]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
blk-mq: remove REQ_ATOM_STARTED
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99 /*
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
109 }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114 {
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 int freeze_depth;
124
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 if (q->mq_ops)
129 blk_mq_run_hw_queues(q, false);
130 }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142 {
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
162 blk_freeze_queue_start(q);
163 blk_mq_freeze_queue_wait(q);
164 }
165
166 void blk_mq_freeze_queue(struct request_queue *q)
167 {
168 /*
169 * ...just an alias to keep freeze and unfreeze actions balanced
170 * in the blk_mq_* namespace
171 */
172 blk_freeze_queue(q);
173 }
174 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175
176 void blk_mq_unfreeze_queue(struct request_queue *q)
177 {
178 int freeze_depth;
179
180 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
181 WARN_ON_ONCE(freeze_depth < 0);
182 if (!freeze_depth) {
183 percpu_ref_reinit(&q->q_usage_counter);
184 wake_up_all(&q->mq_freeze_wq);
185 }
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188
189 /*
190 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
191 * mpt3sas driver such that this function can be removed.
192 */
193 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
194 {
195 unsigned long flags;
196
197 spin_lock_irqsave(q->queue_lock, flags);
198 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
202
203 /**
204 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 * @q: request queue.
206 *
207 * Note: this function does not prevent that the struct request end_io()
208 * callback function is invoked. Once this function is returned, we make
209 * sure no dispatch can happen until the queue is unquiesced via
210 * blk_mq_unquiesce_queue().
211 */
212 void blk_mq_quiesce_queue(struct request_queue *q)
213 {
214 struct blk_mq_hw_ctx *hctx;
215 unsigned int i;
216 bool rcu = false;
217
218 blk_mq_quiesce_queue_nowait(q);
219
220 queue_for_each_hw_ctx(q, hctx, i) {
221 if (hctx->flags & BLK_MQ_F_BLOCKING)
222 synchronize_srcu(hctx->queue_rq_srcu);
223 else
224 rcu = true;
225 }
226 if (rcu)
227 synchronize_rcu();
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
230
231 /*
232 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
233 * @q: request queue.
234 *
235 * This function recovers queue into the state before quiescing
236 * which is done by blk_mq_quiesce_queue.
237 */
238 void blk_mq_unquiesce_queue(struct request_queue *q)
239 {
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
243 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244 spin_unlock_irqrestore(q->queue_lock, flags);
245
246 /* dispatch requests which are inserted during quiescing */
247 blk_mq_run_hw_queues(q, true);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
250
251 void blk_mq_wake_waiters(struct request_queue *q)
252 {
253 struct blk_mq_hw_ctx *hctx;
254 unsigned int i;
255
256 queue_for_each_hw_ctx(q, hctx, i)
257 if (blk_mq_hw_queue_mapped(hctx))
258 blk_mq_tag_wakeup_all(hctx->tags, true);
259 }
260
261 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
262 {
263 return blk_mq_has_free_tags(hctx->tags);
264 }
265 EXPORT_SYMBOL(blk_mq_can_queue);
266
267 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
268 unsigned int tag, unsigned int op)
269 {
270 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
271 struct request *rq = tags->static_rqs[tag];
272
273 rq->rq_flags = 0;
274
275 if (data->flags & BLK_MQ_REQ_INTERNAL) {
276 rq->tag = -1;
277 rq->internal_tag = tag;
278 } else {
279 if (blk_mq_tag_busy(data->hctx)) {
280 rq->rq_flags = RQF_MQ_INFLIGHT;
281 atomic_inc(&data->hctx->nr_active);
282 }
283 rq->tag = tag;
284 rq->internal_tag = -1;
285 data->hctx->tags->rqs[rq->tag] = rq;
286 }
287
288 INIT_LIST_HEAD(&rq->queuelist);
289 /* csd/requeue_work/fifo_time is initialized before use */
290 rq->q = data->q;
291 rq->mq_ctx = data->ctx;
292 rq->cmd_flags = op;
293 if (data->flags & BLK_MQ_REQ_PREEMPT)
294 rq->rq_flags |= RQF_PREEMPT;
295 if (blk_queue_io_stat(data->q))
296 rq->rq_flags |= RQF_IO_STAT;
297 /* do not touch atomic flags, it needs atomic ops against the timer */
298 rq->cpu = -1;
299 INIT_HLIST_NODE(&rq->hash);
300 RB_CLEAR_NODE(&rq->rb_node);
301 rq->rq_disk = NULL;
302 rq->part = NULL;
303 rq->start_time = jiffies;
304 #ifdef CONFIG_BLK_CGROUP
305 rq->rl = NULL;
306 set_start_time_ns(rq);
307 rq->io_start_time_ns = 0;
308 #endif
309 rq->nr_phys_segments = 0;
310 #if defined(CONFIG_BLK_DEV_INTEGRITY)
311 rq->nr_integrity_segments = 0;
312 #endif
313 rq->special = NULL;
314 /* tag was already set */
315 rq->extra_len = 0;
316
317 INIT_LIST_HEAD(&rq->timeout_list);
318 rq->timeout = 0;
319
320 rq->end_io = NULL;
321 rq->end_io_data = NULL;
322 rq->next_rq = NULL;
323
324 data->ctx->rq_dispatched[op_is_sync(op)]++;
325 return rq;
326 }
327
328 static struct request *blk_mq_get_request(struct request_queue *q,
329 struct bio *bio, unsigned int op,
330 struct blk_mq_alloc_data *data)
331 {
332 struct elevator_queue *e = q->elevator;
333 struct request *rq;
334 unsigned int tag;
335 bool put_ctx_on_error = false;
336
337 blk_queue_enter_live(q);
338 data->q = q;
339 if (likely(!data->ctx)) {
340 data->ctx = blk_mq_get_ctx(q);
341 put_ctx_on_error = true;
342 }
343 if (likely(!data->hctx))
344 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
345 if (op & REQ_NOWAIT)
346 data->flags |= BLK_MQ_REQ_NOWAIT;
347
348 if (e) {
349 data->flags |= BLK_MQ_REQ_INTERNAL;
350
351 /*
352 * Flush requests are special and go directly to the
353 * dispatch list.
354 */
355 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
356 e->type->ops.mq.limit_depth(op, data);
357 }
358
359 tag = blk_mq_get_tag(data);
360 if (tag == BLK_MQ_TAG_FAIL) {
361 if (put_ctx_on_error) {
362 blk_mq_put_ctx(data->ctx);
363 data->ctx = NULL;
364 }
365 blk_queue_exit(q);
366 return NULL;
367 }
368
369 rq = blk_mq_rq_ctx_init(data, tag, op);
370 if (!op_is_flush(op)) {
371 rq->elv.icq = NULL;
372 if (e && e->type->ops.mq.prepare_request) {
373 if (e->type->icq_cache && rq_ioc(bio))
374 blk_mq_sched_assign_ioc(rq, bio);
375
376 e->type->ops.mq.prepare_request(rq, bio);
377 rq->rq_flags |= RQF_ELVPRIV;
378 }
379 }
380 data->hctx->queued++;
381 return rq;
382 }
383
384 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
385 blk_mq_req_flags_t flags)
386 {
387 struct blk_mq_alloc_data alloc_data = { .flags = flags };
388 struct request *rq;
389 int ret;
390
391 ret = blk_queue_enter(q, flags);
392 if (ret)
393 return ERR_PTR(ret);
394
395 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
396 blk_queue_exit(q);
397
398 if (!rq)
399 return ERR_PTR(-EWOULDBLOCK);
400
401 blk_mq_put_ctx(alloc_data.ctx);
402
403 rq->__data_len = 0;
404 rq->__sector = (sector_t) -1;
405 rq->bio = rq->biotail = NULL;
406 return rq;
407 }
408 EXPORT_SYMBOL(blk_mq_alloc_request);
409
410 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
411 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
412 {
413 struct blk_mq_alloc_data alloc_data = { .flags = flags };
414 struct request *rq;
415 unsigned int cpu;
416 int ret;
417
418 /*
419 * If the tag allocator sleeps we could get an allocation for a
420 * different hardware context. No need to complicate the low level
421 * allocator for this for the rare use case of a command tied to
422 * a specific queue.
423 */
424 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
425 return ERR_PTR(-EINVAL);
426
427 if (hctx_idx >= q->nr_hw_queues)
428 return ERR_PTR(-EIO);
429
430 ret = blk_queue_enter(q, flags);
431 if (ret)
432 return ERR_PTR(ret);
433
434 /*
435 * Check if the hardware context is actually mapped to anything.
436 * If not tell the caller that it should skip this queue.
437 */
438 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
439 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
440 blk_queue_exit(q);
441 return ERR_PTR(-EXDEV);
442 }
443 cpu = cpumask_first(alloc_data.hctx->cpumask);
444 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
445
446 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
447 blk_queue_exit(q);
448
449 if (!rq)
450 return ERR_PTR(-EWOULDBLOCK);
451
452 return rq;
453 }
454 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
455
456 void blk_mq_free_request(struct request *rq)
457 {
458 struct request_queue *q = rq->q;
459 struct elevator_queue *e = q->elevator;
460 struct blk_mq_ctx *ctx = rq->mq_ctx;
461 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
462 const int sched_tag = rq->internal_tag;
463
464 if (rq->rq_flags & RQF_ELVPRIV) {
465 if (e && e->type->ops.mq.finish_request)
466 e->type->ops.mq.finish_request(rq);
467 if (rq->elv.icq) {
468 put_io_context(rq->elv.icq->ioc);
469 rq->elv.icq = NULL;
470 }
471 }
472
473 ctx->rq_completed[rq_is_sync(rq)]++;
474 if (rq->rq_flags & RQF_MQ_INFLIGHT)
475 atomic_dec(&hctx->nr_active);
476
477 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
478 laptop_io_completion(q->backing_dev_info);
479
480 wbt_done(q->rq_wb, &rq->issue_stat);
481
482 if (blk_rq_rl(rq))
483 blk_put_rl(blk_rq_rl(rq));
484
485 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
486 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
487 if (rq->tag != -1)
488 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
489 if (sched_tag != -1)
490 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
491 blk_mq_sched_restart(hctx);
492 blk_queue_exit(q);
493 }
494 EXPORT_SYMBOL_GPL(blk_mq_free_request);
495
496 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
497 {
498 blk_account_io_done(rq);
499
500 if (rq->end_io) {
501 wbt_done(rq->q->rq_wb, &rq->issue_stat);
502 rq->end_io(rq, error);
503 } else {
504 if (unlikely(blk_bidi_rq(rq)))
505 blk_mq_free_request(rq->next_rq);
506 blk_mq_free_request(rq);
507 }
508 }
509 EXPORT_SYMBOL(__blk_mq_end_request);
510
511 void blk_mq_end_request(struct request *rq, blk_status_t error)
512 {
513 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
514 BUG();
515 __blk_mq_end_request(rq, error);
516 }
517 EXPORT_SYMBOL(blk_mq_end_request);
518
519 static void __blk_mq_complete_request_remote(void *data)
520 {
521 struct request *rq = data;
522
523 rq->q->softirq_done_fn(rq);
524 }
525
526 static void __blk_mq_complete_request(struct request *rq)
527 {
528 struct blk_mq_ctx *ctx = rq->mq_ctx;
529 bool shared = false;
530 int cpu;
531
532 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
533 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
534
535 if (rq->internal_tag != -1)
536 blk_mq_sched_completed_request(rq);
537 if (rq->rq_flags & RQF_STATS) {
538 blk_mq_poll_stats_start(rq->q);
539 blk_stat_add(rq);
540 }
541
542 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 rq->q->softirq_done_fn(rq);
544 return;
545 }
546
547 cpu = get_cpu();
548 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
549 shared = cpus_share_cache(cpu, ctx->cpu);
550
551 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552 rq->csd.func = __blk_mq_complete_request_remote;
553 rq->csd.info = rq;
554 rq->csd.flags = 0;
555 smp_call_function_single_async(ctx->cpu, &rq->csd);
556 } else {
557 rq->q->softirq_done_fn(rq);
558 }
559 put_cpu();
560 }
561
562 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
563 {
564 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
565 rcu_read_unlock();
566 else
567 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
568 }
569
570 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
571 {
572 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
573 rcu_read_lock();
574 else
575 *srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
576 }
577
578 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
579 {
580 unsigned long flags;
581
582 /*
583 * blk_mq_rq_aborted_gstate() is used from the completion path and
584 * can thus be called from irq context. u64_stats_fetch in the
585 * middle of update on the same CPU leads to lockup. Disable irq
586 * while updating.
