]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-mq-tag.c
tracing: Fix memory leak of instance function hash filters
[thirdparty/linux.git] / block / blk-mq-tag.c
1 /*
2 * Tag allocation using scalable bitmaps. Uses active queue tracking to support
3 * fairer distribution of tags between multiple submitters when a shared tag map
4 * is used.
5 *
6 * Copyright (C) 2013-2014 Jens Axboe
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10
11 #include <linux/blk-mq.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-tag.h"
15
16 bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
17 {
18 if (!tags)
19 return true;
20
21 return sbitmap_any_bit_clear(&tags->bitmap_tags.sb);
22 }
23
24 /*
25 * If a previously inactive queue goes active, bump the active user count.
26 * We need to do this before try to allocate driver tag, then even if fail
27 * to get tag when first time, the other shared-tag users could reserve
28 * budget for it.
29 */
30 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
31 {
32 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
33 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
34 atomic_inc(&hctx->tags->active_queues);
35
36 return true;
37 }
38
39 /*
40 * Wakeup all potentially sleeping on tags
41 */
42 void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
43 {
44 sbitmap_queue_wake_all(&tags->bitmap_tags);
45 if (include_reserve)
46 sbitmap_queue_wake_all(&tags->breserved_tags);
47 }
48
49 /*
50 * If a previously busy queue goes inactive, potential waiters could now
51 * be allowed to queue. Wake them up and check.
52 */
53 void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
54 {
55 struct blk_mq_tags *tags = hctx->tags;
56
57 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
58 return;
59
60 atomic_dec(&tags->active_queues);
61
62 blk_mq_tag_wakeup_all(tags, false);
63 }
64
65 /*
66 * For shared tag users, we track the number of currently active users
67 * and attempt to provide a fair share of the tag depth for each of them.
68 */
69 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
70 struct sbitmap_queue *bt)
71 {
72 unsigned int depth, users;
73
74 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
75 return true;
76 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
77 return true;
78
79 /*
80 * Don't try dividing an ant
81 */
82 if (bt->sb.depth == 1)
83 return true;
84
85 users = atomic_read(&hctx->tags->active_queues);
86 if (!users)
87 return true;
88
89 /*
90 * Allow at least some tags
91 */
92 depth = max((bt->sb.depth + users - 1) / users, 4U);
93 return atomic_read(&hctx->nr_active) < depth;
94 }
95
96 static int __blk_mq_get_tag(struct blk_mq_alloc_data *data,
97 struct sbitmap_queue *bt)
98 {
99 if (!(data->flags & BLK_MQ_REQ_INTERNAL) &&
100 !hctx_may_queue(data->hctx, bt))
101 return -1;
102 if (data->shallow_depth)
103 return __sbitmap_queue_get_shallow(bt, data->shallow_depth);
104 else
105 return __sbitmap_queue_get(bt);
106 }
107
108 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
109 {
110 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
111 struct sbitmap_queue *bt;
112 struct sbq_wait_state *ws;
113 DEFINE_WAIT(wait);
114 unsigned int tag_offset;
115 bool drop_ctx;
116 int tag;
117
118 if (data->flags & BLK_MQ_REQ_RESERVED) {
119 if (unlikely(!tags->nr_reserved_tags)) {
120 WARN_ON_ONCE(1);
121 return BLK_MQ_TAG_FAIL;
122 }
123 bt = &tags->breserved_tags;
124 tag_offset = 0;
125 } else {
126 bt = &tags->bitmap_tags;
127 tag_offset = tags->nr_reserved_tags;
128 }
129
130 tag = __blk_mq_get_tag(data, bt);
131 if (tag != -1)
132 goto found_tag;
133
134 if (data->flags & BLK_MQ_REQ_NOWAIT)
135 return BLK_MQ_TAG_FAIL;
136
137 ws = bt_wait_ptr(bt, data->hctx);
138 drop_ctx = data->ctx == NULL;
139 do {
140 struct sbitmap_queue *bt_prev;
141
142 /*
143 * We're out of tags on this hardware queue, kick any
144 * pending IO submits before going to sleep waiting for
145 * some to complete.
146 */
147 blk_mq_run_hw_queue(data->hctx, false);
148
149 /*
150 * Retry tag allocation after running the hardware queue,
151 * as running the queue may also have found completions.
