]> git.ipfire.org Git - people/ms/linux.git/blob - block/blk-mq.c
block: pass a block_device to bio_clone_fast
[people/ms/linux.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 int ddir, sectors, bucket;
54
55 ddir = rq_data_dir(rq);
56 sectors = blk_rq_stats_sectors(rq);
57
58 bucket = ddir + 2 * ilog2(sectors);
59
60 if (bucket < 0)
61 return -1;
62 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65 return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT 16
69 #define BLK_QC_T_INTERNAL (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 blk_qc_t qc)
73 {
74 return q->queue_hw_ctx[(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT];
75 }
76
77 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
78 blk_qc_t qc)
79 {
80 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
81
82 if (qc & BLK_QC_T_INTERNAL)
83 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
84 return blk_mq_tag_to_rq(hctx->tags, tag);
85 }
86
87 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
88 {
89 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
90 (rq->tag != -1 ?
91 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
92 }
93
94 /*
95 * Check if any of the ctx, dispatch list or elevator
96 * have pending work in this hardware queue.
97 */
98 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
99 {
100 return !list_empty_careful(&hctx->dispatch) ||
101 sbitmap_any_bit_set(&hctx->ctx_map) ||
102 blk_mq_sched_has_work(hctx);
103 }
104
105 /*
106 * Mark this ctx as having pending work in this hardware queue
107 */
108 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
109 struct blk_mq_ctx *ctx)
110 {
111 const int bit = ctx->index_hw[hctx->type];
112
113 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
114 sbitmap_set_bit(&hctx->ctx_map, bit);
115 }
116
117 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
118 struct blk_mq_ctx *ctx)
119 {
120 const int bit = ctx->index_hw[hctx->type];
121
122 sbitmap_clear_bit(&hctx->ctx_map, bit);
123 }
124
125 struct mq_inflight {
126 struct block_device *part;
127 unsigned int inflight[2];
128 };
129
130 static bool blk_mq_check_inflight(struct request *rq, void *priv,
131 bool reserved)
132 {
133 struct mq_inflight *mi = priv;
134
135 if ((!mi->part->bd_partno || rq->part == mi->part) &&
136 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
137 mi->inflight[rq_data_dir(rq)]++;
138
139 return true;
140 }
141
142 unsigned int blk_mq_in_flight(struct request_queue *q,
143 struct block_device *part)
144 {
145 struct mq_inflight mi = { .part = part };
146
147 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
148
149 return mi.inflight[0] + mi.inflight[1];
150 }
151
152 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
153 unsigned int inflight[2])
154 {
155 struct mq_inflight mi = { .part = part };
156
157 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
158 inflight[0] = mi.inflight[0];
159 inflight[1] = mi.inflight[1];
160 }
161
162 void blk_freeze_queue_start(struct request_queue *q)
163 {
164 mutex_lock(&q->mq_freeze_lock);
165 if (++q->mq_freeze_depth == 1) {
166 percpu_ref_kill(&q->q_usage_counter);
167 mutex_unlock(&q->mq_freeze_lock);
168 if (queue_is_mq(q))
169 blk_mq_run_hw_queues(q, false);
170 } else {
171 mutex_unlock(&q->mq_freeze_lock);
172 }
173 }
174 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
175
176 void blk_mq_freeze_queue_wait(struct request_queue *q)
177 {
178 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
181
182 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
183 unsigned long timeout)
184 {
185 return wait_event_timeout(q->mq_freeze_wq,
186 percpu_ref_is_zero(&q->q_usage_counter),
187 timeout);
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
190
191 /*
192 * Guarantee no request is in use, so we can change any data structure of
193 * the queue afterward.
194 */
195 void blk_freeze_queue(struct request_queue *q)
196 {
197 /*
198 * In the !blk_mq case we are only calling this to kill the
199 * q_usage_counter, otherwise this increases the freeze depth
200 * and waits for it to return to zero. For this reason there is
201 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
202 * exported to drivers as the only user for unfreeze is blk_mq.
203 */
204 blk_freeze_queue_start(q);
205 blk_mq_freeze_queue_wait(q);
206 }
207
208 void blk_mq_freeze_queue(struct request_queue *q)
209 {
210 /*
211 * ...just an alias to keep freeze and unfreeze actions balanced
212 * in the blk_mq_* namespace
213 */
214 blk_freeze_queue(q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
217
218 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
219 {
220 mutex_lock(&q->mq_freeze_lock);
221 if (force_atomic)
222 q->q_usage_counter.data->force_atomic = true;
223 q->mq_freeze_depth--;
224 WARN_ON_ONCE(q->mq_freeze_depth < 0);
225 if (!q->mq_freeze_depth) {
226 percpu_ref_resurrect(&q->q_usage_counter);
227 wake_up_all(&q->mq_freeze_wq);
228 }
229 mutex_unlock(&q->mq_freeze_lock);
230 }
231
232 void blk_mq_unfreeze_queue(struct request_queue *q)
233 {
234 __blk_mq_unfreeze_queue(q, false);
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
237
238 /*
239 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
240 * mpt3sas driver such that this function can be removed.
241 */
242 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
243 {
244 unsigned long flags;
245
246 spin_lock_irqsave(&q->queue_lock, flags);
247 if (!q->quiesce_depth++)
248 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
249 spin_unlock_irqrestore(&q->queue_lock, flags);
250 }
251 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
252
253 /**
254 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
255 * @q: request queue.
256 *
257 * Note: it is driver's responsibility for making sure that quiesce has
258 * been started.
259 */
260 void blk_mq_wait_quiesce_done(struct request_queue *q)
261 {
262 if (blk_queue_has_srcu(q))
263 synchronize_srcu(q->srcu);
264 else
265 synchronize_rcu();
266 }
267 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
268
269 /**
270 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
271 * @q: request queue.
272 *
273 * Note: this function does not prevent that the struct request end_io()
274 * callback function is invoked. Once this function is returned, we make
275 * sure no dispatch can happen until the queue is unquiesced via
276 * blk_mq_unquiesce_queue().
277 */
278 void blk_mq_quiesce_queue(struct request_queue *q)
279 {
280 blk_mq_quiesce_queue_nowait(q);
281 blk_mq_wait_quiesce_done(q);
282 }
283 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
284
285 /*
286 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
287 * @q: request queue.
288 *
289 * This function recovers queue into the state before quiescing
290 * which is done by blk_mq_quiesce_queue.
291 */
292 void blk_mq_unquiesce_queue(struct request_queue *q)
293 {
294 unsigned long flags;
295 bool run_queue = false;
296
297 spin_lock_irqsave(&q->queue_lock, flags);
298 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
299 ;
300 } else if (!--q->quiesce_depth) {
301 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
302 run_queue = true;
303 }
304 spin_unlock_irqrestore(&q->queue_lock, flags);
305
306 /* dispatch requests which are inserted during quiescing */
307 if (run_queue)
308 blk_mq_run_hw_queues(q, true);
309 }
310 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
311
312 void blk_mq_wake_waiters(struct request_queue *q)
313 {
314 struct blk_mq_hw_ctx *hctx;
315 unsigned int i;
316
317 queue_for_each_hw_ctx(q, hctx, i)
318 if (blk_mq_hw_queue_mapped(hctx))
319 blk_mq_tag_wakeup_all(hctx->tags, true);
320 }
321
322 void blk_rq_init(struct request_queue *q, struct request *rq)
323 {
324 memset(rq, 0, sizeof(*rq));
325
326 INIT_LIST_HEAD(&rq->queuelist);
327 rq->q = q;
328 rq->__sector = (sector_t) -1;
329 INIT_HLIST_NODE(&rq->hash);
330 RB_CLEAR_NODE(&rq->rb_node);
331 rq->tag = BLK_MQ_NO_TAG;
332 rq->internal_tag = BLK_MQ_NO_TAG;
333 rq->start_time_ns = ktime_get_ns();
334 rq->part = NULL;
335 blk_crypto_rq_set_defaults(rq);
336 }
337 EXPORT_SYMBOL(blk_rq_init);
338
339 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
340 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
341 {
342 struct blk_mq_ctx *ctx = data->ctx;
343 struct blk_mq_hw_ctx *hctx = data->hctx;
344 struct request_queue *q = data->q;
345 struct request *rq = tags->static_rqs[tag];
346
347 rq->q = q;
348 rq->mq_ctx = ctx;
349 rq->mq_hctx = hctx;
350 rq->cmd_flags = data->cmd_flags;
351
352 if (data->flags & BLK_MQ_REQ_PM)
353 data->rq_flags |= RQF_PM;
354 if (blk_queue_io_stat(q))
355 data->rq_flags |= RQF_IO_STAT;
356 rq->rq_flags = data->rq_flags;
357
358 if (!(data->rq_flags & RQF_ELV)) {
359 rq->tag = tag;
360 rq->internal_tag = BLK_MQ_NO_TAG;
361 } else {
362 rq->tag = BLK_MQ_NO_TAG;
363 rq->internal_tag = tag;
364 }
365 rq->timeout = 0;
366
367 if (blk_mq_need_time_stamp(rq))
368 rq->start_time_ns = ktime_get_ns();
369 else
370 rq->start_time_ns = 0;
371 rq->part = NULL;
372 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
373 rq->alloc_time_ns = alloc_time_ns;
374 #endif
375 rq->io_start_time_ns = 0;
376 rq->stats_sectors = 0;
377 rq->nr_phys_segments = 0;
378 #if defined(CONFIG_BLK_DEV_INTEGRITY)
379 rq->nr_integrity_segments = 0;
380 #endif
381 rq->end_io = NULL;
382 rq->end_io_data = NULL;
383
384 blk_crypto_rq_set_defaults(rq);
385 INIT_LIST_HEAD(&rq->queuelist);
386 /* tag was already set */
387 WRITE_ONCE(rq->deadline, 0);
388 req_ref_set(rq, 1);
389
390 if (rq->rq_flags & RQF_ELV) {
391 struct elevator_queue *e = data->q->elevator;
392
393 INIT_HLIST_NODE(&rq->hash);
394 RB_CLEAR_NODE(&rq->rb_node);
395
396 if (!op_is_flush(data->cmd_flags) &&
397 e->type->ops.prepare_request) {
398 e->type->ops.prepare_request(rq);
399 rq->rq_flags |= RQF_ELVPRIV;
400 }
401 }
402
403 return rq;
404 }
405
406 static inline struct request *
407 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
408 u64 alloc_time_ns)
409 {
410 unsigned int tag, tag_offset;
411 struct blk_mq_tags *tags;
412 struct request *rq;
413 unsigned long tag_mask;
414 int i, nr = 0;
415
416 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
417 if (unlikely(!tag_mask))
418 return NULL;
419
420 tags = blk_mq_tags_from_data(data);
421 for (i = 0; tag_mask; i++) {
422 if (!(tag_mask & (1UL << i)))
423 continue;
424 tag = tag_offset + i;
425 prefetch(tags->static_rqs[tag]);
426 tag_mask &= ~(1UL << i);
427 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
428 rq_list_add(data->cached_rq, rq);
429 nr++;
430 }
431 /* caller already holds a reference, add for remainder */
432 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433 data->nr_tags -= nr;
434
435 return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440 struct request_queue *q = data->q;
441 u64 alloc_time_ns = 0;
442 struct request *rq;
443 unsigned int tag;
444
445 /* alloc_time includes depth and tag waits */
446 if (blk_queue_rq_alloc_time(q))
447 alloc_time_ns = ktime_get_ns();
448
449 if (data->cmd_flags & REQ_NOWAIT)
450 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452 if (q->elevator) {
453 struct elevator_queue *e = q->elevator;
454
455 data->rq_flags |= RQF_ELV;
456
457 /*
458 * Flush/passthrough requests are special and go directly to the
459 * dispatch list. Don't include reserved tags in the
460 * limiting, as it isn't useful.
461 */
462 if (!op_is_flush(data->cmd_flags) &&
463 !blk_op_is_passthrough(data->cmd_flags) &&
464 e->type->ops.limit_depth &&
465 !(data->flags & BLK_MQ_REQ_RESERVED))
466 e->type->ops.limit_depth(data->cmd_flags, data);
467 }
468
469 retry:
470 data->ctx = blk_mq_get_ctx(q);
471 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
472 if (!(data->rq_flags & RQF_ELV))
473 blk_mq_tag_busy(data->hctx);
474
475 /*
476 * Try batched alloc if we want more than 1 tag.
477 */
478 if (data->nr_tags > 1) {
479 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
480 if (rq)
481 return rq;
482 data->nr_tags = 1;
483 }
484
485 /*
486 * Waiting allocations only fail because of an inactive hctx. In that
487 * case just retry the hctx assignment and tag allocation as CPU hotplug
488 * should have migrated us to an online CPU by now.
489 */
490 tag = blk_mq_get_tag(data);
491 if (tag == BLK_MQ_NO_TAG) {
492 if (data->flags & BLK_MQ_REQ_NOWAIT)
493 return NULL;
494 /*
495 * Give up the CPU and sleep for a random short time to
496 * ensure that thread using a realtime scheduling class
497 * are migrated off the CPU, and thus off the hctx that
498 * is going away.
499 */
500 msleep(3);
501 goto retry;
502 }
503
504 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
505 alloc_time_ns);
506 }
507
508 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
509 blk_mq_req_flags_t flags)
510 {
511 struct blk_mq_alloc_data data = {
512 .q = q,
513 .flags = flags,
514 .cmd_flags = op,
515 .nr_tags = 1,
516 };
517 struct request *rq;
518 int ret;
519
520 ret = blk_queue_enter(q, flags);
521 if (ret)
522 return ERR_PTR(ret);
523
524 rq = __blk_mq_alloc_requests(&data);
525 if (!rq)
526 goto out_queue_exit;
527 rq->__data_len = 0;
528 rq->__sector = (sector_t) -1;
529 rq->bio = rq->biotail = NULL;
530 return rq;
531 out_queue_exit:
532 blk_queue_exit(q);
533 return ERR_PTR(-EWOULDBLOCK);
534 }
535 EXPORT_SYMBOL(blk_mq_alloc_request);
536
537 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
538 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
539 {
540 struct blk_mq_alloc_data data = {
541 .q = q,
542 .flags = flags,
543 .cmd_flags = op,
544 .nr_tags = 1,
545 };
546 u64 alloc_time_ns = 0;
547 unsigned int cpu;
548 unsigned int tag;
549 int ret;
550
551 /* alloc_time includes depth and tag waits */
552 if (blk_queue_rq_alloc_time(q))
553 alloc_time_ns = ktime_get_ns();
554
555 /*
556 * If the tag allocator sleeps we could get an allocation for a
557 * different hardware context. No need to complicate the low level
558 * allocator for this for the rare use case of a command tied to
559 * a specific queue.
560 */
561 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
562 return ERR_PTR(-EINVAL);
563
564 if (hctx_idx >= q->nr_hw_queues)
565 return ERR_PTR(-EIO);
566
567 ret = blk_queue_enter(q, flags);
568 if (ret)
569 return ERR_PTR(ret);
570
571 /*
572 * Check if the hardware context is actually mapped to anything.
573 * If not tell the caller that it should skip this queue.
574 */
575 ret = -EXDEV;
576 data.hctx = q->queue_hw_ctx[hctx_idx];
577 if (!blk_mq_hw_queue_mapped(data.hctx))
578 goto out_queue_exit;
579 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
580 data.ctx = __blk_mq_get_ctx(q, cpu);
581
582 if (!q->elevator)
583 blk_mq_tag_busy(data.hctx);
584 else
585 data.rq_flags |= RQF_ELV;
586
587 ret = -EWOULDBLOCK;
588 tag = blk_mq_get_tag(&data);
589 if (tag == BLK_MQ_NO_TAG)
590 goto out_queue_exit;
591 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
592 alloc_time_ns);
593
594 out_queue_exit:
595 blk_queue_exit(q);
596 return ERR_PTR(ret);
597 }
598 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
599
600 static void __blk_mq_free_request(struct request *rq)
601 {
602 struct request_queue *q = rq->q;
603 struct blk_mq_ctx *ctx = rq->mq_ctx;
604 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
605 const int sched_tag = rq->internal_tag;
606
607 blk_crypto_free_request(rq);
608 blk_pm_mark_last_busy(rq);
609 rq->mq_hctx = NULL;
610 if (rq->tag != BLK_MQ_NO_TAG)
611 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
612 if (sched_tag != BLK_MQ_NO_TAG)
613 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
614 blk_mq_sched_restart(hctx);
615 blk_queue_exit(q);
616 }
617
618 void blk_mq_free_request(struct request *rq)
619 {
620 struct request_queue *q = rq->q;
621 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
622
623 if ((rq->rq_flags & RQF_ELVPRIV) &&
624 q->elevator->type->ops.finish_request)
625 q->elevator->type->ops.finish_request(rq);
626
627 if (rq->rq_flags & RQF_MQ_INFLIGHT)
628 __blk_mq_dec_active_requests(hctx);
629
630 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
631 laptop_io_completion(q->disk->bdi);
632
633 rq_qos_done(q, rq);
634
635 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
636 if (req_ref_put_and_test(rq))
637 __blk_mq_free_request(rq);
638 }
639 EXPORT_SYMBOL_GPL(blk_mq_free_request);
640
641 void blk_mq_free_plug_rqs(struct blk_plug *plug)
642 {
643 struct request *rq;
644
645 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
646 blk_mq_free_request(rq);
647 }
648
649 void blk_dump_rq_flags(struct request *rq, char *msg)
650 {
651 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
652 rq->q->disk ? rq->q->disk->disk_name : "?",
653 (unsigned long long) rq->cmd_flags);
654
655 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
656 (unsigned long long)blk_rq_pos(rq),
657 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
658 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
659 rq->bio, rq->biotail, blk_rq_bytes(rq));
660 }
661 EXPORT_SYMBOL(blk_dump_rq_flags);
662
663 static void req_bio_endio(struct request *rq, struct bio *bio,
664 unsigned int nbytes, blk_status_t error)
665 {
666 if (unlikely(error)) {
667 bio->bi_status = error;
668 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
669 /*
670 * Partial zone append completions cannot be supported as the
671 * BIO fragments may end up not being written sequentially.