587 */
588 local_irq_save(flags);
589 u64_stats_update_begin(&rq->aborted_gstate_sync);
590 rq->aborted_gstate = gstate;
591 u64_stats_update_end(&rq->aborted_gstate_sync);
592 local_irq_restore(flags);
593 }
594
595 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
596 {
597 unsigned int start;
598 u64 aborted_gstate;
599
600 do {
601 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
602 aborted_gstate = rq->aborted_gstate;
603 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
604
605 return aborted_gstate;
606 }
607
608 /**
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
611 *
612 * Description:
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
615 **/
616 void blk_mq_complete_request(struct request *rq)
617 {
618 struct request_queue *q = rq->q;
619 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
620 int srcu_idx;
621
622 if (unlikely(blk_should_fake_timeout(q)))
623 return;
624
625 /*
626 * If @rq->aborted_gstate equals the current instance, timeout is
627 * claiming @rq and we lost. This is synchronized through
628 * hctx_lock(). See blk_mq_timeout_work() for details.
629 *
630 * Completion path never blocks and we can directly use RCU here
631 * instead of hctx_lock() which can be either RCU or SRCU.
632 * However, that would complicate paths which want to synchronize
633 * against us. Let stay in sync with the issue path so that
634 * hctx_lock() covers both issue and completion paths.
635 */
636 hctx_lock(hctx, &srcu_idx);
637 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
638 __blk_mq_complete_request(rq);
639 hctx_unlock(hctx, srcu_idx);
640 }
641 EXPORT_SYMBOL(blk_mq_complete_request);
642
643 int blk_mq_request_started(struct request *rq)
644 {
645 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
646 }
647 EXPORT_SYMBOL_GPL(blk_mq_request_started);
648
649 void blk_mq_start_request(struct request *rq)
650 {
651 struct request_queue *q = rq->q;
652
653 blk_mq_sched_started_request(rq);
654
655 trace_block_rq_issue(q, rq);
656
657 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
658 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
659 rq->rq_flags |= RQF_STATS;
660 wbt_issue(q->rq_wb, &rq->issue_stat);
661 }
662
663 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
664
665 /*
666 * Mark @rq in-flight which also advances the generation number,
667 * and register for timeout. Protect with a seqcount to allow the
668 * timeout path to read both @rq->gstate and @rq->deadline
669 * coherently.
670 *
671 * This is the only place where a request is marked in-flight. If
672 * the timeout path reads an in-flight @rq->gstate, the
673 * @rq->deadline it reads together under @rq->gstate_seq is
674 * guaranteed to be the matching one.
675 */
676 preempt_disable();
677 write_seqcount_begin(&rq->gstate_seq);
678
679 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
680 blk_add_timer(rq);
681
682 write_seqcount_end(&rq->gstate_seq);
683 preempt_enable();
684
685 if (q->dma_drain_size && blk_rq_bytes(rq)) {
686 /*
687 * Make sure space for the drain appears. We know we can do
688 * this because max_hw_segments has been adjusted to be one
689 * fewer than the device can handle.
690 */
691 rq->nr_phys_segments++;
692 }
693 }
694 EXPORT_SYMBOL(blk_mq_start_request);
695
696 /*
697 * When we reach here because queue is busy, it's safe to change the state
698 * to IDLE without checking @rq->aborted_gstate because we should still be
699 * holding the RCU read lock and thus protected against timeout.
700 */
701 static void __blk_mq_requeue_request(struct request *rq)
702 {
703 struct request_queue *q = rq->q;
704
705 blk_mq_put_driver_tag(rq);
706
707 trace_block_rq_requeue(q, rq);
708 wbt_requeue(q->rq_wb, &rq->issue_stat);
709 blk_mq_sched_requeue_request(rq);
710
711 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
712 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
713 if (q->dma_drain_size && blk_rq_bytes(rq))
714 rq->nr_phys_segments--;
715 }
716 }
717
718 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
719 {
720 __blk_mq_requeue_request(rq);
721
722 BUG_ON(blk_queued_rq(rq));
723 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
724 }
725 EXPORT_SYMBOL(blk_mq_requeue_request);
726
727 static void blk_mq_requeue_work(struct work_struct *work)
728 {
729 struct request_queue *q =
730 container_of(work, struct request_queue, requeue_work.work);
731 LIST_HEAD(rq_list);
732 struct request *rq, *next;
733
734 spin_lock_irq(&q->requeue_lock);
735 list_splice_init(&q->requeue_list, &rq_list);
736 spin_unlock_irq(&q->requeue_lock);
737
738 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
739 if (!(rq->rq_flags & RQF_SOFTBARRIER))
740 continue;
741
742 rq->rq_flags &= ~RQF_SOFTBARRIER;
743 list_del_init(&rq->queuelist);
744 blk_mq_sched_insert_request(rq, true, false, false, true);
745 }
746
747 while (!list_empty(&rq_list)) {
748 rq = list_entry(rq_list.next, struct request, queuelist);
749 list_del_init(&rq->queuelist);
750 blk_mq_sched_insert_request(rq, false, false, false, true);
751 }
752
753 blk_mq_run_hw_queues(q, false);
754 }
755
756 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
757 bool kick_requeue_list)
758 {
759 struct request_queue *q = rq->q;
760 unsigned long flags;
761
762 /*
763 * We abuse this flag that is otherwise used by the I/O scheduler to
764 * request head insertion from the workqueue.
765 */
766 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
767
768 spin_lock_irqsave(&q->requeue_lock, flags);
769 if (at_head) {
770 rq->rq_flags |= RQF_SOFTBARRIER;
771 list_add(&rq->queuelist, &q->requeue_list);
772 } else {
773 list_add_tail(&rq->queuelist, &q->requeue_list);
774 }
775 spin_unlock_irqrestore(&q->requeue_lock, flags);
776
777 if (kick_requeue_list)
778 blk_mq_kick_requeue_list(q);
779 }
780 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
781
782 void blk_mq_kick_requeue_list(struct request_queue *q)
783 {
784 kblockd_schedule_delayed_work(&q->requeue_work, 0);
785 }
786 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
787
788 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
789 unsigned long msecs)
790 {
791 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
792 msecs_to_jiffies(msecs));
793 }
794 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
795
796 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
797 {
798 if (tag < tags->nr_tags) {
799 prefetch(tags->rqs[tag]);
800 return tags->rqs[tag];
801 }
802
803 return NULL;
804 }
805 EXPORT_SYMBOL(blk_mq_tag_to_rq);
806
807 struct blk_mq_timeout_data {
808 unsigned long next;
809 unsigned int next_set;
810 unsigned int nr_expired;
811 };
812
813 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
814 {
815 const struct blk_mq_ops *ops = req->q->mq_ops;
816 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
817
818 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
819
820 if (ops->timeout)
821 ret = ops->timeout(req, reserved);
822
823 switch (ret) {
824 case BLK_EH_HANDLED:
825 __blk_mq_complete_request(req);
826 break;
827 case BLK_EH_RESET_TIMER:
828 /*
829 * As nothing prevents from completion happening while
830 * ->aborted_gstate is set, this may lead to ignored
831 * completions and further spurious timeouts.
832 */
833 blk_mq_rq_update_aborted_gstate(req, 0);
834 blk_add_timer(req);
835 break;
836 case BLK_EH_NOT_HANDLED:
837 break;
838 default:
839 printk(KERN_ERR "block: bad eh return: %d\n", ret);
840 break;
841 }
842 }
843
844 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
845 struct request *rq, void *priv, bool reserved)
846 {
847 struct blk_mq_timeout_data *data = priv;
848 unsigned long gstate, deadline;
849 int start;
850
851 might_sleep();
852
853 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
854 return;
855
856 /* read coherent snapshots of @rq->state_gen and @rq->deadline */
857 while (true) {
858 start = read_seqcount_begin(&rq->gstate_seq);
859 gstate = READ_ONCE(rq->gstate);
860 deadline = rq->deadline;
861 if (!read_seqcount_retry(&rq->gstate_seq, start))
862 break;
863 cond_resched();
864 }
865
866 /* if in-flight && overdue, mark for abortion */
867 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
868 time_after_eq(jiffies, deadline)) {
869 blk_mq_rq_update_aborted_gstate(rq, gstate);
870 data->nr_expired++;
871 hctx->nr_expired++;
872 } else if (!data->next_set || time_after(data->next, deadline)) {
873 data->next = deadline;
874 data->next_set = 1;
875 }
876 }
877
878 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
879 struct request *rq, void *priv, bool reserved)
880 {
881 /*
882 * We marked @rq->aborted_gstate and waited for RCU. If there were
883 * completions that we lost to, they would have finished and
884 * updated @rq->gstate by now; otherwise, the completion path is
885 * now guaranteed to see @rq->aborted_gstate and yield. If
886 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
887 */
888 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
889 READ_ONCE(rq->gstate) == rq->aborted_gstate)
890 blk_mq_rq_timed_out(rq, reserved);
891 }
892
893 static void blk_mq_timeout_work(struct work_struct *work)
894 {
895 struct request_queue *q =
896 container_of(work, struct request_queue, timeout_work);
897 struct blk_mq_timeout_data data = {
898 .next = 0,
899 .next_set = 0,
900 .nr_expired = 0,
901 };
902 struct blk_mq_hw_ctx *hctx;
903 int i;
904
905 /* A deadlock might occur if a request is stuck requiring a
906 * timeout at the same time a queue freeze is waiting
907 * completion, since the timeout code would not be able to
908 * acquire the queue reference here.
