]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq-sched.c
blk-mq: allow software queue to map to multiple hardware queues
[thirdparty/kernel/stable.git] / block / blk-mq-sched.c
1 /*
2 * blk-mq scheduling framework
3 *
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
9
10 #include <trace/events/block.h>
11
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
18
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
21 {
22 struct blk_mq_hw_ctx *hctx;
23 int i;
24
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
30 }
31 }
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
33
34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35 {
36 struct request_queue *q = rq->q;
37 struct io_context *ioc = rq_ioc(bio);
38 struct io_cq *icq;
39
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
43
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
48 }
49 get_io_context(icq->ioc);
50 rq->elv.icq = icq;
51 }
52
53 /*
54 * Mark a hardware queue as needing a restart. For shared queues, maintain
55 * a count of how many hardware queues are marked for restart.
56 */
57 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
58 {
59 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 return;
61
62 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
63 }
64
65 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
66 {
67 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
68 return;
69 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
70
71 blk_mq_run_hw_queue(hctx, true);
72 }
73
74 /*
75 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
76 * its queue by itself in its completion handler, so we don't need to
77 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
78 */
79 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
80 {
81 struct request_queue *q = hctx->queue;
82 struct elevator_queue *e = q->elevator;
83 LIST_HEAD(rq_list);
84
85 do {
86 struct request *rq;
87
88 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
89 break;
90
91 if (!blk_mq_get_dispatch_budget(hctx))
92 break;
93
94 rq = e->type->ops.dispatch_request(hctx);
95 if (!rq) {
96 blk_mq_put_dispatch_budget(hctx);
97 break;
98 }
99
100 /*
101 * Now this rq owns the budget which has to be released
102 * if this rq won't be queued to driver via .queue_rq()
103 * in blk_mq_dispatch_rq_list().
104 */
105 list_add(&rq->queuelist, &rq_list);
106 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
107 }
108
109 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
110 struct blk_mq_ctx *ctx)
111 {
112 unsigned short idx = ctx->index_hw[hctx->type];
113
114 if (++idx == hctx->nr_ctx)
115 idx = 0;
116
117 return hctx->ctxs[idx];
118 }
119
120 /*
121 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
122 * its queue by itself in its completion handler, so we don't need to
123 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
124 */
125 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
126 {
127 struct request_queue *q = hctx->queue;
128 LIST_HEAD(rq_list);
129 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
130
131 do {
132 struct request *rq;
133
134 if (!sbitmap_any_bit_set(&hctx->ctx_map))
135 break;
136
137 if (!blk_mq_get_dispatch_budget(hctx))
138 break;
139
140 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
141 if (!rq) {
142 blk_mq_put_dispatch_budget(hctx);
143 break;
144 }
145
146 /*
147 * Now this rq owns the budget which has to be released
148 * if this rq won't be queued to driver via .queue_rq()
149 * in blk_mq_dispatch_rq_list().
150 */
151 list_add(&rq->queuelist, &rq_list);
152
153 /* round robin for fair dispatch */
154 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
155
156 } while (blk_mq_dispatch_rq_list(q, &rq_list, true));
157
158 WRITE_ONCE(hctx->dispatch_from, ctx);
159 }
160
161 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
162 {
163 struct request_queue *q = hctx->queue;
164 struct elevator_queue *e = q->elevator;
165 const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
166 LIST_HEAD(rq_list);
167
168 /* RCU or SRCU read lock is needed before checking quiesced flag */
169 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
170 return;
171
172 hctx->run++;
173
174 /*
175 * If we have previous entries on our dispatch list, grab them first for
176 * more fair dispatch.
177 */
178 if (!list_empty_careful(&hctx->dispatch)) {
179 spin_lock(&hctx->lock);
180 if (!list_empty(&hctx->dispatch))
181 list_splice_init(&hctx->dispatch, &rq_list);
182 spin_unlock(&hctx->lock);
183 }
184
185 /*
186 * Only ask the scheduler for requests, if we didn't have residual
187 * requests from the dispatch list. This is to avoid the case where
188 * we only ever dispatch a fraction of the requests available because
189 * of low device queue depth. Once we pull requests out of the IO
190 * scheduler, we can no longer merge or sort them. So it's best to
191 * leave them there for as long as we can. Mark the hw queue as
192 * needing a restart in that case.
193 *
194 * We want to dispatch from the scheduler if there was nothing
195 * on the dispatch list or we were able to dispatch from the
196 * dispatch list.