152 */
153 tag = __blk_mq_get_tag(data, bt);
154 if (tag != -1)
155 break;
156
157 prepare_to_wait_exclusive(&ws->wait, &wait,
158 TASK_UNINTERRUPTIBLE);
159
160 tag = __blk_mq_get_tag(data, bt);
161 if (tag != -1)
162 break;
163
164 if (data->ctx)
165 blk_mq_put_ctx(data->ctx);
166
167 bt_prev = bt;
168 io_schedule();
169
170 data->ctx = blk_mq_get_ctx(data->q);
171 data->hctx = blk_mq_map_queue(data->q, data->ctx->cpu);
172 tags = blk_mq_tags_from_data(data);
173 if (data->flags & BLK_MQ_REQ_RESERVED)
174 bt = &tags->breserved_tags;
175 else
176 bt = &tags->bitmap_tags;
177
178 finish_wait(&ws->wait, &wait);
179
180 /*
181 * If destination hw queue is changed, fake wake up on
182 * previous queue for compensating the wake up miss, so
183 * other allocations on previous queue won't be starved.
184 */
185 if (bt != bt_prev)
186 sbitmap_queue_wake_up(bt_prev);
187
188 ws = bt_wait_ptr(bt, data->hctx);
189 } while (1);
190
191 if (drop_ctx && data->ctx)
192 blk_mq_put_ctx(data->ctx);
193
194 finish_wait(&ws->wait, &wait);
195
196 found_tag:
197 return tag + tag_offset;
198 }
199
200 void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags *tags,
201 struct blk_mq_ctx *ctx, unsigned int tag)
202 {
203 if (!blk_mq_tag_is_reserved(tags, tag)) {
204 const int real_tag = tag - tags->nr_reserved_tags;
205
206 BUG_ON(real_tag >= tags->nr_tags);
207 sbitmap_queue_clear(&tags->bitmap_tags, real_tag, ctx->cpu);
208 } else {
209 BUG_ON(tag >= tags->nr_reserved_tags);
210 sbitmap_queue_clear(&tags->breserved_tags, tag, ctx->cpu);
211 }
212 }
213
214 struct bt_iter_data {
215 struct blk_mq_hw_ctx *hctx;
216 busy_iter_fn *fn;
217 void *data;
218 bool reserved;
219 };
220
221 static bool bt_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
222 {
223 struct bt_iter_data *iter_data = data;
224 struct blk_mq_hw_ctx *hctx = iter_data->hctx;
225 struct blk_mq_tags *tags = hctx->tags;
226 bool reserved = iter_data->reserved;
227 struct request *rq;
228
229 if (!reserved)
230 bitnr += tags->nr_reserved_tags;
231 rq = tags->rqs[bitnr];
232
233 /*
234 * We can hit rq == NULL here, because the tagging functions
235 * test and set the bit before assigning ->rqs[].
236 */
237 if (rq && rq->q == hctx->queue)
238 iter_data->fn(hctx, rq, iter_data->data, reserved);
239 return true;
240 }
241
242 /**
243 * bt_for_each - iterate over the requests associated with a hardware queue
244 * @hctx: Hardware queue to examine.
245 * @bt: sbitmap to examine. This is either the breserved_tags member
246 * or the bitmap_tags member of struct blk_mq_tags.
247 * @fn: Pointer to the function that will be called for each request
248 * associated with @hctx that has been assigned a driver tag.
249 * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved)
250 * where rq is a pointer to a request.
251 * @data: Will be passed as third argument to @fn.
252 * @reserved: Indicates whether @bt is the breserved_tags member or the
253 * bitmap_tags member of struct blk_mq_tags.
254 */
255 static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct sbitmap_queue *bt,
256 busy_iter_fn *fn, void *data, bool reserved)
257 {
258 struct bt_iter_data iter_data = {
259 .hctx = hctx,
260 .fn = fn,
261 .data = data,
262 .reserved = reserved,
263 };
264
265 sbitmap_for_each_set(&bt->sb, bt_iter, &iter_data);
266 }
267
268 struct bt_tags_iter_data {
269 struct blk_mq_tags *tags;
270 busy_tag_iter_fn *fn;
271 void *data;
272 bool reserved;
273 };
274
275 static bool bt_tags_iter(struct sbitmap *bitmap, unsigned int bitnr, void *data)
276 {
277 struct bt_tags_iter_data *iter_data = data;
278 struct blk_mq_tags *tags = iter_data->tags;
279 bool reserved = iter_data->reserved;
280 struct request *rq;
281
282 if (!reserved)
283 bitnr += tags->nr_reserved_tags;
284
285 /*
286 * We can hit rq == NULL here, because the tagging functions
287 * test and set the bit before assining ->rqs[].