909 *
910 * That's why we don't use blk_queue_enter here; instead, we use
911 * percpu_ref_tryget directly, because we need to be able to
912 * obtain a reference even in the short window between the queue
913 * starting to freeze, by dropping the first reference in
914 * blk_freeze_queue_start, and the moment the last request is
915 * consumed, marked by the instant q_usage_counter reaches
916 * zero.
917 */
918 if (!percpu_ref_tryget(&q->q_usage_counter))
919 return;
920
921 /* scan for the expired ones and set their ->aborted_gstate */
922 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
923
924 if (data.nr_expired) {
925 bool has_rcu = false;
926
927 /*
928 * Wait till everyone sees ->aborted_gstate. The
929 * sequential waits for SRCUs aren't ideal. If this ever
930 * becomes a problem, we can add per-hw_ctx rcu_head and
931 * wait in parallel.
932 */
933 queue_for_each_hw_ctx(q, hctx, i) {
934 if (!hctx->nr_expired)
935 continue;
936
937 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
938 has_rcu = true;
939 else
940 synchronize_srcu(hctx->queue_rq_srcu);
941
942 hctx->nr_expired = 0;
943 }
944 if (has_rcu)
945 synchronize_rcu();
946
947 /* terminate the ones we won */
948 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
949 }
950
951 if (data.next_set) {
952 data.next = blk_rq_timeout(round_jiffies_up(data.next));
953 mod_timer(&q->timeout, data.next);
954 } else {
955 queue_for_each_hw_ctx(q, hctx, i) {
956 /* the hctx may be unmapped, so check it here */
957 if (blk_mq_hw_queue_mapped(hctx))
958 blk_mq_tag_idle(hctx);
959 }
960 }
961 blk_queue_exit(q);
962 }
963
964 struct flush_busy_ctx_data {
965 struct blk_mq_hw_ctx *hctx;
966 struct list_head *list;
967 };
968
969 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
970 {
971 struct flush_busy_ctx_data *flush_data = data;
972 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
973 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
974
975 sbitmap_clear_bit(sb, bitnr);
976 spin_lock(&ctx->lock);
977 list_splice_tail_init(&ctx->rq_list, flush_data->list);
978 spin_unlock(&ctx->lock);
979 return true;
980 }
981
982 /*
983 * Process software queues that have been marked busy, splicing them
984 * to the for-dispatch
985 */
986 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
987 {
988 struct flush_busy_ctx_data data = {
989 .hctx = hctx,
990 .list = list,
991 };
992
993 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
994 }
995 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
996
997 struct dispatch_rq_data {
998 struct blk_mq_hw_ctx *hctx;
999 struct request *rq;
1000 };
1001
1002 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1003 void *data)
1004 {
1005 struct dispatch_rq_data *dispatch_data = data;
1006 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1007 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1008
1009 spin_lock(&ctx->lock);
1010 if (unlikely(!list_empty(&ctx->rq_list))) {
1011 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1012 list_del_init(&dispatch_data->rq->queuelist);
1013 if (list_empty(&ctx->rq_list))
1014 sbitmap_clear_bit(sb, bitnr);
1015 }
1016 spin_unlock(&ctx->lock);
1017
1018 return !dispatch_data->rq;
1019 }
1020
1021 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1022 struct blk_mq_ctx *start)
1023 {
1024 unsigned off = start ? start->index_hw : 0;
1025 struct dispatch_rq_data data = {
1026 .hctx = hctx,
1027 .rq = NULL,
1028 };
1029
1030 __sbitmap_for_each_set(&hctx->ctx_map, off,
1031 dispatch_rq_from_ctx, &data);
1032
1033 return data.rq;
1034 }
1035
1036 static inline unsigned int queued_to_index(unsigned int queued)
1037 {
1038 if (!queued)
1039 return 0;
1040
1041 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1042 }
1043
1044 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1045 bool wait)
1046 {
1047 struct blk_mq_alloc_data data = {
1048 .q = rq->q,
1049 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1050 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1051 };
1052
1053 might_sleep_if(wait);
1054
1055 if (rq->tag != -1)
1056 goto done;
1057
1058 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1059 data.flags |= BLK_MQ_REQ_RESERVED;
1060
1061 rq->tag = blk_mq_get_tag(&data);
1062 if (rq->tag >= 0) {
1063 if (blk_mq_tag_busy(data.hctx)) {
1064 rq->rq_flags |= RQF_MQ_INFLIGHT;
1065 atomic_inc(&data.hctx->nr_active);
1066 }
1067 data.hctx->tags->rqs[rq->tag] = rq;
1068 }
1069
1070 done:
1071 if (hctx)
1072 *hctx = data.hctx;
1073 return rq->tag != -1;
1074 }
1075
1076 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1077 int flags, void *key)
1078 {
1079 struct blk_mq_hw_ctx *hctx;
1080
1081 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1082
1083 list_del_init(&wait->entry);
1084 blk_mq_run_hw_queue(hctx, true);
1085 return 1;
1086 }
1087
1088 /*
1089 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1090 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1091 * restart. For both caes, take care to check the condition again after
1092 * marking us as waiting.
1093 */
1094 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1095 struct request *rq)
1096 {
1097 struct blk_mq_hw_ctx *this_hctx = *hctx;
1098 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1099 struct sbq_wait_state *ws;
1100 wait_queue_entry_t *wait;
1101 bool ret;
1102
1103 if (!shared_tags) {
1104 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1105 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1106 } else {
1107 wait = &this_hctx->dispatch_wait;
1108 if (!list_empty_careful(&wait->entry))
1109 return false;
1110
1111 spin_lock(&this_hctx->lock);
1112 if (!list_empty(&wait->entry)) {
1113 spin_unlock(&this_hctx->lock);
1114 return false;
1115 }
1116
1117 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1118 add_wait_queue(&ws->wait, wait);
1119 }
1120
1121 /*
1122 * It's possible that a tag was freed in the window between the
1123 * allocation failure and adding the hardware queue to the wait
1124 * queue.
1125 */
1126 ret = blk_mq_get_driver_tag(rq, hctx, false);
1127
1128 if (!shared_tags) {
1129 /*
1130 * Don't clear RESTART here, someone else could have set it.
1131 * At most this will cost an extra queue run.
1132 */
1133 return ret;
1134 } else {
1135 if (!ret) {
1136 spin_unlock(&this_hctx->lock);
1137 return false;
1138 }
1139
1140 /*
1141 * We got a tag, remove ourselves from the wait queue to ensure
1142 * someone else gets the wakeup.
1143 */
1144 spin_lock_irq(&ws->wait.lock);
1145 list_del_init(&wait->entry);
1146 spin_unlock_irq(&ws->wait.lock);
1147 spin_unlock(&this_hctx->lock);
1148 return true;
1149 }
1150 }
1151
1152 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1153 bool got_budget)
1154 {
1155 struct blk_mq_hw_ctx *hctx;
1156 struct request *rq, *nxt;
1157 bool no_tag = false;
1158 int errors, queued;
1159
1160 if (list_empty(list))
1161 return false;
1162
1163 WARN_ON(!list_is_singular(list) && got_budget);
1164
1165 /*
1166 * Now process all the entries, sending them to the driver.
1167 */
1168 errors = queued = 0;
1169 do {
1170 struct blk_mq_queue_data bd;
1171 blk_status_t ret;
1172
1173 rq = list_first_entry(list, struct request, queuelist);
1174 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1175 /*
1176 * The initial allocation attempt failed, so we need to
1177 * rerun the hardware queue when a tag is freed. The
1178 * waitqueue takes care of that. If the queue is run
1179 * before we add this entry back on the dispatch list,
1180 * we'll re-run it below.
1181 */
1182 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1183 if (got_budget)
1184 blk_mq_put_dispatch_budget(hctx);
1185 /*
1186 * For non-shared tags, the RESTART check
1187 * will suffice.
1188 */
1189 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1190 no_tag = true;
1191 break;
1192 }
1193 }
1194
1195 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1196 blk_mq_put_driver_tag(rq);
1197 break;
1198 }
1199
1200 list_del_init(&rq->queuelist);
1201
1202 bd.rq = rq;
1203
1204 /*
1205 * Flag last if we have no more requests, or if we have more
1206 * but can't assign a driver tag to it.
1207 */
1208 if (list_empty(list))
1209 bd.last = true;
1210 else {
1211 nxt = list_first_entry(list, struct request, queuelist);
1212 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1213 }
1214
1215 ret = q->mq_ops->queue_rq(hctx, &bd);
1216 if (ret == BLK_STS_RESOURCE) {
1217 /*
1218 * If an I/O scheduler has been configured and we got a
1219 * driver tag for the next request already, free it
1220 * again.
1221 */
1222 if (!list_empty(list)) {
1223 nxt = list_first_entry(list, struct request, queuelist);
1224 blk_mq_put_driver_tag(nxt);
1225 }
1226 list_add(&rq->queuelist, list);
1227 __blk_mq_requeue_request(rq);
1228 break;
1229 }
1230
1231 if (unlikely(ret != BLK_STS_OK)) {
1232 errors++;
1233 blk_mq_end_request(rq, BLK_STS_IOERR);
1234 continue;
1235 }
1236
1237 queued++;
1238 } while (!list_empty(list));
1239
1240 hctx->dispatched[queued_to_index(queued)]++;
1241
1242 /*
1243 * Any items that need requeuing? Stuff them into hctx->dispatch,
1244 * that is where we will continue on next queue run.
1245 */
1246 if (!list_empty(list)) {
1247 spin_lock(&hctx->lock);
1248 list_splice_init(list, &hctx->dispatch);
1249 spin_unlock(&hctx->lock);
1250
1251 /*
1252 * If SCHED_RESTART was set by the caller of this function and
1253 * it is no longer set that means that it was cleared by another
1254 * thread and hence that a queue rerun is needed.
