]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-mq.c
blk-mq: enable IO poll if .nr_queues of type poll > 0
[thirdparty/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 const int bit = ctx->index_hw[hctx->type];
78
79 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85 {
86 const int bit = ctx->index_hw[hctx->type];
87
88 sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90
91 struct mq_inflight {
92 struct hd_struct *part;
93 unsigned int *inflight;
94 };
95
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97 struct request *rq, void *priv,
98 bool reserved)
99 {
100 struct mq_inflight *mi = priv;
101
102 /*
103 * index[0] counts the specific partition that was asked for.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107
108 return true;
109 }
110
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 unsigned inflight[2];
114 struct mq_inflight mi = { .part = part, .inflight = inflight, };
115
116 inflight[0] = inflight[1] = 0;
117 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118
119 return inflight[0];
120 }
121
122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125 {
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130
131 return true;
132 }
133
134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135 unsigned int inflight[2])
136 {
137 struct mq_inflight mi = { .part = part, .inflight = inflight, };
138
139 inflight[0] = inflight[1] = 0;
140 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
141 }
142
143 void blk_freeze_queue_start(struct request_queue *q)
144 {
145 int freeze_depth;
146
147 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148 if (freeze_depth == 1) {
149 percpu_ref_kill(&q->q_usage_counter);
150 if (queue_is_mq(q))
151 blk_mq_run_hw_queues(q, false);
152 }
153 }
154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
155
156 void blk_mq_freeze_queue_wait(struct request_queue *q)
157 {
158 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
161
162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163 unsigned long timeout)
164 {
165 return wait_event_timeout(q->mq_freeze_wq,
166 percpu_ref_is_zero(&q->q_usage_counter),
167 timeout);
168 }
169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
170
171 /*
172 * Guarantee no request is in use, so we can change any data structure of
173 * the queue afterward.
174 */
175 void blk_freeze_queue(struct request_queue *q)
176 {
177 /*
178 * In the !blk_mq case we are only calling this to kill the
179 * q_usage_counter, otherwise this increases the freeze depth
180 * and waits for it to return to zero. For this reason there is
181 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182 * exported to drivers as the only user for unfreeze is blk_mq.
183 */
184 blk_freeze_queue_start(q);
185 blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_resurrect(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223 * @q: request queue.
224 *
225 * Note: this function does not prevent that the struct request end_io()
226 * callback function is invoked. Once this function is returned, we make
227 * sure no dispatch can happen until the queue is unquiesced via
228 * blk_mq_unquiesce_queue().
229 */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 struct blk_mq_hw_ctx *hctx;
233 unsigned int i;
234 bool rcu = false;
235
236 blk_mq_quiesce_queue_nowait(q);
237
238 queue_for_each_hw_ctx(q, hctx, i) {
239 if (hctx->flags & BLK_MQ_F_BLOCKING)
240 synchronize_srcu(hctx->srcu);
241 else
242 rcu = true;
243 }
244 if (rcu)
245 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251 * @q: request queue.
252 *
253 * This function recovers queue into the state before quiescing
254 * which is done by blk_mq_quiesce_queue.
255 */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260 /* dispatch requests which are inserted during quiescing */
261 blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 struct blk_mq_hw_ctx *hctx;
268 unsigned int i;
269
270 queue_for_each_hw_ctx(q, hctx, i)
271 if (blk_mq_hw_queue_mapped(hctx))
272 blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
276 {
277 return blk_mq_has_free_tags(hctx->tags);
278 }
279 EXPORT_SYMBOL(blk_mq_can_queue);
280
281 /*
282 * Only need start/end time stamping if we have stats enabled, or using
283 * an IO scheduler.
284 */
285 static inline bool blk_mq_need_time_stamp(struct request *rq)
286 {
287 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
288 }
289
290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291 unsigned int tag, unsigned int op)
292 {
293 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294 struct request *rq = tags->static_rqs[tag];
295 req_flags_t rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 /* csd/requeue_work/fifo_time is initialized before use */
311 rq->q = data->q;
312 rq->mq_ctx = data->ctx;
313 rq->mq_hctx = data->hctx;
314 rq->rq_flags = rq_flags;
315 rq->cmd_flags = op;
316 if (data->flags & BLK_MQ_REQ_PREEMPT)
317 rq->rq_flags |= RQF_PREEMPT;
318 if (blk_queue_io_stat(data->q))
319 rq->rq_flags |= RQF_IO_STAT;
320 INIT_LIST_HEAD(&rq->queuelist);
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 if (blk_mq_need_time_stamp(rq))
326 rq->start_time_ns = ktime_get_ns();
327 else
328 rq->start_time_ns = 0;
329 rq->io_start_time_ns = 0;
330 rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 rq->nr_integrity_segments = 0;
333 #endif
334 rq->special = NULL;
335 /* tag was already set */
336 rq->extra_len = 0;
337 WRITE_ONCE(rq->deadline, 0);
338
339 rq->timeout = 0;
340
341 rq->end_io = NULL;
342 rq->end_io_data = NULL;
343 rq->next_rq = NULL;
344
345 data->ctx->rq_dispatched[op_is_sync(op)]++;
346 refcount_set(&rq->ref, 1);
347 return rq;
348 }
349
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio,
352 struct blk_mq_alloc_data *data)
353 {
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
367 data->ctx->cpu);
368 if (data->cmd_flags & REQ_NOWAIT)
369 data->flags |= BLK_MQ_REQ_NOWAIT;
370
371 if (e) {
372 data->flags |= BLK_MQ_REQ_INTERNAL;
373
374 /*
375 * Flush requests are special and go directly to the
376 * dispatch list. Don't include reserved tags in the
377 * limiting, as it isn't useful.
378 */
379 if (!op_is_flush(data->cmd_flags) &&
380 e->type->ops.limit_depth &&
381 !(data->flags & BLK_MQ_REQ_RESERVED))
382 e->type->ops.limit_depth(data->cmd_flags, data);
383 } else {
384 blk_mq_tag_busy(data->hctx);
385 }
386
387 tag = blk_mq_get_tag(data);
388 if (tag == BLK_MQ_TAG_FAIL) {
389 if (put_ctx_on_error) {
390 blk_mq_put_ctx(data->ctx);
391 data->ctx = NULL;
392 }
393 blk_queue_exit(q);
394 return NULL;
395 }
396
397 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
398 if (!op_is_flush(data->cmd_flags)) {
399 rq->elv.icq = NULL;
400 if (e && e->type->ops.prepare_request) {
401 if (e->type->icq_cache)
402 blk_mq_sched_assign_ioc(rq);
403
404 e->type->ops.prepare_request(rq, bio);
405 rq->rq_flags |= RQF_ELVPRIV;
406 }
407 }
408 data->hctx->queued++;
409 return rq;
410 }
411
412 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
413 blk_mq_req_flags_t flags)
414 {
415 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
416 struct request *rq;
417 int ret;
418
419 ret = blk_queue_enter(q, flags);
420 if (ret)
421 return ERR_PTR(ret);
422
423 rq = blk_mq_get_request(q, NULL, &alloc_data);
424 blk_queue_exit(q);
425
426 if (!rq)
427 return ERR_PTR(-EWOULDBLOCK);
428
429 blk_mq_put_ctx(alloc_data.ctx);
430
431 rq->__data_len = 0;
432 rq->__sector = (sector_t) -1;
433 rq->bio = rq->biotail = NULL;
434 return rq;
435 }
436 EXPORT_SYMBOL(blk_mq_alloc_request);
437
438 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
439 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
440 {
441 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
442 struct request *rq;
443 unsigned int cpu;
444 int ret;
445
446 /*
447 * If the tag allocator sleeps we could get an allocation for a
448 * different hardware context. No need to complicate the low level
449 * allocator for this for the rare use case of a command tied to
450 * a specific queue.
451 */
452 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
453 return ERR_PTR(-EINVAL);
454
455 if (hctx_idx >= q->nr_hw_queues)
456 return ERR_PTR(-EIO);
457
458 ret = blk_queue_enter(q, flags);
459 if (ret)
460 return ERR_PTR(ret);
461
462 /*
463 * Check if the hardware context is actually mapped to anything.
464 * If not tell the caller that it should skip this queue.
465 */
466 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
467 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
468 blk_queue_exit(q);
469 return ERR_PTR(-EXDEV);
470 }
471 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
472 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
473
474 rq = blk_mq_get_request(q, NULL, &alloc_data);
475 blk_queue_exit(q);
476
477 if (!rq)
478 return ERR_PTR(-EWOULDBLOCK);
479
480 return rq;
481 }
482 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
483
484 static void __blk_mq_free_request(struct request *rq)
485 {
486 struct request_queue *q = rq->q;
487 struct blk_mq_ctx *ctx = rq->mq_ctx;
488 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
489 const int sched_tag = rq->internal_tag;
490
491 blk_pm_mark_last_busy(rq);
492 rq->mq_hctx = NULL;
493 if (rq->tag != -1)
494 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
495 if (sched_tag != -1)
496 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
497 blk_mq_sched_restart(hctx);
498 blk_queue_exit(q);
499 }
500
501 void blk_mq_free_request(struct request *rq)
502 {
503 struct request_queue *q = rq->q;
504 struct elevator_queue *e = q->elevator;
505 struct blk_mq_ctx *ctx = rq->mq_ctx;
506 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
507
508 if (rq->rq_flags & RQF_ELVPRIV) {
509 if (e && e->type->ops.finish_request)
510 e->type->ops.finish_request(rq);
511 if (rq->elv.icq) {
512 put_io_context(rq->elv.icq->ioc);
513 rq->elv.icq = NULL;
514 }
515 }
516
517 ctx->rq_completed[rq_is_sync(rq)]++;
518 if (rq->rq_flags & RQF_MQ_INFLIGHT)
519 atomic_dec(&hctx->nr_active);
520
521 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
522 laptop_io_completion(q->backing_dev_info);
523
524 rq_qos_done(q, rq);
525
526 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
527 if (refcount_dec_and_test(&rq->ref))
528 __blk_mq_free_request(rq);
529 }
530 EXPORT_SYMBOL_GPL(blk_mq_free_request);
531
532 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
533 {
534 u64 now = 0;
535
536 if (blk_mq_need_time_stamp(rq))
537 now = ktime_get_ns();
538
539 if (rq->rq_flags & RQF_STATS) {
540 blk_mq_poll_stats_start(rq->q);
541 blk_stat_add(rq, now);
542 }
543
544 if (rq->internal_tag != -1)
545 blk_mq_sched_completed_request(rq, now);
546
547 blk_account_io_done(rq, now);
548
549 if (rq->end_io) {
550 rq_qos_done(rq->q, rq);
551 rq->end_io(rq, error);
552 } else {
553 if (unlikely(blk_bidi_rq(rq)))
554 blk_mq_free_request(rq->next_rq);
555 blk_mq_free_request(rq);
556 }
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 BUG();
564 __blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567
568 static void __blk_mq_complete_request_remote(void *data)
569 {
570 struct request *rq = data;
571 struct request_queue *q = rq->q;
572
573 q->mq_ops->complete(rq);
574 }
575
576 static void __blk_mq_complete_request(struct request *rq)
577 {
578 struct blk_mq_ctx *ctx = rq->mq_ctx;
579 struct request_queue *q = rq->q;
580 bool shared = false;
581 int cpu;
582
583 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
584 /*
585 * Most of single queue controllers, there is only one irq vector
586 * for handling IO completion, and the only irq's affinity is set
587 * as all possible CPUs. On most of ARCHs, this affinity means the
588 * irq is handled on one specific CPU.
589 *
590 * So complete IO reqeust in softirq context in case of single queue
591 * for not degrading IO performance by irqsoff latency.
592 */
593 if (q->nr_hw_queues == 1) {
594 __blk_complete_request(rq);
595 return;
596 }
597
598 /*
599 * For a polled request, always complete locallly, it's pointless
600 * to redirect the completion.