672 */
673 if (bio->bi_iter.bi_size != nbytes)
674 bio->bi_status = BLK_STS_IOERR;
675 else
676 bio->bi_iter.bi_sector = rq->__sector;
677 }
678
679 bio_advance(bio, nbytes);
680
681 if (unlikely(rq->rq_flags & RQF_QUIET))
682 bio_set_flag(bio, BIO_QUIET);
683 /* don't actually finish bio if it's part of flush sequence */
684 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
685 bio_endio(bio);
686 }
687
688 static void blk_account_io_completion(struct request *req, unsigned int bytes)
689 {
690 if (req->part && blk_do_io_stat(req)) {
691 const int sgrp = op_stat_group(req_op(req));
692
693 part_stat_lock();
694 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
695 part_stat_unlock();
696 }
697 }
698
699 static void blk_print_req_error(struct request *req, blk_status_t status)
700 {
701 printk_ratelimited(KERN_ERR
702 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
703 "phys_seg %u prio class %u\n",
704 blk_status_to_str(status),
705 req->q->disk ? req->q->disk->disk_name : "?",
706 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
707 req->cmd_flags & ~REQ_OP_MASK,
708 req->nr_phys_segments,
709 IOPRIO_PRIO_CLASS(req->ioprio));
710 }
711
712 /*
713 * Fully end IO on a request. Does not support partial completions, or
714 * errors.
715 */
716 static void blk_complete_request(struct request *req)
717 {
718 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
719 int total_bytes = blk_rq_bytes(req);
720 struct bio *bio = req->bio;
721
722 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
723
724 if (!bio)
725 return;
726
727 #ifdef CONFIG_BLK_DEV_INTEGRITY
728 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
729 req->q->integrity.profile->complete_fn(req, total_bytes);
730 #endif
731
732 blk_account_io_completion(req, total_bytes);
733
734 do {
735 struct bio *next = bio->bi_next;
736
737 /* Completion has already been traced */
738 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
739 if (!is_flush)
740 bio_endio(bio);
741 bio = next;
742 } while (bio);
743
744 /*
745 * Reset counters so that the request stacking driver
746 * can find how many bytes remain in the request
747 * later.
748 */
749 req->bio = NULL;
750 req->__data_len = 0;
751 }
752
753 /**
754 * blk_update_request - Complete multiple bytes without completing the request
755 * @req: the request being processed
756 * @error: block status code
757 * @nr_bytes: number of bytes to complete for @req
758 *
759 * Description:
760 * Ends I/O on a number of bytes attached to @req, but doesn't complete
761 * the request structure even if @req doesn't have leftover.
762 * If @req has leftover, sets it up for the next range of segments.
763 *
764 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
765 * %false return from this function.
766 *
767 * Note:
768 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
769 * except in the consistency check at the end of this function.
770 *
771 * Return:
772 * %false - this request doesn't have any more data
773 * %true - this request has more data
774 **/
775 bool blk_update_request(struct request *req, blk_status_t error,
776 unsigned int nr_bytes)
777 {
778 int total_bytes;
779
780 trace_block_rq_complete(req, error, nr_bytes);
781
782 if (!req->bio)
783 return false;
784
785 #ifdef CONFIG_BLK_DEV_INTEGRITY
786 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
787 error == BLK_STS_OK)
788 req->q->integrity.profile->complete_fn(req, nr_bytes);
789 #endif
790
791 if (unlikely(error && !blk_rq_is_passthrough(req) &&
792 !(req->rq_flags & RQF_QUIET)))
793 blk_print_req_error(req, error);
794
795 blk_account_io_completion(req, nr_bytes);
796
797 total_bytes = 0;
798 while (req->bio) {
799 struct bio *bio = req->bio;
800 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
801
802 if (bio_bytes == bio->bi_iter.bi_size)
803 req->bio = bio->bi_next;
804
805 /* Completion has already been traced */
806 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
807 req_bio_endio(req, bio, bio_bytes, error);
808
809 total_bytes += bio_bytes;
810 nr_bytes -= bio_bytes;
811
812 if (!nr_bytes)
813 break;
814 }
815
816 /*
817 * completely done
818 */
819 if (!req->bio) {
820 /*
821 * Reset counters so that the request stacking driver
822 * can find how many bytes remain in the request
823 * later.
824 */
825 req->__data_len = 0;
826 return false;
827 }
828
829 req->__data_len -= total_bytes;
830
831 /* update sector only for requests with clear definition of sector */
832 if (!blk_rq_is_passthrough(req))
833 req->__sector += total_bytes >> 9;
834
835 /* mixed attributes always follow the first bio */
836 if (req->rq_flags & RQF_MIXED_MERGE) {
837 req->cmd_flags &= ~REQ_FAILFAST_MASK;
838 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
839 }
840
841 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
842 /*
843 * If total number of sectors is less than the first segment
844 * size, something has gone terribly wrong.
845 */
846 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
847 blk_dump_rq_flags(req, "request botched");
848 req->__data_len = blk_rq_cur_bytes(req);
849 }
850
851 /* recalculate the number of segments */
852 req->nr_phys_segments = blk_recalc_rq_segments(req);
853 }
854
855 return true;
856 }
857 EXPORT_SYMBOL_GPL(blk_update_request);
858
859 static void __blk_account_io_done(struct request *req, u64 now)
860 {
861 const int sgrp = op_stat_group(req_op(req));
862
863 part_stat_lock();
864 update_io_ticks(req->part, jiffies, true);
865 part_stat_inc(req->part, ios[sgrp]);
866 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
867 part_stat_unlock();
868 }
869
870 static inline void blk_account_io_done(struct request *req, u64 now)
871 {
872 /*
873 * Account IO completion. flush_rq isn't accounted as a
874 * normal IO on queueing nor completion. Accounting the
875 * containing request is enough.
876 */
877 if (blk_do_io_stat(req) && req->part &&
878 !(req->rq_flags & RQF_FLUSH_SEQ))
879 __blk_account_io_done(req, now);
880 }
881
882 static void __blk_account_io_start(struct request *rq)
883 {
884 /* passthrough requests can hold bios that do not have ->bi_bdev set */
885 if (rq->bio && rq->bio->bi_bdev)
886 rq->part = rq->bio->bi_bdev;
887 else if (rq->q->disk)
888 rq->part = rq->q->disk->part0;
889
890 part_stat_lock();
891 update_io_ticks(rq->part, jiffies, false);
892 part_stat_unlock();
893 }
894
895 static inline void blk_account_io_start(struct request *req)
896 {
897 if (blk_do_io_stat(req))
898 __blk_account_io_start(req);
899 }
900
901 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
902 {
903 if (rq->rq_flags & RQF_STATS) {
904 blk_mq_poll_stats_start(rq->q);
905 blk_stat_add(rq, now);
906 }
907
908 blk_mq_sched_completed_request(rq, now);
909 blk_account_io_done(rq, now);
910 }
911
912 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
913 {
914 if (blk_mq_need_time_stamp(rq))
915 __blk_mq_end_request_acct(rq, ktime_get_ns());
916
917 if (rq->end_io) {
918 rq_qos_done(rq->q, rq);
919 rq->end_io(rq, error);
920 } else {
921 blk_mq_free_request(rq);
922 }
923 }
924 EXPORT_SYMBOL(__blk_mq_end_request);
925
926 void blk_mq_end_request(struct request *rq, blk_status_t error)
927 {
928 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
929 BUG();
930 __blk_mq_end_request(rq, error);
931 }
932 EXPORT_SYMBOL(blk_mq_end_request);
933
934 #define TAG_COMP_BATCH 32
935
936 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
937 int *tag_array, int nr_tags)
938 {
939 struct request_queue *q = hctx->queue;
940
941 /*
942 * All requests should have been marked as RQF_MQ_INFLIGHT, so
943 * update hctx->nr_active in batch
944 */
945 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
946 __blk_mq_sub_active_requests(hctx, nr_tags);
947
948 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
949 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
950 }
951
952 void blk_mq_end_request_batch(struct io_comp_batch *iob)
953 {
954 int tags[TAG_COMP_BATCH], nr_tags = 0;
955 struct blk_mq_hw_ctx *cur_hctx = NULL;
956 struct request *rq;
957 u64 now = 0;
958
959 if (iob->need_ts)
960 now = ktime_get_ns();
961
962 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
963 prefetch(rq->bio);
964 prefetch(rq->rq_next);
965
966 blk_complete_request(rq);
967 if (iob->need_ts)
968 __blk_mq_end_request_acct(rq, now);
969
970 rq_qos_done(rq->q, rq);
971
972 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
973 if (!req_ref_put_and_test(rq))
974 continue;
975
976 blk_crypto_free_request(rq);
977 blk_pm_mark_last_busy(rq);
978
979 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
980 if (cur_hctx)
981 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
982 nr_tags = 0;
983 cur_hctx = rq->mq_hctx;
984 }
985 tags[nr_tags++] = rq->tag;
986 }
987
988 if (nr_tags)
989 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
990 }
991 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
992
993 static void blk_complete_reqs(struct llist_head *list)
994 {
995 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
996 struct request *rq, *next;
997
998 llist_for_each_entry_safe(rq, next, entry, ipi_list)
999 rq->q->mq_ops->complete(rq);
1000 }
1001
1002 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1003 {
1004 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1005 }
1006
1007 static int blk_softirq_cpu_dead(unsigned int cpu)
1008 {
1009 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1010 return 0;
1011 }
1012
1013 static void __blk_mq_complete_request_remote(void *data)
1014 {
1015 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1016 }
1017
1018 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1019 {
1020 int cpu = raw_smp_processor_id();
1021
1022 if (!IS_ENABLED(CONFIG_SMP) ||
1023 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1024 return false;
1025 /*
1026 * With force threaded interrupts enabled, raising softirq from an SMP
1027 * function call will always result in waking the ksoftirqd thread.
1028 * This is probably worse than completing the request on a different
1029 * cache domain.
1030 */
1031 if (force_irqthreads())
1032 return false;
1033
1034 /* same CPU or cache domain? Complete locally */
1035 if (cpu == rq->mq_ctx->cpu ||
1036 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1037 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1038 return false;
1039
1040 /* don't try to IPI to an offline CPU */
1041 return cpu_online(rq->mq_ctx->cpu);
1042 }
1043
1044 static void blk_mq_complete_send_ipi(struct request *rq)
1045 {
1046 struct llist_head *list;
1047 unsigned int cpu;
1048
1049 cpu = rq->mq_ctx->cpu;
1050 list = &per_cpu(blk_cpu_done, cpu);
1051 if (llist_add(&rq->ipi_list, list)) {
1052 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1053 smp_call_function_single_async(cpu, &rq->csd);
1054 }
1055 }
1056
1057 static void blk_mq_raise_softirq(struct request *rq)
1058 {
1059 struct llist_head *list;
1060
1061 preempt_disable();
1062 list = this_cpu_ptr(&blk_cpu_done);
1063 if (llist_add(&rq->ipi_list, list))
1064 raise_softirq(BLOCK_SOFTIRQ);
1065 preempt_enable();
1066 }
1067
1068 bool blk_mq_complete_request_remote(struct request *rq)
1069 {
1070 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1071
1072 /*
1073 * For a polled request, always complete locallly, it's pointless
1074 * to redirect the completion.
1075 */
1076 if (rq->cmd_flags & REQ_POLLED)
1077 return false;
1078
1079 if (blk_mq_complete_need_ipi(rq)) {
1080 blk_mq_complete_send_ipi(rq);
1081 return true;
1082 }
1083
1084 if (rq->q->nr_hw_queues == 1) {
1085 blk_mq_raise_softirq(rq);
1086 return true;
1087 }
1088 return false;
1089 }
1090 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1091
1092 /**
1093 * blk_mq_complete_request - end I/O on a request
1094 * @rq: the request being processed
1095 *
1096 * Description:
1097 * Complete a request by scheduling the ->complete_rq operation.
1098 **/
1099 void blk_mq_complete_request(struct request *rq)
1100 {
1101 if (!blk_mq_complete_request_remote(rq))
1102 rq->q->mq_ops->complete(rq);
1103 }
1104 EXPORT_SYMBOL(blk_mq_complete_request);
1105
1106 /**
1107 * blk_mq_start_request - Start processing a request
1108 * @rq: Pointer to request to be started
1109 *
1110 * Function used by device drivers to notify the block layer that a request
1111 * is going to be processed now, so blk layer can do proper initializations
1112 * such as starting the timeout timer.
1113 */
1114 void blk_mq_start_request(struct request *rq)
1115 {
1116 struct request_queue *q = rq->q;
1117
1118 trace_block_rq_issue(rq);
1119
1120 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1121 u64 start_time;
1122 #ifdef CONFIG_BLK_CGROUP
1123 if (rq->bio)
1124 start_time = bio_issue_time(&rq->bio->bi_issue);
1125 else
1126 #endif
1127 start_time = ktime_get_ns();
1128 rq->io_start_time_ns = start_time;
1129 rq->stats_sectors = blk_rq_sectors(rq);
1130 rq->rq_flags |= RQF_STATS;
1131 rq_qos_issue(q, rq);
1132 }
1133
1134 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1135
1136 blk_add_timer(rq);
1137 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1138
1139 #ifdef CONFIG_BLK_DEV_INTEGRITY
1140 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1141 q->integrity.profile->prepare_fn(rq);
1142 #endif
1143 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1144 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1145 }
1146 EXPORT_SYMBOL(blk_mq_start_request);
1147
1148 /**
1149 * blk_end_sync_rq - executes a completion event on a request
1150 * @rq: request to complete
1151 * @error: end I/O status of the request
1152 */
1153 static void blk_end_sync_rq(struct request *rq, blk_status_t error)
1154 {
1155 struct completion *waiting = rq->end_io_data;
1156
1157 rq->end_io_data = (void *)(uintptr_t)error;
1158
1159 /*
1160 * complete last, if this is a stack request the process (and thus
1161 * the rq pointer) could be invalid right after this complete()
1162 */
1163 complete(waiting);
1164 }
1165
1166 /**
1167 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1168 * @rq: request to insert
1169 * @at_head: insert request at head or tail of queue
1170 * @done: I/O completion handler
1171 *
1172 * Description:
1173 * Insert a fully prepared request at the back of the I/O scheduler queue
1174 * for execution. Don't wait for completion.
1175 *
1176 * Note:
1177 * This function will invoke @done directly if the queue is dead.
1178 */
1179 void blk_execute_rq_nowait(struct request *rq, bool at_head, rq_end_io_fn *done)
1180 {
1181 WARN_ON(irqs_disabled());
1182 WARN_ON(!blk_rq_is_passthrough(rq));
1183
1184 rq->end_io = done;
1185
1186 blk_account_io_start(rq);
1187
1188 /*
1189 * don't check dying flag for MQ because the request won't
1190 * be reused after dying flag is set
1191 */
1192 blk_mq_sched_insert_request(rq, at_head, true, false);
1193 }
1194 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1195
1196 static bool blk_rq_is_poll(struct request *rq)
1197 {
1198 if (!rq->mq_hctx)
1199 return false;
1200 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1201 return false;
1202 if (WARN_ON_ONCE(!rq->bio))
1203 return false;
1204 return true;
1205 }
1206
1207 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1208 {
1209 do {
1210 bio_poll(rq->bio, NULL, 0);
1211 cond_resched();
1212 } while (!completion_done(wait));
1213 }
1214
1215 /**
1216 * blk_execute_rq - insert a request into queue for execution
1217 * @rq: request to insert
1218 * @at_head: insert request at head or tail of queue
1219 *
1220 * Description:
1221 * Insert a fully prepared request at the back of the I/O scheduler queue
1222 * for execution and wait for completion.
1223 * Return: The blk_status_t result provided to blk_mq_end_request().