288 */
289 rq = tags->rqs[bitnr];
290 if (rq && blk_mq_request_started(rq))
291 iter_data->fn(rq, iter_data->data, reserved);
292
293 return true;
294 }
295
296 /**
297 * bt_tags_for_each - iterate over the requests in a tag map
298 * @tags: Tag map to iterate over.
299 * @bt: sbitmap to examine. This is either the breserved_tags member
300 * or the bitmap_tags member of struct blk_mq_tags.
301 * @fn: Pointer to the function that will be called for each started
302 * request. @fn will be called as follows: @fn(rq, @data,
303 * @reserved) where rq is a pointer to a request.
304 * @data: Will be passed as second argument to @fn.
305 * @reserved: Indicates whether @bt is the breserved_tags member or the
306 * bitmap_tags member of struct blk_mq_tags.
307 */
308 static void bt_tags_for_each(struct blk_mq_tags *tags, struct sbitmap_queue *bt,
309 busy_tag_iter_fn *fn, void *data, bool reserved)
310 {
311 struct bt_tags_iter_data iter_data = {
312 .tags = tags,
313 .fn = fn,
314 .data = data,
315 .reserved = reserved,
316 };
317
318 if (tags->rqs)
319 sbitmap_for_each_set(&bt->sb, bt_tags_iter, &iter_data);
320 }
321
322 /**
323 * blk_mq_all_tag_busy_iter - iterate over all started requests in a tag map
324 * @tags: Tag map to iterate over.
325 * @fn: Pointer to the function that will be called for each started
326 * request. @fn will be called as follows: @fn(rq, @priv,
327 * reserved) where rq is a pointer to a request. 'reserved'
328 * indicates whether or not @rq is a reserved request.
329 * @priv: Will be passed as second argument to @fn.
330 */
331 static void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags,
332 busy_tag_iter_fn *fn, void *priv)
333 {
334 if (tags->nr_reserved_tags)
335 bt_tags_for_each(tags, &tags->breserved_tags, fn, priv, true);
336 bt_tags_for_each(tags, &tags->bitmap_tags, fn, priv, false);
337 }
338
339 /**
340 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
341 * @tagset: Tag set to iterate over.
342 * @fn: Pointer to the function that will be called for each started
343 * request. @fn will be called as follows: @fn(rq, @priv,
344 * reserved) where rq is a pointer to a request. 'reserved'
345 * indicates whether or not @rq is a reserved request.
346 * @priv: Will be passed as second argument to @fn.
347 */
348 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
349 busy_tag_iter_fn *fn, void *priv)
350 {
351 int i;
352
353 for (i = 0; i < tagset->nr_hw_queues; i++) {
354 if (tagset->tags && tagset->tags[i])
355 blk_mq_all_tag_busy_iter(tagset->tags[i], fn, priv);
356 }
357 }
358 EXPORT_SYMBOL(blk_mq_tagset_busy_iter);
359
360 /**
361 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
362 * @q: Request queue to examine.
363 * @fn: Pointer to the function that will be called for each request
364 * on @q. @fn will be called as follows: @fn(hctx, rq, @priv,
365 * reserved) where rq is a pointer to a request and hctx points
366 * to the hardware queue associated with the request. 'reserved'
367 * indicates whether or not @rq is a reserved request.
368 * @priv: Will be passed as third argument to @fn.
369 *
370 * Note: if @q->tag_set is shared with other request queues then @fn will be
371 * called for all requests on all queues that share that tag set and not only
372 * for requests associated with @q.
373 */
374 void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
375 void *priv)
376 {
377 struct blk_mq_hw_ctx *hctx;
378 int i;
379
380 /*
381 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and queue_hw_ctx
382 * while the queue is frozen. So we can use q_usage_counter to avoid
383 * racing with it. __blk_mq_update_nr_hw_queues() uses
384 * synchronize_rcu() to ensure this function left the critical section
385 * below.
