))
255 return false;
256 *merged_request = attempt_front_merge(q, rq);
257 if (!*merged_request)
258 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
259 return true;
260 default:
261 return false;
262 }
263 }
264 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
265
266 /*
267 * Reverse check our software queue for entries that we could potentially
268 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
269 * too much time checking for merges.
270 */
271 static bool blk_mq_attempt_merge(struct request_queue *q,
272 struct blk_mq_ctx *ctx, struct bio *bio)
273 {
274 struct request *rq;
275 int checked = 8;
276
277 lockdep_assert_held(&ctx->lock);
278
279 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
280 bool merged = false;
281
282 if (!checked--)
283 break;
284
285 if (!blk_rq_merge_ok(rq, bio))
286 continue;
287
288 switch (blk_try_merge(rq, bio)) {
289 case ELEVATOR_BACK_MERGE:
290 if (blk_mq_sched_allow_merge(q, rq, bio))
291 merged = bio_attempt_back_merge(q, rq, bio);
292 break;
293 case ELEVATOR_FRONT_MERGE:
294 if (blk_mq_sched_allow_merge(q, rq, bio))
295 merged = bio_attempt_front_merge(q, rq, bio);
296 break;
297 case ELEVATOR_DISCARD_MERGE:
298 merged = bio_attempt_discard_merge(q, rq, bio);
299 break;
300 default:
301 continue;
302 }
303
304 if (merged)
305 ctx->rq_merged++;
306 return merged;
307 }
308
309 return false;
310 }
311
312 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
313 {
314 struct elevator_queue *e = q->elevator;
315 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
316 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
317 bool ret = false;
318
319 if (e && e->type->ops.mq.bio_merge) {
320 blk_mq_put_ctx(ctx);
321 return e->type->ops.mq.bio_merge(hctx, bio);
322 }
323
324 if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
325 /* default per sw-queue merge */
326 spin_lock(&ctx->lock);
327 ret = blk_mq_attempt_merge(q, ctx, bio);
328 spin_unlock(&ctx->lock);
329 }
330
331 blk_mq_put_ctx(ctx);
332 return ret;
333 }
334
335 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
336 {
337 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
338 }
339 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
340
341 void blk_mq_sched_request_inserted(struct request *rq)
342 {
343 trace_block_rq_insert(rq->q, rq);
344 }
345 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
346
347 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
348 bool has_sched,
349 struct request *rq)
350 {
351 /* dispatch flush rq directly */
352 if (rq->rq_flags & RQF_FLUSH_SEQ) {
353 spin_lock(&hctx->lock);
354 list_add(&rq->queuelist, &hctx->dispatch);
355 spin_unlock(&hctx->lock);
356 return true;
357 }
358
359 if (has_sched)
360 rq->rq_flags |= RQF_SORTED;
361
362 return false;
363 }
364
365 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
366 bool run_queue, bool async, bool can_block)
367 {
368 struct request_queue *q = rq->q;
369 struct elevator_queue *e = q->elevator;
370 struct blk_mq_ctx *ctx = rq->mq_ctx;
371 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
372
373 /* flush rq in flush machinery need to be dispatched directly */
374 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
375 blk_insert_flush(rq);
376 goto run;
377 }
378
379 WARN_ON(e && (rq->tag != -1));
380
381 if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
382 goto run;
383
384 if (e && e->type->ops.mq.insert_requests) {
385 LIST_HEAD(list);
386
387 list_add(&rq->queuelist, &list);
388 e->type->ops.mq.insert_requests(hctx, &list, at_head);
389 } else {
390 spin_lock(&ctx->lock);
391 __blk_mq_insert_request(hctx, rq, at_head);
392 spin_unlock(&ctx->lock);
393 }
394
395 run:
396 if (run_queue)
397 blk_mq_run_hw_queue(hctx, async);
398 }
399
400 void blk_mq_sched_insert_requests(struct request_queue *q,
401 struct blk_mq_ctx *ctx,
402 struct list_head *list, bool run_queue_async)
403 {
404 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
405 struct elevator_queue *e = hctx->queue->elevator;
406
407 if (e && e->type->ops.mq.insert_requests)