1255 *
1256 * If 'no_tag' is set, that means that we failed getting
1257 * a driver tag with an I/O scheduler attached. If our dispatch
1258 * waitqueue is no longer active, ensure that we run the queue
1259 * AFTER adding our entries back to the list.
1260 *
1261 * If no I/O scheduler has been configured it is possible that
1262 * the hardware queue got stopped and restarted before requests
1263 * were pushed back onto the dispatch list. Rerun the queue to
1264 * avoid starvation. Notes:
1265 * - blk_mq_run_hw_queue() checks whether or not a queue has
1266 * been stopped before rerunning a queue.
1267 * - Some but not all block drivers stop a queue before
1268 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1269 * and dm-rq.
1270 */
1271 if (!blk_mq_sched_needs_restart(hctx) ||
1272 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1273 blk_mq_run_hw_queue(hctx, true);
1274 }
1275
1276 return (queued + errors) != 0;
1277 }
1278
1279 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1280 {
1281 int srcu_idx;
1282
1283 /*
1284 * We should be running this queue from one of the CPUs that
1285 * are mapped to it.
1286 */
1287 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1288 cpu_online(hctx->next_cpu));
1289
1290 /*
1291 * We can't run the queue inline with ints disabled. Ensure that
1292 * we catch bad users of this early.
1293 */
1294 WARN_ON_ONCE(in_interrupt());
1295
1296 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1297
1298 hctx_lock(hctx, &srcu_idx);
1299 blk_mq_sched_dispatch_requests(hctx);
1300 hctx_unlock(hctx, srcu_idx);
1301 }
1302
1303 /*
1304 * It'd be great if the workqueue API had a way to pass
1305 * in a mask and had some smarts for more clever placement.
1306 * For now we just round-robin here, switching for every
1307 * BLK_MQ_CPU_WORK_BATCH queued items.
1308 */
1309 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1310 {
1311 if (hctx->queue->nr_hw_queues == 1)
1312 return WORK_CPU_UNBOUND;
1313
1314 if (--hctx->next_cpu_batch <= 0) {
1315 int next_cpu;
1316
1317 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1318 if (next_cpu >= nr_cpu_ids)
1319 next_cpu = cpumask_first(hctx->cpumask);
1320
1321 hctx->next_cpu = next_cpu;
1322 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1323 }
1324
1325 return hctx->next_cpu;
1326 }
1327
1328 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1329 unsigned long msecs)
1330 {
1331 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1332 return;
1333
1334 if (unlikely(blk_mq_hctx_stopped(hctx)))
1335 return;
1336
1337 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1338 int cpu = get_cpu();
1339 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1340 __blk_mq_run_hw_queue(hctx);
1341 put_cpu();
1342 return;
1343 }
1344
1345 put_cpu();
1346 }
1347
1348 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1349 &hctx->run_work,
1350 msecs_to_jiffies(msecs));
1351 }
1352
1353 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1354 {
1355 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1356 }
1357 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1358
1359 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1360 {
1361 int srcu_idx;
1362 bool need_run;
1363
1364 /*
1365 * When queue is quiesced, we may be switching io scheduler, or
1366 * updating nr_hw_queues, or other things, and we can't run queue
1367 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1368 *
1369 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1370 * quiesced.
1371 */
1372 hctx_lock(hctx, &srcu_idx);
1373 need_run = !blk_queue_quiesced(hctx->queue) &&
1374 blk_mq_hctx_has_pending(hctx);
1375 hctx_unlock(hctx, srcu_idx);
1376
1377 if (need_run) {
1378 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1379 return true;
1380 }
1381
1382 return false;
1383 }
1384 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1385
1386 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1387 {
1388 struct blk_mq_hw_ctx *hctx;
1389 int i;
1390
1391 queue_for_each_hw_ctx(q, hctx, i) {
1392 if (blk_mq_hctx_stopped(hctx))
1393 continue;
1394
1395 blk_mq_run_hw_queue(hctx, async);
1396 }
1397 }
1398 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1399
1400 /**
1401 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1402 * @q: request queue.
1403 *
1404 * The caller is responsible for serializing this function against
1405 * blk_mq_{start,stop}_hw_queue().
1406 */
1407 bool blk_mq_queue_stopped(struct request_queue *q)
1408 {
1409 struct blk_mq_hw_ctx *hctx;
1410 int i;
1411
1412 queue_for_each_hw_ctx(q, hctx, i)
1413 if (blk_mq_hctx_stopped(hctx))
1414 return true;
1415
1416 return false;
1417 }
1418 EXPORT_SYMBOL(blk_mq_queue_stopped);
1419
1420 /*
1421 * This function is often used for pausing .queue_rq() by driver when
1422 * there isn't enough resource or some conditions aren't satisfied, and
1423 * BLK_STS_RESOURCE is usually returned.
1424 *
1425 * We do not guarantee that dispatch can be drained or blocked
1426 * after blk_mq_stop_hw_queue() returns. Please use
1427 * blk_mq_quiesce_queue() for that requirement.
1428 */
1429 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1430 {
1431 cancel_delayed_work(&hctx->run_work);
1432
1433 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1434 }
1435 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1436
1437 /*
1438 * This function is often used for pausing .queue_rq() by driver when
1439 * there isn't enough resource or some conditions aren't satisfied, and
1440 * BLK_STS_RESOURCE is usually returned.
1441 *
1442 * We do not guarantee that dispatch can be drained or blocked
1443 * after blk_mq_stop_hw_queues() returns. Please use
1444 * blk_mq_quiesce_queue() for that requirement.
1445 */
1446 void blk_mq_stop_hw_queues(struct request_queue *q)
1447 {
1448 struct blk_mq_hw_ctx *hctx;
1449 int i;
1450
1451 queue_for_each_hw_ctx(q, hctx, i)
1452 blk_mq_stop_hw_queue(hctx);
1453 }
1454 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1455
1456 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1457 {
1458 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1459
1460 blk_mq_run_hw_queue(hctx, false);
1461 }
1462 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1463
1464 void blk_mq_start_hw_queues(struct request_queue *q)
1465 {
1466 struct blk_mq_hw_ctx *hctx;
1467 int i;
1468
1469 queue_for_each_hw_ctx(q, hctx, i)
1470 blk_mq_start_hw_queue(hctx);
1471 }
1472 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1473
1474 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1475 {
1476 if (!blk_mq_hctx_stopped(hctx))
1477 return;
1478
1479 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1480 blk_mq_run_hw_queue(hctx, async);
1481 }
1482 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1483
1484 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1485 {
1486 struct blk_mq_hw_ctx *hctx;
1487 int i;
1488
1489 queue_for_each_hw_ctx(q, hctx, i)
1490 blk_mq_start_stopped_hw_queue(hctx, async);
1491 }
1492 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1493
1494 static void blk_mq_run_work_fn(struct work_struct *work)
1495 {
1496 struct blk_mq_hw_ctx *hctx;
1497
1498 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1499
1500 /*
1501 * If we are stopped, don't run the queue. The exception is if
1502 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1503 * the STOPPED bit and run it.
1504 */
1505 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1506 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1507 return;
1508
1509 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1510 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1511 }
1512
1513 __blk_mq_run_hw_queue(hctx);
1514 }
1515
1516
1517 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1518 {
1519 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1520 return;
1521
1522 /*
1523 * Stop the hw queue, then modify currently delayed work.
1524 * This should prevent us from running the queue prematurely.
1525 * Mark the queue as auto-clearing STOPPED when it runs.
1526 */
1527 blk_mq_stop_hw_queue(hctx);
1528 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1529 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1530 &hctx->run_work,
1531 msecs_to_jiffies(msecs));
1532 }
1533 EXPORT_SYMBOL(blk_mq_delay_queue);
1534
1535 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1536 struct request *rq,
1537 bool at_head)
1538 {
1539 struct blk_mq_ctx *ctx = rq->mq_ctx;
1540
1541 lockdep_assert_held(&ctx->lock);
1542
1543 trace_block_rq_insert(hctx->queue, rq);
1544
1545 if (at_head)
1546 list_add(&rq->queuelist, &ctx->rq_list);
1547 else
1548 list_add_tail(&rq->queuelist, &ctx->rq_list);
1549 }
1550
1551 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1552 bool at_head)
1553 {
1554 struct blk_mq_ctx *ctx = rq->mq_ctx;
1555
1556 lockdep_assert_held(&ctx->lock);
1557
1558 __blk_mq_insert_req_list(hctx, rq, at_head);
1559 blk_mq_hctx_mark_pending(hctx, ctx);
1560 }
1561
1562 /*
1563 * Should only be used carefully, when the caller knows we want to
1564 * bypass a potential IO scheduler on the target device.
1565 */
1566 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1567 {
1568 struct blk_mq_ctx *ctx = rq->mq_ctx;
1569 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1570
1571 spin_lock(&hctx->lock);
1572 list_add_tail(&rq->queuelist, &hctx->dispatch);
1573 spin_unlock(&hctx->lock);
1574
1575 if (run_queue)
1576 blk_mq_run_hw_queue(hctx, false);
1577 }
1578
1579 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1580 struct list_head *list)
1581
1582 {
1583 /*
1584 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1585 * offline now
1586 */
1587 spin_lock(&ctx->lock);
1588 while (!list_empty(list)) {
1589 struct request *rq;
1590
1591 rq = list_first_entry(list, struct request, queuelist);
1592 BUG_ON(rq->mq_ctx != ctx);
1593 list_del_init(&rq->queuelist);
1594 __blk_mq_insert_req_list(hctx, rq, false);
1595 }
1596 blk_mq_hctx_mark_pending(hctx, ctx);
1597 spin_unlock(&ctx->lock);
1598 }
1599
1600 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1601 {
1602 struct request *rqa = container_of(a, struct request, queuelist);
1603 struct request *rqb = container_of(b, struct request, queuelist);
1604
1605 return !(rqa->mq_ctx < rqb->mq_ctx ||
1606 (rqa->mq_ctx == rqb->mq_ctx &&
1607 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1608 }
1609
1610 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1611 {
1612 struct blk_mq_ctx *this_ctx;
1613 struct request_queue *this_q;
1614 struct request *rq;
1615 LIST_HEAD(list);
1616 LIST_HEAD(ctx_list);
1617 unsigned int depth;
1618
1619 list_splice_init(&plug->mq_list, &list);
1620
1621 list_sort(NULL, &list, plug_ctx_cmp);
1622
1623 this_q = NULL;
1624 this_ctx = NULL;
1625 depth = 0;
1626
1627 while (!list_empty(&list)) {
1628 rq = list_entry_rq(list.next);
1629 list_del_init(&rq->queuelist);
1630 BUG_ON(!rq->q);
1631 if (rq->mq_ctx != this_ctx) {
1632 if (this_ctx) {
1633 trace_block_unplug(this_q, depth, from_schedule);
1634 blk_mq_sched_insert_requests(this_q, this_ctx,
1635 &ctx_list,
1636 from_schedule);
1637 }
1638
1639 this_ctx = rq->mq_ctx;
1640 this_q = rq->q;
1641 depth = 0;
1642 }
1643
1644 depth++;
1645 list_add_tail(&rq->queuelist, &ctx_list);
1646 }
1647
1648 /*
1649 * If 'this_ctx' is set, we know we have entries to complete
1650 * on 'ctx_list'. Do those.