197 */
198 if (!list_empty(&rq_list)) {
199 blk_mq_sched_mark_restart_hctx(hctx);
200 if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
201 if (has_sched_dispatch)
202 blk_mq_do_dispatch_sched(hctx);
203 else
204 blk_mq_do_dispatch_ctx(hctx);
205 }
206 } else if (has_sched_dispatch) {
207 blk_mq_do_dispatch_sched(hctx);
208 } else if (hctx->dispatch_busy) {
209 /* dequeue request one by one from sw queue if queue is busy */
210 blk_mq_do_dispatch_ctx(hctx);
211 } else {
212 blk_mq_flush_busy_ctxs(hctx, &rq_list);
213 blk_mq_dispatch_rq_list(q, &rq_list, false);
214 }
215 }
216
217 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
218 struct request **merged_request)
219 {
220 struct request *rq;
221
222 switch (elv_merge(q, &rq, bio)) {
223 case ELEVATOR_BACK_MERGE:
224 if (!blk_mq_sched_allow_merge(q, rq, bio))
225 return false;
226 if (!bio_attempt_back_merge(q, rq, bio))
227 return false;
228 *merged_request = attempt_back_merge(q, rq);
229 if (!*merged_request)
230 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
231 return true;
232 case ELEVATOR_FRONT_MERGE:
233 if (!blk_mq_sched_allow_merge(q, rq, bio))
234 return false;
235 if (!bio_attempt_front_merge(q, rq, bio))
236 return false;
237 *merged_request = attempt_front_merge(q, rq);
238 if (!*merged_request)
239 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
240 return true;
241 case ELEVATOR_DISCARD_MERGE:
242 return bio_attempt_discard_merge(q, rq, bio);
243 default:
244 return false;
245 }
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
248
249 /*
250 * Iterate list of requests and see if we can merge this bio with any
251 * of them.
252 */
253 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
254 struct bio *bio)
255 {
256 struct request *rq;
257 int checked = 8;
258
259 list_for_each_entry_reverse(rq, list, queuelist) {
260 bool merged = false;
261
262 if (!checked--)
263 break;
264
265 if (!blk_rq_merge_ok(rq, bio))
266 continue;
267
268 switch (blk_try_merge(rq, bio)) {
269 case ELEVATOR_BACK_MERGE:
270 if (blk_mq_sched_allow_merge(q, rq, bio))
271 merged = bio_attempt_back_merge(q, rq, bio);
272 break;
273 case ELEVATOR_FRONT_MERGE:
274 if (blk_mq_sched_allow_merge(q, rq, bio))
275 merged = bio_attempt_front_merge(q, rq, bio);
276 break;
277 case ELEVATOR_DISCARD_MERGE:
278 merged = bio_attempt_discard_merge(q, rq, bio);
279 break;
280 default:
281 continue;
282 }
283
284 return merged;
285 }
286
287 return false;
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
290
291 /*
292 * Reverse check our software queue for entries that we could potentially
293 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
294 * too much time checking for merges.
295 */
296 static bool blk_mq_attempt_merge(struct request_queue *q,
297 struct blk_mq_ctx *ctx, struct bio *bio)
298 {
299 lockdep_assert_held(&ctx->lock);
300
301 if (blk_mq_bio_list_merge(q, &ctx->rq_list, bio)) {
302 ctx->rq_merged++;
303 return true;
304 }
305
306 return false;
307 }
308
309 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
310 {
311 struct elevator_queue *e = q->elevator;
312 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
313 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx->cpu);
314 bool ret = false;
315
316 if (e && e->type->ops.bio_merge) {
317 blk_mq_put_ctx(ctx);
318 return e->type->ops.bio_merge(hctx, bio);
319 }
320
321 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
322 !list_empty_careful(&ctx->rq_list)) {
323 /* default per sw-queue merge */
324 spin_lock(&ctx->lock);
325 ret = blk_mq_attempt_merge(q, ctx, bio);
326 spin_unlock(&ctx->lock);
327 }
328
329 blk_mq_put_ctx(ctx);
330 return ret;
331 }
332
333 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
334 {
335 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
336 }
337 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
338
339 void blk_mq_sched_request_inserted(struct request *rq)
340 {
341 trace_block_rq_insert(rq->q, rq);
342 }
343 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
344
345 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
346 bool has_sched,
347 struct request *rq)
348 {
349 /* dispatch flush rq directly */
350 if (rq->rq_flags & RQF_FLUSH_SEQ) {
351 spin_lock(&hctx->lock);
352 list_add(&rq->queuelist, &hctx->dispatch);
353 spin_unlock(&hctx->lock);
354 return true;
355 }
356
357 if (has_sched)
358 rq->rq_flags |= RQF_SORTED;
359
360 return false;
361 }
362
363 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
364 bool run_queue, bool async)
365 {
366 struct request_queue *q = rq->q;
367 struct elevator_queue *e = q->elevator;
368 struct blk_mq_ctx *ctx = rq->mq_ctx;
369 struct blk_mq_hw_ctx *hctx;
370
371 hctx = blk_mq_map_queue(q, rq->cmd_flags, ctx->cpu);
372
373 /* flush rq in flush machinery need to be dispatched directly */
374 if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
375 blk_insert_flush(rq);
376 goto run;
377 }
378
379 WARN_ON(e && (rq->tag != -1));
380
381 if (blk_mq_sched_bypass_insert(hctx, !!e, rq))
382 goto run;
383
384 if (e && e->type->ops.insert_requests) {
385 LIST_HEAD(list);
386
387 list_add(&rq->queuelist, &list);
388 e->type->ops.insert_requests(hctx, &list, at_head);
389 } else {
390 spin_lock(&ctx->lock);
391 __blk_mq_insert_request(hctx, rq, at_head);
392 spin_unlock(&ctx->lock);
393 }
394
395 run:
396 if (run_queue)
397 blk_mq_run_hw_queue(hctx, async);
398 }
399
400 void blk_mq_sched_insert_requests(struct request_queue *q,
401 struct blk_mq_ctx *ctx,
402 struct list_head *list, bool run_queue_async)
403 {
404 struct blk_mq_hw_ctx *hctx;
405 struct elevator_queue *e;
406 struct request *rq;
407
408 /* For list inserts, requests better be on the same hw queue */
409 rq = list_first_entry(list, struct request, queuelist);
410 hctx = blk_mq_map_queue(q, rq->cmd_flags, ctx->cpu);
411
412 e = hctx->queue->elevator;
413 if (e && e->type->ops.insert_requests)
414 e->type->ops.insert_requests(hctx, list, false);
415 else {
416 /*
417 * try to issue requests directly if the hw queue isn't
418 * busy in case of 'none' scheduler, and this way may save
419 * us one extra enqueue & dequeue to sw queue.