601 */
602 if ((rq->cmd_flags & REQ_HIPRI) ||
603 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
604 q->mq_ops->complete(rq);
605 return;
606 }
607
608 cpu = get_cpu();
609 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
610 shared = cpus_share_cache(cpu, ctx->cpu);
611
612 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
613 rq->csd.func = __blk_mq_complete_request_remote;
614 rq->csd.info = rq;
615 rq->csd.flags = 0;
616 smp_call_function_single_async(ctx->cpu, &rq->csd);
617 } else {
618 q->mq_ops->complete(rq);
619 }
620 put_cpu();
621 }
622
623 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
624 __releases(hctx->srcu)
625 {
626 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
627 rcu_read_unlock();
628 else
629 srcu_read_unlock(hctx->srcu, srcu_idx);
630 }
631
632 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
633 __acquires(hctx->srcu)
634 {
635 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
636 /* shut up gcc false positive */
637 *srcu_idx = 0;
638 rcu_read_lock();
639 } else
640 *srcu_idx = srcu_read_lock(hctx->srcu);
641 }
642
643 /**
644 * blk_mq_complete_request - end I/O on a request
645 * @rq: the request being processed
646 *
647 * Description:
648 * Ends all I/O on a request. It does not handle partial completions.
649 * The actual completion happens out-of-order, through a IPI handler.
650 **/
651 bool blk_mq_complete_request(struct request *rq)
652 {
653 if (unlikely(blk_should_fake_timeout(rq->q)))
654 return false;
655 __blk_mq_complete_request(rq);
656 return true;
657 }
658 EXPORT_SYMBOL(blk_mq_complete_request);
659
660 int blk_mq_request_started(struct request *rq)
661 {
662 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
663 }
664 EXPORT_SYMBOL_GPL(blk_mq_request_started);
665
666 void blk_mq_start_request(struct request *rq)
667 {
668 struct request_queue *q = rq->q;
669
670 blk_mq_sched_started_request(rq);
671
672 trace_block_rq_issue(q, rq);
673
674 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
675 rq->io_start_time_ns = ktime_get_ns();
676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677 rq->throtl_size = blk_rq_sectors(rq);
678 #endif
679 rq->rq_flags |= RQF_STATS;
680 rq_qos_issue(q, rq);
681 }
682
683 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
684
685 blk_add_timer(rq);
686 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
687
688 if (q->dma_drain_size && blk_rq_bytes(rq)) {
689 /*
690 * Make sure space for the drain appears. We know we can do
691 * this because max_hw_segments has been adjusted to be one
692 * fewer than the device can handle.
693 */
694 rq->nr_phys_segments++;
695 }
696 }
697 EXPORT_SYMBOL(blk_mq_start_request);
698
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701 struct request_queue *q = rq->q;
702
703 blk_mq_put_driver_tag(rq);
704
705 trace_block_rq_requeue(q, rq);
706 rq_qos_requeue(q, rq);
707
708 if (blk_mq_request_started(rq)) {
709 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710 rq->rq_flags &= ~RQF_TIMED_OUT;
711 if (q->dma_drain_size && blk_rq_bytes(rq))
712 rq->nr_phys_segments--;
713 }
714 }
715
716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
717 {
718 __blk_mq_requeue_request(rq);
719
720 /* this request will be re-inserted to io scheduler queue */
721 blk_mq_sched_requeue_request(rq);
722
723 BUG_ON(!list_empty(&rq->queuelist));
724 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
725 }
726 EXPORT_SYMBOL(blk_mq_requeue_request);
727
728 static void blk_mq_requeue_work(struct work_struct *work)
729 {
730 struct request_queue *q =
731 container_of(work, struct request_queue, requeue_work.work);
732 LIST_HEAD(rq_list);
733 struct request *rq, *next;
734
735 spin_lock_irq(&q->requeue_lock);
736 list_splice_init(&q->requeue_list, &rq_list);
737 spin_unlock_irq(&q->requeue_lock);
738
739 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740 if (!(rq->rq_flags & RQF_SOFTBARRIER))
741 continue;
742
743 rq->rq_flags &= ~RQF_SOFTBARRIER;
744 list_del_init(&rq->queuelist);
745 blk_mq_sched_insert_request(rq, true, false, false);
746 }
747
748 while (!list_empty(&rq_list)) {
749 rq = list_entry(rq_list.next, struct request, queuelist);
750 list_del_init(&rq->queuelist);
751 blk_mq_sched_insert_request(rq, false, false, false);
752 }
753
754 blk_mq_run_hw_queues(q, false);
755 }
756
757 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
758 bool kick_requeue_list)
759 {
760 struct request_queue *q = rq->q;
761 unsigned long flags;
762
763 /*
764 * We abuse this flag that is otherwise used by the I/O scheduler to
765 * request head insertion from the workqueue.
766 */
767 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
768
769 spin_lock_irqsave(&q->requeue_lock, flags);
770 if (at_head) {
771 rq->rq_flags |= RQF_SOFTBARRIER;
772 list_add(&rq->queuelist, &q->requeue_list);
773 } else {
774 list_add_tail(&rq->queuelist, &q->requeue_list);
775 }
776 spin_unlock_irqrestore(&q->requeue_lock, flags);
777
778 if (kick_requeue_list)
779 blk_mq_kick_requeue_list(q);
780 }
781 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
782
783 void blk_mq_kick_requeue_list(struct request_queue *q)
784 {
785 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
786 }
787 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
788
789 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
790 unsigned long msecs)
791 {
792 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
793 msecs_to_jiffies(msecs));
794 }
795 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
796
797 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
798 {
799 if (tag < tags->nr_tags) {
800 prefetch(tags->rqs[tag]);
801 return tags->rqs[tag];
802 }
803
804 return NULL;
805 }
806 EXPORT_SYMBOL(blk_mq_tag_to_rq);
807
808 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
809 void *priv, bool reserved)
810 {
811 /*
812 * If we find a request that is inflight and the queue matches,
813 * we know the queue is busy. Return false to stop the iteration.
814 */
815 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
816 bool *busy = priv;
817
818 *busy = true;
819 return false;
820 }
821
822 return true;
823 }
824
825 bool blk_mq_queue_inflight(struct request_queue *q)
826 {
827 bool busy = false;
828
829 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
830 return busy;
831 }
832 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
833
834 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
835 {
836 req->rq_flags |= RQF_TIMED_OUT;
837 if (req->q->mq_ops->timeout) {
838 enum blk_eh_timer_return ret;
839
840 ret = req->q->mq_ops->timeout(req, reserved);
841 if (ret == BLK_EH_DONE)
842 return;
843 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
844 }
845
846 blk_add_timer(req);
847 }
848
849 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
850 {
851 unsigned long deadline;
852
853 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
854 return false;
855 if (rq->rq_flags & RQF_TIMED_OUT)
856 return false;
857
858 deadline = READ_ONCE(rq->deadline);
859 if (time_after_eq(jiffies, deadline))
860 return true;
861
862 if (*next == 0)
863 *next = deadline;
864 else if (time_after(*next, deadline))
865 *next = deadline;
866 return false;
867 }
868
869 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
870 struct request *rq, void *priv, bool reserved)
871 {
872 unsigned long *next = priv;
873
874 /*
875 * Just do a quick check if it is expired before locking the request in
876 * so we're not unnecessarilly synchronizing across CPUs.
877 */
878 if (!blk_mq_req_expired(rq, next))
879 return true;
880
881 /*
882 * We have reason to believe the request may be expired. Take a
883 * reference on the request to lock this request lifetime into its
884 * currently allocated context to prevent it from being reallocated in
885 * the event the completion by-passes this timeout handler.
886 *
887 * If the reference was already released, then the driver beat the
888 * timeout handler to posting a natural completion.
889 */
890 if (!refcount_inc_not_zero(&rq->ref))
891 return true;
892
893 /*
894 * The request is now locked and cannot be reallocated underneath the
895 * timeout handler's processing. Re-verify this exact request is truly
896 * expired; if it is not expired, then the request was completed and
897 * reallocated as a new request.
898 */
899 if (blk_mq_req_expired(rq, next))
900 blk_mq_rq_timed_out(rq, reserved);
901 if (refcount_dec_and_test(&rq->ref))
902 __blk_mq_free_request(rq);
903
904 return true;
905 }
906
907 static void blk_mq_timeout_work(struct work_struct *work)
908 {
909 struct request_queue *q =
910 container_of(work, struct request_queue, timeout_work);
911 unsigned long next = 0;
912 struct blk_mq_hw_ctx *hctx;
913 int i;
914
915 /* A deadlock might occur if a request is stuck requiring a
916 * timeout at the same time a queue freeze is waiting
917 * completion, since the timeout code would not be able to
918 * acquire the queue reference here.
919 *
920 * That's why we don't use blk_queue_enter here; instead, we use
921 * percpu_ref_tryget directly, because we need to be able to
922 * obtain a reference even in the short window between the queue
923 * starting to freeze, by dropping the first reference in
924 * blk_freeze_queue_start, and the moment the last request is
925 * consumed, marked by the instant q_usage_counter reaches
926 * zero.
927 */
928 if (!percpu_ref_tryget(&q->q_usage_counter))
929 return;
930
931 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
932
933 if (next != 0) {
934 mod_timer(&q->timeout, next);
935 } else {
936 /*
937 * Request timeouts are handled as a forward rolling timer. If
938 * we end up here it means that no requests are pending and
939 * also that no request has been pending for a while. Mark
940 * each hctx as idle.
941 */
942 queue_for_each_hw_ctx(q, hctx, i) {
943 /* the hctx may be unmapped, so check it here */
944 if (blk_mq_hw_queue_mapped(hctx))
945 blk_mq_tag_idle(hctx);
946 }
947 }
948 blk_queue_exit(q);
949 }
950
951 struct flush_busy_ctx_data {
952 struct blk_mq_hw_ctx *hctx;
953 struct list_head *list;
954 };
955
956 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
957 {
958 struct flush_busy_ctx_data *flush_data = data;
959 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
960 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
961 enum hctx_type type = hctx->type;
962
963 spin_lock(&ctx->lock);
964 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
965 sbitmap_clear_bit(sb, bitnr);
966 spin_unlock(&ctx->lock);
967 return true;
968 }
969
970 /*
971 * Process software queues that have been marked busy, splicing them
972 * to the for-dispatch
973 */
974 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
975 {
976 struct flush_busy_ctx_data data = {
977 .hctx = hctx,
978 .list = list,
979 };
980
981 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
982 }
983 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
984
985 struct dispatch_rq_data {
986 struct blk_mq_hw_ctx *hctx;
987 struct request *rq;
988 };
989
990 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
991 void *data)
992 {
993 struct dispatch_rq_data *dispatch_data = data;
994 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
995 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
996 enum hctx_type type = hctx->type;
997
998 spin_lock(&ctx->lock);
999 if (!list_empty(&ctx->rq_lists[type])) {
1000 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1001 list_del_init(&dispatch_data->rq->queuelist);
1002 if (list_empty(&ctx->rq_lists[type]))
1003 sbitmap_clear_bit(sb, bitnr);
1004 }
1005 spin_unlock(&ctx->lock);
1006
1007 return !dispatch_data->rq;
1008 }
1009
1010 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1011 struct blk_mq_ctx *start)
1012 {
1013 unsigned off = start ? start->index_hw[hctx->type] : 0;
1014 struct dispatch_rq_data data = {
1015 .hctx = hctx,
1016 .rq = NULL,
1017 };
1018
1019 __sbitmap_for_each_set(&hctx->ctx_map, off,
1020 dispatch_rq_from_ctx, &data);
1021
1022 return data.rq;
1023 }
1024
1025 static inline unsigned int queued_to_index(unsigned int queued)
1026 {
1027 if (!queued)
1028 return 0;
1029
1030 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1031 }
1032
1033 bool blk_mq_get_driver_tag(struct request *rq)
1034 {
1035 struct blk_mq_alloc_data data = {
1036 .q = rq->q,
1037 .hctx = rq->mq_hctx,
1038 .flags = BLK_MQ_REQ_NOWAIT,
1039 .cmd_flags = rq->cmd_flags,
1040 };
1041 bool shared;
1042
1043 if (rq->tag != -1)
1044 goto done;
1045
1046 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1047 data.flags |= BLK_MQ_REQ_RESERVED;
1048
1049 shared = blk_mq_tag_busy(data.hctx);
1050 rq->tag = blk_mq_get_tag(&data);
1051 if (rq->tag >= 0) {
1052 if (shared) {
1053 rq->rq_flags |= RQF_MQ_INFLIGHT;
1054 atomic_inc(&data.hctx->nr_active);
1055 }
1056 data.hctx->tags->rqs[rq->tag] = rq;
1057 }
1058
1059 done:
1060 return rq->tag != -1;
1061 }
1062
1063 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1064 int flags, void *key)
1065 {
1066 struct blk_mq_hw_ctx *hctx;
1067
1068 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1069
1070 spin_lock(&hctx->dispatch_wait_lock);
1071 list_del_init(&wait->entry);
1072 spin_unlock(&hctx->dispatch_wait_lock);
1073
1074 blk_mq_run_hw_queue(hctx, true);
1075 return 1;
1076 }
1077
1078 /*
1079 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1080 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1081 * restart. For both cases, take care to check the condition again after
1082 * marking us as waiting.