1651 */
1652 if (this_ctx) {
1653 trace_block_unplug(this_q, depth, from_schedule);
1654 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1655 from_schedule);
1656 }
1657 }
1658
1659 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1660 {
1661 blk_init_request_from_bio(rq, bio);
1662
1663 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1664
1665 blk_account_io_start(rq, true);
1666 }
1667
1668 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1669 struct blk_mq_ctx *ctx,
1670 struct request *rq)
1671 {
1672 spin_lock(&ctx->lock);
1673 __blk_mq_insert_request(hctx, rq, false);
1674 spin_unlock(&ctx->lock);
1675 }
1676
1677 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1678 {
1679 if (rq->tag != -1)
1680 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1681
1682 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1683 }
1684
1685 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1686 struct request *rq,
1687 blk_qc_t *cookie)
1688 {
1689 struct request_queue *q = rq->q;
1690 struct blk_mq_queue_data bd = {
1691 .rq = rq,
1692 .last = true,
1693 };
1694 blk_qc_t new_cookie;
1695 blk_status_t ret;
1696 bool run_queue = true;
1697
1698 /* RCU or SRCU read lock is needed before checking quiesced flag */
1699 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1700 run_queue = false;
1701 goto insert;
1702 }
1703
1704 if (q->elevator)
1705 goto insert;
1706
1707 if (!blk_mq_get_driver_tag(rq, NULL, false))
1708 goto insert;
1709
1710 if (!blk_mq_get_dispatch_budget(hctx)) {
1711 blk_mq_put_driver_tag(rq);
1712 goto insert;
1713 }
1714
1715 new_cookie = request_to_qc_t(hctx, rq);
1716
1717 /*
1718 * For OK queue, we are done. For error, kill it. Any other
1719 * error (busy), just add it to our list as we previously
1720 * would have done
1721 */
1722 ret = q->mq_ops->queue_rq(hctx, &bd);
1723 switch (ret) {
1724 case BLK_STS_OK:
1725 *cookie = new_cookie;
1726 return;
1727 case BLK_STS_RESOURCE:
1728 __blk_mq_requeue_request(rq);
1729 goto insert;
1730 default:
1731 *cookie = BLK_QC_T_NONE;
1732 blk_mq_end_request(rq, ret);
1733 return;
1734 }
1735
1736 insert:
1737 blk_mq_sched_insert_request(rq, false, run_queue, false,
1738 hctx->flags & BLK_MQ_F_BLOCKING);
1739 }
1740
1741 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1742 struct request *rq, blk_qc_t *cookie)
1743 {
1744 int srcu_idx;
1745
1746 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1747
1748 hctx_lock(hctx, &srcu_idx);
1749 __blk_mq_try_issue_directly(hctx, rq, cookie);
1750 hctx_unlock(hctx, srcu_idx);
1751 }
1752
1753 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1754 {
1755 const int is_sync = op_is_sync(bio->bi_opf);
1756 const int is_flush_fua = op_is_flush(bio->bi_opf);
1757 struct blk_mq_alloc_data data = { .flags = 0 };
1758 struct request *rq;
1759 unsigned int request_count = 0;
1760 struct blk_plug *plug;
1761 struct request *same_queue_rq = NULL;
1762 blk_qc_t cookie;
1763 unsigned int wb_acct;
1764
1765 blk_queue_bounce(q, &bio);
1766
1767 blk_queue_split(q, &bio);
1768
1769 if (!bio_integrity_prep(bio))
1770 return BLK_QC_T_NONE;
1771
1772 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1773 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1774 return BLK_QC_T_NONE;
1775
1776 if (blk_mq_sched_bio_merge(q, bio))
1777 return BLK_QC_T_NONE;
1778
1779 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1780
1781 trace_block_getrq(q, bio, bio->bi_opf);
1782
1783 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1784 if (unlikely(!rq)) {
1785 __wbt_done(q->rq_wb, wb_acct);
1786 if (bio->bi_opf & REQ_NOWAIT)
1787 bio_wouldblock_error(bio);
1788 return BLK_QC_T_NONE;
1789 }
1790
1791 wbt_track(&rq->issue_stat, wb_acct);
1792
1793 cookie = request_to_qc_t(data.hctx, rq);
1794
1795 plug = current->plug;
1796 if (unlikely(is_flush_fua)) {
1797 blk_mq_put_ctx(data.ctx);
1798 blk_mq_bio_to_request(rq, bio);
1799
1800 /* bypass scheduler for flush rq */
1801 blk_insert_flush(rq);
1802 blk_mq_run_hw_queue(data.hctx, true);
1803 } else if (plug && q->nr_hw_queues == 1) {
1804 struct request *last = NULL;
1805
1806 blk_mq_put_ctx(data.ctx);
1807 blk_mq_bio_to_request(rq, bio);
1808
1809 /*
1810 * @request_count may become stale because of schedule
1811 * out, so check the list again.
1812 */
1813 if (list_empty(&plug->mq_list))
1814 request_count = 0;
1815 else if (blk_queue_nomerges(q))
1816 request_count = blk_plug_queued_count(q);
1817
1818 if (!request_count)
1819 trace_block_plug(q);
1820 else
1821 last = list_entry_rq(plug->mq_list.prev);
1822
1823 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1824 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1825 blk_flush_plug_list(plug, false);
1826 trace_block_plug(q);
1827 }
1828
1829 list_add_tail(&rq->queuelist, &plug->mq_list);
1830 } else if (plug && !blk_queue_nomerges(q)) {
1831 blk_mq_bio_to_request(rq, bio);
1832
1833 /*
1834 * We do limited plugging. If the bio can be merged, do that.
1835 * Otherwise the existing request in the plug list will be
1836 * issued. So the plug list will have one request at most
1837 * The plug list might get flushed before this. If that happens,
1838 * the plug list is empty, and same_queue_rq is invalid.
1839 */
1840 if (list_empty(&plug->mq_list))
1841 same_queue_rq = NULL;
1842 if (same_queue_rq)
1843 list_del_init(&same_queue_rq->queuelist);
1844 list_add_tail(&rq->queuelist, &plug->mq_list);
1845
1846 blk_mq_put_ctx(data.ctx);
1847
1848 if (same_queue_rq) {
1849 data.hctx = blk_mq_map_queue(q,
1850 same_queue_rq->mq_ctx->cpu);
1851 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1852 &cookie);
1853 }
1854 } else if (q->nr_hw_queues > 1 && is_sync) {
1855 blk_mq_put_ctx(data.ctx);
1856 blk_mq_bio_to_request(rq, bio);
1857 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1858 } else if (q->elevator) {
1859 blk_mq_put_ctx(data.ctx);
1860 blk_mq_bio_to_request(rq, bio);
1861 blk_mq_sched_insert_request(rq, false, true, true, true);
1862 } else {
1863 blk_mq_put_ctx(data.ctx);
1864 blk_mq_bio_to_request(rq, bio);
1865 blk_mq_queue_io(data.hctx, data.ctx, rq);
1866 blk_mq_run_hw_queue(data.hctx, true);
1867 }
1868
1869 return cookie;
1870 }
1871
1872 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1873 unsigned int hctx_idx)
1874 {
1875 struct page *page;
1876
1877 if (tags->rqs && set->ops->exit_request) {
1878 int i;
1879
1880 for (i = 0; i < tags->nr_tags; i++) {
1881 struct request *rq = tags->static_rqs[i];
1882
1883 if (!rq)
1884 continue;
1885 set->ops->exit_request(set, rq, hctx_idx);
1886 tags->static_rqs[i] = NULL;
1887 }
1888 }
1889
1890 while (!list_empty(&tags->page_list)) {
1891 page = list_first_entry(&tags->page_list, struct page, lru);
1892 list_del_init(&page->lru);
1893 /*
1894 * Remove kmemleak object previously allocated in
1895 * blk_mq_init_rq_map().
1896 */
1897 kmemleak_free(page_address(page));
1898 __free_pages(page, page->private);
1899 }
1900 }
1901
1902 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1903 {
1904 kfree(tags->rqs);
1905 tags->rqs = NULL;
1906 kfree(tags->static_rqs);
1907 tags->static_rqs = NULL;
1908
1909 blk_mq_free_tags(tags);
1910 }
1911
1912 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1913 unsigned int hctx_idx,
1914 unsigned int nr_tags,
1915 unsigned int reserved_tags)
1916 {
1917 struct blk_mq_tags *tags;
1918 int node;
1919
1920 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1921 if (node == NUMA_NO_NODE)
1922 node = set->numa_node;
1923
1924 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1925 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1926 if (!tags)
1927 return NULL;
1928
1929 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1930 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1931 node);
1932 if (!tags->rqs) {
1933 blk_mq_free_tags(tags);
1934 return NULL;
1935 }
1936
1937 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1938 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1939 node);
1940 if (!tags->static_rqs) {
1941 kfree(tags->rqs);
1942 blk_mq_free_tags(tags);
1943 return NULL;
1944 }
1945
1946 return tags;
1947 }
1948
1949 static size_t order_to_size(unsigned int order)
1950 {
1951 return (size_t)PAGE_SIZE << order;
1952 }
1953
1954 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1955 unsigned int hctx_idx, int node)
1956 {
1957 int ret;
1958
1959 if (set->ops->init_request) {
1960 ret = set->ops->init_request(set, rq, hctx_idx, node);
1961 if (ret)
1962 return ret;
1963 }
1964
1965 seqcount_init(&rq->gstate_seq);
1966 u64_stats_init(&rq->aborted_gstate_sync);
1967 return 0;
1968 }
1969
1970 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1971 unsigned int hctx_idx, unsigned int depth)
1972 {
1973 unsigned int i, j, entries_per_page, max_order = 4;
1974 size_t rq_size, left;
1975 int node;
1976
1977 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1978 if (node == NUMA_NO_NODE)
1979 node = set->numa_node;
1980
1981 INIT_LIST_HEAD(&tags->page_list);
1982
1983 /*
1984 * rq_size is the size of the request plus driver payload, rounded
1985 * to the cacheline size
1986 */
1987 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1988 cache_line_size());
1989 left = rq_size * depth;
1990
1991 for (i = 0; i < depth; ) {
1992 int this_order = max_order;
1993 struct page *page;
1994 int to_do;
1995 void *p;
1996
1997 while (this_order && left < order_to_size(this_order - 1))
1998 this_order--;
1999
2000 do {
2001 page = alloc_pages_node(node,
2002 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2003 this_order);
2004 if (page)
2005 break;
2006 if (!this_order--)
2007 break;
2008 if (order_to_size(this_order) < rq_size)
2009 break;
2010 } while (1);
2011
2012 if (!page)
2013 goto fail;
2014
2015 page->private = this_order;
2016 list_add_tail(&page->lru, &tags->page_list);
2017
2018 p = page_address(page);
2019 /*
2020 * Allow kmemleak to scan these pages as they contain pointers
2021 * to additional allocations like via ops->init_request().