420 */
421 if (!hctx->dispatch_busy && !e && !run_queue_async) {
422 blk_mq_try_issue_list_directly(hctx, list);
423 if (list_empty(list))
424 return;
425 }
426 blk_mq_insert_requests(hctx, ctx, list);
427 }
428
429 blk_mq_run_hw_queue(hctx, run_queue_async);
430 }
431
432 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
433 struct blk_mq_hw_ctx *hctx,
434 unsigned int hctx_idx)
435 {
436 if (hctx->sched_tags) {
437 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
438 blk_mq_free_rq_map(hctx->sched_tags);
439 hctx->sched_tags = NULL;
440 }
441 }
442
443 static int blk_mq_sched_alloc_tags(struct request_queue *q,
444 struct blk_mq_hw_ctx *hctx,
445 unsigned int hctx_idx)
446 {
447 struct blk_mq_tag_set *set = q->tag_set;
448 int ret;
449
450 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
451 set->reserved_tags);
452 if (!hctx->sched_tags)
453 return -ENOMEM;
454
455 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
456 if (ret)
457 blk_mq_sched_free_tags(set, hctx, hctx_idx);
458
459 return ret;
460 }
461
462 static void blk_mq_sched_tags_teardown(struct request_queue *q)
463 {
464 struct blk_mq_tag_set *set = q->tag_set;
465 struct blk_mq_hw_ctx *hctx;
466 int i;
467
468 queue_for_each_hw_ctx(q, hctx, i)
469 blk_mq_sched_free_tags(set, hctx, i);
470 }
471
472 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
473 {
474 struct blk_mq_hw_ctx *hctx;
475 struct elevator_queue *eq;
476 unsigned int i;
477 int ret;
478
479 if (!e) {
480 q->elevator = NULL;
481 q->nr_requests = q->tag_set->queue_depth;
482 return 0;
483 }
484
485 /*
486 * Default to double of smaller one between hw queue_depth and 128,
487 * since we don't split into sync/async like the old code did.
488 * Additionally, this is a per-hw queue depth.
489 */
490 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
491 BLKDEV_MAX_RQ);
492
493 queue_for_each_hw_ctx(q, hctx, i) {
494 ret = blk_mq_sched_alloc_tags(q, hctx, i);
495 if (ret)
496 goto err;
497 }
498
499 ret = e->ops.init_sched(q, e);
500 if (ret)
501 goto err;
502
503 blk_mq_debugfs_register_sched(q);
504
505 queue_for_each_hw_ctx(q, hctx, i) {
506 if (e->ops.init_hctx) {
507 ret = e->ops.init_hctx(hctx, i);
508 if (ret) {
509 eq = q->elevator;
510 blk_mq_exit_sched(q, eq);
511 kobject_put(&eq->kobj);
512 return ret;
513 }
514 }
515 blk_mq_debugfs_register_sched_hctx(q, hctx);
516 }
517
518 return 0;
519
520 err:
521 blk_mq_sched_tags_teardown(q);
522 q->elevator = NULL;
523 return ret;
524 }
525
526 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
527 {
528 struct blk_mq_hw_ctx *hctx;
529 unsigned int i;
530
531 queue_for_each_hw_ctx(q, hctx, i) {
532 blk_mq_debugfs_unregister_sched_hctx(hctx);
533 if (e->type->ops.exit_hctx && hctx->sched_data) {
534 e->type->ops.exit_hctx(hctx, i);
535 hctx->sched_data = NULL;
536 }
537 }
538 blk_mq_debugfs_unregister_sched(q);
539 if (e->type->ops.exit_sched)
540 e->type->ops.exit_sched(e);
541 blk_mq_sched_tags_teardown(q);
542 q->elevator = NULL;
543 }