1224 */
1225 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1226 {
1227 DECLARE_COMPLETION_ONSTACK(wait);
1228 unsigned long hang_check;
1229
1230 rq->end_io_data = &wait;
1231 blk_execute_rq_nowait(rq, at_head, blk_end_sync_rq);
1232
1233 /* Prevent hang_check timer from firing at us during very long I/O */
1234 hang_check = sysctl_hung_task_timeout_secs;
1235
1236 if (blk_rq_is_poll(rq))
1237 blk_rq_poll_completion(rq, &wait);
1238 else if (hang_check)
1239 while (!wait_for_completion_io_timeout(&wait,
1240 hang_check * (HZ/2)))
1241 ;
1242 else
1243 wait_for_completion_io(&wait);
1244
1245 return (blk_status_t)(uintptr_t)rq->end_io_data;
1246 }
1247 EXPORT_SYMBOL(blk_execute_rq);
1248
1249 static void __blk_mq_requeue_request(struct request *rq)
1250 {
1251 struct request_queue *q = rq->q;
1252
1253 blk_mq_put_driver_tag(rq);
1254
1255 trace_block_rq_requeue(rq);
1256 rq_qos_requeue(q, rq);
1257
1258 if (blk_mq_request_started(rq)) {
1259 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1260 rq->rq_flags &= ~RQF_TIMED_OUT;
1261 }
1262 }
1263
1264 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1265 {
1266 __blk_mq_requeue_request(rq);
1267
1268 /* this request will be re-inserted to io scheduler queue */
1269 blk_mq_sched_requeue_request(rq);
1270
1271 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1272 }
1273 EXPORT_SYMBOL(blk_mq_requeue_request);
1274
1275 static void blk_mq_requeue_work(struct work_struct *work)
1276 {
1277 struct request_queue *q =
1278 container_of(work, struct request_queue, requeue_work.work);
1279 LIST_HEAD(rq_list);
1280 struct request *rq, *next;
1281
1282 spin_lock_irq(&q->requeue_lock);
1283 list_splice_init(&q->requeue_list, &rq_list);
1284 spin_unlock_irq(&q->requeue_lock);
1285
1286 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1287 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1288 continue;
1289
1290 rq->rq_flags &= ~RQF_SOFTBARRIER;
1291 list_del_init(&rq->queuelist);
1292 /*
1293 * If RQF_DONTPREP, rq has contained some driver specific
1294 * data, so insert it to hctx dispatch list to avoid any
1295 * merge.
1296 */
1297 if (rq->rq_flags & RQF_DONTPREP)
1298 blk_mq_request_bypass_insert(rq, false, false);
1299 else
1300 blk_mq_sched_insert_request(rq, true, false, false);
1301 }
1302
1303 while (!list_empty(&rq_list)) {
1304 rq = list_entry(rq_list.next, struct request, queuelist);
1305 list_del_init(&rq->queuelist);
1306 blk_mq_sched_insert_request(rq, false, false, false);
1307 }
1308
1309 blk_mq_run_hw_queues(q, false);
1310 }
1311
1312 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1313 bool kick_requeue_list)
1314 {
1315 struct request_queue *q = rq->q;
1316 unsigned long flags;
1317
1318 /*
1319 * We abuse this flag that is otherwise used by the I/O scheduler to
1320 * request head insertion from the workqueue.
1321 */
1322 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1323
1324 spin_lock_irqsave(&q->requeue_lock, flags);
1325 if (at_head) {
1326 rq->rq_flags |= RQF_SOFTBARRIER;
1327 list_add(&rq->queuelist, &q->requeue_list);
1328 } else {
1329 list_add_tail(&rq->queuelist, &q->requeue_list);
1330 }
1331 spin_unlock_irqrestore(&q->requeue_lock, flags);
1332
1333 if (kick_requeue_list)
1334 blk_mq_kick_requeue_list(q);
1335 }
1336
1337 void blk_mq_kick_requeue_list(struct request_queue *q)
1338 {
1339 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1340 }
1341 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1342
1343 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1344 unsigned long msecs)
1345 {
1346 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1347 msecs_to_jiffies(msecs));
1348 }
1349 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1350
1351 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1352 bool reserved)
1353 {
1354 /*
1355 * If we find a request that isn't idle we know the queue is busy
1356 * as it's checked in the iter.
1357 * Return false to stop the iteration.
1358 */
1359 if (blk_mq_request_started(rq)) {
1360 bool *busy = priv;
1361
1362 *busy = true;
1363 return false;
1364 }
1365
1366 return true;
1367 }
1368
1369 bool blk_mq_queue_inflight(struct request_queue *q)
1370 {
1371 bool busy = false;
1372
1373 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1374 return busy;
1375 }
1376 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1377
1378 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1379 {
1380 req->rq_flags |= RQF_TIMED_OUT;
1381 if (req->q->mq_ops->timeout) {
1382 enum blk_eh_timer_return ret;
1383
1384 ret = req->q->mq_ops->timeout(req, reserved);
1385 if (ret == BLK_EH_DONE)
1386 return;
1387 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1388 }
1389
1390 blk_add_timer(req);
1391 }
1392
1393 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1394 {
1395 unsigned long deadline;
1396
1397 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1398 return false;
1399 if (rq->rq_flags & RQF_TIMED_OUT)
1400 return false;
1401
1402 deadline = READ_ONCE(rq->deadline);
1403 if (time_after_eq(jiffies, deadline))
1404 return true;
1405
1406 if (*next == 0)
1407 *next = deadline;
1408 else if (time_after(*next, deadline))
1409 *next = deadline;
1410 return false;
1411 }
1412
1413 void blk_mq_put_rq_ref(struct request *rq)
1414 {
1415 if (is_flush_rq(rq))
1416 rq->end_io(rq, 0);
1417 else if (req_ref_put_and_test(rq))
1418 __blk_mq_free_request(rq);
1419 }
1420
1421 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1422 {
1423 unsigned long *next = priv;
1424
1425 /*
1426 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1427 * be reallocated underneath the timeout handler's processing, then
1428 * the expire check is reliable. If the request is not expired, then
1429 * it was completed and reallocated as a new request after returning
1430 * from blk_mq_check_expired().
1431 */
1432 if (blk_mq_req_expired(rq, next))
1433 blk_mq_rq_timed_out(rq, reserved);
1434 return true;
1435 }
1436
1437 static void blk_mq_timeout_work(struct work_struct *work)
1438 {
1439 struct request_queue *q =
1440 container_of(work, struct request_queue, timeout_work);
1441 unsigned long next = 0;
1442 struct blk_mq_hw_ctx *hctx;
1443 int i;
1444
1445 /* A deadlock might occur if a request is stuck requiring a
1446 * timeout at the same time a queue freeze is waiting
1447 * completion, since the timeout code would not be able to
1448 * acquire the queue reference here.
1449 *
1450 * That's why we don't use blk_queue_enter here; instead, we use
1451 * percpu_ref_tryget directly, because we need to be able to
1452 * obtain a reference even in the short window between the queue
1453 * starting to freeze, by dropping the first reference in
1454 * blk_freeze_queue_start, and the moment the last request is
1455 * consumed, marked by the instant q_usage_counter reaches
1456 * zero.
1457 */
1458 if (!percpu_ref_tryget(&q->q_usage_counter))
1459 return;
1460
1461 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1462
1463 if (next != 0) {
1464 mod_timer(&q->timeout, next);
1465 } else {
1466 /*
1467 * Request timeouts are handled as a forward rolling timer. If
1468 * we end up here it means that no requests are pending and
1469 * also that no request has been pending for a while. Mark
1470 * each hctx as idle.
1471 */
1472 queue_for_each_hw_ctx(q, hctx, i) {
1473 /* the hctx may be unmapped, so check it here */
1474 if (blk_mq_hw_queue_mapped(hctx))
1475 blk_mq_tag_idle(hctx);
1476 }
1477 }
1478 blk_queue_exit(q);
1479 }
1480
1481 struct flush_busy_ctx_data {
1482 struct blk_mq_hw_ctx *hctx;
1483 struct list_head *list;
1484 };
1485
1486 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1487 {
1488 struct flush_busy_ctx_data *flush_data = data;
1489 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1490 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1491 enum hctx_type type = hctx->type;
1492
1493 spin_lock(&ctx->lock);
1494 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1495 sbitmap_clear_bit(sb, bitnr);
1496 spin_unlock(&ctx->lock);
1497 return true;
1498 }
1499
1500 /*
1501 * Process software queues that have been marked busy, splicing them
1502 * to the for-dispatch
1503 */
1504 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1505 {
1506 struct flush_busy_ctx_data data = {
1507 .hctx = hctx,
1508 .list = list,
1509 };
1510
1511 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1512 }
1513 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1514
1515 struct dispatch_rq_data {
1516 struct blk_mq_hw_ctx *hctx;
1517 struct request *rq;
1518 };
1519
1520 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1521 void *data)
1522 {
1523 struct dispatch_rq_data *dispatch_data = data;
1524 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1525 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1526 enum hctx_type type = hctx->type;
1527
1528 spin_lock(&ctx->lock);
1529 if (!list_empty(&ctx->rq_lists[type])) {
1530 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1531 list_del_init(&dispatch_data->rq->queuelist);
1532 if (list_empty(&ctx->rq_lists[type]))
1533 sbitmap_clear_bit(sb, bitnr);
1534 }
1535 spin_unlock(&ctx->lock);
1536
1537 return !dispatch_data->rq;
1538 }
1539
1540 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1541 struct blk_mq_ctx *start)
1542 {
1543 unsigned off = start ? start->index_hw[hctx->type] : 0;
1544 struct dispatch_rq_data data = {
1545 .hctx = hctx,
1546 .rq = NULL,
1547 };
1548
1549 __sbitmap_for_each_set(&hctx->ctx_map, off,
1550 dispatch_rq_from_ctx, &data);
1551
1552 return data.rq;
1553 }
1554
1555 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1556 {
1557 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1558 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1559 int tag;
1560
1561 blk_mq_tag_busy(rq->mq_hctx);
1562
1563 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1564 bt = &rq->mq_hctx->tags->breserved_tags;
1565 tag_offset = 0;
1566 } else {
1567 if (!hctx_may_queue(rq->mq_hctx, bt))
1568 return false;
1569 }
1570
1571 tag = __sbitmap_queue_get(bt);
1572 if (tag == BLK_MQ_NO_TAG)
1573 return false;
1574
1575 rq->tag = tag + tag_offset;
1576 return true;
1577 }
1578
1579 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1580 {
1581 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1582 return false;
1583
1584 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1585 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1586 rq->rq_flags |= RQF_MQ_INFLIGHT;
1587 __blk_mq_inc_active_requests(hctx);
1588 }
1589 hctx->tags->rqs[rq->tag] = rq;
1590 return true;
1591 }
1592
1593 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1594 int flags, void *key)
1595 {
1596 struct blk_mq_hw_ctx *hctx;
1597
1598 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1599
1600 spin_lock(&hctx->dispatch_wait_lock);
1601 if (!list_empty(&wait->entry)) {
1602 struct sbitmap_queue *sbq;
1603
1604 list_del_init(&wait->entry);
1605 sbq = &hctx->tags->bitmap_tags;
1606 atomic_dec(&sbq->ws_active);
1607 }
1608 spin_unlock(&hctx->dispatch_wait_lock);
1609
1610 blk_mq_run_hw_queue(hctx, true);
1611 return 1;
1612 }
1613
1614 /*
1615 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1616 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1617 * restart. For both cases, take care to check the condition again after
1618 * marking us as waiting.
1619 */
1620 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1621 struct request *rq)
1622 {
1623 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1624 struct wait_queue_head *wq;
1625 wait_queue_entry_t *wait;
1626 bool ret;
1627
1628 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1629 blk_mq_sched_mark_restart_hctx(hctx);
1630
1631 /*
1632 * It's possible that a tag was freed in the window between the
1633 * allocation failure and adding the hardware queue to the wait
1634 * queue.
1635 *
1636 * Don't clear RESTART here, someone else could have set it.
1637 * At most this will cost an extra queue run.
1638 */
1639 return blk_mq_get_driver_tag(rq);
1640 }
1641
1642 wait = &hctx->dispatch_wait;
1643 if (!list_empty_careful(&wait->entry))
1644 return false;
1645
1646 wq = &bt_wait_ptr(sbq, hctx)->wait;
1647
1648 spin_lock_irq(&wq->lock);
1649 spin_lock(&hctx->dispatch_wait_lock);
1650 if (!list_empty(&wait->entry)) {
1651 spin_unlock(&hctx->dispatch_wait_lock);
1652 spin_unlock_irq(&wq->lock);
1653 return false;
1654 }
1655
1656 atomic_inc(&sbq->ws_active);
1657 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1658 __add_wait_queue(wq, wait);
1659
1660 /*
1661 * It's possible that a tag was freed in the window between the
1662 * allocation failure and adding the hardware queue to the wait
1663 * queue.
1664 */
1665 ret = blk_mq_get_driver_tag(rq);
1666 if (!ret) {
1667 spin_unlock(&hctx->dispatch_wait_lock);
1668 spin_unlock_irq(&wq->lock);
1669 return false;
1670 }
1671
1672 /*
1673 * We got a tag, remove ourselves from the wait queue to ensure
1674 * someone else gets the wakeup.
1675 */
1676 list_del_init(&wait->entry);
1677 atomic_dec(&sbq->ws_active);
1678 spin_unlock(&hctx->dispatch_wait_lock);
1679 spin_unlock_irq(&wq->lock);
1680
1681 return true;
1682 }
1683
1684 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1685 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1686 /*
1687 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1688 * - EWMA is one simple way to compute running average value
1689 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1690 * - take 4 as factor for avoiding to get too small(0) result, and this
1691 * factor doesn't matter because EWMA decreases exponentially
1692 */
1693 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1694 {
1695 unsigned int ewma;
1696
1697 ewma = hctx->dispatch_busy;
1698
1699 if (!ewma && !busy)
1700 return;
1701
1702 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1703 if (busy)
1704 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1705 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1706
1707 hctx->dispatch_busy = ewma;
1708 }
1709
1710 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1711
1712 static void blk_mq_handle_dev_resource(struct request *rq,
1713 struct list_head *list)
1714 {
1715 struct request *next =
1716 list_first_entry_or_null(list, struct request, queuelist);
1717
1718 /*
1719 * If an I/O scheduler has been configured and we got a driver tag for
1720 * the next request already, free it.
1721 */
1722 if (next)
1723 blk_mq_put_driver_tag(next);
1724
1725 list_add(&rq->queuelist, list);
1726 __blk_mq_requeue_request(rq);
1727 }
1728
1729 static void blk_mq_handle_zone_resource(struct request *rq,
1730 struct list_head *zone_list)
1731 {
1732 /*
1733 * If we end up here it is because we cannot dispatch a request to a
1734 * specific zone due to LLD level zone-write locking or other zone
1735 * related resource not being available. In this case, set the request
1736 * aside in zone_list for retrying it later.
1737 */
1738 list_add(&rq->queuelist, zone_list);
1739 __blk_mq_requeue_request(rq);
1740 }
1741
1742 enum prep_dispatch {
1743 PREP_DISPATCH_OK,
1744 PREP_DISPATCH_NO_TAG,
1745 PREP_DISPATCH_NO_BUDGET,
1746 };
1747
1748 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1749 bool need_budget)
1750 {
1751 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1752 int budget_token = -1;
1753
1754 if (need_budget) {
1755 budget_token = blk_mq_get_dispatch_budget(rq->q);
1756 if (budget_token < 0) {
1757 blk_mq_put_driver_tag(rq);
1758 return PREP_DISPATCH_NO_BUDGET;
1759 }
1760 blk_mq_set_rq_budget_token(rq, budget_token);
1761 }
1762
1763 if (!blk_mq_get_driver_tag(rq)) {
1764 /*
1765 * The initial allocation attempt failed, so we need to
1766 * rerun the hardware queue when a tag is freed. The
1767 * waitqueue takes care of that. If the queue is run
1768 * before we add this entry back on the dispatch list,
1769 * we'll re-run it below.
1770 */
1771 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1772 /*
1773 * All budgets not got from this function will be put
1774 * together during handling partial dispatch
1775 */
1776 if (need_budget)
1777 blk_mq_put_dispatch_budget(rq->q, budget_token);
1778 return PREP_DISPATCH_NO_TAG;
1779 }
1780 }
1781
1782 return PREP_DISPATCH_OK;
1783 }
1784
1785 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1786 static void blk_mq_release_budgets(struct request_queue *q,
1787 struct list_head *list)
1788 {
1789 struct request *rq;
1790
1791 list_for_each_entry(rq, list, queuelist) {
1792 int budget_token = blk_mq_get_rq_budget_token(rq);
1793
1794 if (budget_token >= 0)
1795 blk_mq_put_dispatch_budget(q, budget_token);
1796 }
1797 }
1798
1799 /*
1800 * Returns true if we did some work AND can potentially do more.