1083 */
1084 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1085 struct request *rq)
1086 {
1087 struct wait_queue_head *wq;
1088 wait_queue_entry_t *wait;
1089 bool ret;
1090
1091 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1092 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1093 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1094
1095 /*
1096 * It's possible that a tag was freed in the window between the
1097 * allocation failure and adding the hardware queue to the wait
1098 * queue.
1099 *
1100 * Don't clear RESTART here, someone else could have set it.
1101 * At most this will cost an extra queue run.
1102 */
1103 return blk_mq_get_driver_tag(rq);
1104 }
1105
1106 wait = &hctx->dispatch_wait;
1107 if (!list_empty_careful(&wait->entry))
1108 return false;
1109
1110 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1111
1112 spin_lock_irq(&wq->lock);
1113 spin_lock(&hctx->dispatch_wait_lock);
1114 if (!list_empty(&wait->entry)) {
1115 spin_unlock(&hctx->dispatch_wait_lock);
1116 spin_unlock_irq(&wq->lock);
1117 return false;
1118 }
1119
1120 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1121 __add_wait_queue(wq, wait);
1122
1123 /*
1124 * It's possible that a tag was freed in the window between the
1125 * allocation failure and adding the hardware queue to the wait
1126 * queue.
1127 */
1128 ret = blk_mq_get_driver_tag(rq);
1129 if (!ret) {
1130 spin_unlock(&hctx->dispatch_wait_lock);
1131 spin_unlock_irq(&wq->lock);
1132 return false;
1133 }
1134
1135 /*
1136 * We got a tag, remove ourselves from the wait queue to ensure
1137 * someone else gets the wakeup.
1138 */
1139 list_del_init(&wait->entry);
1140 spin_unlock(&hctx->dispatch_wait_lock);
1141 spin_unlock_irq(&wq->lock);
1142
1143 return true;
1144 }
1145
1146 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1147 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1148 /*
1149 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1150 * - EWMA is one simple way to compute running average value
1151 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1152 * - take 4 as factor for avoiding to get too small(0) result, and this
1153 * factor doesn't matter because EWMA decreases exponentially
1154 */
1155 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1156 {
1157 unsigned int ewma;
1158
1159 if (hctx->queue->elevator)
1160 return;
1161
1162 ewma = hctx->dispatch_busy;
1163
1164 if (!ewma && !busy)
1165 return;
1166
1167 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1168 if (busy)
1169 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1170 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1171
1172 hctx->dispatch_busy = ewma;
1173 }
1174
1175 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1176
1177 /*
1178 * Returns true if we did some work AND can potentially do more.
1179 */
1180 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1181 bool got_budget)
1182 {
1183 struct blk_mq_hw_ctx *hctx;
1184 struct request *rq, *nxt;
1185 bool no_tag = false;
1186 int errors, queued;
1187 blk_status_t ret = BLK_STS_OK;
1188
1189 if (list_empty(list))
1190 return false;
1191
1192 WARN_ON(!list_is_singular(list) && got_budget);
1193
1194 /*
1195 * Now process all the entries, sending them to the driver.
1196 */
1197 errors = queued = 0;
1198 do {
1199 struct blk_mq_queue_data bd;
1200
1201 rq = list_first_entry(list, struct request, queuelist);
1202
1203 hctx = rq->mq_hctx;
1204 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1205 break;
1206
1207 if (!blk_mq_get_driver_tag(rq)) {
1208 /*
1209 * The initial allocation attempt failed, so we need to
1210 * rerun the hardware queue when a tag is freed. The
1211 * waitqueue takes care of that. If the queue is run
1212 * before we add this entry back on the dispatch list,
1213 * we'll re-run it below.
1214 */
1215 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1216 blk_mq_put_dispatch_budget(hctx);
1217 /*
1218 * For non-shared tags, the RESTART check
1219 * will suffice.
1220 */
1221 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1222 no_tag = true;
1223 break;
1224 }
1225 }
1226
1227 list_del_init(&rq->queuelist);
1228
1229 bd.rq = rq;
1230
1231 /*
1232 * Flag last if we have no more requests, or if we have more
1233 * but can't assign a driver tag to it.
1234 */
1235 if (list_empty(list))
1236 bd.last = true;
1237 else {
1238 nxt = list_first_entry(list, struct request, queuelist);
1239 bd.last = !blk_mq_get_driver_tag(nxt);
1240 }
1241
1242 ret = q->mq_ops->queue_rq(hctx, &bd);
1243 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1244 /*
1245 * If an I/O scheduler has been configured and we got a
1246 * driver tag for the next request already, free it
1247 * again.
1248 */
1249 if (!list_empty(list)) {
1250 nxt = list_first_entry(list, struct request, queuelist);
1251 blk_mq_put_driver_tag(nxt);
1252 }
1253 list_add(&rq->queuelist, list);
1254 __blk_mq_requeue_request(rq);
1255 break;
1256 }
1257
1258 if (unlikely(ret != BLK_STS_OK)) {
1259 errors++;
1260 blk_mq_end_request(rq, BLK_STS_IOERR);
1261 continue;
1262 }
1263
1264 queued++;
1265 } while (!list_empty(list));
1266
1267 hctx->dispatched[queued_to_index(queued)]++;
1268
1269 /*
1270 * Any items that need requeuing? Stuff them into hctx->dispatch,
1271 * that is where we will continue on next queue run.
1272 */
1273 if (!list_empty(list)) {
1274 bool needs_restart;
1275
1276 /*
1277 * If we didn't flush the entire list, we could have told
1278 * the driver there was more coming, but that turned out to
1279 * be a lie.
1280 */
1281 if (q->mq_ops->commit_rqs)
1282 q->mq_ops->commit_rqs(hctx);
1283
1284 spin_lock(&hctx->lock);
1285 list_splice_init(list, &hctx->dispatch);
1286 spin_unlock(&hctx->lock);
1287
1288 /*
1289 * If SCHED_RESTART was set by the caller of this function and
1290 * it is no longer set that means that it was cleared by another
1291 * thread and hence that a queue rerun is needed.
1292 *
1293 * If 'no_tag' is set, that means that we failed getting
1294 * a driver tag with an I/O scheduler attached. If our dispatch
1295 * waitqueue is no longer active, ensure that we run the queue
1296 * AFTER adding our entries back to the list.
1297 *
1298 * If no I/O scheduler has been configured it is possible that
1299 * the hardware queue got stopped and restarted before requests
1300 * were pushed back onto the dispatch list. Rerun the queue to
1301 * avoid starvation. Notes:
1302 * - blk_mq_run_hw_queue() checks whether or not a queue has
1303 * been stopped before rerunning a queue.
1304 * - Some but not all block drivers stop a queue before
1305 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1306 * and dm-rq.
1307 *
1308 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1309 * bit is set, run queue after a delay to avoid IO stalls
1310 * that could otherwise occur if the queue is idle.
1311 */
1312 needs_restart = blk_mq_sched_needs_restart(hctx);
1313 if (!needs_restart ||
1314 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1315 blk_mq_run_hw_queue(hctx, true);
1316 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1317 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1318
1319 blk_mq_update_dispatch_busy(hctx, true);
1320 return false;
1321 } else
1322 blk_mq_update_dispatch_busy(hctx, false);
1323
1324 /*
1325 * If the host/device is unable to accept more work, inform the
1326 * caller of that.
1327 */
1328 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1329 return false;
1330
1331 return (queued + errors) != 0;
1332 }
1333
1334 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1335 {
1336 int srcu_idx;
1337
1338 /*
1339 * We should be running this queue from one of the CPUs that
1340 * are mapped to it.
1341 *
1342 * There are at least two related races now between setting
1343 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1344 * __blk_mq_run_hw_queue():
1345 *
1346 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1347 * but later it becomes online, then this warning is harmless
1348 * at all
1349 *
1350 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1351 * but later it becomes offline, then the warning can't be
1352 * triggered, and we depend on blk-mq timeout handler to
1353 * handle dispatched requests to this hctx
1354 */
1355 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1356 cpu_online(hctx->next_cpu)) {
1357 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1358 raw_smp_processor_id(),
1359 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1360 dump_stack();
1361 }
1362
1363 /*
1364 * We can't run the queue inline with ints disabled. Ensure that
1365 * we catch bad users of this early.
1366 */
1367 WARN_ON_ONCE(in_interrupt());
1368
1369 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1370
1371 hctx_lock(hctx, &srcu_idx);
1372 blk_mq_sched_dispatch_requests(hctx);
1373 hctx_unlock(hctx, srcu_idx);
1374 }
1375
1376 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1377 {
1378 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1379
1380 if (cpu >= nr_cpu_ids)
1381 cpu = cpumask_first(hctx->cpumask);
1382 return cpu;
1383 }
1384
1385 /*
1386 * It'd be great if the workqueue API had a way to pass
1387 * in a mask and had some smarts for more clever placement.
1388 * For now we just round-robin here, switching for every
1389 * BLK_MQ_CPU_WORK_BATCH queued items.
1390 */
1391 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1392 {
1393 bool tried = false;
1394 int next_cpu = hctx->next_cpu;
1395
1396 if (hctx->queue->nr_hw_queues == 1)
1397 return WORK_CPU_UNBOUND;
1398
1399 if (--hctx->next_cpu_batch <= 0) {
1400 select_cpu:
1401 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1402 cpu_online_mask);
1403 if (next_cpu >= nr_cpu_ids)
1404 next_cpu = blk_mq_first_mapped_cpu(hctx);
1405 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1406 }
1407
1408 /*
1409 * Do unbound schedule if we can't find a online CPU for this hctx,
1410 * and it should only happen in the path of handling CPU DEAD.
1411 */
1412 if (!cpu_online(next_cpu)) {
1413 if (!tried) {
1414 tried = true;
1415 goto select_cpu;
1416 }
1417
1418 /*
1419 * Make sure to re-select CPU next time once after CPUs
1420 * in hctx->cpumask become online again.
1421 */
1422 hctx->next_cpu = next_cpu;
1423 hctx->next_cpu_batch = 1;
1424 return WORK_CPU_UNBOUND;
1425 }
1426
1427 hctx->next_cpu = next_cpu;
1428 return next_cpu;
1429 }
1430
1431 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1432 unsigned long msecs)
1433 {
1434 if (unlikely(blk_mq_hctx_stopped(hctx)))
1435 return;
1436
1437 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1438 int cpu = get_cpu();
1439 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1440 __blk_mq_run_hw_queue(hctx);
1441 put_cpu();
1442 return;
1443 }
1444
1445 put_cpu();
1446 }
1447
1448 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1449 msecs_to_jiffies(msecs));
1450 }
1451
1452 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1453 {
1454 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1455 }
1456 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1457
1458 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1459 {
1460 int srcu_idx;
1461 bool need_run;
1462
1463 /*
1464 * When queue is quiesced, we may be switching io scheduler, or
1465 * updating nr_hw_queues, or other things, and we can't run queue
1466 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1467 *
1468 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1469 * quiesced.