386 */
387 if (!percpu_ref_tryget(&q->q_usage_counter))
388 return;
389
390 queue_for_each_hw_ctx(q, hctx, i) {
391 struct blk_mq_tags *tags = hctx->tags;
392
393 /*
394 * If no software queues are currently mapped to this
395 * hardware queue, there's nothing to check
396 */
397 if (!blk_mq_hw_queue_mapped(hctx))
398 continue;
399
400 if (tags->nr_reserved_tags)
401 bt_for_each(hctx, &tags->breserved_tags, fn, priv, true);
402 bt_for_each(hctx, &tags->bitmap_tags, fn, priv, false);
403 }
404 blk_queue_exit(q);
405 }
406
407 static int bt_alloc(struct sbitmap_queue *bt, unsigned int depth,
408 bool round_robin, int node)
409 {
410 return sbitmap_queue_init_node(bt, depth, -1, round_robin, GFP_KERNEL,
411 node);
412 }
413
414 static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
415 int node, int alloc_policy)
416 {
417 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
418 bool round_robin = alloc_policy == BLK_TAG_ALLOC_RR;
419
420 if (bt_alloc(&tags->bitmap_tags, depth, round_robin, node))
421 goto free_tags;
422 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, round_robin,
423 node))
424 goto free_bitmap_tags;
425
426 return tags;
427 free_bitmap_tags:
428 sbitmap_queue_free(&tags->bitmap_tags);
429 free_tags:
430 kfree(tags);
431 return NULL;
432 }
433
434 struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
435 unsigned int reserved_tags,
436 int node, int alloc_policy)
437 {
438 struct blk_mq_tags *tags;
439
440 if (total_tags > BLK_MQ_TAG_MAX) {
441 pr_err("blk-mq: tag depth too large\n");
442 return NULL;
443 }
444
445 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
446 if (!tags)
447 return NULL;
448
449 tags->nr_tags = total_tags;
450 tags->nr_reserved_tags = reserved_tags;
451
452 return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
453 }
454
455 void blk_mq_free_tags(struct blk_mq_tags *tags)
456 {
457 sbitmap_queue_free(&tags->bitmap_tags);
458 sbitmap_queue_free(&tags->breserved_tags);
459 kfree(tags);
460 }
461
462 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
463 struct blk_mq_tags **tagsptr, unsigned int tdepth,
464 bool can_grow)
465 {
466 struct blk_mq_tags *tags = *tagsptr;
467
468 if (tdepth <= tags->nr_reserved_tags)
469 return -EINVAL;
470
471 /*
472 * If we are allowed to grow beyond the original size, allocate
473 * a new set of tags before freeing the old one.
474 */
475 if (tdepth > tags->nr_tags) {
476 struct blk_mq_tag_set *set = hctx->queue->tag_set;
477 struct blk_mq_tags *new;
478 bool ret;
479
480 if (!can_grow)
481 return -EINVAL;
482
483 /*
484 * We need some sort of upper limit, set it high enough that
485 * no valid use cases should require more.
486 */
487 if (tdepth > 16 * BLKDEV_MAX_RQ)
488 return -EINVAL;
489
490 new = blk_mq_alloc_rq_map(set, hctx->queue_num, tdepth,
491 tags->nr_reserved_tags);
492 if (!new)
493 return -ENOMEM;
494 ret = blk_mq_alloc_rqs(set, new, hctx->queue_num, tdepth);
495 if (ret) {
496 blk_mq_free_rq_map(new);
497 return -ENOMEM;
498 }
499
500 blk_mq_free_rqs(set, *tagsptr, hctx->queue_num);
501 blk_mq_free_rq_map(*tagsptr);
502 *tagsptr = new;
503 } else {
504 /*
505 * Don't need (or can't) update reserved tags here, they
506 * remain static and should never need resizing.
507 */
508 sbitmap_queue_resize(&tags->bitmap_tags,
509 tdepth - tags->nr_reserved_tags);
510 }
511
512 return 0;
513 }
514
515 /**
516 * blk_mq_unique_tag() - return a tag that is unique queue-wide
517 * @rq: request for which to compute a unique tag
518 *
519 * The tag field in struct request is unique per hardware queue but not over
520 * all hardware queues. Hence this function that returns a tag with the
521 * hardware context index in the upper bits and the per hardware queue tag in
522 * the lower bits.
523 *
524 * Note: When called for a request that is queued on a non-multiqueue request
525 * queue, the hardware context index is set to zero.
526 */
527 u32 blk_mq_unique_tag(struct request *rq)
528 {
529 struct request_queue *q = rq->q;
530 struct blk_mq_hw_ctx *hctx;
531 int hwq = 0;
532
533 if (q->mq_ops) {
534 hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
535 hwq = hctx->queue_num;
536 }
537
538 return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
539 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
540 }
541 EXPORT_SYMBOL(blk_mq_unique_tag);