1801 */
1802 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1803 unsigned int nr_budgets)
1804 {
1805 enum prep_dispatch prep;
1806 struct request_queue *q = hctx->queue;
1807 struct request *rq, *nxt;
1808 int errors, queued;
1809 blk_status_t ret = BLK_STS_OK;
1810 LIST_HEAD(zone_list);
1811 bool needs_resource = false;
1812
1813 if (list_empty(list))
1814 return false;
1815
1816 /*
1817 * Now process all the entries, sending them to the driver.
1818 */
1819 errors = queued = 0;
1820 do {
1821 struct blk_mq_queue_data bd;
1822
1823 rq = list_first_entry(list, struct request, queuelist);
1824
1825 WARN_ON_ONCE(hctx != rq->mq_hctx);
1826 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1827 if (prep != PREP_DISPATCH_OK)
1828 break;
1829
1830 list_del_init(&rq->queuelist);
1831
1832 bd.rq = rq;
1833
1834 /*
1835 * Flag last if we have no more requests, or if we have more
1836 * but can't assign a driver tag to it.
1837 */
1838 if (list_empty(list))
1839 bd.last = true;
1840 else {
1841 nxt = list_first_entry(list, struct request, queuelist);
1842 bd.last = !blk_mq_get_driver_tag(nxt);
1843 }
1844
1845 /*
1846 * once the request is queued to lld, no need to cover the
1847 * budget any more
1848 */
1849 if (nr_budgets)
1850 nr_budgets--;
1851 ret = q->mq_ops->queue_rq(hctx, &bd);
1852 switch (ret) {
1853 case BLK_STS_OK:
1854 queued++;
1855 break;
1856 case BLK_STS_RESOURCE:
1857 needs_resource = true;
1858 fallthrough;
1859 case BLK_STS_DEV_RESOURCE:
1860 blk_mq_handle_dev_resource(rq, list);
1861 goto out;
1862 case BLK_STS_ZONE_RESOURCE:
1863 /*
1864 * Move the request to zone_list and keep going through
1865 * the dispatch list to find more requests the drive can
1866 * accept.
1867 */
1868 blk_mq_handle_zone_resource(rq, &zone_list);
1869 needs_resource = true;
1870 break;
1871 default:
1872 errors++;
1873 blk_mq_end_request(rq, ret);
1874 }
1875 } while (!list_empty(list));
1876 out:
1877 if (!list_empty(&zone_list))
1878 list_splice_tail_init(&zone_list, list);
1879
1880 /* If we didn't flush the entire list, we could have told the driver
1881 * there was more coming, but that turned out to be a lie.
1882 */
1883 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1884 q->mq_ops->commit_rqs(hctx);
1885 /*
1886 * Any items that need requeuing? Stuff them into hctx->dispatch,
1887 * that is where we will continue on next queue run.
1888 */
1889 if (!list_empty(list)) {
1890 bool needs_restart;
1891 /* For non-shared tags, the RESTART check will suffice */
1892 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1893 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1894
1895 if (nr_budgets)
1896 blk_mq_release_budgets(q, list);
1897
1898 spin_lock(&hctx->lock);
1899 list_splice_tail_init(list, &hctx->dispatch);
1900 spin_unlock(&hctx->lock);
1901
1902 /*
1903 * Order adding requests to hctx->dispatch and checking
1904 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1905 * in blk_mq_sched_restart(). Avoid restart code path to
1906 * miss the new added requests to hctx->dispatch, meantime
1907 * SCHED_RESTART is observed here.
1908 */
1909 smp_mb();
1910
1911 /*
1912 * If SCHED_RESTART was set by the caller of this function and
1913 * it is no longer set that means that it was cleared by another
1914 * thread and hence that a queue rerun is needed.
1915 *
1916 * If 'no_tag' is set, that means that we failed getting
1917 * a driver tag with an I/O scheduler attached. If our dispatch
1918 * waitqueue is no longer active, ensure that we run the queue
1919 * AFTER adding our entries back to the list.
1920 *
1921 * If no I/O scheduler has been configured it is possible that
1922 * the hardware queue got stopped and restarted before requests
1923 * were pushed back onto the dispatch list. Rerun the queue to
1924 * avoid starvation. Notes:
1925 * - blk_mq_run_hw_queue() checks whether or not a queue has
1926 * been stopped before rerunning a queue.
1927 * - Some but not all block drivers stop a queue before
1928 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1929 * and dm-rq.
1930 *
1931 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1932 * bit is set, run queue after a delay to avoid IO stalls
1933 * that could otherwise occur if the queue is idle. We'll do
1934 * similar if we couldn't get budget or couldn't lock a zone
1935 * and SCHED_RESTART is set.
1936 */
1937 needs_restart = blk_mq_sched_needs_restart(hctx);
1938 if (prep == PREP_DISPATCH_NO_BUDGET)
1939 needs_resource = true;
1940 if (!needs_restart ||
1941 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1942 blk_mq_run_hw_queue(hctx, true);
1943 else if (needs_restart && needs_resource)
1944 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1945
1946 blk_mq_update_dispatch_busy(hctx, true);
1947 return false;
1948 } else
1949 blk_mq_update_dispatch_busy(hctx, false);
1950
1951 return (queued + errors) != 0;
1952 }
1953
1954 /**
1955 * __blk_mq_run_hw_queue - Run a hardware queue.
1956 * @hctx: Pointer to the hardware queue to run.
1957 *
1958 * Send pending requests to the hardware.
1959 */
1960 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1961 {
1962 /*
1963 * We can't run the queue inline with ints disabled. Ensure that
1964 * we catch bad users of this early.
1965 */
1966 WARN_ON_ONCE(in_interrupt());
1967
1968 blk_mq_run_dispatch_ops(hctx->queue,
1969 blk_mq_sched_dispatch_requests(hctx));
1970 }
1971
1972 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1973 {
1974 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1975
1976 if (cpu >= nr_cpu_ids)
1977 cpu = cpumask_first(hctx->cpumask);
1978 return cpu;
1979 }
1980
1981 /*
1982 * It'd be great if the workqueue API had a way to pass
1983 * in a mask and had some smarts for more clever placement.
1984 * For now we just round-robin here, switching for every
1985 * BLK_MQ_CPU_WORK_BATCH queued items.
1986 */
1987 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1988 {
1989 bool tried = false;
1990 int next_cpu = hctx->next_cpu;
1991
1992 if (hctx->queue->nr_hw_queues == 1)
1993 return WORK_CPU_UNBOUND;
1994
1995 if (--hctx->next_cpu_batch <= 0) {
1996 select_cpu:
1997 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1998 cpu_online_mask);
1999 if (next_cpu >= nr_cpu_ids)
2000 next_cpu = blk_mq_first_mapped_cpu(hctx);
2001 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2002 }
2003
2004 /*
2005 * Do unbound schedule if we can't find a online CPU for this hctx,
2006 * and it should only happen in the path of handling CPU DEAD.
2007 */
2008 if (!cpu_online(next_cpu)) {
2009 if (!tried) {
2010 tried = true;
2011 goto select_cpu;
2012 }
2013
2014 /*
2015 * Make sure to re-select CPU next time once after CPUs
2016 * in hctx->cpumask become online again.
2017 */
2018 hctx->next_cpu = next_cpu;
2019 hctx->next_cpu_batch = 1;
2020 return WORK_CPU_UNBOUND;
2021 }
2022
2023 hctx->next_cpu = next_cpu;
2024 return next_cpu;
2025 }
2026
2027 /**
2028 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2029 * @hctx: Pointer to the hardware queue to run.
2030 * @async: If we want to run the queue asynchronously.
2031 * @msecs: Milliseconds of delay to wait before running the queue.
2032 *
2033 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2034 * with a delay of @msecs.
2035 */
2036 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2037 unsigned long msecs)
2038 {
2039 if (unlikely(blk_mq_hctx_stopped(hctx)))
2040 return;
2041
2042 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2043 int cpu = get_cpu();
2044 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2045 __blk_mq_run_hw_queue(hctx);
2046 put_cpu();
2047 return;
2048 }
2049
2050 put_cpu();
2051 }
2052
2053 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2054 msecs_to_jiffies(msecs));
2055 }
2056
2057 /**
2058 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2059 * @hctx: Pointer to the hardware queue to run.
2060 * @msecs: Milliseconds of delay to wait before running the queue.
2061 *
2062 * Run a hardware queue asynchronously with a delay of @msecs.
2063 */
2064 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2065 {
2066 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2067 }
2068 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2069
2070 /**
2071 * blk_mq_run_hw_queue - Start to run a hardware queue.
2072 * @hctx: Pointer to the hardware queue to run.
2073 * @async: If we want to run the queue asynchronously.
2074 *
2075 * Check if the request queue is not in a quiesced state and if there are
2076 * pending requests to be sent. If this is true, run the queue to send requests
2077 * to hardware.
2078 */
2079 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2080 {
2081 bool need_run;
2082
2083 /*
2084 * When queue is quiesced, we may be switching io scheduler, or
2085 * updating nr_hw_queues, or other things, and we can't run queue
2086 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2087 *
2088 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2089 * quiesced.
2090 */
2091 __blk_mq_run_dispatch_ops(hctx->queue, false,
2092 need_run = !blk_queue_quiesced(hctx->queue) &&
2093 blk_mq_hctx_has_pending(hctx));
2094
2095 if (need_run)
2096 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2097 }
2098 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2099
2100 /*
2101 * Is the request queue handled by an IO scheduler that does not respect
2102 * hardware queues when dispatching?
2103 */
2104 static bool blk_mq_has_sqsched(struct request_queue *q)
2105 {
2106 struct elevator_queue *e = q->elevator;
2107
2108 if (e && e->type->ops.dispatch_request &&
2109 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2110 return true;
2111 return false;
2112 }
2113
2114 /*
2115 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2116 * scheduler.
2117 */
2118 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2119 {
2120 struct blk_mq_hw_ctx *hctx;
2121
2122 /*
2123 * If the IO scheduler does not respect hardware queues when
2124 * dispatching, we just don't bother with multiple HW queues and
2125 * dispatch from hctx for the current CPU since running multiple queues
2126 * just causes lock contention inside the scheduler and pointless cache
2127 * bouncing.
2128 */
2129 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT,
2130 raw_smp_processor_id());
2131 if (!blk_mq_hctx_stopped(hctx))
2132 return hctx;
2133 return NULL;
2134 }
2135
2136 /**
2137 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2138 * @q: Pointer to the request queue to run.
2139 * @async: If we want to run the queue asynchronously.
2140 */
2141 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2142 {
2143 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2144 int i;
2145
2146 sq_hctx = NULL;
2147 if (blk_mq_has_sqsched(q))
2148 sq_hctx = blk_mq_get_sq_hctx(q);
2149 queue_for_each_hw_ctx(q, hctx, i) {
2150 if (blk_mq_hctx_stopped(hctx))
2151 continue;
2152 /*
2153 * Dispatch from this hctx either if there's no hctx preferred
2154 * by IO scheduler or if it has requests that bypass the
2155 * scheduler.
2156 */
2157 if (!sq_hctx || sq_hctx == hctx ||
2158 !list_empty_careful(&hctx->dispatch))
2159 blk_mq_run_hw_queue(hctx, async);
2160 }
2161 }
2162 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2163
2164 /**
2165 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2166 * @q: Pointer to the request queue to run.
2167 * @msecs: Milliseconds of delay to wait before running the queues.
2168 */
2169 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2170 {
2171 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2172 int i;
2173
2174 sq_hctx = NULL;
2175 if (blk_mq_has_sqsched(q))
2176 sq_hctx = blk_mq_get_sq_hctx(q);
2177 queue_for_each_hw_ctx(q, hctx, i) {
2178 if (blk_mq_hctx_stopped(hctx))
2179 continue;
2180 /*
2181 * Dispatch from this hctx either if there's no hctx preferred
2182 * by IO scheduler or if it has requests that bypass the
2183 * scheduler.
2184 */
2185 if (!sq_hctx || sq_hctx == hctx ||
2186 !list_empty_careful(&hctx->dispatch))
2187 blk_mq_delay_run_hw_queue(hctx, msecs);
2188 }
2189 }
2190 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2191
2192 /**
2193 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2194 * @q: request queue.
2195 *
2196 * The caller is responsible for serializing this function against
2197 * blk_mq_{start,stop}_hw_queue().
2198 */
2199 bool blk_mq_queue_stopped(struct request_queue *q)
2200 {
2201 struct blk_mq_hw_ctx *hctx;
2202 int i;
2203
2204 queue_for_each_hw_ctx(q, hctx, i)
2205 if (blk_mq_hctx_stopped(hctx))
2206 return true;
2207
2208 return false;
2209 }
2210 EXPORT_SYMBOL(blk_mq_queue_stopped);
2211
2212 /*
2213 * This function is often used for pausing .queue_rq() by driver when
2214 * there isn't enough resource or some conditions aren't satisfied, and
2215 * BLK_STS_RESOURCE is usually returned.
2216 *
2217 * We do not guarantee that dispatch can be drained or blocked
2218 * after blk_mq_stop_hw_queue() returns. Please use
2219 * blk_mq_quiesce_queue() for that requirement.
2220 */
2221 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2222 {
2223 cancel_delayed_work(&hctx->run_work);
2224
2225 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2226 }
2227 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2228
2229 /*
2230 * This function is often used for pausing .queue_rq() by driver when
2231 * there isn't enough resource or some conditions aren't satisfied, and
2232 * BLK_STS_RESOURCE is usually returned.
2233 *
2234 * We do not guarantee that dispatch can be drained or blocked
2235 * after blk_mq_stop_hw_queues() returns. Please use
2236 * blk_mq_quiesce_queue() for that requirement.
2237 */
2238 void blk_mq_stop_hw_queues(struct request_queue *q)
2239 {
2240 struct blk_mq_hw_ctx *hctx;
2241 int i;
2242
2243 queue_for_each_hw_ctx(q, hctx, i)
2244 blk_mq_stop_hw_queue(hctx);
2245 }
2246 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2247
2248 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2249 {
2250 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2251
2252 blk_mq_run_hw_queue(hctx, false);
2253 }
2254 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2255
2256 void blk_mq_start_hw_queues(struct request_queue *q)
2257 {
2258 struct blk_mq_hw_ctx *hctx;
2259 int i;
2260
2261 queue_for_each_hw_ctx(q, hctx, i)
2262 blk_mq_start_hw_queue(hctx);
2263 }
2264 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2265
2266 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2267 {
2268 if (!blk_mq_hctx_stopped(hctx))
2269 return;
2270
2271 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2272 blk_mq_run_hw_queue(hctx, async);
2273 }
2274 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2275
2276 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2277 {
2278 struct blk_mq_hw_ctx *hctx;
2279 int i;
2280
2281 queue_for_each_hw_ctx(q, hctx, i)
2282 blk_mq_start_stopped_hw_queue(hctx, async);
2283 }
2284 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2285
2286 static void blk_mq_run_work_fn(struct work_struct *work)
2287 {
2288 struct blk_mq_hw_ctx *hctx;
2289
2290 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2291
2292 /*
2293 * If we are stopped, don't run the queue.
2294 */
2295 if (blk_mq_hctx_stopped(hctx))
2296 return;
2297
2298 __blk_mq_run_hw_queue(hctx);
2299 }
2300
2301 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2302 struct request *rq,
2303 bool at_head)
2304 {
2305 struct blk_mq_ctx *ctx = rq->mq_ctx;
2306 enum hctx_type type = hctx->type;
2307
2308 lockdep_assert_held(&ctx->lock);
2309
2310 trace_block_rq_insert(rq);
2311
2312 if (at_head)
2313 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2314 else
2315 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2316 }
2317
2318 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2319 bool at_head)
2320 {
2321 struct blk_mq_ctx *ctx = rq->mq_ctx;
2322
2323 lockdep_assert_held(&ctx->lock);
2324
2325 __blk_mq_insert_req_list(hctx, rq, at_head);
2326 blk_mq_hctx_mark_pending(hctx, ctx);
2327 }
2328
2329 /**
2330 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2331 * @rq: Pointer to request to be inserted.
2332 * @at_head: true if the request should be inserted at the head of the list.
2333 * @run_queue: If we should run the hardware queue after inserting the request.
2334 *
2335 * Should only be used carefully, when the caller knows we want to
2336 * bypass a potential IO scheduler on the target device.