1470 */
1471 hctx_lock(hctx, &srcu_idx);
1472 need_run = !blk_queue_quiesced(hctx->queue) &&
1473 blk_mq_hctx_has_pending(hctx);
1474 hctx_unlock(hctx, srcu_idx);
1475
1476 if (need_run) {
1477 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1478 return true;
1479 }
1480
1481 return false;
1482 }
1483 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1484
1485 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1486 {
1487 struct blk_mq_hw_ctx *hctx;
1488 int i;
1489
1490 queue_for_each_hw_ctx(q, hctx, i) {
1491 if (blk_mq_hctx_stopped(hctx))
1492 continue;
1493
1494 blk_mq_run_hw_queue(hctx, async);
1495 }
1496 }
1497 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1498
1499 /**
1500 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1501 * @q: request queue.
1502 *
1503 * The caller is responsible for serializing this function against
1504 * blk_mq_{start,stop}_hw_queue().
1505 */
1506 bool blk_mq_queue_stopped(struct request_queue *q)
1507 {
1508 struct blk_mq_hw_ctx *hctx;
1509 int i;
1510
1511 queue_for_each_hw_ctx(q, hctx, i)
1512 if (blk_mq_hctx_stopped(hctx))
1513 return true;
1514
1515 return false;
1516 }
1517 EXPORT_SYMBOL(blk_mq_queue_stopped);
1518
1519 /*
1520 * This function is often used for pausing .queue_rq() by driver when
1521 * there isn't enough resource or some conditions aren't satisfied, and
1522 * BLK_STS_RESOURCE is usually returned.
1523 *
1524 * We do not guarantee that dispatch can be drained or blocked
1525 * after blk_mq_stop_hw_queue() returns. Please use
1526 * blk_mq_quiesce_queue() for that requirement.
1527 */
1528 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1529 {
1530 cancel_delayed_work(&hctx->run_work);
1531
1532 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1533 }
1534 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1535
1536 /*
1537 * This function is often used for pausing .queue_rq() by driver when
1538 * there isn't enough resource or some conditions aren't satisfied, and
1539 * BLK_STS_RESOURCE is usually returned.
1540 *
1541 * We do not guarantee that dispatch can be drained or blocked
1542 * after blk_mq_stop_hw_queues() returns. Please use
1543 * blk_mq_quiesce_queue() for that requirement.
1544 */
1545 void blk_mq_stop_hw_queues(struct request_queue *q)
1546 {
1547 struct blk_mq_hw_ctx *hctx;
1548 int i;
1549
1550 queue_for_each_hw_ctx(q, hctx, i)
1551 blk_mq_stop_hw_queue(hctx);
1552 }
1553 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1554
1555 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1556 {
1557 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1558
1559 blk_mq_run_hw_queue(hctx, false);
1560 }
1561 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1562
1563 void blk_mq_start_hw_queues(struct request_queue *q)
1564 {
1565 struct blk_mq_hw_ctx *hctx;
1566 int i;
1567
1568 queue_for_each_hw_ctx(q, hctx, i)
1569 blk_mq_start_hw_queue(hctx);
1570 }
1571 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1572
1573 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1574 {
1575 if (!blk_mq_hctx_stopped(hctx))
1576 return;
1577
1578 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1579 blk_mq_run_hw_queue(hctx, async);
1580 }
1581 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1582
1583 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1584 {
1585 struct blk_mq_hw_ctx *hctx;
1586 int i;
1587
1588 queue_for_each_hw_ctx(q, hctx, i)
1589 blk_mq_start_stopped_hw_queue(hctx, async);
1590 }
1591 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1592
1593 static void blk_mq_run_work_fn(struct work_struct *work)
1594 {
1595 struct blk_mq_hw_ctx *hctx;
1596
1597 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1598
1599 /*
1600 * If we are stopped, don't run the queue.
1601 */
1602 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1603 return;
1604
1605 __blk_mq_run_hw_queue(hctx);
1606 }
1607
1608 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1609 struct request *rq,
1610 bool at_head)
1611 {
1612 struct blk_mq_ctx *ctx = rq->mq_ctx;
1613 enum hctx_type type = hctx->type;
1614
1615 lockdep_assert_held(&ctx->lock);
1616
1617 trace_block_rq_insert(hctx->queue, rq);
1618
1619 if (at_head)
1620 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1621 else
1622 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1623 }
1624
1625 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1626 bool at_head)
1627 {
1628 struct blk_mq_ctx *ctx = rq->mq_ctx;
1629
1630 lockdep_assert_held(&ctx->lock);
1631
1632 __blk_mq_insert_req_list(hctx, rq, at_head);
1633 blk_mq_hctx_mark_pending(hctx, ctx);
1634 }
1635
1636 /*
1637 * Should only be used carefully, when the caller knows we want to
1638 * bypass a potential IO scheduler on the target device.
1639 */
1640 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1641 {
1642 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1643
1644 spin_lock(&hctx->lock);
1645 list_add_tail(&rq->queuelist, &hctx->dispatch);
1646 spin_unlock(&hctx->lock);
1647
1648 if (run_queue)
1649 blk_mq_run_hw_queue(hctx, false);
1650 }
1651
1652 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1653 struct list_head *list)
1654
1655 {
1656 struct request *rq;
1657 enum hctx_type type = hctx->type;
1658
1659 /*
1660 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1661 * offline now
1662 */
1663 list_for_each_entry(rq, list, queuelist) {
1664 BUG_ON(rq->mq_ctx != ctx);
1665 trace_block_rq_insert(hctx->queue, rq);
1666 }
1667
1668 spin_lock(&ctx->lock);
1669 list_splice_tail_init(list, &ctx->rq_lists[type]);
1670 blk_mq_hctx_mark_pending(hctx, ctx);
1671 spin_unlock(&ctx->lock);
1672 }
1673
1674 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1675 {
1676 struct request *rqa = container_of(a, struct request, queuelist);
1677 struct request *rqb = container_of(b, struct request, queuelist);
1678
1679 if (rqa->mq_ctx < rqb->mq_ctx)
1680 return -1;
1681 else if (rqa->mq_ctx > rqb->mq_ctx)
1682 return 1;
1683 else if (rqa->mq_hctx < rqb->mq_hctx)
1684 return -1;
1685 else if (rqa->mq_hctx > rqb->mq_hctx)
1686 return 1;
1687
1688 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1689 }
1690
1691 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1692 {
1693 struct blk_mq_hw_ctx *this_hctx;
1694 struct blk_mq_ctx *this_ctx;
1695 struct request_queue *this_q;
1696 struct request *rq;
1697 LIST_HEAD(list);
1698 LIST_HEAD(rq_list);
1699 unsigned int depth;
1700
1701 list_splice_init(&plug->mq_list, &list);
1702 plug->rq_count = 0;
1703
1704 if (plug->rq_count > 2 && plug->multiple_queues)
1705 list_sort(NULL, &list, plug_rq_cmp);
1706
1707 this_q = NULL;
1708 this_hctx = NULL;
1709 this_ctx = NULL;
1710 depth = 0;
1711
1712 while (!list_empty(&list)) {
1713 rq = list_entry_rq(list.next);
1714 list_del_init(&rq->queuelist);
1715 BUG_ON(!rq->q);
1716 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1717 if (this_hctx) {
1718 trace_block_unplug(this_q, depth, !from_schedule);
1719 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1720 &rq_list,
1721 from_schedule);
1722 }
1723
1724 this_q = rq->q;
1725 this_ctx = rq->mq_ctx;
1726 this_hctx = rq->mq_hctx;
1727 depth = 0;
1728 }
1729
1730 depth++;
1731 list_add_tail(&rq->queuelist, &rq_list);
1732 }
1733
1734 /*
1735 * If 'this_hctx' is set, we know we have entries to complete
1736 * on 'rq_list'. Do those.
1737 */
1738 if (this_hctx) {
1739 trace_block_unplug(this_q, depth, !from_schedule);
1740 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1741 from_schedule);
1742 }
1743 }
1744
1745 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1746 {
1747 blk_init_request_from_bio(rq, bio);
1748
1749 blk_account_io_start(rq, true);
1750 }
1751
1752 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1753 {
1754 if (rq->tag != -1)
1755 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1756
1757 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1758 }
1759
1760 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1761 struct request *rq,
1762 blk_qc_t *cookie, bool last)
1763 {
1764 struct request_queue *q = rq->q;
1765 struct blk_mq_queue_data bd = {
1766 .rq = rq,
1767 .last = last,
1768 };
1769 blk_qc_t new_cookie;
1770 blk_status_t ret;
1771
1772 new_cookie = request_to_qc_t(hctx, rq);
1773
1774 /*
1775 * For OK queue, we are done. For error, caller may kill it.
1776 * Any other error (busy), just add it to our list as we
1777 * previously would have done.
1778 */
1779 ret = q->mq_ops->queue_rq(hctx, &bd);
1780 switch (ret) {
1781 case BLK_STS_OK:
1782 blk_mq_update_dispatch_busy(hctx, false);
1783 *cookie = new_cookie;
1784 break;
1785 case BLK_STS_RESOURCE:
1786 case BLK_STS_DEV_RESOURCE:
1787 blk_mq_update_dispatch_busy(hctx, true);
1788 __blk_mq_requeue_request(rq);
1789 break;
1790 default:
1791 blk_mq_update_dispatch_busy(hctx, false);
1792 *cookie = BLK_QC_T_NONE;
1793 break;
1794 }
1795
1796 return ret;
1797 }
1798
1799 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1800 struct request *rq,
1801 blk_qc_t *cookie,
1802 bool bypass, bool last)
1803 {
1804 struct request_queue *q = rq->q;
1805 bool run_queue = true;
1806 blk_status_t ret = BLK_STS_RESOURCE;
1807 int srcu_idx;
1808 bool force = false;
1809
1810 hctx_lock(hctx, &srcu_idx);
1811 /*
1812 * hctx_lock is needed before checking quiesced flag.
1813 *
1814 * When queue is stopped or quiesced, ignore 'bypass', insert
1815 * and return BLK_STS_OK to caller, and avoid driver to try to
1816 * dispatch again.
1817 */
1818 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
1819 run_queue = false;
1820 bypass = false;
1821 goto out_unlock;
1822 }
1823
1824 if (unlikely(q->elevator && !bypass))
1825 goto out_unlock;
1826
1827 if (!blk_mq_get_dispatch_budget(hctx))
1828 goto out_unlock;
1829
1830 if (!blk_mq_get_driver_tag(rq)) {
1831 blk_mq_put_dispatch_budget(hctx);
1832 goto out_unlock;
1833 }
1834
1835 /*
1836 * Always add a request that has been through
1837 *.queue_rq() to the hardware dispatch list.
1838 */
1839 force = true;
1840 ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
1841 out_unlock:
1842 hctx_unlock(hctx, srcu_idx);
1843 switch (ret) {
1844 case BLK_STS_OK:
1845 break;
1846 case BLK_STS_DEV_RESOURCE:
1847 case BLK_STS_RESOURCE:
1848 if (force) {
1849 blk_mq_request_bypass_insert(rq, run_queue);
1850 /*
1851 * We have to return BLK_STS_OK for the DM
1852 * to avoid livelock. Otherwise, we return
1853 * the real result to indicate whether the
1854 * request is direct-issued successfully.