2022 */
2023 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2024 entries_per_page = order_to_size(this_order) / rq_size;
2025 to_do = min(entries_per_page, depth - i);
2026 left -= to_do * rq_size;
2027 for (j = 0; j < to_do; j++) {
2028 struct request *rq = p;
2029
2030 tags->static_rqs[i] = rq;
2031 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2032 tags->static_rqs[i] = NULL;
2033 goto fail;
2034 }
2035
2036 p += rq_size;
2037 i++;
2038 }
2039 }
2040 return 0;
2041
2042 fail:
2043 blk_mq_free_rqs(set, tags, hctx_idx);
2044 return -ENOMEM;
2045 }
2046
2047 /*
2048 * 'cpu' is going away. splice any existing rq_list entries from this
2049 * software queue to the hw queue dispatch list, and ensure that it
2050 * gets run.
2051 */
2052 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2053 {
2054 struct blk_mq_hw_ctx *hctx;
2055 struct blk_mq_ctx *ctx;
2056 LIST_HEAD(tmp);
2057
2058 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2059 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2060
2061 spin_lock(&ctx->lock);
2062 if (!list_empty(&ctx->rq_list)) {
2063 list_splice_init(&ctx->rq_list, &tmp);
2064 blk_mq_hctx_clear_pending(hctx, ctx);
2065 }
2066 spin_unlock(&ctx->lock);
2067
2068 if (list_empty(&tmp))
2069 return 0;
2070
2071 spin_lock(&hctx->lock);
2072 list_splice_tail_init(&tmp, &hctx->dispatch);
2073 spin_unlock(&hctx->lock);
2074
2075 blk_mq_run_hw_queue(hctx, true);
2076 return 0;
2077 }
2078
2079 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2080 {
2081 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2082 &hctx->cpuhp_dead);
2083 }
2084
2085 /* hctx->ctxs will be freed in queue's release handler */
2086 static void blk_mq_exit_hctx(struct request_queue *q,
2087 struct blk_mq_tag_set *set,
2088 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2089 {
2090 blk_mq_debugfs_unregister_hctx(hctx);
2091
2092 if (blk_mq_hw_queue_mapped(hctx))
2093 blk_mq_tag_idle(hctx);
2094
2095 if (set->ops->exit_request)
2096 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2097
2098 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2099
2100 if (set->ops->exit_hctx)
2101 set->ops->exit_hctx(hctx, hctx_idx);
2102
2103 if (hctx->flags & BLK_MQ_F_BLOCKING)
2104 cleanup_srcu_struct(hctx->queue_rq_srcu);
2105
2106 blk_mq_remove_cpuhp(hctx);
2107 blk_free_flush_queue(hctx->fq);
2108 sbitmap_free(&hctx->ctx_map);
2109 }
2110
2111 static void blk_mq_exit_hw_queues(struct request_queue *q,
2112 struct blk_mq_tag_set *set, int nr_queue)
2113 {
2114 struct blk_mq_hw_ctx *hctx;
2115 unsigned int i;
2116
2117 queue_for_each_hw_ctx(q, hctx, i) {
2118 if (i == nr_queue)
2119 break;
2120 blk_mq_exit_hctx(q, set, hctx, i);
2121 }
2122 }
2123
2124 static int blk_mq_init_hctx(struct request_queue *q,
2125 struct blk_mq_tag_set *set,
2126 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2127 {
2128 int node;
2129
2130 node = hctx->numa_node;
2131 if (node == NUMA_NO_NODE)
2132 node = hctx->numa_node = set->numa_node;
2133
2134 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2135 spin_lock_init(&hctx->lock);
2136 INIT_LIST_HEAD(&hctx->dispatch);
2137 hctx->queue = q;
2138 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2139
2140 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2141
2142 hctx->tags = set->tags[hctx_idx];
2143
2144 /*
2145 * Allocate space for all possible cpus to avoid allocation at
2146 * runtime
2147 */
2148 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2149 GFP_KERNEL, node);
2150 if (!hctx->ctxs)
2151 goto unregister_cpu_notifier;
2152
2153 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2154 node))
2155 goto free_ctxs;
2156
2157 hctx->nr_ctx = 0;
2158
2159 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2160 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2161
2162 if (set->ops->init_hctx &&
2163 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2164 goto free_bitmap;
2165
2166 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2167 goto exit_hctx;
2168
2169 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2170 if (!hctx->fq)
2171 goto sched_exit_hctx;
2172
2173 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2174 goto free_fq;
2175
2176 if (hctx->flags & BLK_MQ_F_BLOCKING)
2177 init_srcu_struct(hctx->queue_rq_srcu);
2178
2179 blk_mq_debugfs_register_hctx(q, hctx);
2180
2181 return 0;
2182
2183 free_fq:
2184 kfree(hctx->fq);
2185 sched_exit_hctx:
2186 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2187 exit_hctx:
2188 if (set->ops->exit_hctx)
2189 set->ops->exit_hctx(hctx, hctx_idx);
2190 free_bitmap:
2191 sbitmap_free(&hctx->ctx_map);
2192 free_ctxs:
2193 kfree(hctx->ctxs);
2194 unregister_cpu_notifier:
2195 blk_mq_remove_cpuhp(hctx);
2196 return -1;
2197 }
2198
2199 static void blk_mq_init_cpu_queues(struct request_queue *q,
2200 unsigned int nr_hw_queues)
2201 {
2202 unsigned int i;
2203
2204 for_each_possible_cpu(i) {
2205 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2206 struct blk_mq_hw_ctx *hctx;
2207
2208 __ctx->cpu = i;
2209 spin_lock_init(&__ctx->lock);
2210 INIT_LIST_HEAD(&__ctx->rq_list);
2211 __ctx->queue = q;
2212
2213 /* If the cpu isn't present, the cpu is mapped to first hctx */
2214 if (!cpu_present(i))
2215 continue;
2216
2217 hctx = blk_mq_map_queue(q, i);
2218
2219 /*
2220 * Set local node, IFF we have more than one hw queue. If
2221 * not, we remain on the home node of the device
2222 */
2223 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2224 hctx->numa_node = local_memory_node(cpu_to_node(i));
2225 }
2226 }
2227
2228 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2229 {
2230 int ret = 0;
2231
2232 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2233 set->queue_depth, set->reserved_tags);
2234 if (!set->tags[hctx_idx])
2235 return false;
2236
2237 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2238 set->queue_depth);
2239 if (!ret)
2240 return true;
2241
2242 blk_mq_free_rq_map(set->tags[hctx_idx]);
2243 set->tags[hctx_idx] = NULL;
2244 return false;
2245 }
2246
2247 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2248 unsigned int hctx_idx)
2249 {
2250 if (set->tags[hctx_idx]) {
2251 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2252 blk_mq_free_rq_map(set->tags[hctx_idx]);
2253 set->tags[hctx_idx] = NULL;
2254 }
2255 }
2256
2257 static void blk_mq_map_swqueue(struct request_queue *q)
2258 {
2259 unsigned int i, hctx_idx;
2260 struct blk_mq_hw_ctx *hctx;
2261 struct blk_mq_ctx *ctx;
2262 struct blk_mq_tag_set *set = q->tag_set;
2263
2264 /*
2265 * Avoid others reading imcomplete hctx->cpumask through sysfs
2266 */
2267 mutex_lock(&q->sysfs_lock);
2268
2269 queue_for_each_hw_ctx(q, hctx, i) {
2270 cpumask_clear(hctx->cpumask);
2271 hctx->nr_ctx = 0;
2272 }
2273
2274 /*
2275 * Map software to hardware queues.
2276 *
2277 * If the cpu isn't present, the cpu is mapped to first hctx.
2278 */
2279 for_each_present_cpu(i) {
2280 hctx_idx = q->mq_map[i];
2281 /* unmapped hw queue can be remapped after CPU topo changed */
2282 if (!set->tags[hctx_idx] &&
2283 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2284 /*
2285 * If tags initialization fail for some hctx,
2286 * that hctx won't be brought online. In this
2287 * case, remap the current ctx to hctx[0] which
2288 * is guaranteed to always have tags allocated
2289 */
2290 q->mq_map[i] = 0;
2291 }
2292
2293 ctx = per_cpu_ptr(q->queue_ctx, i);
2294 hctx = blk_mq_map_queue(q, i);
2295
2296 cpumask_set_cpu(i, hctx->cpumask);
2297 ctx->index_hw = hctx->nr_ctx;
2298 hctx->ctxs[hctx->nr_ctx++] = ctx;
2299 }
2300
2301 mutex_unlock(&q->sysfs_lock);
2302
2303 queue_for_each_hw_ctx(q, hctx, i) {
2304 /*
2305 * If no software queues are mapped to this hardware queue,
2306 * disable it and free the request entries.
2307 */
2308 if (!hctx->nr_ctx) {
2309 /* Never unmap queue 0. We need it as a
2310 * fallback in case of a new remap fails
2311 * allocation
2312 */
2313 if (i && set->tags[i])
2314 blk_mq_free_map_and_requests(set, i);
2315
2316 hctx->tags = NULL;
2317 continue;
2318 }
2319
2320 hctx->tags = set->tags[i];
2321 WARN_ON(!hctx->tags);
2322
2323 /*
2324 * Set the map size to the number of mapped software queues.
2325 * This is more accurate and more efficient than looping
2326 * over all possibly mapped software queues.
2327 */
2328 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2329
2330 /*
2331 * Initialize batch roundrobin counts
2332 */
2333 hctx->next_cpu = cpumask_first(hctx->cpumask);
2334 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2335 }
2336 }
2337
2338 /*
2339 * Caller needs to ensure that we're either frozen/quiesced, or that
2340 * the queue isn't live yet.