2337 */
2338 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2339 bool run_queue)
2340 {
2341 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2342
2343 spin_lock(&hctx->lock);
2344 if (at_head)
2345 list_add(&rq->queuelist, &hctx->dispatch);
2346 else
2347 list_add_tail(&rq->queuelist, &hctx->dispatch);
2348 spin_unlock(&hctx->lock);
2349
2350 if (run_queue)
2351 blk_mq_run_hw_queue(hctx, false);
2352 }
2353
2354 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2355 struct list_head *list)
2356
2357 {
2358 struct request *rq;
2359 enum hctx_type type = hctx->type;
2360
2361 /*
2362 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2363 * offline now
2364 */
2365 list_for_each_entry(rq, list, queuelist) {
2366 BUG_ON(rq->mq_ctx != ctx);
2367 trace_block_rq_insert(rq);
2368 }
2369
2370 spin_lock(&ctx->lock);
2371 list_splice_tail_init(list, &ctx->rq_lists[type]);
2372 blk_mq_hctx_mark_pending(hctx, ctx);
2373 spin_unlock(&ctx->lock);
2374 }
2375
2376 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2377 bool from_schedule)
2378 {
2379 if (hctx->queue->mq_ops->commit_rqs) {
2380 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2381 hctx->queue->mq_ops->commit_rqs(hctx);
2382 }
2383 *queued = 0;
2384 }
2385
2386 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2387 unsigned int nr_segs)
2388 {
2389 int err;
2390
2391 if (bio->bi_opf & REQ_RAHEAD)
2392 rq->cmd_flags |= REQ_FAILFAST_MASK;
2393
2394 rq->__sector = bio->bi_iter.bi_sector;
2395 rq->write_hint = bio->bi_write_hint;
2396 blk_rq_bio_prep(rq, bio, nr_segs);
2397
2398 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2399 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2400 WARN_ON_ONCE(err);
2401
2402 blk_account_io_start(rq);
2403 }
2404
2405 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2406 struct request *rq, bool last)
2407 {
2408 struct request_queue *q = rq->q;
2409 struct blk_mq_queue_data bd = {
2410 .rq = rq,
2411 .last = last,
2412 };
2413 blk_status_t ret;
2414
2415 /*
2416 * For OK queue, we are done. For error, caller may kill it.
2417 * Any other error (busy), just add it to our list as we
2418 * previously would have done.
2419 */
2420 ret = q->mq_ops->queue_rq(hctx, &bd);
2421 switch (ret) {
2422 case BLK_STS_OK:
2423 blk_mq_update_dispatch_busy(hctx, false);
2424 break;
2425 case BLK_STS_RESOURCE:
2426 case BLK_STS_DEV_RESOURCE:
2427 blk_mq_update_dispatch_busy(hctx, true);
2428 __blk_mq_requeue_request(rq);
2429 break;
2430 default:
2431 blk_mq_update_dispatch_busy(hctx, false);
2432 break;
2433 }
2434
2435 return ret;
2436 }
2437
2438 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2439 struct request *rq,
2440 bool bypass_insert, bool last)
2441 {
2442 struct request_queue *q = rq->q;
2443 bool run_queue = true;
2444 int budget_token;
2445
2446 /*
2447 * RCU or SRCU read lock is needed before checking quiesced flag.
2448 *
2449 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2450 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2451 * and avoid driver to try to dispatch again.
2452 */
2453 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2454 run_queue = false;
2455 bypass_insert = false;
2456 goto insert;
2457 }
2458
2459 if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2460 goto insert;
2461
2462 budget_token = blk_mq_get_dispatch_budget(q);
2463 if (budget_token < 0)
2464 goto insert;
2465
2466 blk_mq_set_rq_budget_token(rq, budget_token);
2467
2468 if (!blk_mq_get_driver_tag(rq)) {
2469 blk_mq_put_dispatch_budget(q, budget_token);
2470 goto insert;
2471 }
2472
2473 return __blk_mq_issue_directly(hctx, rq, last);
2474 insert:
2475 if (bypass_insert)
2476 return BLK_STS_RESOURCE;
2477
2478 blk_mq_sched_insert_request(rq, false, run_queue, false);
2479
2480 return BLK_STS_OK;
2481 }
2482
2483 /**
2484 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2485 * @hctx: Pointer of the associated hardware queue.
2486 * @rq: Pointer to request to be sent.
2487 *
2488 * If the device has enough resources to accept a new request now, send the
2489 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2490 * we can try send it another time in the future. Requests inserted at this
2491 * queue have higher priority.
2492 */
2493 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2494 struct request *rq)
2495 {
2496 blk_status_t ret =
2497 __blk_mq_try_issue_directly(hctx, rq, false, true);
2498
2499 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2500 blk_mq_request_bypass_insert(rq, false, true);
2501 else if (ret != BLK_STS_OK)
2502 blk_mq_end_request(rq, ret);
2503 }
2504
2505 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2506 {
2507 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2508 }
2509
2510 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2511 {
2512 struct blk_mq_hw_ctx *hctx = NULL;
2513 struct request *rq;
2514 int queued = 0;
2515 int errors = 0;
2516
2517 while ((rq = rq_list_pop(&plug->mq_list))) {
2518 bool last = rq_list_empty(plug->mq_list);
2519 blk_status_t ret;
2520
2521 if (hctx != rq->mq_hctx) {
2522 if (hctx)
2523 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2524 hctx = rq->mq_hctx;
2525 }
2526
2527 ret = blk_mq_request_issue_directly(rq, last);
2528 switch (ret) {
2529 case BLK_STS_OK:
2530 queued++;
2531 break;
2532 case BLK_STS_RESOURCE:
2533 case BLK_STS_DEV_RESOURCE:
2534 blk_mq_request_bypass_insert(rq, false, last);
2535 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2536 return;
2537 default:
2538 blk_mq_end_request(rq, ret);
2539 errors++;
2540 break;
2541 }
2542 }
2543
2544 /*
2545 * If we didn't flush the entire list, we could have told the driver
2546 * there was more coming, but that turned out to be a lie.
2547 */
2548 if (errors)
2549 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2550 }
2551
2552 static void __blk_mq_flush_plug_list(struct request_queue *q,
2553 struct blk_plug *plug)
2554 {
2555 if (blk_queue_quiesced(q))
2556 return;
2557 q->mq_ops->queue_rqs(&plug->mq_list);
2558 }
2559
2560 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2561 {
2562 struct blk_mq_hw_ctx *this_hctx;
2563 struct blk_mq_ctx *this_ctx;
2564 struct request *rq;
2565 unsigned int depth;
2566 LIST_HEAD(list);
2567
2568 if (rq_list_empty(plug->mq_list))
2569 return;
2570 plug->rq_count = 0;
2571
2572 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2573 struct request_queue *q;
2574
2575 rq = rq_list_peek(&plug->mq_list);
2576 q = rq->q;
2577
2578 /*
2579 * Peek first request and see if we have a ->queue_rqs() hook.
2580 * If we do, we can dispatch the whole plug list in one go. We
2581 * already know at this point that all requests belong to the
2582 * same queue, caller must ensure that's the case.
2583 *
2584 * Since we pass off the full list to the driver at this point,
2585 * we do not increment the active request count for the queue.
2586 * Bypass shared tags for now because of that.
2587 */
2588 if (q->mq_ops->queue_rqs &&
2589 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2590 blk_mq_run_dispatch_ops(q,
2591 __blk_mq_flush_plug_list(q, plug));
2592 if (rq_list_empty(plug->mq_list))
2593 return;
2594 }
2595
2596 blk_mq_run_dispatch_ops(q,
2597 blk_mq_plug_issue_direct(plug, false));
2598 if (rq_list_empty(plug->mq_list))
2599 return;
2600 }
2601
2602 this_hctx = NULL;
2603 this_ctx = NULL;
2604 depth = 0;
2605 do {
2606 rq = rq_list_pop(&plug->mq_list);
2607
2608 if (!this_hctx) {
2609 this_hctx = rq->mq_hctx;
2610 this_ctx = rq->mq_ctx;
2611 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2612 trace_block_unplug(this_hctx->queue, depth,
2613 !from_schedule);
2614 blk_mq_sched_insert_requests(this_hctx, this_ctx,
2615 &list, from_schedule);
2616 depth = 0;
2617 this_hctx = rq->mq_hctx;
2618 this_ctx = rq->mq_ctx;
2619
2620 }
2621
2622 list_add(&rq->queuelist, &list);
2623 depth++;
2624 } while (!rq_list_empty(plug->mq_list));
2625
2626 if (!list_empty(&list)) {
2627 trace_block_unplug(this_hctx->queue, depth, !from_schedule);
2628 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list,
2629 from_schedule);
2630 }
2631 }
2632
2633 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2634 struct list_head *list)
2635 {
2636 int queued = 0;
2637 int errors = 0;
2638
2639 while (!list_empty(list)) {
2640 blk_status_t ret;
2641 struct request *rq = list_first_entry(list, struct request,
2642 queuelist);
2643
2644 list_del_init(&rq->queuelist);
2645 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2646 if (ret != BLK_STS_OK) {
2647 if (ret == BLK_STS_RESOURCE ||
2648 ret == BLK_STS_DEV_RESOURCE) {
2649 blk_mq_request_bypass_insert(rq, false,
2650 list_empty(list));
2651 break;
2652 }
2653 blk_mq_end_request(rq, ret);
2654 errors++;
2655 } else
2656 queued++;
2657 }
2658
2659 /*
2660 * If we didn't flush the entire list, we could have told
2661 * the driver there was more coming, but that turned out to
2662 * be a lie.
2663 */
2664 if ((!list_empty(list) || errors) &&
2665 hctx->queue->mq_ops->commit_rqs && queued)
2666 hctx->queue->mq_ops->commit_rqs(hctx);
2667 }
2668
2669 /*
2670 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2671 * queues. This is important for md arrays to benefit from merging
2672 * requests.
2673 */
2674 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2675 {
2676 if (plug->multiple_queues)
2677 return BLK_MAX_REQUEST_COUNT * 2;
2678 return BLK_MAX_REQUEST_COUNT;
2679 }
2680
2681 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2682 {
2683 struct request *last = rq_list_peek(&plug->mq_list);
2684
2685 if (!plug->rq_count) {
2686 trace_block_plug(rq->q);
2687 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
2688 (!blk_queue_nomerges(rq->q) &&
2689 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2690 blk_mq_flush_plug_list(plug, false);
2691 trace_block_plug(rq->q);
2692 }
2693
2694 if (!plug->multiple_queues && last && last->q != rq->q)
2695 plug->multiple_queues = true;
2696 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
2697 plug->has_elevator = true;
2698 rq->rq_next = NULL;
2699 rq_list_add(&plug->mq_list, rq);
2700 plug->rq_count++;
2701 }
2702
2703 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2704 struct bio *bio, unsigned int nr_segs)
2705 {
2706 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2707 if (blk_attempt_plug_merge(q, bio, nr_segs))
2708 return true;
2709 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2710 return true;
2711 }
2712 return false;
2713 }
2714
2715 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2716 struct blk_plug *plug,
2717 struct bio *bio)
2718 {
2719 struct blk_mq_alloc_data data = {
2720 .q = q,
2721 .nr_tags = 1,
2722 .cmd_flags = bio->bi_opf,
2723 };
2724 struct request *rq;
2725
2726 if (unlikely(bio_queue_enter(bio)))
2727 return NULL;
2728
2729 if (plug) {
2730 data.nr_tags = plug->nr_ios;
2731 plug->nr_ios = 1;
2732 data.cached_rq = &plug->cached_rq;
2733 }
2734
2735 rq = __blk_mq_alloc_requests(&data);
2736 if (rq)
2737 return rq;
2738 rq_qos_cleanup(q, bio);
2739 if (bio->bi_opf & REQ_NOWAIT)
2740 bio_wouldblock_error(bio);
2741 blk_queue_exit(q);
2742 return NULL;
2743 }
2744
2745 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2746 struct blk_plug *plug, struct bio *bio)
2747 {
2748 struct request *rq;
2749
2750 if (!plug)
2751 return NULL;
2752 rq = rq_list_peek(&plug->cached_rq);
2753 if (!rq || rq->q != q)
2754 return NULL;
2755
2756 if (blk_mq_get_hctx_type(bio->bi_opf) != rq->mq_hctx->type)
2757 return NULL;
2758 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2759 return NULL;
2760
2761 rq->cmd_flags = bio->bi_opf;
2762 plug->cached_rq = rq_list_next(rq);
2763 INIT_LIST_HEAD(&rq->queuelist);
2764 return rq;
2765 }
2766
2767 /**
2768 * blk_mq_submit_bio - Create and send a request to block device.
2769 * @bio: Bio pointer.
2770 *
2771 * Builds up a request structure from @q and @bio and send to the device. The
2772 * request may not be queued directly to hardware if:
2773 * * This request can be merged with another one
2774 * * We want to place request at plug queue for possible future merging
2775 * * There is an IO scheduler active at this queue
2776 *
2777 * It will not queue the request if there is an error with the bio, or at the
2778 * request creation.
2779 */
2780 void blk_mq_submit_bio(struct bio *bio)
2781 {
2782 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2783 struct blk_plug *plug = blk_mq_plug(q, bio);
2784 const int is_sync = op_is_sync(bio->bi_opf);
2785 struct request *rq;
2786 unsigned int nr_segs = 1;
2787 blk_status_t ret;
2788
2789 if (unlikely(!blk_crypto_bio_prep(&bio)))
2790 return;
2791
2792 blk_queue_bounce(q, &bio);
2793 if (blk_may_split(q, bio))
2794 __blk_queue_split(q, &bio, &nr_segs);
2795
2796 if (!bio_integrity_prep(bio))
2797 return;
2798
2799 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2800 return;
2801
2802 rq_qos_throttle(q, bio);
2803
2804 rq = blk_mq_get_cached_request(q, plug, bio);
2805 if (!rq) {
2806 rq = blk_mq_get_new_requests(q, plug, bio);
2807 if (unlikely(!rq))
2808 return;
2809 }
2810
2811 trace_block_getrq(bio);
2812
2813 rq_qos_track(q, rq, bio);
2814
2815 blk_mq_bio_to_request(rq, bio, nr_segs);
2816
2817 ret = blk_crypto_init_request(rq);
2818 if (ret != BLK_STS_OK) {
2819 bio->bi_status = ret;
2820 bio_endio(bio);
2821 blk_mq_free_request(rq);
2822 return;
2823 }
2824
2825 if (op_is_flush(bio->bi_opf)) {
2826 blk_insert_flush(rq);
2827 return;
2828 }
2829
2830 if (plug)
2831 blk_add_rq_to_plug(plug, rq);
2832 else if ((rq->rq_flags & RQF_ELV) ||
2833 (rq->mq_hctx->dispatch_busy &&
2834 (q->nr_hw_queues == 1 || !is_sync)))
2835 blk_mq_sched_insert_request(rq, false, true, true);
2836 else
2837 blk_mq_run_dispatch_ops(rq->q,
2838 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2839 }
2840
2841 /**
2842 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2843 * for the new queue limits
2844 * @q: the queue
2845 * @rq: the request being checked
2846 *
2847 * Description:
2848 * @rq may have been made based on weaker limitations of upper-level queues
2849 * in request stacking drivers, and it may violate the limitation of @q.
2850 * Since the block layer and the underlying device driver trust @rq
2851 * after it is inserted to @q, it should be checked against @q before
2852 * the insertion using this generic function.
2853 *
2854 * Request stacking drivers like request-based dm may change the queue
2855 * limits when retrying requests on other queues. Those requests need
2856 * to be checked against the new queue limits again during dispatch.
2857 */
2858 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
2859 struct request *rq)
2860 {
2861 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2862
2863 if (blk_rq_sectors(rq) > max_sectors) {
2864 /*
2865 * SCSI device does not have a good way to return if
2866 * Write Same/Zero is actually supported. If a device rejects
2867 * a non-read/write command (discard, write same,etc.) the
2868 * low-level device driver will set the relevant queue limit to
2869 * 0 to prevent blk-lib from issuing more of the offending
2870 * operations. Commands queued prior to the queue limit being
2871 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2872 * errors being propagated to upper layers.
2873 */
2874 if (max_sectors == 0)
2875 return BLK_STS_NOTSUPP;
2876
2877 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2878 __func__, blk_rq_sectors(rq), max_sectors);
2879 return BLK_STS_IOERR;
2880 }
2881
2882 /*
2883 * The queue settings related to segment counting may differ from the
2884 * original queue.
2885 */
2886 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2887 if (rq->nr_phys_segments > queue_max_segments(q)) {
2888 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2889 __func__, rq->nr_phys_segments, queue_max_segments(q));
2890 return BLK_STS_IOERR;
2891 }
2892
2893 return BLK_STS_OK;
2894 }
2895
2896 /**
2897 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2898 * @q: the queue to submit the request
2899 * @rq: the request being queued
2900 */
2901 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2902 {
2903 blk_status_t ret;
2904
2905 ret = blk_cloned_rq_check_limits(q, rq);
2906 if (ret != BLK_STS_OK)
2907 return ret;
2908
2909 if (rq->q->disk &&
2910 should_fail_request(rq->q->disk->part0, blk_rq_bytes(rq)))
2911 return BLK_STS_IOERR;
2912
2913 if (blk_crypto_insert_cloned_request(rq))
2914 return BLK_STS_IOERR;
2915
2916 blk_account_io_start(rq);
2917
2918 /*
2919 * Since we have a scheduler attached on the top device,
2920 * bypass a potential scheduler on the bottom device for
2921 * insert.
2922 */
2923 blk_mq_run_dispatch_ops(rq->q,
2924 ret = blk_mq_request_issue_directly(rq, true));
2925 if (ret)
2926 blk_account_io_done(rq, ktime_get_ns());
2927 return ret;
2928 }
2929 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2930
2931 /**
2932 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2933 * @rq: the clone request to be cleaned up
2934 *
2935 * Description:
2936 * Free all bios in @rq for a cloned request.