408 e->type->ops.mq.insert_requests(hctx, list, false);
409 else
410 blk_mq_insert_requests(hctx, ctx, list);
411
412 blk_mq_run_hw_queue(hctx, run_queue_async);
413 }
414
415 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
416 struct blk_mq_hw_ctx *hctx,
417 unsigned int hctx_idx)
418 {
419 if (hctx->sched_tags) {
420 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
421 blk_mq_free_rq_map(hctx->sched_tags);
422 hctx->sched_tags = NULL;
423 }
424 }
425
426 static int blk_mq_sched_alloc_tags(struct request_queue *q,
427 struct blk_mq_hw_ctx *hctx,
428 unsigned int hctx_idx)
429 {
430 struct blk_mq_tag_set *set = q->tag_set;
431 int ret;
432
433 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
434 set->reserved_tags);
435 if (!hctx->sched_tags)
436 return -ENOMEM;
437
438 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
439 if (ret)
440 blk_mq_sched_free_tags(set, hctx, hctx_idx);
441
442 return ret;
443 }
444
445 static void blk_mq_sched_tags_teardown(struct request_queue *q)
446 {
447 struct blk_mq_tag_set *set = q->tag_set;
448 struct blk_mq_hw_ctx *hctx;
449 int i;
450
451 queue_for_each_hw_ctx(q, hctx, i)
452 blk_mq_sched_free_tags(set, hctx, i);
453 }
454
455 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
456 unsigned int hctx_idx)
457 {
458 struct elevator_queue *e = q->elevator;
459 int ret;
460
461 if (!e)
462 return 0;
463
464 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
465 if (ret)
466 return ret;
467
468 if (e->type->ops.mq.init_hctx) {
469 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
470 if (ret) {
471 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
472 return ret;
473 }
474 }
475
476 blk_mq_debugfs_register_sched_hctx(q, hctx);
477
478 return 0;
479 }
480
481 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
482 unsigned int hctx_idx)
483 {
484 struct elevator_queue *e = q->elevator;
485
486 if (!e)
487 return;
488
489 blk_mq_debugfs_unregister_sched_hctx(hctx);
490
491 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
492 e->type->ops.mq.exit_hctx(hctx, hctx_idx);
493 hctx->sched_data = NULL;
494 }
495
496 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
497 }
498
499 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
500 {
501 struct blk_mq_hw_ctx *hctx;
502 struct elevator_queue *eq;
503 unsigned int i;
504 int ret;
505
506 if (!e) {
507 q->elevator = NULL;
508 return 0;
509 }
510
511 /*
512 * Default to double of smaller one between hw queue_depth and 128,
513 * since we don't split into sync/async like the old code did.
514 * Additionally, this is a per-hw queue depth.
515 */
516 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
517 BLKDEV_MAX_RQ);
518
519 queue_for_each_hw_ctx(q, hctx, i) {
520 ret = blk_mq_sched_alloc_tags(q, hctx, i);
521 if (ret)
522 goto err;
523 }
524
525 ret = e->ops.mq.init_sched(q, e);
526 if (ret)
527 goto err;
528
529 blk_mq_debugfs_register_sched(q);
530
531 queue_for_each_hw_ctx(q, hctx, i) {
532 if (e->ops.mq.init_hctx) {
533 ret = e->ops.mq.init_hctx(hctx, i);
534 if (ret) {
535 eq = q->elevator;
536 blk_mq_exit_sched(q, eq);
537 kobject_put(&eq->kobj);
538 return ret;
539 }
540 }
541 blk_mq_debugfs_register_sched_hctx(q, hctx);
542 }
543
544 return 0;
545
546 err:
547 blk_mq_sched_tags_teardown(q);
548 q->elevator = NULL;
549 return ret;
550 }
551
552 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
553 {
554 struct blk_mq_hw_ctx *hctx;
555 unsigned int i;
556
557 queue_for_each_hw_ctx(q, hctx, i) {
558 blk_mq_debugfs_unregister_sched_hctx(hctx);
559 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
560 e->type->ops.mq.exit_hctx(hctx, i);
561 hctx->sched_data = NULL;
562 }
563 }
564 blk_mq_debugfs_unregister_sched(q);
565 if (e->type->ops.mq.exit_sched)
566 e->type->ops.mq.exit_sched(e);
567 blk_mq_sched_tags_teardown(q);
568 q->elevator = NULL;
569 }
570
571 int blk_mq_sched_init(struct request_queue *q)
572 {
573 int ret;
574
575 mutex_lock(&q->sysfs_lock);
576 ret = elevator_init(q, NULL);
577 mutex_unlock(&q->sysfs_lock);
578
579 return ret;
580 }