2341 */
2342 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2343 {
2344 struct blk_mq_hw_ctx *hctx;
2345 int i;
2346
2347 queue_for_each_hw_ctx(q, hctx, i) {
2348 if (shared) {
2349 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2350 atomic_inc(&q->shared_hctx_restart);
2351 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2352 } else {
2353 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2354 atomic_dec(&q->shared_hctx_restart);
2355 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2356 }
2357 }
2358 }
2359
2360 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2361 bool shared)
2362 {
2363 struct request_queue *q;
2364
2365 lockdep_assert_held(&set->tag_list_lock);
2366
2367 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2368 blk_mq_freeze_queue(q);
2369 queue_set_hctx_shared(q, shared);
2370 blk_mq_unfreeze_queue(q);
2371 }
2372 }
2373
2374 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2375 {
2376 struct blk_mq_tag_set *set = q->tag_set;
2377
2378 mutex_lock(&set->tag_list_lock);
2379 list_del_rcu(&q->tag_set_list);
2380 INIT_LIST_HEAD(&q->tag_set_list);
2381 if (list_is_singular(&set->tag_list)) {
2382 /* just transitioned to unshared */
2383 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2384 /* update existing queue */
2385 blk_mq_update_tag_set_depth(set, false);
2386 }
2387 mutex_unlock(&set->tag_list_lock);
2388
2389 synchronize_rcu();
2390 }
2391
2392 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2393 struct request_queue *q)
2394 {
2395 q->tag_set = set;
2396
2397 mutex_lock(&set->tag_list_lock);
2398
2399 /*
2400 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2401 */
2402 if (!list_empty(&set->tag_list) &&
2403 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404 set->flags |= BLK_MQ_F_TAG_SHARED;
2405 /* update existing queue */
2406 blk_mq_update_tag_set_depth(set, true);
2407 }
2408 if (set->flags & BLK_MQ_F_TAG_SHARED)
2409 queue_set_hctx_shared(q, true);
2410 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2411
2412 mutex_unlock(&set->tag_list_lock);
2413 }
2414
2415 /*
2416 * It is the actual release handler for mq, but we do it from
2417 * request queue's release handler for avoiding use-after-free
2418 * and headache because q->mq_kobj shouldn't have been introduced,
2419 * but we can't group ctx/kctx kobj without it.
2420 */
2421 void blk_mq_release(struct request_queue *q)
2422 {
2423 struct blk_mq_hw_ctx *hctx;
2424 unsigned int i;
2425
2426 /* hctx kobj stays in hctx */
2427 queue_for_each_hw_ctx(q, hctx, i) {
2428 if (!hctx)
2429 continue;
2430 kobject_put(&hctx->kobj);
2431 }
2432
2433 q->mq_map = NULL;
2434
2435 kfree(q->queue_hw_ctx);
2436
2437 /*
2438 * release .mq_kobj and sw queue's kobject now because
2439 * both share lifetime with request queue.
2440 */
2441 blk_mq_sysfs_deinit(q);
2442
2443 free_percpu(q->queue_ctx);
2444 }
2445
2446 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2447 {
2448 struct request_queue *uninit_q, *q;
2449
2450 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2451 if (!uninit_q)
2452 return ERR_PTR(-ENOMEM);
2453
2454 q = blk_mq_init_allocated_queue(set, uninit_q);
2455 if (IS_ERR(q))
2456 blk_cleanup_queue(uninit_q);
2457
2458 return q;
2459 }
2460 EXPORT_SYMBOL(blk_mq_init_queue);
2461
2462 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2463 {
2464 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2465
2466 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2467 __alignof__(struct blk_mq_hw_ctx)) !=
2468 sizeof(struct blk_mq_hw_ctx));
2469
2470 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2471 hw_ctx_size += sizeof(struct srcu_struct);
2472
2473 return hw_ctx_size;
2474 }
2475
2476 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2477 struct request_queue *q)
2478 {
2479 int i, j;
2480 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2481
2482 blk_mq_sysfs_unregister(q);
2483
2484 /* protect against switching io scheduler */
2485 mutex_lock(&q->sysfs_lock);
2486 for (i = 0; i < set->nr_hw_queues; i++) {
2487 int node;
2488
2489 if (hctxs[i])
2490 continue;
2491
2492 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2493 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2494 GFP_KERNEL, node);
2495 if (!hctxs[i])
2496 break;
2497
2498 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2499 node)) {
2500 kfree(hctxs[i]);
2501 hctxs[i] = NULL;
2502 break;
2503 }
2504
2505 atomic_set(&hctxs[i]->nr_active, 0);
2506 hctxs[i]->numa_node = node;
2507 hctxs[i]->queue_num = i;
2508
2509 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2510 free_cpumask_var(hctxs[i]->cpumask);
2511 kfree(hctxs[i]);
2512 hctxs[i] = NULL;
2513 break;
2514 }
2515 blk_mq_hctx_kobj_init(hctxs[i]);
2516 }
2517 for (j = i; j < q->nr_hw_queues; j++) {
2518 struct blk_mq_hw_ctx *hctx = hctxs[j];
2519
2520 if (hctx) {
2521 if (hctx->tags)
2522 blk_mq_free_map_and_requests(set, j);
2523 blk_mq_exit_hctx(q, set, hctx, j);
2524 kobject_put(&hctx->kobj);
2525 hctxs[j] = NULL;
2526
2527 }
2528 }
2529 q->nr_hw_queues = i;
2530 mutex_unlock(&q->sysfs_lock);
2531 blk_mq_sysfs_register(q);
2532 }
2533
2534 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2535 struct request_queue *q)
2536 {
2537 /* mark the queue as mq asap */
2538 q->mq_ops = set->ops;
2539
2540 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2541 blk_mq_poll_stats_bkt,
2542 BLK_MQ_POLL_STATS_BKTS, q);
2543 if (!q->poll_cb)
2544 goto err_exit;
2545
2546 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2547 if (!q->queue_ctx)
2548 goto err_exit;
2549
2550 /* init q->mq_kobj and sw queues' kobjects */
2551 blk_mq_sysfs_init(q);
2552
2553 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2554 GFP_KERNEL, set->numa_node);
2555 if (!q->queue_hw_ctx)
2556 goto err_percpu;
2557
2558 q->mq_map = set->mq_map;
2559
2560 blk_mq_realloc_hw_ctxs(set, q);
2561 if (!q->nr_hw_queues)
2562 goto err_hctxs;
2563
2564 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2565 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2566
2567 q->nr_queues = nr_cpu_ids;
2568
2569 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2570
2571 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2572 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2573
2574 q->sg_reserved_size = INT_MAX;
2575
2576 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2577 INIT_LIST_HEAD(&q->requeue_list);
2578 spin_lock_init(&q->requeue_lock);
2579
2580 blk_queue_make_request(q, blk_mq_make_request);
2581 if (q->mq_ops->poll)
2582 q->poll_fn = blk_mq_poll;
2583
2584 /*
2585 * Do this after blk_queue_make_request() overrides it...
2586 */
2587 q->nr_requests = set->queue_depth;
2588
2589 /*
2590 * Default to classic polling
2591 */
2592 q->poll_nsec = -1;
2593
2594 if (set->ops->complete)
2595 blk_queue_softirq_done(q, set->ops->complete);
2596
2597 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2598 blk_mq_add_queue_tag_set(set, q);
2599 blk_mq_map_swqueue(q);
2600
2601 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2602 int ret;
2603
2604 ret = blk_mq_sched_init(q);
2605 if (ret)
2606 return ERR_PTR(ret);
2607 }
2608
2609 return q;
2610
2611 err_hctxs:
2612 kfree(q->queue_hw_ctx);
2613 err_percpu:
2614 free_percpu(q->queue_ctx);
2615 err_exit:
2616 q->mq_ops = NULL;
2617 return ERR_PTR(-ENOMEM);
2618 }
2619 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2620
2621 void blk_mq_free_queue(struct request_queue *q)
2622 {
2623 struct blk_mq_tag_set *set = q->tag_set;
2624
2625 blk_mq_del_queue_tag_set(q);
2626 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2627 }
2628
2629 /* Basically redo blk_mq_init_queue with queue frozen */
2630 static void blk_mq_queue_reinit(struct request_queue *q)
2631 {
2632 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2633
2634 blk_mq_debugfs_unregister_hctxs(q);
2635 blk_mq_sysfs_unregister(q);
2636
2637 /*
2638 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2639 * we should change hctx numa_node according to the new topology (this
2640 * involves freeing and re-allocating memory, worth doing?)
2641 */
2642 blk_mq_map_swqueue(q);
2643
2644 blk_mq_sysfs_register(q);
2645 blk_mq_debugfs_register_hctxs(q);
2646 }
2647
2648 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2649 {
2650 int i;
2651
2652 for (i = 0; i < set->nr_hw_queues; i++)
2653 if (!__blk_mq_alloc_rq_map(set, i))
2654 goto out_unwind;
2655
2656 return 0;
2657
2658 out_unwind:
2659 while (--i >= 0)
2660 blk_mq_free_rq_map(set->tags[i]);
2661
2662 return -ENOMEM;
2663 }
2664
2665 /*
2666 * Allocate the request maps associated with this tag_set. Note that this
2667 * may reduce the depth asked for, if memory is tight. set->queue_depth
2668 * will be updated to reflect the allocated depth.
2669 */
2670 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2671 {
2672 unsigned int depth;
2673 int err;
2674
2675 depth = set->queue_depth;
2676 do {
2677 err = __blk_mq_alloc_rq_maps(set);
2678 if (!err)
2679 break;
2680
2681 set->queue_depth >>= 1;
2682 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2683 err = -ENOMEM;
2684 break;
2685 }
2686 } while (set->queue_depth);
2687
2688 if (!set->queue_depth || err) {
2689 pr_err("blk-mq: failed to allocate request map\n");
2690 return -ENOMEM;
2691 }
2692
2693 if (depth != set->queue_depth)
2694 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2695 depth, set->queue_depth);
2696
2697 return 0;
2698 }
2699
2700 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2701 {
2702 if (set->ops->map_queues) {
2703 int cpu;
2704 /*
2705 * transport .map_queues is usually done in the following
2706 * way:
2707 *
2708 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2709 * mask = get_cpu_mask(queue)
2710 * for_each_cpu(cpu, mask)
2711 * set->mq_map[cpu] = queue;
2712 * }
2713 *
2714 * When we need to remap, the table has to be cleared for
2715 * killing stale mapping since one CPU may not be mapped
2716 * to any hw queue.