1855 */
1856 ret = bypass ? BLK_STS_OK : ret;
1857 } else if (!bypass) {
1858 blk_mq_sched_insert_request(rq, false,
1859 run_queue, false);
1860 }
1861 break;
1862 default:
1863 if (!bypass)
1864 blk_mq_end_request(rq, ret);
1865 break;
1866 }
1867
1868 return ret;
1869 }
1870
1871 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1872 struct list_head *list)
1873 {
1874 blk_qc_t unused;
1875 blk_status_t ret = BLK_STS_OK;
1876
1877 while (!list_empty(list)) {
1878 struct request *rq = list_first_entry(list, struct request,
1879 queuelist);
1880
1881 list_del_init(&rq->queuelist);
1882 if (ret == BLK_STS_OK)
1883 ret = blk_mq_try_issue_directly(hctx, rq, &unused,
1884 false,
1885 list_empty(list));
1886 else
1887 blk_mq_sched_insert_request(rq, false, true, false);
1888 }
1889
1890 /*
1891 * If we didn't flush the entire list, we could have told
1892 * the driver there was more coming, but that turned out to
1893 * be a lie.
1894 */
1895 if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
1896 hctx->queue->mq_ops->commit_rqs(hctx);
1897 }
1898
1899 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1900 {
1901 list_add_tail(&rq->queuelist, &plug->mq_list);
1902 plug->rq_count++;
1903 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1904 struct request *tmp;
1905
1906 tmp = list_first_entry(&plug->mq_list, struct request,
1907 queuelist);
1908 if (tmp->q != rq->q)
1909 plug->multiple_queues = true;
1910 }
1911 }
1912
1913 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1914 {
1915 const int is_sync = op_is_sync(bio->bi_opf);
1916 const int is_flush_fua = op_is_flush(bio->bi_opf);
1917 struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
1918 struct request *rq;
1919 struct blk_plug *plug;
1920 struct request *same_queue_rq = NULL;
1921 blk_qc_t cookie;
1922
1923 blk_queue_bounce(q, &bio);
1924
1925 blk_queue_split(q, &bio);
1926
1927 if (!bio_integrity_prep(bio))
1928 return BLK_QC_T_NONE;
1929
1930 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1931 blk_attempt_plug_merge(q, bio, &same_queue_rq))
1932 return BLK_QC_T_NONE;
1933
1934 if (blk_mq_sched_bio_merge(q, bio))
1935 return BLK_QC_T_NONE;
1936
1937 rq_qos_throttle(q, bio);
1938
1939 rq = blk_mq_get_request(q, bio, &data);
1940 if (unlikely(!rq)) {
1941 rq_qos_cleanup(q, bio);
1942 if (bio->bi_opf & REQ_NOWAIT)
1943 bio_wouldblock_error(bio);
1944 return BLK_QC_T_NONE;
1945 }
1946
1947 trace_block_getrq(q, bio, bio->bi_opf);
1948
1949 rq_qos_track(q, rq, bio);
1950
1951 cookie = request_to_qc_t(data.hctx, rq);
1952
1953 plug = current->plug;
1954 if (unlikely(is_flush_fua)) {
1955 blk_mq_put_ctx(data.ctx);
1956 blk_mq_bio_to_request(rq, bio);
1957
1958 /* bypass scheduler for flush rq */
1959 blk_insert_flush(rq);
1960 blk_mq_run_hw_queue(data.hctx, true);
1961 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1962 /*
1963 * Use plugging if we have a ->commit_rqs() hook as well, as
1964 * we know the driver uses bd->last in a smart fashion.
1965 */
1966 unsigned int request_count = plug->rq_count;
1967 struct request *last = NULL;
1968
1969 blk_mq_put_ctx(data.ctx);
1970 blk_mq_bio_to_request(rq, bio);
1971
1972 if (!request_count)
1973 trace_block_plug(q);
1974 else
1975 last = list_entry_rq(plug->mq_list.prev);
1976
1977 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1978 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1979 blk_flush_plug_list(plug, false);
1980 trace_block_plug(q);
1981 }
1982
1983 blk_add_rq_to_plug(plug, rq);
1984 } else if (plug && !blk_queue_nomerges(q)) {
1985 blk_mq_bio_to_request(rq, bio);
1986
1987 /*
1988 * We do limited plugging. If the bio can be merged, do that.
1989 * Otherwise the existing request in the plug list will be
1990 * issued. So the plug list will have one request at most
1991 * The plug list might get flushed before this. If that happens,
1992 * the plug list is empty, and same_queue_rq is invalid.
1993 */
1994 if (list_empty(&plug->mq_list))
1995 same_queue_rq = NULL;
1996 if (same_queue_rq) {
1997 list_del_init(&same_queue_rq->queuelist);
1998 plug->rq_count--;
1999 }
2000 blk_add_rq_to_plug(plug, rq);
2001
2002 blk_mq_put_ctx(data.ctx);
2003
2004 if (same_queue_rq) {
2005 data.hctx = same_queue_rq->mq_hctx;
2006 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2007 &cookie, false, true);
2008 }
2009 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2010 !data.hctx->dispatch_busy)) {
2011 blk_mq_put_ctx(data.ctx);
2012 blk_mq_bio_to_request(rq, bio);
2013 blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true);
2014 } else {
2015 blk_mq_put_ctx(data.ctx);
2016 blk_mq_bio_to_request(rq, bio);
2017 blk_mq_sched_insert_request(rq, false, true, true);
2018 }
2019
2020 return cookie;
2021 }
2022
2023 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2024 unsigned int hctx_idx)
2025 {
2026 struct page *page;
2027
2028 if (tags->rqs && set->ops->exit_request) {
2029 int i;
2030
2031 for (i = 0; i < tags->nr_tags; i++) {
2032 struct request *rq = tags->static_rqs[i];
2033
2034 if (!rq)
2035 continue;
2036 set->ops->exit_request(set, rq, hctx_idx);
2037 tags->static_rqs[i] = NULL;
2038 }
2039 }
2040
2041 while (!list_empty(&tags->page_list)) {
2042 page = list_first_entry(&tags->page_list, struct page, lru);
2043 list_del_init(&page->lru);
2044 /*
2045 * Remove kmemleak object previously allocated in
2046 * blk_mq_init_rq_map().
2047 */
2048 kmemleak_free(page_address(page));
2049 __free_pages(page, page->private);
2050 }
2051 }
2052
2053 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2054 {
2055 kfree(tags->rqs);
2056 tags->rqs = NULL;
2057 kfree(tags->static_rqs);
2058 tags->static_rqs = NULL;
2059
2060 blk_mq_free_tags(tags);
2061 }
2062
2063 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2064 unsigned int hctx_idx,
2065 unsigned int nr_tags,
2066 unsigned int reserved_tags)
2067 {
2068 struct blk_mq_tags *tags;
2069 int node;
2070
2071 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2072 if (node == NUMA_NO_NODE)
2073 node = set->numa_node;
2074
2075 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2076 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2077 if (!tags)
2078 return NULL;
2079
2080 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2081 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2082 node);
2083 if (!tags->rqs) {
2084 blk_mq_free_tags(tags);
2085 return NULL;
2086 }
2087
2088 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2089 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2090 node);
2091 if (!tags->static_rqs) {
2092 kfree(tags->rqs);
2093 blk_mq_free_tags(tags);
2094 return NULL;
2095 }
2096
2097 return tags;
2098 }
2099
2100 static size_t order_to_size(unsigned int order)
2101 {
2102 return (size_t)PAGE_SIZE << order;
2103 }
2104
2105 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2106 unsigned int hctx_idx, int node)
2107 {
2108 int ret;
2109
2110 if (set->ops->init_request) {
2111 ret = set->ops->init_request(set, rq, hctx_idx, node);
2112 if (ret)
2113 return ret;
2114 }
2115
2116 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2117 return 0;
2118 }
2119
2120 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2121 unsigned int hctx_idx, unsigned int depth)
2122 {
2123 unsigned int i, j, entries_per_page, max_order = 4;
2124 size_t rq_size, left;
2125 int node;
2126
2127 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2128 if (node == NUMA_NO_NODE)
2129 node = set->numa_node;
2130
2131 INIT_LIST_HEAD(&tags->page_list);
2132
2133 /*
2134 * rq_size is the size of the request plus driver payload, rounded
2135 * to the cacheline size
2136 */
2137 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2138 cache_line_size());
2139 left = rq_size * depth;
2140
2141 for (i = 0; i < depth; ) {
2142 int this_order = max_order;
2143 struct page *page;
2144 int to_do;
2145 void *p;
2146
2147 while (this_order && left < order_to_size(this_order - 1))
2148 this_order--;
2149
2150 do {
2151 page = alloc_pages_node(node,
2152 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2153 this_order);
2154 if (page)
2155 break;
2156 if (!this_order--)
2157 break;
2158 if (order_to_size(this_order) < rq_size)
2159 break;
2160 } while (1);
2161
2162 if (!page)
2163 goto fail;
2164
2165 page->private = this_order;
2166 list_add_tail(&page->lru, &tags->page_list);
2167
2168 p = page_address(page);
2169 /*
2170 * Allow kmemleak to scan these pages as they contain pointers
2171 * to additional allocations like via ops->init_request().
2172 */
2173 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2174 entries_per_page = order_to_size(this_order) / rq_size;
2175 to_do = min(entries_per_page, depth - i);
2176 left -= to_do * rq_size;
2177 for (j = 0; j < to_do; j++) {
2178 struct request *rq = p;
2179
2180 tags->static_rqs[i] = rq;
2181 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2182 tags->static_rqs[i] = NULL;
2183 goto fail;
2184 }
2185
2186 p += rq_size;
2187 i++;
2188 }
2189 }
2190 return 0;
2191
2192 fail:
2193 blk_mq_free_rqs(set, tags, hctx_idx);
2194 return -ENOMEM;
2195 }
2196
2197 /*
2198 * 'cpu' is going away. splice any existing rq_list entries from this
2199 * software queue to the hw queue dispatch list, and ensure that it
2200 * gets run.