2937 */
2938 void blk_rq_unprep_clone(struct request *rq)
2939 {
2940 struct bio *bio;
2941
2942 while ((bio = rq->bio) != NULL) {
2943 rq->bio = bio->bi_next;
2944
2945 bio_put(bio);
2946 }
2947 }
2948 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2949
2950 /**
2951 * blk_rq_prep_clone - Helper function to setup clone request
2952 * @rq: the request to be setup
2953 * @rq_src: original request to be cloned
2954 * @bs: bio_set that bios for clone are allocated from
2955 * @gfp_mask: memory allocation mask for bio
2956 * @bio_ctr: setup function to be called for each clone bio.
2957 * Returns %0 for success, non %0 for failure.
2958 * @data: private data to be passed to @bio_ctr
2959 *
2960 * Description:
2961 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2962 * Also, pages which the original bios are pointing to are not copied
2963 * and the cloned bios just point same pages.
2964 * So cloned bios must be completed before original bios, which means
2965 * the caller must complete @rq before @rq_src.
2966 */
2967 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2968 struct bio_set *bs, gfp_t gfp_mask,
2969 int (*bio_ctr)(struct bio *, struct bio *, void *),
2970 void *data)
2971 {
2972 struct bio *bio, *bio_src;
2973
2974 if (!bs)
2975 bs = &fs_bio_set;
2976
2977 __rq_for_each_bio(bio_src, rq_src) {
2978 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2979 bs);
2980 if (!bio)
2981 goto free_and_out;
2982
2983 if (bio_ctr && bio_ctr(bio, bio_src, data))
2984 goto free_and_out;
2985
2986 if (rq->bio) {
2987 rq->biotail->bi_next = bio;
2988 rq->biotail = bio;
2989 } else {
2990 rq->bio = rq->biotail = bio;
2991 }
2992 bio = NULL;
2993 }
2994
2995 /* Copy attributes of the original request to the clone request. */
2996 rq->__sector = blk_rq_pos(rq_src);
2997 rq->__data_len = blk_rq_bytes(rq_src);
2998 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2999 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3000 rq->special_vec = rq_src->special_vec;
3001 }
3002 rq->nr_phys_segments = rq_src->nr_phys_segments;
3003 rq->ioprio = rq_src->ioprio;
3004
3005 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3006 goto free_and_out;
3007
3008 return 0;
3009
3010 free_and_out:
3011 if (bio)
3012 bio_put(bio);
3013 blk_rq_unprep_clone(rq);
3014
3015 return -ENOMEM;
3016 }
3017 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3018
3019 /*
3020 * Steal bios from a request and add them to a bio list.
3021 * The request must not have been partially completed before.
3022 */
3023 void blk_steal_bios(struct bio_list *list, struct request *rq)
3024 {
3025 if (rq->bio) {
3026 if (list->tail)
3027 list->tail->bi_next = rq->bio;
3028 else
3029 list->head = rq->bio;
3030 list->tail = rq->biotail;
3031
3032 rq->bio = NULL;
3033 rq->biotail = NULL;
3034 }
3035
3036 rq->__data_len = 0;
3037 }
3038 EXPORT_SYMBOL_GPL(blk_steal_bios);
3039
3040 static size_t order_to_size(unsigned int order)
3041 {
3042 return (size_t)PAGE_SIZE << order;
3043 }
3044
3045 /* called before freeing request pool in @tags */
3046 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3047 struct blk_mq_tags *tags)
3048 {
3049 struct page *page;
3050 unsigned long flags;
3051
3052 /* There is no need to clear a driver tags own mapping */
3053 if (drv_tags == tags)
3054 return;
3055
3056 list_for_each_entry(page, &tags->page_list, lru) {
3057 unsigned long start = (unsigned long)page_address(page);
3058 unsigned long end = start + order_to_size(page->private);
3059 int i;
3060
3061 for (i = 0; i < drv_tags->nr_tags; i++) {
3062 struct request *rq = drv_tags->rqs[i];
3063 unsigned long rq_addr = (unsigned long)rq;
3064
3065 if (rq_addr >= start && rq_addr < end) {
3066 WARN_ON_ONCE(req_ref_read(rq) != 0);
3067 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3068 }
3069 }
3070 }
3071
3072 /*
3073 * Wait until all pending iteration is done.
3074 *
3075 * Request reference is cleared and it is guaranteed to be observed
3076 * after the ->lock is released.
3077 */
3078 spin_lock_irqsave(&drv_tags->lock, flags);
3079 spin_unlock_irqrestore(&drv_tags->lock, flags);
3080 }
3081
3082 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3083 unsigned int hctx_idx)
3084 {
3085 struct blk_mq_tags *drv_tags;
3086 struct page *page;
3087
3088 if (blk_mq_is_shared_tags(set->flags))
3089 drv_tags = set->shared_tags;
3090 else
3091 drv_tags = set->tags[hctx_idx];
3092
3093 if (tags->static_rqs && set->ops->exit_request) {
3094 int i;
3095
3096 for (i = 0; i < tags->nr_tags; i++) {
3097 struct request *rq = tags->static_rqs[i];
3098
3099 if (!rq)
3100 continue;
3101 set->ops->exit_request(set, rq, hctx_idx);
3102 tags->static_rqs[i] = NULL;
3103 }
3104 }
3105
3106 blk_mq_clear_rq_mapping(drv_tags, tags);
3107
3108 while (!list_empty(&tags->page_list)) {
3109 page = list_first_entry(&tags->page_list, struct page, lru);
3110 list_del_init(&page->lru);
3111 /*
3112 * Remove kmemleak object previously allocated in
3113 * blk_mq_alloc_rqs().
3114 */
3115 kmemleak_free(page_address(page));
3116 __free_pages(page, page->private);
3117 }
3118 }
3119
3120 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3121 {
3122 kfree(tags->rqs);
3123 tags->rqs = NULL;
3124 kfree(tags->static_rqs);
3125 tags->static_rqs = NULL;
3126
3127 blk_mq_free_tags(tags);
3128 }
3129
3130 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3131 unsigned int hctx_idx,
3132 unsigned int nr_tags,
3133 unsigned int reserved_tags)
3134 {
3135 struct blk_mq_tags *tags;
3136 int node;
3137
3138 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3139 if (node == NUMA_NO_NODE)
3140 node = set->numa_node;
3141
3142 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3143 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3144 if (!tags)
3145 return NULL;
3146
3147 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3148 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3149 node);
3150 if (!tags->rqs) {
3151 blk_mq_free_tags(tags);
3152 return NULL;
3153 }
3154
3155 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3156 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3157 node);
3158 if (!tags->static_rqs) {
3159 kfree(tags->rqs);
3160 blk_mq_free_tags(tags);
3161 return NULL;
3162 }
3163
3164 return tags;
3165 }
3166
3167 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3168 unsigned int hctx_idx, int node)
3169 {
3170 int ret;
3171
3172 if (set->ops->init_request) {
3173 ret = set->ops->init_request(set, rq, hctx_idx, node);
3174 if (ret)
3175 return ret;
3176 }
3177
3178 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3179 return 0;
3180 }
3181
3182 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3183 struct blk_mq_tags *tags,
3184 unsigned int hctx_idx, unsigned int depth)
3185 {
3186 unsigned int i, j, entries_per_page, max_order = 4;
3187 size_t rq_size, left;
3188 int node;
3189
3190 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
3191 if (node == NUMA_NO_NODE)
3192 node = set->numa_node;
3193
3194 INIT_LIST_HEAD(&tags->page_list);
3195
3196 /*
3197 * rq_size is the size of the request plus driver payload, rounded
3198 * to the cacheline size
3199 */
3200 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3201 cache_line_size());
3202 left = rq_size * depth;
3203
3204 for (i = 0; i < depth; ) {
3205 int this_order = max_order;
3206 struct page *page;
3207 int to_do;
3208 void *p;
3209
3210 while (this_order && left < order_to_size(this_order - 1))
3211 this_order--;
3212
3213 do {
3214 page = alloc_pages_node(node,
3215 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3216 this_order);
3217 if (page)
3218 break;
3219 if (!this_order--)
3220 break;
3221 if (order_to_size(this_order) < rq_size)
3222 break;
3223 } while (1);
3224
3225 if (!page)
3226 goto fail;
3227
3228 page->private = this_order;
3229 list_add_tail(&page->lru, &tags->page_list);
3230
3231 p = page_address(page);
3232 /*
3233 * Allow kmemleak to scan these pages as they contain pointers
3234 * to additional allocations like via ops->init_request().
3235 */
3236 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3237 entries_per_page = order_to_size(this_order) / rq_size;
3238 to_do = min(entries_per_page, depth - i);
3239 left -= to_do * rq_size;
3240 for (j = 0; j < to_do; j++) {
3241 struct request *rq = p;
3242
3243 tags->static_rqs[i] = rq;
3244 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3245 tags->static_rqs[i] = NULL;
3246 goto fail;
3247 }
3248
3249 p += rq_size;
3250 i++;
3251 }
3252 }
3253 return 0;
3254
3255 fail:
3256 blk_mq_free_rqs(set, tags, hctx_idx);
3257 return -ENOMEM;
3258 }
3259
3260 struct rq_iter_data {
3261 struct blk_mq_hw_ctx *hctx;
3262 bool has_rq;
3263 };
3264
3265 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3266 {
3267 struct rq_iter_data *iter_data = data;
3268
3269 if (rq->mq_hctx != iter_data->hctx)
3270 return true;
3271 iter_data->has_rq = true;
3272 return false;
3273 }
3274
3275 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3276 {
3277 struct blk_mq_tags *tags = hctx->sched_tags ?
3278 hctx->sched_tags : hctx->tags;
3279 struct rq_iter_data data = {
3280 .hctx = hctx,
3281 };
3282
3283 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3284 return data.has_rq;
3285 }
3286
3287 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3288 struct blk_mq_hw_ctx *hctx)
3289 {
3290 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3291 return false;
3292 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3293 return false;
3294 return true;
3295 }
3296
3297 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3298 {
3299 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3300 struct blk_mq_hw_ctx, cpuhp_online);
3301
3302 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3303 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3304 return 0;
3305
3306 /*
3307 * Prevent new request from being allocated on the current hctx.
3308 *
3309 * The smp_mb__after_atomic() Pairs with the implied barrier in
3310 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3311 * seen once we return from the tag allocator.
3312 */
3313 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3314 smp_mb__after_atomic();
3315
3316 /*
3317 * Try to grab a reference to the queue and wait for any outstanding
3318 * requests. If we could not grab a reference the queue has been
3319 * frozen and there are no requests.
3320 */
3321 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3322 while (blk_mq_hctx_has_requests(hctx))
3323 msleep(5);
3324 percpu_ref_put(&hctx->queue->q_usage_counter);
3325 }
3326
3327 return 0;
3328 }
3329
3330 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3331 {
3332 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3333 struct blk_mq_hw_ctx, cpuhp_online);
3334
3335 if (cpumask_test_cpu(cpu, hctx->cpumask))
3336 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3337 return 0;
3338 }
3339
3340 /*
3341 * 'cpu' is going away. splice any existing rq_list entries from this
3342 * software queue to the hw queue dispatch list, and ensure that it
3343 * gets run.
3344 */
3345 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3346 {
3347 struct blk_mq_hw_ctx *hctx;
3348 struct blk_mq_ctx *ctx;
3349 LIST_HEAD(tmp);
3350 enum hctx_type type;
3351
3352 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3353 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3354 return 0;
3355
3356 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3357 type = hctx->type;
3358
3359 spin_lock(&ctx->lock);
3360 if (!list_empty(&ctx->rq_lists[type])) {
3361 list_splice_init(&ctx->rq_lists[type], &tmp);
3362 blk_mq_hctx_clear_pending(hctx, ctx);
3363 }
3364 spin_unlock(&ctx->lock);
3365
3366 if (list_empty(&tmp))
3367 return 0;
3368
3369 spin_lock(&hctx->lock);
3370 list_splice_tail_init(&tmp, &hctx->dispatch);
3371 spin_unlock(&hctx->lock);
3372
3373 blk_mq_run_hw_queue(hctx, true);
3374 return 0;
3375 }
3376
3377 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3378 {
3379 if (!(hctx->flags & BLK_MQ_F_STACKING))
3380 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3381 &hctx->cpuhp_online);
3382 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3383 &hctx->cpuhp_dead);
3384 }
3385
3386 /*
3387 * Before freeing hw queue, clearing the flush request reference in
3388 * tags->rqs[] for avoiding potential UAF.
3389 */
3390 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3391 unsigned int queue_depth, struct request *flush_rq)
3392 {
3393 int i;
3394 unsigned long flags;
3395
3396 /* The hw queue may not be mapped yet */
3397 if (!tags)
3398 return;
3399
3400 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3401
3402 for (i = 0; i < queue_depth; i++)
3403 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3404
3405 /*
3406 * Wait until all pending iteration is done.
3407 *
3408 * Request reference is cleared and it is guaranteed to be observed
3409 * after the ->lock is released.
3410 */
3411 spin_lock_irqsave(&tags->lock, flags);
3412 spin_unlock_irqrestore(&tags->lock, flags);
3413 }
3414
3415 /* hctx->ctxs will be freed in queue's release handler */
3416 static void blk_mq_exit_hctx(struct request_queue *q,
3417 struct blk_mq_tag_set *set,
3418 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3419 {
3420 struct request *flush_rq = hctx->fq->flush_rq;
3421
3422 if (blk_mq_hw_queue_mapped(hctx))
3423 blk_mq_tag_idle(hctx);
3424
3425 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3426 set->queue_depth, flush_rq);
3427 if (set->ops->exit_request)
3428 set->ops->exit_request(set, flush_rq, hctx_idx);
3429
3430 if (set->ops->exit_hctx)
3431 set->ops->exit_hctx(hctx, hctx_idx);
3432
3433 blk_mq_remove_cpuhp(hctx);
3434
3435 spin_lock(&q->unused_hctx_lock);
3436 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3437 spin_unlock(&q->unused_hctx_lock);
3438 }
3439
3440 static void blk_mq_exit_hw_queues(struct request_queue *q,
3441 struct blk_mq_tag_set *set, int nr_queue)
3442 {
3443 struct blk_mq_hw_ctx *hctx;
3444 unsigned int i;
3445
3446 queue_for_each_hw_ctx(q, hctx, i) {
3447 if (i == nr_queue)
3448 break;
3449 blk_mq_debugfs_unregister_hctx(hctx);
3450 blk_mq_exit_hctx(q, set, hctx, i);
3451 }
3452 }
3453
3454 static int blk_mq_init_hctx(struct request_queue *q,
3455 struct blk_mq_tag_set *set,
3456 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3457 {
3458 hctx->queue_num = hctx_idx;
3459
3460 if (!(hctx->flags & BLK_MQ_F_STACKING))
3461 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3462 &hctx->cpuhp_online);
3463 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3464
3465 hctx->tags = set->tags[hctx_idx];
3466
3467 if (set->ops->init_hctx &&
3468 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3469 goto unregister_cpu_notifier;
3470
3471 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3472 hctx->numa_node))
3473 goto exit_hctx;
3474 return 0;
3475
3476 exit_hctx:
3477 if (set->ops->exit_hctx)
3478 set->ops->exit_hctx(hctx, hctx_idx);
3479 unregister_cpu_notifier:
3480 blk_mq_remove_cpuhp(hctx);
3481 return -1;
3482 }
3483
3484 static struct blk_mq_hw_ctx *
3485 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3486 int node)
3487 {
3488 struct blk_mq_hw_ctx *hctx;
3489 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3490
3491 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3492 if (!hctx)
3493 goto fail_alloc_hctx;
3494
3495 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3496 goto free_hctx;
3497
3498 atomic_set(&hctx->nr_active, 0);
3499 if (node == NUMA_NO_NODE)
3500 node = set->numa_node;
3501 hctx->numa_node = node;
3502
3503 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3504 spin_lock_init(&hctx->lock);
3505 INIT_LIST_HEAD(&hctx->dispatch);
3506 hctx->queue = q;
3507 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3508
3509 INIT_LIST_HEAD(&hctx->hctx_list);
3510
3511 /*
3512 * Allocate space for all possible cpus to avoid allocation at
3513 * runtime
3514 */
3515 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3516 gfp, node);
3517 if (!hctx->ctxs)
3518 goto free_cpumask;
3519
3520 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3521 gfp, node, false, false))
3522 goto free_ctxs;
3523 hctx->nr_ctx = 0;
3524
3525 spin_lock_init(&hctx->dispatch_wait_lock);
3526 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3527 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3528
3529 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3530 if (!hctx->fq)
3531 goto free_bitmap;
3532
3533 blk_mq_hctx_kobj_init(hctx);
3534
3535 return hctx;
3536
3537 free_bitmap:
3538 sbitmap_free(&hctx->ctx_map);
3539 free_ctxs:
3540 kfree(hctx->ctxs);
3541 free_cpumask:
3542 free_cpumask_var(hctx->cpumask);
3543 free_hctx:
3544 kfree(hctx);
3545 fail_alloc_hctx:
3546 return NULL;
3547 }
3548
3549 static void blk_mq_init_cpu_queues(struct request_queue *q,
3550 unsigned int nr_hw_queues)
3551 {
3552 struct blk_mq_tag_set *set = q->tag_set;
3553 unsigned int i, j;
3554
3555 for_each_possible_cpu(i) {
3556 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3557 struct blk_mq_hw_ctx *hctx;
3558 int k;
3559
3560 __ctx->cpu = i;
3561 spin_lock_init(&__ctx->lock);
3562 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3563 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3564
3565 __ctx->queue = q;
3566
3567 /*
3568 * Set local node, IFF we have more than one hw queue. If
3569 * not, we remain on the home node of the device
3570 */
3571 for (j = 0; j < set->nr_maps; j++) {
3572 hctx = blk_mq_map_queue_type(q, j, i);
3573 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3574 hctx->numa_node = cpu_to_node(i);
3575 }
3576 }
3577 }
3578
3579 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3580 unsigned int hctx_idx,
3581 unsigned int depth)
3582 {
3583 struct blk_mq_tags *tags;
3584 int ret;
3585
3586 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3587 if (!tags)
3588 return NULL;
3589
3590 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3591 if (ret) {
3592 blk_mq_free_rq_map(tags);
3593 return NULL;
3594 }
3595
3596 return tags;
3597 }
3598
3599 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3600 int hctx_idx)
3601 {
3602 if (blk_mq_is_shared_tags(set->flags)) {
3603 set->tags[hctx_idx] = set->shared_tags;
3604
3605 return true;
3606 }
3607
3608 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3609 set->queue_depth);
3610
3611 return set->tags[hctx_idx];
3612 }
3613
3614 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3615 struct blk_mq_tags *tags,
3616 unsigned int hctx_idx)
3617 {
3618 if (tags) {
3619 blk_mq_free_rqs(set, tags, hctx_idx);
3620 blk_mq_free_rq_map(tags);
3621 }
3622 }
3623
3624 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3625 unsigned int hctx_idx)
3626 {
3627 if (!blk_mq_is_shared_tags(set->flags))
3628 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3629
3630 set->tags[hctx_idx] = NULL;
3631 }
3632
3633 static void blk_mq_map_swqueue(struct request_queue *q)
3634 {
3635 unsigned int i, j, hctx_idx;
3636 struct blk_mq_hw_ctx *hctx;
3637 struct blk_mq_ctx *ctx;
3638 struct blk_mq_tag_set *set = q->tag_set;
3639
3640 queue_for_each_hw_ctx(q, hctx, i) {
3641 cpumask_clear(hctx->cpumask);
3642 hctx->nr_ctx = 0;
3643 hctx->dispatch_from = NULL;
3644 }
3645
3646 /*
3647 * Map software to hardware queues.