2717 */
2718 for_each_possible_cpu(cpu)
2719 set->mq_map[cpu] = 0;
2720
2721 return set->ops->map_queues(set);
2722 } else
2723 return blk_mq_map_queues(set);
2724 }
2725
2726 /*
2727 * Alloc a tag set to be associated with one or more request queues.
2728 * May fail with EINVAL for various error conditions. May adjust the
2729 * requested depth down, if if it too large. In that case, the set
2730 * value will be stored in set->queue_depth.
2731 */
2732 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2733 {
2734 int ret;
2735
2736 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2737
2738 if (!set->nr_hw_queues)
2739 return -EINVAL;
2740 if (!set->queue_depth)
2741 return -EINVAL;
2742 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2743 return -EINVAL;
2744
2745 if (!set->ops->queue_rq)
2746 return -EINVAL;
2747
2748 if (!set->ops->get_budget ^ !set->ops->put_budget)
2749 return -EINVAL;
2750
2751 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2752 pr_info("blk-mq: reduced tag depth to %u\n",
2753 BLK_MQ_MAX_DEPTH);
2754 set->queue_depth = BLK_MQ_MAX_DEPTH;
2755 }
2756
2757 /*
2758 * If a crashdump is active, then we are potentially in a very
2759 * memory constrained environment. Limit us to 1 queue and
2760 * 64 tags to prevent using too much memory.
2761 */
2762 if (is_kdump_kernel()) {
2763 set->nr_hw_queues = 1;
2764 set->queue_depth = min(64U, set->queue_depth);
2765 }
2766 /*
2767 * There is no use for more h/w queues than cpus.
2768 */
2769 if (set->nr_hw_queues > nr_cpu_ids)
2770 set->nr_hw_queues = nr_cpu_ids;
2771
2772 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2773 GFP_KERNEL, set->numa_node);
2774 if (!set->tags)
2775 return -ENOMEM;
2776
2777 ret = -ENOMEM;
2778 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2779 GFP_KERNEL, set->numa_node);
2780 if (!set->mq_map)
2781 goto out_free_tags;
2782
2783 ret = blk_mq_update_queue_map(set);
2784 if (ret)
2785 goto out_free_mq_map;
2786
2787 ret = blk_mq_alloc_rq_maps(set);
2788 if (ret)
2789 goto out_free_mq_map;
2790
2791 mutex_init(&set->tag_list_lock);
2792 INIT_LIST_HEAD(&set->tag_list);
2793
2794 return 0;
2795
2796 out_free_mq_map:
2797 kfree(set->mq_map);
2798 set->mq_map = NULL;
2799 out_free_tags:
2800 kfree(set->tags);
2801 set->tags = NULL;
2802 return ret;
2803 }
2804 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2805
2806 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2807 {
2808 int i;
2809
2810 for (i = 0; i < nr_cpu_ids; i++)
2811 blk_mq_free_map_and_requests(set, i);
2812
2813 kfree(set->mq_map);
2814 set->mq_map = NULL;
2815
2816 kfree(set->tags);
2817 set->tags = NULL;
2818 }
2819 EXPORT_SYMBOL(blk_mq_free_tag_set);
2820
2821 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2822 {
2823 struct blk_mq_tag_set *set = q->tag_set;
2824 struct blk_mq_hw_ctx *hctx;
2825 int i, ret;
2826
2827 if (!set)
2828 return -EINVAL;
2829
2830 blk_mq_freeze_queue(q);
2831 blk_mq_quiesce_queue(q);
2832
2833 ret = 0;
2834 queue_for_each_hw_ctx(q, hctx, i) {
2835 if (!hctx->tags)
2836 continue;
2837 /*
2838 * If we're using an MQ scheduler, just update the scheduler
2839 * queue depth. This is similar to what the old code would do.
2840 */
2841 if (!hctx->sched_tags) {
2842 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2843 false);
2844 } else {
2845 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2846 nr, true);
2847 }
2848 if (ret)
2849 break;
2850 }
2851
2852 if (!ret)
2853 q->nr_requests = nr;
2854
2855 blk_mq_unquiesce_queue(q);
2856 blk_mq_unfreeze_queue(q);
2857
2858 return ret;
2859 }
2860
2861 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2862 int nr_hw_queues)
2863 {
2864 struct request_queue *q;
2865
2866 lockdep_assert_held(&set->tag_list_lock);
2867
2868 if (nr_hw_queues > nr_cpu_ids)
2869 nr_hw_queues = nr_cpu_ids;
2870 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2871 return;
2872
2873 list_for_each_entry(q, &set->tag_list, tag_set_list)
2874 blk_mq_freeze_queue(q);
2875
2876 set->nr_hw_queues = nr_hw_queues;
2877 blk_mq_update_queue_map(set);
2878 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2879 blk_mq_realloc_hw_ctxs(set, q);
2880 blk_mq_queue_reinit(q);
2881 }
2882
2883 list_for_each_entry(q, &set->tag_list, tag_set_list)
2884 blk_mq_unfreeze_queue(q);
2885 }
2886
2887 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2888 {
2889 mutex_lock(&set->tag_list_lock);
2890 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2891 mutex_unlock(&set->tag_list_lock);
2892 }
2893 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2894
2895 /* Enable polling stats and return whether they were already enabled. */
2896 static bool blk_poll_stats_enable(struct request_queue *q)
2897 {
2898 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2899 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2900 return true;
2901 blk_stat_add_callback(q, q->poll_cb);
2902 return false;
2903 }
2904
2905 static void blk_mq_poll_stats_start(struct request_queue *q)
2906 {
2907 /*
2908 * We don't arm the callback if polling stats are not enabled or the
2909 * callback is already active.
2910 */
2911 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2912 blk_stat_is_active(q->poll_cb))
2913 return;
2914
2915 blk_stat_activate_msecs(q->poll_cb, 100);
2916 }
2917
2918 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2919 {
2920 struct request_queue *q = cb->data;
2921 int bucket;
2922
2923 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2924 if (cb->stat[bucket].nr_samples)
2925 q->poll_stat[bucket] = cb->stat[bucket];
2926 }
2927 }
2928
2929 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2930 struct blk_mq_hw_ctx *hctx,
2931 struct request *rq)
2932 {
2933 unsigned long ret = 0;
2934 int bucket;
2935
2936 /*
2937 * If stats collection isn't on, don't sleep but turn it on for
2938 * future users
2939 */
2940 if (!blk_poll_stats_enable(q))
2941 return 0;
2942
2943 /*
2944 * As an optimistic guess, use half of the mean service time
2945 * for this type of request. We can (and should) make this smarter.
2946 * For instance, if the completion latencies are tight, we can
2947 * get closer than just half the mean. This is especially
2948 * important on devices where the completion latencies are longer
2949 * than ~10 usec. We do use the stats for the relevant IO size
2950 * if available which does lead to better estimates.
2951 */
2952 bucket = blk_mq_poll_stats_bkt(rq);
2953 if (bucket < 0)
2954 return ret;
2955
2956 if (q->poll_stat[bucket].nr_samples)
2957 ret = (q->poll_stat[bucket].mean + 1) / 2;
2958
2959 return ret;
2960 }
2961
2962 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2963 struct blk_mq_hw_ctx *hctx,
2964 struct request *rq)
2965 {
2966 struct hrtimer_sleeper hs;
2967 enum hrtimer_mode mode;
2968 unsigned int nsecs;
2969 ktime_t kt;
2970
2971 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2972 return false;
2973
2974 /*
2975 * poll_nsec can be:
2976 *
2977 * -1: don't ever hybrid sleep
2978 * 0: use half of prev avg
2979 * >0: use this specific value
2980 */
2981 if (q->poll_nsec == -1)
2982 return false;
2983 else if (q->poll_nsec > 0)
2984 nsecs = q->poll_nsec;
2985 else
2986 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2987
2988 if (!nsecs)
2989 return false;
2990
2991 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2992
2993 /*
2994 * This will be replaced with the stats tracking code, using
2995 * 'avg_completion_time / 2' as the pre-sleep target.
2996 */
2997 kt = nsecs;
2998
2999 mode = HRTIMER_MODE_REL;
3000 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3001 hrtimer_set_expires(&hs.timer, kt);
3002
3003 hrtimer_init_sleeper(&hs, current);
3004 do {
3005 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3006 break;
3007 set_current_state(TASK_UNINTERRUPTIBLE);
3008 hrtimer_start_expires(&hs.timer, mode);
3009 if (hs.task)
3010 io_schedule();
3011 hrtimer_cancel(&hs.timer);
3012 mode = HRTIMER_MODE_ABS;
3013 } while (hs.task && !signal_pending(current));
3014
3015 __set_current_state(TASK_RUNNING);
3016 destroy_hrtimer_on_stack(&hs.timer);
3017 return true;
3018 }
3019
3020 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3021 {
3022 struct request_queue *q = hctx->queue;
3023 long state;
3024
3025 /*
3026 * If we sleep, have the caller restart the poll loop to reset
3027 * the state. Like for the other success return cases, the
3028 * caller is responsible for checking if the IO completed. If
3029 * the IO isn't complete, we'll get called again and will go
3030 * straight to the busy poll loop.
3031 */
3032 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3033 return true;
3034
3035 hctx->poll_considered++;
3036
3037 state = current->state;
3038 while (!need_resched()) {
3039 int ret;
3040
3041 hctx->poll_invoked++;
3042
3043 ret = q->mq_ops->poll(hctx, rq->tag);
3044 if (ret > 0) {
3045 hctx->poll_success++;
3046 set_current_state(TASK_RUNNING);
3047 return true;
3048 }
3049
3050 if (signal_pending_state(state, current))
3051 set_current_state(TASK_RUNNING);
3052
3053 if (current->state == TASK_RUNNING)
3054 return true;
3055 if (ret < 0)
3056 break;
3057 cpu_relax();
3058 }
3059
3060 return false;
3061 }
3062
3063 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3064 {
3065 struct blk_mq_hw_ctx *hctx;
3066 struct request *rq;
3067
3068 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3069 return false;
3070
3071 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3072 if (!blk_qc_t_is_internal(cookie))
3073 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3074 else {
3075 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3076 /*
3077 * With scheduling, if the request has completed, we'll
3078 * get a NULL return here, as we clear the sched tag when
3079 * that happens. The request still remains valid, like always,
3080 * so we should be safe with just the NULL check.
3081 */
3082 if (!rq)
3083 return false;
3084 }
3085
3086 return __blk_mq_poll(hctx, rq);
3087 }
3088
3089 static int __init blk_mq_init(void)
3090 {
3091 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3092 blk_mq_hctx_notify_dead);
3093 return 0;
3094 }
3095 subsys_initcall(blk_mq_init);