2201 */
2202 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2203 {
2204 struct blk_mq_hw_ctx *hctx;
2205 struct blk_mq_ctx *ctx;
2206 LIST_HEAD(tmp);
2207 enum hctx_type type;
2208
2209 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2210 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2211 type = hctx->type;
2212
2213 spin_lock(&ctx->lock);
2214 if (!list_empty(&ctx->rq_lists[type])) {
2215 list_splice_init(&ctx->rq_lists[type], &tmp);
2216 blk_mq_hctx_clear_pending(hctx, ctx);
2217 }
2218 spin_unlock(&ctx->lock);
2219
2220 if (list_empty(&tmp))
2221 return 0;
2222
2223 spin_lock(&hctx->lock);
2224 list_splice_tail_init(&tmp, &hctx->dispatch);
2225 spin_unlock(&hctx->lock);
2226
2227 blk_mq_run_hw_queue(hctx, true);
2228 return 0;
2229 }
2230
2231 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2232 {
2233 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2234 &hctx->cpuhp_dead);
2235 }
2236
2237 /* hctx->ctxs will be freed in queue's release handler */
2238 static void blk_mq_exit_hctx(struct request_queue *q,
2239 struct blk_mq_tag_set *set,
2240 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2241 {
2242 if (blk_mq_hw_queue_mapped(hctx))
2243 blk_mq_tag_idle(hctx);
2244
2245 if (set->ops->exit_request)
2246 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2247
2248 if (set->ops->exit_hctx)
2249 set->ops->exit_hctx(hctx, hctx_idx);
2250
2251 if (hctx->flags & BLK_MQ_F_BLOCKING)
2252 cleanup_srcu_struct(hctx->srcu);
2253
2254 blk_mq_remove_cpuhp(hctx);
2255 blk_free_flush_queue(hctx->fq);
2256 sbitmap_free(&hctx->ctx_map);
2257 }
2258
2259 static void blk_mq_exit_hw_queues(struct request_queue *q,
2260 struct blk_mq_tag_set *set, int nr_queue)
2261 {
2262 struct blk_mq_hw_ctx *hctx;
2263 unsigned int i;
2264
2265 queue_for_each_hw_ctx(q, hctx, i) {
2266 if (i == nr_queue)
2267 break;
2268 blk_mq_debugfs_unregister_hctx(hctx);
2269 blk_mq_exit_hctx(q, set, hctx, i);
2270 }
2271 }
2272
2273 static int blk_mq_init_hctx(struct request_queue *q,
2274 struct blk_mq_tag_set *set,
2275 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2276 {
2277 int node;
2278
2279 node = hctx->numa_node;
2280 if (node == NUMA_NO_NODE)
2281 node = hctx->numa_node = set->numa_node;
2282
2283 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2284 spin_lock_init(&hctx->lock);
2285 INIT_LIST_HEAD(&hctx->dispatch);
2286 hctx->queue = q;
2287 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2288
2289 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2290
2291 hctx->tags = set->tags[hctx_idx];
2292
2293 /*
2294 * Allocate space for all possible cpus to avoid allocation at
2295 * runtime
2296 */
2297 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2298 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2299 if (!hctx->ctxs)
2300 goto unregister_cpu_notifier;
2301
2302 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2303 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2304 goto free_ctxs;
2305
2306 hctx->nr_ctx = 0;
2307
2308 spin_lock_init(&hctx->dispatch_wait_lock);
2309 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2310 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2311
2312 if (set->ops->init_hctx &&
2313 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2314 goto free_bitmap;
2315
2316 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2317 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2318 if (!hctx->fq)
2319 goto exit_hctx;
2320
2321 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2322 goto free_fq;
2323
2324 if (hctx->flags & BLK_MQ_F_BLOCKING)
2325 init_srcu_struct(hctx->srcu);
2326
2327 return 0;
2328
2329 free_fq:
2330 kfree(hctx->fq);
2331 exit_hctx:
2332 if (set->ops->exit_hctx)
2333 set->ops->exit_hctx(hctx, hctx_idx);
2334 free_bitmap:
2335 sbitmap_free(&hctx->ctx_map);
2336 free_ctxs:
2337 kfree(hctx->ctxs);
2338 unregister_cpu_notifier:
2339 blk_mq_remove_cpuhp(hctx);
2340 return -1;
2341 }
2342
2343 static void blk_mq_init_cpu_queues(struct request_queue *q,
2344 unsigned int nr_hw_queues)
2345 {
2346 struct blk_mq_tag_set *set = q->tag_set;
2347 unsigned int i, j;
2348
2349 for_each_possible_cpu(i) {
2350 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2351 struct blk_mq_hw_ctx *hctx;
2352 int k;
2353
2354 __ctx->cpu = i;
2355 spin_lock_init(&__ctx->lock);
2356 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2357 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2358
2359 __ctx->queue = q;
2360
2361 /*
2362 * Set local node, IFF we have more than one hw queue. If
2363 * not, we remain on the home node of the device
2364 */
2365 for (j = 0; j < set->nr_maps; j++) {
2366 hctx = blk_mq_map_queue_type(q, j, i);
2367 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2368 hctx->numa_node = local_memory_node(cpu_to_node(i));
2369 }
2370 }
2371 }
2372
2373 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2374 {
2375 int ret = 0;
2376
2377 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2378 set->queue_depth, set->reserved_tags);
2379 if (!set->tags[hctx_idx])
2380 return false;
2381
2382 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2383 set->queue_depth);
2384 if (!ret)
2385 return true;
2386
2387 blk_mq_free_rq_map(set->tags[hctx_idx]);
2388 set->tags[hctx_idx] = NULL;
2389 return false;
2390 }
2391
2392 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2393 unsigned int hctx_idx)
2394 {
2395 if (set->tags && set->tags[hctx_idx]) {
2396 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2397 blk_mq_free_rq_map(set->tags[hctx_idx]);
2398 set->tags[hctx_idx] = NULL;
2399 }
2400 }
2401
2402 static void blk_mq_map_swqueue(struct request_queue *q)
2403 {
2404 unsigned int i, j, hctx_idx;
2405 struct blk_mq_hw_ctx *hctx;
2406 struct blk_mq_ctx *ctx;
2407 struct blk_mq_tag_set *set = q->tag_set;
2408
2409 /*
2410 * Avoid others reading imcomplete hctx->cpumask through sysfs
2411 */
2412 mutex_lock(&q->sysfs_lock);
2413
2414 queue_for_each_hw_ctx(q, hctx, i) {
2415 cpumask_clear(hctx->cpumask);
2416 hctx->nr_ctx = 0;
2417 hctx->dispatch_from = NULL;
2418 }
2419
2420 /*
2421 * Map software to hardware queues.
2422 *
2423 * If the cpu isn't present, the cpu is mapped to first hctx.
2424 */
2425 for_each_possible_cpu(i) {
2426 hctx_idx = set->map[0].mq_map[i];
2427 /* unmapped hw queue can be remapped after CPU topo changed */
2428 if (!set->tags[hctx_idx] &&
2429 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2430 /*
2431 * If tags initialization fail for some hctx,
2432 * that hctx won't be brought online. In this
2433 * case, remap the current ctx to hctx[0] which
2434 * is guaranteed to always have tags allocated
2435 */
2436 set->map[0].mq_map[i] = 0;
2437 }
2438
2439 ctx = per_cpu_ptr(q->queue_ctx, i);
2440 for (j = 0; j < set->nr_maps; j++) {
2441 if (!set->map[j].nr_queues)
2442 continue;
2443
2444 hctx = blk_mq_map_queue_type(q, j, i);
2445
2446 /*
2447 * If the CPU is already set in the mask, then we've
2448 * mapped this one already. This can happen if
2449 * devices share queues across queue maps.
2450 */
2451 if (cpumask_test_cpu(i, hctx->cpumask))
2452 continue;
2453
2454 cpumask_set_cpu(i, hctx->cpumask);
2455 hctx->type = j;
2456 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2457 hctx->ctxs[hctx->nr_ctx++] = ctx;
2458
2459 /*
2460 * If the nr_ctx type overflows, we have exceeded the
2461 * amount of sw queues we can support.
2462 */
2463 BUG_ON(!hctx->nr_ctx);
2464 }
2465 }
2466
2467 mutex_unlock(&q->sysfs_lock);
2468
2469 queue_for_each_hw_ctx(q, hctx, i) {
2470 /*
2471 * If no software queues are mapped to this hardware queue,
2472 * disable it and free the request entries.
2473 */
2474 if (!hctx->nr_ctx) {
2475 /* Never unmap queue 0. We need it as a
2476 * fallback in case of a new remap fails
2477 * allocation
2478 */
2479 if (i && set->tags[i])
2480 blk_mq_free_map_and_requests(set, i);
2481
2482 hctx->tags = NULL;
2483 continue;
2484 }
2485
2486 hctx->tags = set->tags[i];
2487 WARN_ON(!hctx->tags);
2488
2489 /*
2490 * Set the map size to the number of mapped software queues.
2491 * This is more accurate and more efficient than looping
2492 * over all possibly mapped software queues.
2493 */
2494 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2495
2496 /*
2497 * Initialize batch roundrobin counts
2498 */
2499 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2500 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2501 }
2502 }
2503
2504 /*
2505 * Caller needs to ensure that we're either frozen/quiesced, or that
2506 * the queue isn't live yet.
2507 */
2508 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2509 {
2510 struct blk_mq_hw_ctx *hctx;
2511 int i;
2512
2513 queue_for_each_hw_ctx(q, hctx, i) {
2514 if (shared)
2515 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2516 else
2517 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2518 }
2519 }
2520
2521 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2522 bool shared)
2523 {
2524 struct request_queue *q;
2525
2526 lockdep_assert_held(&set->tag_list_lock);
2527
2528 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2529 blk_mq_freeze_queue(q);
2530 queue_set_hctx_shared(q, shared);
2531 blk_mq_unfreeze_queue(q);
2532 }
2533 }
2534
2535 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2536 {
2537 struct blk_mq_tag_set *set = q->tag_set;
2538
2539 mutex_lock(&set->tag_list_lock);
2540 list_del_rcu(&q->tag_set_list);
2541 if (list_is_singular(&set->tag_list)) {
2542 /* just transitioned to unshared */
2543 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2544 /* update existing queue */
2545 blk_mq_update_tag_set_depth(set, false);
2546 }
2547 mutex_unlock(&set->tag_list_lock);
2548 INIT_LIST_HEAD(&q->tag_set_list);
2549 }
2550
2551 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2552 struct request_queue *q)
2553 {
2554 mutex_lock(&set->tag_list_lock);
2555
2556 /*
2557 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2558 */
2559 if (!list_empty(&set->tag_list) &&
2560 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2561 set->flags |= BLK_MQ_F_TAG_SHARED;
2562 /* update existing queue */
2563 blk_mq_update_tag_set_depth(set, true);
2564 }
2565 if (set->flags & BLK_MQ_F_TAG_SHARED)
2566 queue_set_hctx_shared(q, true);
2567 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2568
2569 mutex_unlock(&set->tag_list_lock);
2570 }
2571
2572 /* All allocations will be freed in release handler of q->mq_kobj */
2573 static int blk_mq_alloc_ctxs(struct request_queue *q)
2574 {
2575 struct blk_mq_ctxs *ctxs;
2576 int cpu;
2577
2578 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2579 if (!ctxs)
2580 return -ENOMEM;
2581
2582 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2583 if (!ctxs->queue_ctx)
2584 goto fail;
2585
2586 for_each_possible_cpu(cpu) {
2587 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2588 ctx->ctxs = ctxs;
2589 }
2590
2591 q->mq_kobj = &ctxs->kobj;
2592 q->queue_ctx = ctxs->queue_ctx;
2593
2594 return 0;
2595 fail:
2596 kfree(ctxs);
2597 return -ENOMEM;
2598 }
2599
2600 /*
2601 * It is the actual release handler for mq, but we do it from
2602 * request queue's release handler for avoiding use-after-free
2603 * and headache because q->mq_kobj shouldn't have been introduced,
2604 * but we can't group ctx/kctx kobj without it.
2605 */
2606 void blk_mq_release(struct request_queue *q)
2607 {
2608 struct blk_mq_hw_ctx *hctx;
2609 unsigned int i;
2610
2611 /* hctx kobj stays in hctx */
2612 queue_for_each_hw_ctx(q, hctx, i) {
2613 if (!hctx)
2614 continue;
2615 kobject_put(&hctx->kobj);
2616 }
2617
2618 kfree(q->queue_hw_ctx);
2619
2620 /*
2621 * release .mq_kobj and sw queue's kobject now because
2622 * both share lifetime with request queue.
2623 */
2624 blk_mq_sysfs_deinit(q);
2625 }
2626
2627 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2628 {
2629 struct request_queue *uninit_q, *q;
2630
2631 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2632 if (!uninit_q)
2633 return ERR_PTR(-ENOMEM);
2634
2635 q = blk_mq_init_allocated_queue(set, uninit_q);
2636 if (IS_ERR(q))
2637 blk_cleanup_queue(uninit_q);
2638
2639 return q;
2640 }
2641 EXPORT_SYMBOL(blk_mq_init_queue);
2642
2643 /*
2644 * Helper for setting up a queue with mq ops, given queue depth, and
2645 * the passed in mq ops flags.