3648 *
3649 * If the cpu isn't present, the cpu is mapped to first hctx.
3650 */
3651 for_each_possible_cpu(i) {
3652
3653 ctx = per_cpu_ptr(q->queue_ctx, i);
3654 for (j = 0; j < set->nr_maps; j++) {
3655 if (!set->map[j].nr_queues) {
3656 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3657 HCTX_TYPE_DEFAULT, i);
3658 continue;
3659 }
3660 hctx_idx = set->map[j].mq_map[i];
3661 /* unmapped hw queue can be remapped after CPU topo changed */
3662 if (!set->tags[hctx_idx] &&
3663 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3664 /*
3665 * If tags initialization fail for some hctx,
3666 * that hctx won't be brought online. In this
3667 * case, remap the current ctx to hctx[0] which
3668 * is guaranteed to always have tags allocated
3669 */
3670 set->map[j].mq_map[i] = 0;
3671 }
3672
3673 hctx = blk_mq_map_queue_type(q, j, i);
3674 ctx->hctxs[j] = hctx;
3675 /*
3676 * If the CPU is already set in the mask, then we've
3677 * mapped this one already. This can happen if
3678 * devices share queues across queue maps.
3679 */
3680 if (cpumask_test_cpu(i, hctx->cpumask))
3681 continue;
3682
3683 cpumask_set_cpu(i, hctx->cpumask);
3684 hctx->type = j;
3685 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3686 hctx->ctxs[hctx->nr_ctx++] = ctx;
3687
3688 /*
3689 * If the nr_ctx type overflows, we have exceeded the
3690 * amount of sw queues we can support.
3691 */
3692 BUG_ON(!hctx->nr_ctx);
3693 }
3694
3695 for (; j < HCTX_MAX_TYPES; j++)
3696 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3697 HCTX_TYPE_DEFAULT, i);
3698 }
3699
3700 queue_for_each_hw_ctx(q, hctx, i) {
3701 /*
3702 * If no software queues are mapped to this hardware queue,
3703 * disable it and free the request entries.
3704 */
3705 if (!hctx->nr_ctx) {
3706 /* Never unmap queue 0. We need it as a
3707 * fallback in case of a new remap fails
3708 * allocation
3709 */
3710 if (i)
3711 __blk_mq_free_map_and_rqs(set, i);
3712
3713 hctx->tags = NULL;
3714 continue;
3715 }
3716
3717 hctx->tags = set->tags[i];
3718 WARN_ON(!hctx->tags);
3719
3720 /*
3721 * Set the map size to the number of mapped software queues.
3722 * This is more accurate and more efficient than looping
3723 * over all possibly mapped software queues.
3724 */
3725 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3726
3727 /*
3728 * Initialize batch roundrobin counts
3729 */
3730 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3731 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3732 }
3733 }
3734
3735 /*
3736 * Caller needs to ensure that we're either frozen/quiesced, or that
3737 * the queue isn't live yet.
3738 */
3739 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3740 {
3741 struct blk_mq_hw_ctx *hctx;
3742 int i;
3743
3744 queue_for_each_hw_ctx(q, hctx, i) {
3745 if (shared) {
3746 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3747 } else {
3748 blk_mq_tag_idle(hctx);
3749 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3750 }
3751 }
3752 }
3753
3754 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3755 bool shared)
3756 {
3757 struct request_queue *q;
3758
3759 lockdep_assert_held(&set->tag_list_lock);
3760
3761 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3762 blk_mq_freeze_queue(q);
3763 queue_set_hctx_shared(q, shared);
3764 blk_mq_unfreeze_queue(q);
3765 }
3766 }
3767
3768 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3769 {
3770 struct blk_mq_tag_set *set = q->tag_set;
3771
3772 mutex_lock(&set->tag_list_lock);
3773 list_del(&q->tag_set_list);
3774 if (list_is_singular(&set->tag_list)) {
3775 /* just transitioned to unshared */
3776 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3777 /* update existing queue */
3778 blk_mq_update_tag_set_shared(set, false);
3779 }
3780 mutex_unlock(&set->tag_list_lock);
3781 INIT_LIST_HEAD(&q->tag_set_list);
3782 }
3783
3784 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3785 struct request_queue *q)
3786 {
3787 mutex_lock(&set->tag_list_lock);
3788
3789 /*
3790 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3791 */
3792 if (!list_empty(&set->tag_list) &&
3793 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3794 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3795 /* update existing queue */
3796 blk_mq_update_tag_set_shared(set, true);
3797 }
3798 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3799 queue_set_hctx_shared(q, true);
3800 list_add_tail(&q->tag_set_list, &set->tag_list);
3801
3802 mutex_unlock(&set->tag_list_lock);
3803 }
3804
3805 /* All allocations will be freed in release handler of q->mq_kobj */
3806 static int blk_mq_alloc_ctxs(struct request_queue *q)
3807 {
3808 struct blk_mq_ctxs *ctxs;
3809 int cpu;
3810
3811 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3812 if (!ctxs)
3813 return -ENOMEM;
3814
3815 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3816 if (!ctxs->queue_ctx)
3817 goto fail;
3818
3819 for_each_possible_cpu(cpu) {
3820 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3821 ctx->ctxs = ctxs;
3822 }
3823
3824 q->mq_kobj = &ctxs->kobj;
3825 q->queue_ctx = ctxs->queue_ctx;
3826
3827 return 0;
3828 fail:
3829 kfree(ctxs);
3830 return -ENOMEM;
3831 }
3832
3833 /*
3834 * It is the actual release handler for mq, but we do it from
3835 * request queue's release handler for avoiding use-after-free
3836 * and headache because q->mq_kobj shouldn't have been introduced,
3837 * but we can't group ctx/kctx kobj without it.
3838 */
3839 void blk_mq_release(struct request_queue *q)
3840 {
3841 struct blk_mq_hw_ctx *hctx, *next;
3842 int i;
3843
3844 queue_for_each_hw_ctx(q, hctx, i)
3845 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3846
3847 /* all hctx are in .unused_hctx_list now */
3848 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3849 list_del_init(&hctx->hctx_list);
3850 kobject_put(&hctx->kobj);
3851 }
3852
3853 kfree(q->queue_hw_ctx);
3854
3855 /*
3856 * release .mq_kobj and sw queue's kobject now because
3857 * both share lifetime with request queue.
3858 */
3859 blk_mq_sysfs_deinit(q);
3860 }
3861
3862 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3863 void *queuedata)
3864 {
3865 struct request_queue *q;
3866 int ret;
3867
3868 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3869 if (!q)
3870 return ERR_PTR(-ENOMEM);
3871 q->queuedata = queuedata;
3872 ret = blk_mq_init_allocated_queue(set, q);
3873 if (ret) {
3874 blk_cleanup_queue(q);
3875 return ERR_PTR(ret);
3876 }
3877 return q;
3878 }
3879
3880 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3881 {
3882 return blk_mq_init_queue_data(set, NULL);
3883 }
3884 EXPORT_SYMBOL(blk_mq_init_queue);
3885
3886 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3887 struct lock_class_key *lkclass)
3888 {
3889 struct request_queue *q;
3890 struct gendisk *disk;
3891
3892 q = blk_mq_init_queue_data(set, queuedata);
3893 if (IS_ERR(q))
3894 return ERR_CAST(q);
3895
3896 disk = __alloc_disk_node(q, set->numa_node, lkclass);
3897 if (!disk) {
3898 blk_cleanup_queue(q);
3899 return ERR_PTR(-ENOMEM);
3900 }
3901 return disk;
3902 }
3903 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3904
3905 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3906 struct blk_mq_tag_set *set, struct request_queue *q,
3907 int hctx_idx, int node)
3908 {
3909 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3910
3911 /* reuse dead hctx first */
3912 spin_lock(&q->unused_hctx_lock);
3913 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3914 if (tmp->numa_node == node) {
3915 hctx = tmp;
3916 break;
3917 }
3918 }
3919 if (hctx)
3920 list_del_init(&hctx->hctx_list);
3921 spin_unlock(&q->unused_hctx_lock);
3922
3923 if (!hctx)
3924 hctx = blk_mq_alloc_hctx(q, set, node);
3925 if (!hctx)
3926 goto fail;
3927
3928 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3929 goto free_hctx;
3930
3931 return hctx;
3932
3933 free_hctx:
3934 kobject_put(&hctx->kobj);
3935 fail:
3936 return NULL;
3937 }
3938
3939 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3940 struct request_queue *q)
3941 {
3942 int i, j, end;
3943 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3944
3945 if (q->nr_hw_queues < set->nr_hw_queues) {
3946 struct blk_mq_hw_ctx **new_hctxs;
3947
3948 new_hctxs = kcalloc_node(set->nr_hw_queues,
3949 sizeof(*new_hctxs), GFP_KERNEL,
3950 set->numa_node);
3951 if (!new_hctxs)
3952 return;
3953 if (hctxs)
3954 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3955 sizeof(*hctxs));
3956 q->queue_hw_ctx = new_hctxs;
3957 kfree(hctxs);
3958 hctxs = new_hctxs;
3959 }
3960
3961 /* protect against switching io scheduler */
3962 mutex_lock(&q->sysfs_lock);
3963 for (i = 0; i < set->nr_hw_queues; i++) {
3964 int node;
3965 struct blk_mq_hw_ctx *hctx;
3966
3967 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3968 /*
3969 * If the hw queue has been mapped to another numa node,
3970 * we need to realloc the hctx. If allocation fails, fallback
3971 * to use the previous one.
3972 */
3973 if (hctxs[i] && (hctxs[i]->numa_node == node))
3974 continue;
3975
3976 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3977 if (hctx) {
3978 if (hctxs[i])
3979 blk_mq_exit_hctx(q, set, hctxs[i], i);
3980 hctxs[i] = hctx;
3981 } else {
3982 if (hctxs[i])
3983 pr_warn("Allocate new hctx on node %d fails,\
3984 fallback to previous one on node %d\n",
3985 node, hctxs[i]->numa_node);
3986 else
3987 break;
3988 }
3989 }
3990 /*
3991 * Increasing nr_hw_queues fails. Free the newly allocated
3992 * hctxs and keep the previous q->nr_hw_queues.
3993 */
3994 if (i != set->nr_hw_queues) {
3995 j = q->nr_hw_queues;
3996 end = i;
3997 } else {
3998 j = i;
3999 end = q->nr_hw_queues;
4000 q->nr_hw_queues = set->nr_hw_queues;
4001 }
4002
4003 for (; j < end; j++) {
4004 struct blk_mq_hw_ctx *hctx = hctxs[j];
4005
4006 if (hctx) {
4007 blk_mq_exit_hctx(q, set, hctx, j);
4008 hctxs[j] = NULL;
4009 }
4010 }
4011 mutex_unlock(&q->sysfs_lock);
4012 }
4013
4014 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4015 struct request_queue *q)
4016 {
4017 WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4018 !!(set->flags & BLK_MQ_F_BLOCKING));
4019
4020 /* mark the queue as mq asap */
4021 q->mq_ops = set->ops;
4022
4023 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4024 blk_mq_poll_stats_bkt,
4025 BLK_MQ_POLL_STATS_BKTS, q);
4026 if (!q->poll_cb)
4027 goto err_exit;
4028
4029 if (blk_mq_alloc_ctxs(q))
4030 goto err_poll;
4031
4032 /* init q->mq_kobj and sw queues' kobjects */
4033 blk_mq_sysfs_init(q);
4034
4035 INIT_LIST_HEAD(&q->unused_hctx_list);
4036 spin_lock_init(&q->unused_hctx_lock);
4037
4038 blk_mq_realloc_hw_ctxs(set, q);
4039 if (!q->nr_hw_queues)
4040 goto err_hctxs;
4041
4042 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4043 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4044
4045 q->tag_set = set;
4046
4047 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4048 if (set->nr_maps > HCTX_TYPE_POLL &&
4049 set->map[HCTX_TYPE_POLL].nr_queues)
4050 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4051
4052 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4053 INIT_LIST_HEAD(&q->requeue_list);
4054 spin_lock_init(&q->requeue_lock);
4055
4056 q->nr_requests = set->queue_depth;
4057
4058 /*
4059 * Default to classic polling
4060 */
4061 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4062
4063 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4064 blk_mq_add_queue_tag_set(set, q);
4065 blk_mq_map_swqueue(q);
4066 return 0;
4067
4068 err_hctxs:
4069 kfree(q->queue_hw_ctx);
4070 q->nr_hw_queues = 0;
4071 blk_mq_sysfs_deinit(q);
4072 err_poll:
4073 blk_stat_free_callback(q->poll_cb);
4074 q->poll_cb = NULL;
4075 err_exit:
4076 q->mq_ops = NULL;
4077 return -ENOMEM;
4078 }
4079 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4080
4081 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4082 void blk_mq_exit_queue(struct request_queue *q)
4083 {
4084 struct blk_mq_tag_set *set = q->tag_set;
4085
4086 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4087 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4088 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4089 blk_mq_del_queue_tag_set(q);
4090 }
4091
4092 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4093 {
4094 int i;
4095
4096 if (blk_mq_is_shared_tags(set->flags)) {
4097 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4098 BLK_MQ_NO_HCTX_IDX,
4099 set->queue_depth);
4100 if (!set->shared_tags)
4101 return -ENOMEM;
4102 }
4103
4104 for (i = 0; i < set->nr_hw_queues; i++) {
4105 if (!__blk_mq_alloc_map_and_rqs(set, i))
4106 goto out_unwind;
4107 cond_resched();
4108 }
4109
4110 return 0;
4111
4112 out_unwind:
4113 while (--i >= 0)
4114 __blk_mq_free_map_and_rqs(set, i);
4115
4116 if (blk_mq_is_shared_tags(set->flags)) {
4117 blk_mq_free_map_and_rqs(set, set->shared_tags,
4118 BLK_MQ_NO_HCTX_IDX);
4119 }
4120
4121 return -ENOMEM;
4122 }
4123
4124 /*
4125 * Allocate the request maps associated with this tag_set. Note that this
4126 * may reduce the depth asked for, if memory is tight. set->queue_depth
4127 * will be updated to reflect the allocated depth.