2646 */
2647 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2648 const struct blk_mq_ops *ops,
2649 unsigned int queue_depth,
2650 unsigned int set_flags)
2651 {
2652 struct request_queue *q;
2653 int ret;
2654
2655 memset(set, 0, sizeof(*set));
2656 set->ops = ops;
2657 set->nr_hw_queues = 1;
2658 set->nr_maps = 1;
2659 set->queue_depth = queue_depth;
2660 set->numa_node = NUMA_NO_NODE;
2661 set->flags = set_flags;
2662
2663 ret = blk_mq_alloc_tag_set(set);
2664 if (ret)
2665 return ERR_PTR(ret);
2666
2667 q = blk_mq_init_queue(set);
2668 if (IS_ERR(q)) {
2669 blk_mq_free_tag_set(set);
2670 return q;
2671 }
2672
2673 return q;
2674 }
2675 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2676
2677 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2678 {
2679 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2680
2681 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2682 __alignof__(struct blk_mq_hw_ctx)) !=
2683 sizeof(struct blk_mq_hw_ctx));
2684
2685 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2686 hw_ctx_size += sizeof(struct srcu_struct);
2687
2688 return hw_ctx_size;
2689 }
2690
2691 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2692 struct blk_mq_tag_set *set, struct request_queue *q,
2693 int hctx_idx, int node)
2694 {
2695 struct blk_mq_hw_ctx *hctx;
2696
2697 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2698 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2699 node);
2700 if (!hctx)
2701 return NULL;
2702
2703 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2704 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2705 node)) {
2706 kfree(hctx);
2707 return NULL;
2708 }
2709
2710 atomic_set(&hctx->nr_active, 0);
2711 hctx->numa_node = node;
2712 hctx->queue_num = hctx_idx;
2713
2714 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2715 free_cpumask_var(hctx->cpumask);
2716 kfree(hctx);
2717 return NULL;
2718 }
2719 blk_mq_hctx_kobj_init(hctx);
2720
2721 return hctx;
2722 }
2723
2724 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2725 struct request_queue *q)
2726 {
2727 int i, j, end;
2728 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2729
2730 /* protect against switching io scheduler */
2731 mutex_lock(&q->sysfs_lock);
2732 for (i = 0; i < set->nr_hw_queues; i++) {
2733 int node;
2734 struct blk_mq_hw_ctx *hctx;
2735
2736 node = blk_mq_hw_queue_to_node(&set->map[0], i);
2737 /*
2738 * If the hw queue has been mapped to another numa node,
2739 * we need to realloc the hctx. If allocation fails, fallback
2740 * to use the previous one.
2741 */
2742 if (hctxs[i] && (hctxs[i]->numa_node == node))
2743 continue;
2744
2745 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2746 if (hctx) {
2747 if (hctxs[i]) {
2748 blk_mq_exit_hctx(q, set, hctxs[i], i);
2749 kobject_put(&hctxs[i]->kobj);
2750 }
2751 hctxs[i] = hctx;
2752 } else {
2753 if (hctxs[i])
2754 pr_warn("Allocate new hctx on node %d fails,\
2755 fallback to previous one on node %d\n",
2756 node, hctxs[i]->numa_node);
2757 else
2758 break;
2759 }
2760 }
2761 /*
2762 * Increasing nr_hw_queues fails. Free the newly allocated
2763 * hctxs and keep the previous q->nr_hw_queues.
2764 */
2765 if (i != set->nr_hw_queues) {
2766 j = q->nr_hw_queues;
2767 end = i;
2768 } else {
2769 j = i;
2770 end = q->nr_hw_queues;
2771 q->nr_hw_queues = set->nr_hw_queues;
2772 }
2773
2774 for (; j < end; j++) {
2775 struct blk_mq_hw_ctx *hctx = hctxs[j];
2776
2777 if (hctx) {
2778 if (hctx->tags)
2779 blk_mq_free_map_and_requests(set, j);
2780 blk_mq_exit_hctx(q, set, hctx, j);
2781 kobject_put(&hctx->kobj);
2782 hctxs[j] = NULL;
2783
2784 }
2785 }
2786 mutex_unlock(&q->sysfs_lock);
2787 }
2788
2789 /*
2790 * Maximum number of hardware queues we support. For single sets, we'll never
2791 * have more than the CPUs (software queues). For multiple sets, the tag_set
2792 * user may have set ->nr_hw_queues larger.
2793 */
2794 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2795 {
2796 if (set->nr_maps == 1)
2797 return nr_cpu_ids;
2798
2799 return max(set->nr_hw_queues, nr_cpu_ids);
2800 }
2801
2802 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2803 struct request_queue *q)
2804 {
2805 /* mark the queue as mq asap */
2806 q->mq_ops = set->ops;
2807
2808 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2809 blk_mq_poll_stats_bkt,
2810 BLK_MQ_POLL_STATS_BKTS, q);
2811 if (!q->poll_cb)
2812 goto err_exit;
2813
2814 if (blk_mq_alloc_ctxs(q))
2815 goto err_exit;
2816
2817 /* init q->mq_kobj and sw queues' kobjects */
2818 blk_mq_sysfs_init(q);
2819
2820 q->nr_queues = nr_hw_queues(set);
2821 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2822 GFP_KERNEL, set->numa_node);
2823 if (!q->queue_hw_ctx)
2824 goto err_sys_init;
2825
2826 blk_mq_realloc_hw_ctxs(set, q);
2827 if (!q->nr_hw_queues)
2828 goto err_hctxs;
2829
2830 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2831 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2832
2833 q->tag_set = set;
2834
2835 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2836 if (set->nr_maps > HCTX_TYPE_POLL &&
2837 set->map[HCTX_TYPE_POLL].nr_queues)
2838 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2839
2840 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2841 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2842
2843 q->sg_reserved_size = INT_MAX;
2844
2845 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2846 INIT_LIST_HEAD(&q->requeue_list);
2847 spin_lock_init(&q->requeue_lock);
2848
2849 blk_queue_make_request(q, blk_mq_make_request);
2850
2851 /*
2852 * Do this after blk_queue_make_request() overrides it...
2853 */
2854 q->nr_requests = set->queue_depth;
2855
2856 /*
2857 * Default to classic polling
2858 */
2859 q->poll_nsec = -1;
2860
2861 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2862 blk_mq_add_queue_tag_set(set, q);
2863 blk_mq_map_swqueue(q);
2864
2865 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2866 int ret;
2867
2868 ret = elevator_init_mq(q);
2869 if (ret)
2870 return ERR_PTR(ret);
2871 }
2872
2873 return q;
2874
2875 err_hctxs:
2876 kfree(q->queue_hw_ctx);
2877 err_sys_init:
2878 blk_mq_sysfs_deinit(q);
2879 err_exit:
2880 q->mq_ops = NULL;
2881 return ERR_PTR(-ENOMEM);
2882 }
2883 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2884
2885 void blk_mq_free_queue(struct request_queue *q)
2886 {
2887 struct blk_mq_tag_set *set = q->tag_set;
2888
2889 blk_mq_del_queue_tag_set(q);
2890 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2891 }
2892
2893 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2894 {
2895 int i;
2896
2897 for (i = 0; i < set->nr_hw_queues; i++)
2898 if (!__blk_mq_alloc_rq_map(set, i))
2899 goto out_unwind;
2900
2901 return 0;
2902
2903 out_unwind:
2904 while (--i >= 0)
2905 blk_mq_free_rq_map(set->tags[i]);
2906
2907 return -ENOMEM;
2908 }
2909
2910 /*
2911 * Allocate the request maps associated with this tag_set. Note that this
2912 * may reduce the depth asked for, if memory is tight. set->queue_depth
2913 * will be updated to reflect the allocated depth.
2914 */
2915 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2916 {
2917 unsigned int depth;
2918 int err;
2919
2920 depth = set->queue_depth;
2921 do {
2922 err = __blk_mq_alloc_rq_maps(set);
2923 if (!err)
2924 break;
2925
2926 set->queue_depth >>= 1;
2927 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2928 err = -ENOMEM;
2929 break;
2930 }
2931 } while (set->queue_depth);
2932
2933 if (!set->queue_depth || err) {
2934 pr_err("blk-mq: failed to allocate request map\n");
2935 return -ENOMEM;
2936 }
2937
2938 if (depth != set->queue_depth)
2939 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2940 depth, set->queue_depth);
2941
2942 return 0;
2943 }
2944
2945 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2946 {
2947 if (set->ops->map_queues && !is_kdump_kernel()) {
2948 int i;
2949
2950 /*
2951 * transport .map_queues is usually done in the following
2952 * way:
2953 *
2954 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2955 * mask = get_cpu_mask(queue)
2956 * for_each_cpu(cpu, mask)
2957 * set->map[x].mq_map[cpu] = queue;
2958 * }
2959 *
2960 * When we need to remap, the table has to be cleared for
2961 * killing stale mapping since one CPU may not be mapped
2962 * to any hw queue.
2963 */
2964 for (i = 0; i < set->nr_maps; i++)
2965 blk_mq_clear_mq_map(&set->map[i]);
2966
2967 return set->ops->map_queues(set);
2968 } else {
2969 BUG_ON(set->nr_maps > 1);
2970 return blk_mq_map_queues(&set->map[0]);
2971 }
2972 }
2973
2974 /*
2975 * Alloc a tag set to be associated with one or more request queues.
2976 * May fail with EINVAL for various error conditions. May adjust the
2977 * requested depth down, if it's too large. In that case, the set
2978 * value will be stored in set->queue_depth.
2979 */
2980 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2981 {
2982 int i, ret;
2983
2984 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2985
2986 if (!set->nr_hw_queues)
2987 return -EINVAL;
2988 if (!set->queue_depth)
2989 return -EINVAL;
2990 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2991 return -EINVAL;
2992
2993 if (!set->ops->queue_rq)
2994 return -EINVAL;
2995
2996 if (!set->ops->get_budget ^ !set->ops->put_budget)
2997 return -EINVAL;
2998
2999 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3000 pr_info("blk-mq: reduced tag depth to %u\n",
3001 BLK_MQ_MAX_DEPTH);
3002 set->queue_depth = BLK_MQ_MAX_DEPTH;
3003 }
3004
3005 if (!set->nr_maps)
3006 set->nr_maps = 1;
3007 else if (set->nr_maps > HCTX_MAX_TYPES)
3008 return -EINVAL;
3009
3010 /*
3011 * If a crashdump is active, then we are potentially in a very
3012 * memory constrained environment. Limit us to 1 queue and
3013 * 64 tags to prevent using too much memory.
3014 */
3015 if (is_kdump_kernel()) {
3016 set->nr_hw_queues = 1;
3017 set->nr_maps = 1;
3018 set->queue_depth = min(64U, set->queue_depth);
3019 }
3020 /*
3021 * There is no use for more h/w queues than cpus if we just have
3022 * a single map
3023 */
3024 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3025 set->nr_hw_queues = nr_cpu_ids;
3026
3027 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3028 GFP_KERNEL, set->numa_node);
3029 if (!set->tags)
3030 return -ENOMEM;
3031
3032 ret = -ENOMEM;
3033 for (i = 0; i < set->nr_maps; i++) {
3034 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3035 sizeof(set->map[i].mq_map[0]),
3036 GFP_KERNEL, set->numa_node);
3037 if (!set->map[i].mq_map)
3038 goto out_free_mq_map;
3039 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3040 }
3041
3042 ret = blk_mq_update_queue_map(set);
3043 if (ret)
3044 goto out_free_mq_map;
3045
3046 ret = blk_mq_alloc_rq_maps(set);
3047 if (ret)
3048 goto out_free_mq_map;
3049
3050 mutex_init(&set->tag_list_lock);
3051 INIT_LIST_HEAD(&set->tag_list);
3052
3053 return 0;
3054
3055 out_free_mq_map:
3056 for (i = 0; i < set->nr_maps; i++) {
3057 kfree(set->map[i].mq_map);
3058 set->map[i].mq_map = NULL;
3059 }
3060 kfree(set->tags);
3061 set->tags = NULL;
3062 return ret;
3063 }
3064 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3065
3066 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3067 {
3068 int i, j;
3069
3070 for (i = 0; i < nr_hw_queues(set); i++)
3071 blk_mq_free_map_and_requests(set, i);
3072
3073 for (j = 0; j < set->nr_maps; j++) {
3074 kfree(set->map[j].mq_map);
3075 set->map[j].mq_map = NULL;
3076 }
3077
3078 kfree(set->tags);
3079 set->tags = NULL;
3080 }
3081 EXPORT_SYMBOL(blk_mq_free_tag_set);
3082
3083 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3084 {
3085 struct blk_mq_tag_set *set = q->tag_set;
3086 struct blk_mq_hw_ctx *hctx;
3087 int i, ret;
3088
3089 if (!set)
3090 return -EINVAL;
3091
3092 blk_mq_freeze_queue(q);
3093 blk_mq_quiesce_queue(q);
3094
3095 ret = 0;
3096 queue_for_each_hw_ctx(q, hctx, i) {
3097 if (!hctx->tags)
3098 continue;
3099 /*
3100 * If we're using an MQ scheduler, just update the scheduler
3101 * queue depth. This is similar to what the old code would do.
3102 */
3103 if (!hctx->sched_tags) {
3104 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3105 false);
3106 } else {
3107 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3108 nr, true);
3109 }
3110 if (ret)
3111 break;
3112 }
3113
3114 if (!ret)
3115 q->nr_requests = nr;
3116
3117 blk_mq_unquiesce_queue(q);
3118 blk_mq_unfreeze_queue(q);
3119
3120 return ret;
3121 }
3122
3123 /*
3124 * request_queue and elevator_type pair.
3125 * It is just used by __blk_mq_update_nr_hw_queues to cache
3126 * the elevator_type associated with a request_queue.
3127 */
3128 struct blk_mq_qe_pair {
3129 struct list_head node;
3130 struct request_queue *q;
3131 struct elevator_type *type;
3132 };
3133
3134 /*
3135 * Cache the elevator_type in qe pair list and switch the
3136 * io scheduler to 'none'
3137 */
3138 static bool blk_mq_elv_switch_none(struct list_head *head,
3139 struct request_queue *q)
3140 {
3141 struct blk_mq_qe_pair *qe;
3142
3143 if (!q->elevator)
3144 return true;
3145
3146 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3147 if (!qe)
3148 return false;
3149
3150 INIT_LIST_HEAD(&qe->node);
3151 qe->q = q;
3152 qe->type = q->elevator->type;
3153 list_add(&qe->node, head);
3154
3155 mutex_lock(&q->sysfs_lock);
3156 /*
3157 * After elevator_switch_mq, the previous elevator_queue will be
3158 * released by elevator_release. The reference of the io scheduler
3159 * module get by elevator_get will also be put. So we need to get
3160 * a reference of the io scheduler module here to prevent it to be
3161 * removed.
3162 */
3163 __module_get(qe->type->elevator_owner);
3164 elevator_switch_mq(q, NULL);
3165 mutex_unlock(&q->sysfs_lock);
3166
3167 return true;
3168 }
3169
3170 static void blk_mq_elv_switch_back(struct list_head *head,
3171 struct request_queue *q)
3172 {
3173 struct blk_mq_qe_pair *qe;
3174 struct elevator_type *t = NULL;
3175
3176 list_for_each_entry(qe, head, node)
3177 if (qe->q == q) {
3178 t = qe->type;
3179 break;
3180 }
3181
3182 if (!t)
3183 return;
3184
3185 list_del(&qe->node);
3186 kfree(qe);
3187
3188 mutex_lock(&q->sysfs_lock);
3189 elevator_switch_mq(q, t);
3190 mutex_unlock(&q->sysfs_lock);
3191 }
3192
3193 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3194 int nr_hw_queues)
3195 {
3196 struct request_queue *q;
3197 LIST_HEAD(head);
3198 int prev_nr_hw_queues;
3199
3200 lockdep_assert_held(&set->tag_list_lock);
3201
3202 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3203 nr_hw_queues = nr_cpu_ids;
3204 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3205 return;
3206
3207 list_for_each_entry(q, &set->tag_list, tag_set_list)
3208 blk_mq_freeze_queue(q);
3209 /*
3210 * Sync with blk_mq_queue_tag_busy_iter.
3211 */
3212 synchronize_rcu();
3213 /*
3214 * Switch IO scheduler to 'none', cleaning up the data associated
3215 * with the previous scheduler. We will switch back once we are done
3216 * updating the new sw to hw queue mappings.
3217 */
3218 list_for_each_entry(q, &set->tag_list, tag_set_list)
3219 if (!blk_mq_elv_switch_none(&head, q))
3220 goto switch_back;
3221
3222 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3223 blk_mq_debugfs_unregister_hctxs(q);
3224 blk_mq_sysfs_unregister(q);
3225 }
3226
3227 prev_nr_hw_queues = set->nr_hw_queues;
3228 set->nr_hw_queues = nr_hw_queues;
3229 blk_mq_update_queue_map(set);
3230 fallback:
3231 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3232 blk_mq_realloc_hw_ctxs(set, q);
3233 if (q->nr_hw_queues != set->nr_hw_queues) {
3234 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3235 nr_hw_queues, prev_nr_hw_queues);
3236 set->nr_hw_queues = prev_nr_hw_queues;
3237 blk_mq_map_queues(&set->map[0]);
3238 goto fallback;
3239 }
3240 blk_mq_map_swqueue(q);
3241 }
3242
3243 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3244 blk_mq_sysfs_register(q);
3245 blk_mq_debugfs_register_hctxs(q);
3246 }
3247
3248 switch_back:
3249 list_for_each_entry(q, &set->tag_list, tag_set_list)
3250 blk_mq_elv_switch_back(&head, q);
3251
3252 list_for_each_entry(q, &set->tag_list, tag_set_list)
3253 blk_mq_unfreeze_queue(q);
3254 }
3255
3256 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3257 {
3258 mutex_lock(&set->tag_list_lock);
3259 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3260 mutex_unlock(&set->tag_list_lock);
3261 }
3262 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3263
3264 /* Enable polling stats and return whether they were already enabled. */
3265 static bool blk_poll_stats_enable(struct request_queue *q)
3266 {
3267 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3268 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3269 return true;
3270 blk_stat_add_callback(q, q->poll_cb);
3271 return false;
3272 }
3273
3274 static void blk_mq_poll_stats_start(struct request_queue *q)
3275 {
3276 /*
3277 * We don't arm the callback if polling stats are not enabled or the
3278 * callback is already active.
3279 */
3280 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3281 blk_stat_is_active(q->poll_cb))
3282 return;
3283
3284 blk_stat_activate_msecs(q->poll_cb, 100);
3285 }
3286
3287 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3288 {
3289 struct request_queue *q = cb->data;
3290 int bucket;
3291
3292 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3293 if (cb->stat[bucket].nr_samples)
3294 q->poll_stat[bucket] = cb->stat[bucket];
3295 }
3296 }
3297
3298 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3299 struct blk_mq_hw_ctx *hctx,
3300 struct request *rq)
3301 {
3302 unsigned long ret = 0;
3303 int bucket;
3304
3305 /*
3306 * If stats collection isn't on, don't sleep but turn it on for
3307 * future users
3308 */
3309 if (!blk_poll_stats_enable(q))
3310 return 0;
3311
3312 /*
3313 * As an optimistic guess, use half of the mean service time
3314 * for this type of request. We can (and should) make this smarter.
3315 * For instance, if the completion latencies are tight, we can
3316 * get closer than just half the mean. This is especially
3317 * important on devices where the completion latencies are longer
3318 * than ~10 usec. We do use the stats for the relevant IO size
3319 * if available which does lead to better estimates.
3320 */
3321 bucket = blk_mq_poll_stats_bkt(rq);
3322 if (bucket < 0)
3323 return ret;
3324
3325 if (q->poll_stat[bucket].nr_samples)
3326 ret = (q->poll_stat[bucket].mean + 1) / 2;
3327
3328 return ret;
3329 }
3330
3331 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3332 struct blk_mq_hw_ctx *hctx,
3333 struct request *rq)
3334 {
3335 struct hrtimer_sleeper hs;
3336 enum hrtimer_mode mode;
3337 unsigned int nsecs;
3338 ktime_t kt;
3339
3340 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3341 return false;
3342
3343 /*
3344 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3345 *
3346 * 0: use half of prev avg
3347 * >0: use this specific value
3348 */
3349 if (q->poll_nsec > 0)
3350 nsecs = q->poll_nsec;
3351 else
3352 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3353
3354 if (!nsecs)
3355 return false;
3356
3357 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3358
3359 /*
3360 * This will be replaced with the stats tracking code, using
3361 * 'avg_completion_time / 2' as the pre-sleep target.
3362 */
3363 kt = nsecs;
3364
3365 mode = HRTIMER_MODE_REL;
3366 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3367 hrtimer_set_expires(&hs.timer, kt);
3368
3369 hrtimer_init_sleeper(&hs, current);
3370 do {
3371 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3372 break;
3373 set_current_state(TASK_UNINTERRUPTIBLE);
3374 hrtimer_start_expires(&hs.timer, mode);
3375 if (hs.task)
3376 io_schedule();
3377 hrtimer_cancel(&hs.timer);
3378 mode = HRTIMER_MODE_ABS;
3379 } while (hs.task && !signal_pending(current));
3380
3381 __set_current_state(TASK_RUNNING);
3382 destroy_hrtimer_on_stack(&hs.timer);
3383 return true;
3384 }
3385
3386 static bool blk_mq_poll_hybrid(struct request_queue *q,
3387 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3388 {
3389 struct request *rq;
3390
3391 if (q->poll_nsec == -1)
3392 return false;
3393
3394 if (!blk_qc_t_is_internal(cookie))
3395 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3396 else {
3397 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3398 /*
3399 * With scheduling, if the request has completed, we'll
3400 * get a NULL return here, as we clear the sched tag when
3401 * that happens. The request still remains valid, like always,
3402 * so we should be safe with just the NULL check.
3403 */
3404 if (!rq)
3405 return false;
3406 }
3407
3408 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3409 }
3410
3411 /**
3412 * blk_poll - poll for IO completions
3413 * @q: the queue
3414 * @cookie: cookie passed back at IO submission time
3415 * @spin: whether to spin for completions
3416 *
3417 * Description:
3418 * Poll for completions on the passed in queue. Returns number of
3419 * completed entries found. If @spin is true, then blk_poll will continue
3420 * looping until at least one completion is found, unless the task is
3421 * otherwise marked running (or we need to reschedule).
3422 */
3423 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3424 {
3425 struct blk_mq_hw_ctx *hctx;
3426 long state;
3427
3428 if (!blk_qc_t_valid(cookie) ||
3429 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3430 return 0;
3431
3432 if (current->plug)
3433 blk_flush_plug_list(current->plug, false);
3434
3435 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3436
3437 /*
3438 * If we sleep, have the caller restart the poll loop to reset
3439 * the state. Like for the other success return cases, the
3440 * caller is responsible for checking if the IO completed. If
3441 * the IO isn't complete, we'll get called again and will go
3442 * straight to the busy poll loop.
3443 */
3444 if (blk_mq_poll_hybrid(q, hctx, cookie))
3445 return 1;
3446
3447 hctx->poll_considered++;
3448
3449 state = current->state;
3450 do {
3451 int ret;
3452
3453 hctx->poll_invoked++;
3454
3455 ret = q->mq_ops->poll(hctx);
3456 if (ret > 0) {
3457 hctx->poll_success++;
3458 __set_current_state(TASK_RUNNING);
3459 return ret;
3460 }
3461
3462 if (signal_pending_state(state, current))
3463 __set_current_state(TASK_RUNNING);
3464
3465 if (current->state == TASK_RUNNING)
3466 return 1;
3467 if (ret < 0 || !spin)
3468 break;
3469 cpu_relax();
3470 } while (!need_resched());
3471
3472 __set_current_state(TASK_RUNNING);
3473 return 0;
3474 }
3475 EXPORT_SYMBOL_GPL(blk_poll);
3476
3477 unsigned int blk_mq_rq_cpu(struct request *rq)
3478 {
3479 return rq->mq_ctx->cpu;
3480 }
3481 EXPORT_SYMBOL(blk_mq_rq_cpu);
3482
3483 static int __init blk_mq_init(void)
3484 {
3485 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3486 blk_mq_hctx_notify_dead);
3487 return 0;
3488 }
3489 subsys_initcall(blk_mq_init);