4128 */
4129 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4130 {
4131 unsigned int depth;
4132 int err;
4133
4134 depth = set->queue_depth;
4135 do {
4136 err = __blk_mq_alloc_rq_maps(set);
4137 if (!err)
4138 break;
4139
4140 set->queue_depth >>= 1;
4141 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4142 err = -ENOMEM;
4143 break;
4144 }
4145 } while (set->queue_depth);
4146
4147 if (!set->queue_depth || err) {
4148 pr_err("blk-mq: failed to allocate request map\n");
4149 return -ENOMEM;
4150 }
4151
4152 if (depth != set->queue_depth)
4153 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4154 depth, set->queue_depth);
4155
4156 return 0;
4157 }
4158
4159 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4160 {
4161 /*
4162 * blk_mq_map_queues() and multiple .map_queues() implementations
4163 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4164 * number of hardware queues.
4165 */
4166 if (set->nr_maps == 1)
4167 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4168
4169 if (set->ops->map_queues && !is_kdump_kernel()) {
4170 int i;
4171
4172 /*
4173 * transport .map_queues is usually done in the following
4174 * way:
4175 *
4176 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4177 * mask = get_cpu_mask(queue)
4178 * for_each_cpu(cpu, mask)
4179 * set->map[x].mq_map[cpu] = queue;
4180 * }
4181 *
4182 * When we need to remap, the table has to be cleared for
4183 * killing stale mapping since one CPU may not be mapped
4184 * to any hw queue.
4185 */
4186 for (i = 0; i < set->nr_maps; i++)
4187 blk_mq_clear_mq_map(&set->map[i]);
4188
4189 return set->ops->map_queues(set);
4190 } else {
4191 BUG_ON(set->nr_maps > 1);
4192 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4193 }
4194 }
4195
4196 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4197 int cur_nr_hw_queues, int new_nr_hw_queues)
4198 {
4199 struct blk_mq_tags **new_tags;
4200
4201 if (cur_nr_hw_queues >= new_nr_hw_queues)
4202 return 0;
4203
4204 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4205 GFP_KERNEL, set->numa_node);
4206 if (!new_tags)
4207 return -ENOMEM;
4208
4209 if (set->tags)
4210 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4211 sizeof(*set->tags));
4212 kfree(set->tags);
4213 set->tags = new_tags;
4214 set->nr_hw_queues = new_nr_hw_queues;
4215
4216 return 0;
4217 }
4218
4219 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4220 int new_nr_hw_queues)
4221 {
4222 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4223 }
4224
4225 /*
4226 * Alloc a tag set to be associated with one or more request queues.
4227 * May fail with EINVAL for various error conditions. May adjust the
4228 * requested depth down, if it's too large. In that case, the set
4229 * value will be stored in set->queue_depth.
4230 */
4231 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4232 {
4233 int i, ret;
4234
4235 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4236
4237 if (!set->nr_hw_queues)
4238 return -EINVAL;
4239 if (!set->queue_depth)
4240 return -EINVAL;
4241 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4242 return -EINVAL;
4243
4244 if (!set->ops->queue_rq)
4245 return -EINVAL;
4246
4247 if (!set->ops->get_budget ^ !set->ops->put_budget)
4248 return -EINVAL;
4249
4250 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4251 pr_info("blk-mq: reduced tag depth to %u\n",
4252 BLK_MQ_MAX_DEPTH);
4253 set->queue_depth = BLK_MQ_MAX_DEPTH;
4254 }
4255
4256 if (!set->nr_maps)
4257 set->nr_maps = 1;
4258 else if (set->nr_maps > HCTX_MAX_TYPES)
4259 return -EINVAL;
4260
4261 /*
4262 * If a crashdump is active, then we are potentially in a very
4263 * memory constrained environment. Limit us to 1 queue and
4264 * 64 tags to prevent using too much memory.
4265 */
4266 if (is_kdump_kernel()) {
4267 set->nr_hw_queues = 1;
4268 set->nr_maps = 1;
4269 set->queue_depth = min(64U, set->queue_depth);
4270 }
4271 /*
4272 * There is no use for more h/w queues than cpus if we just have
4273 * a single map
4274 */
4275 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4276 set->nr_hw_queues = nr_cpu_ids;
4277
4278 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4279 return -ENOMEM;
4280
4281 ret = -ENOMEM;
4282 for (i = 0; i < set->nr_maps; i++) {
4283 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4284 sizeof(set->map[i].mq_map[0]),
4285 GFP_KERNEL, set->numa_node);
4286 if (!set->map[i].mq_map)
4287 goto out_free_mq_map;
4288 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4289 }
4290
4291 ret = blk_mq_update_queue_map(set);
4292 if (ret)
4293 goto out_free_mq_map;
4294
4295 ret = blk_mq_alloc_set_map_and_rqs(set);
4296 if (ret)
4297 goto out_free_mq_map;
4298
4299 mutex_init(&set->tag_list_lock);
4300 INIT_LIST_HEAD(&set->tag_list);
4301
4302 return 0;
4303
4304 out_free_mq_map:
4305 for (i = 0; i < set->nr_maps; i++) {
4306 kfree(set->map[i].mq_map);
4307 set->map[i].mq_map = NULL;
4308 }
4309 kfree(set->tags);
4310 set->tags = NULL;
4311 return ret;
4312 }
4313 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4314
4315 /* allocate and initialize a tagset for a simple single-queue device */
4316 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4317 const struct blk_mq_ops *ops, unsigned int queue_depth,
4318 unsigned int set_flags)
4319 {
4320 memset(set, 0, sizeof(*set));
4321 set->ops = ops;
4322 set->nr_hw_queues = 1;
4323 set->nr_maps = 1;
4324 set->queue_depth = queue_depth;
4325 set->numa_node = NUMA_NO_NODE;
4326 set->flags = set_flags;
4327 return blk_mq_alloc_tag_set(set);
4328 }
4329 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4330
4331 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4332 {
4333 int i, j;
4334
4335 for (i = 0; i < set->nr_hw_queues; i++)
4336 __blk_mq_free_map_and_rqs(set, i);
4337
4338 if (blk_mq_is_shared_tags(set->flags)) {
4339 blk_mq_free_map_and_rqs(set, set->shared_tags,
4340 BLK_MQ_NO_HCTX_IDX);
4341 }
4342
4343 for (j = 0; j < set->nr_maps; j++) {
4344 kfree(set->map[j].mq_map);
4345 set->map[j].mq_map = NULL;
4346 }
4347
4348 kfree(set->tags);
4349 set->tags = NULL;
4350 }
4351 EXPORT_SYMBOL(blk_mq_free_tag_set);
4352
4353 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4354 {
4355 struct blk_mq_tag_set *set = q->tag_set;
4356 struct blk_mq_hw_ctx *hctx;
4357 int i, ret;
4358
4359 if (!set)
4360 return -EINVAL;
4361
4362 if (q->nr_requests == nr)
4363 return 0;
4364
4365 blk_mq_freeze_queue(q);
4366 blk_mq_quiesce_queue(q);
4367
4368 ret = 0;
4369 queue_for_each_hw_ctx(q, hctx, i) {
4370 if (!hctx->tags)
4371 continue;
4372 /*
4373 * If we're using an MQ scheduler, just update the scheduler
4374 * queue depth. This is similar to what the old code would do.
4375 */
4376 if (hctx->sched_tags) {
4377 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4378 nr, true);
4379 } else {
4380 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4381 false);
4382 }
4383 if (ret)
4384 break;
4385 if (q->elevator && q->elevator->type->ops.depth_updated)
4386 q->elevator->type->ops.depth_updated(hctx);
4387 }
4388 if (!ret) {
4389 q->nr_requests = nr;
4390 if (blk_mq_is_shared_tags(set->flags)) {
4391 if (q->elevator)
4392 blk_mq_tag_update_sched_shared_tags(q);
4393 else
4394 blk_mq_tag_resize_shared_tags(set, nr);
4395 }
4396 }
4397
4398 blk_mq_unquiesce_queue(q);
4399 blk_mq_unfreeze_queue(q);
4400
4401 return ret;
4402 }
4403
4404 /*
4405 * request_queue and elevator_type pair.
4406 * It is just used by __blk_mq_update_nr_hw_queues to cache
4407 * the elevator_type associated with a request_queue.
4408 */
4409 struct blk_mq_qe_pair {
4410 struct list_head node;
4411 struct request_queue *q;
4412 struct elevator_type *type;
4413 };
4414
4415 /*
4416 * Cache the elevator_type in qe pair list and switch the
4417 * io scheduler to 'none'
4418 */
4419 static bool blk_mq_elv_switch_none(struct list_head *head,
4420 struct request_queue *q)
4421 {
4422 struct blk_mq_qe_pair *qe;
4423
4424 if (!q->elevator)
4425 return true;
4426
4427 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4428 if (!qe)
4429 return false;
4430
4431 INIT_LIST_HEAD(&qe->node);
4432 qe->q = q;
4433 qe->type = q->elevator->type;
4434 list_add(&qe->node, head);
4435
4436 mutex_lock(&q->sysfs_lock);
4437 /*
4438 * After elevator_switch_mq, the previous elevator_queue will be
4439 * released by elevator_release. The reference of the io scheduler
4440 * module get by elevator_get will also be put. So we need to get
4441 * a reference of the io scheduler module here to prevent it to be
4442 * removed.
4443 */
4444 __module_get(qe->type->elevator_owner);
4445 elevator_switch_mq(q, NULL);
4446 mutex_unlock(&q->sysfs_lock);
4447
4448 return true;
4449 }
4450
4451 static void blk_mq_elv_switch_back(struct list_head *head,
4452 struct request_queue *q)
4453 {
4454 struct blk_mq_qe_pair *qe;
4455 struct elevator_type *t = NULL;
4456
4457 list_for_each_entry(qe, head, node)
4458 if (qe->q == q) {
4459 t = qe->type;
4460 break;
4461 }
4462
4463 if (!t)
4464 return;
4465
4466 list_del(&qe->node);
4467 kfree(qe);
4468
4469 mutex_lock(&q->sysfs_lock);
4470 elevator_switch_mq(q, t);
4471 mutex_unlock(&q->sysfs_lock);
4472 }
4473
4474 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4475 int nr_hw_queues)
4476 {
4477 struct request_queue *q;
4478 LIST_HEAD(head);
4479 int prev_nr_hw_queues;
4480
4481 lockdep_assert_held(&set->tag_list_lock);
4482
4483 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4484 nr_hw_queues = nr_cpu_ids;
4485 if (nr_hw_queues < 1)
4486 return;
4487 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4488 return;
4489
4490 list_for_each_entry(q, &set->tag_list, tag_set_list)
4491 blk_mq_freeze_queue(q);
4492 /*
4493 * Switch IO scheduler to 'none', cleaning up the data associated
4494 * with the previous scheduler. We will switch back once we are done
4495 * updating the new sw to hw queue mappings.
4496 */
4497 list_for_each_entry(q, &set->tag_list, tag_set_list)
4498 if (!blk_mq_elv_switch_none(&head, q))
4499 goto switch_back;
4500
4501 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4502 blk_mq_debugfs_unregister_hctxs(q);
4503 blk_mq_sysfs_unregister(q);
4504 }
4505
4506 prev_nr_hw_queues = set->nr_hw_queues;
4507 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4508 0)
4509 goto reregister;
4510
4511 set->nr_hw_queues = nr_hw_queues;
4512 fallback:
4513 blk_mq_update_queue_map(set);
4514 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4515 blk_mq_realloc_hw_ctxs(set, q);
4516 if (q->nr_hw_queues != set->nr_hw_queues) {
4517 int i = prev_nr_hw_queues;
4518
4519 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4520 nr_hw_queues, prev_nr_hw_queues);
4521 for (; i < set->nr_hw_queues; i++)
4522 __blk_mq_free_map_and_rqs(set, i);
4523
4524 set->nr_hw_queues = prev_nr_hw_queues;
4525 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4526 goto fallback;
4527 }
4528 blk_mq_map_swqueue(q);
4529 }
4530
4531 reregister:
4532 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4533 blk_mq_sysfs_register(q);
4534 blk_mq_debugfs_register_hctxs(q);
4535 }
4536
4537 switch_back:
4538 list_for_each_entry(q, &set->tag_list, tag_set_list)
4539 blk_mq_elv_switch_back(&head, q);
4540
4541 list_for_each_entry(q, &set->tag_list, tag_set_list)
4542 blk_mq_unfreeze_queue(q);
4543 }
4544
4545 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4546 {
4547 mutex_lock(&set->tag_list_lock);
4548 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4549 mutex_unlock(&set->tag_list_lock);
4550 }
4551 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4552
4553 /* Enable polling stats and return whether they were already enabled. */
4554 static bool blk_poll_stats_enable(struct request_queue *q)
4555 {
4556 if (q->poll_stat)
4557 return true;
4558
4559 return blk_stats_alloc_enable(q);
4560 }
4561
4562 static void blk_mq_poll_stats_start(struct request_queue *q)
4563 {
4564 /*
4565 * We don't arm the callback if polling stats are not enabled or the
4566 * callback is already active.
4567 */
4568 if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4569 return;
4570
4571 blk_stat_activate_msecs(q->poll_cb, 100);
4572 }
4573
4574 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4575 {
4576 struct request_queue *q = cb->data;
4577 int bucket;
4578
4579 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4580 if (cb->stat[bucket].nr_samples)
4581 q->poll_stat[bucket] = cb->stat[bucket];
4582 }
4583 }
4584
4585 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4586 struct request *rq)
4587 {
4588 unsigned long ret = 0;
4589 int bucket;
4590
4591 /*
4592 * If stats collection isn't on, don't sleep but turn it on for
4593 * future users
4594 */
4595 if (!blk_poll_stats_enable(q))
4596 return 0;
4597
4598 /*
4599 * As an optimistic guess, use half of the mean service time
4600 * for this type of request. We can (and should) make this smarter.
4601 * For instance, if the completion latencies are tight, we can
4602 * get closer than just half the mean. This is especially
4603 * important on devices where the completion latencies are longer
4604 * than ~10 usec. We do use the stats for the relevant IO size
4605 * if available which does lead to better estimates.
4606 */
4607 bucket = blk_mq_poll_stats_bkt(rq);
4608 if (bucket < 0)
4609 return ret;
4610
4611 if (q->poll_stat[bucket].nr_samples)
4612 ret = (q->poll_stat[bucket].mean + 1) / 2;
4613
4614 return ret;
4615 }
4616
4617 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4618 {
4619 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4620 struct request *rq = blk_qc_to_rq(hctx, qc);
4621 struct hrtimer_sleeper hs;
4622 enum hrtimer_mode mode;
4623 unsigned int nsecs;
4624 ktime_t kt;
4625
4626 /*
4627 * If a request has completed on queue that uses an I/O scheduler, we
4628 * won't get back a request from blk_qc_to_rq.
4629 */
4630 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4631 return false;
4632
4633 /*
4634 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4635 *
4636 * 0: use half of prev avg
4637 * >0: use this specific value
4638 */
4639 if (q->poll_nsec > 0)
4640 nsecs = q->poll_nsec;
4641 else
4642 nsecs = blk_mq_poll_nsecs(q, rq);
4643
4644 if (!nsecs)
4645 return false;
4646
4647 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4648
4649 /*
4650 * This will be replaced with the stats tracking code, using
4651 * 'avg_completion_time / 2' as the pre-sleep target.
4652 */
4653 kt = nsecs;
4654
4655 mode = HRTIMER_MODE_REL;
4656 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4657 hrtimer_set_expires(&hs.timer, kt);
4658
4659 do {
4660 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4661 break;
4662 set_current_state(TASK_UNINTERRUPTIBLE);
4663 hrtimer_sleeper_start_expires(&hs, mode);
4664 if (hs.task)
4665 io_schedule();
4666 hrtimer_cancel(&hs.timer);
4667 mode = HRTIMER_MODE_ABS;
4668 } while (hs.task && !signal_pending(current));
4669
4670 __set_current_state(TASK_RUNNING);
4671 destroy_hrtimer_on_stack(&hs.timer);
4672
4673 /*
4674 * If we sleep, have the caller restart the poll loop to reset the
4675 * state. Like for the other success return cases, the caller is
4676 * responsible for checking if the IO completed. If the IO isn't
4677 * complete, we'll get called again and will go straight to the busy
4678 * poll loop.
4679 */
4680 return true;
4681 }
4682
4683 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4684 struct io_comp_batch *iob, unsigned int flags)
4685 {
4686 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4687 long state = get_current_state();
4688 int ret;
4689
4690 do {
4691 ret = q->mq_ops->poll(hctx, iob);
4692 if (ret > 0) {
4693 __set_current_state(TASK_RUNNING);
4694 return ret;
4695 }
4696
4697 if (signal_pending_state(state, current))
4698 __set_current_state(TASK_RUNNING);
4699 if (task_is_running(current))
4700 return 1;
4701
4702 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4703 break;
4704 cpu_relax();
4705 } while (!need_resched());
4706
4707 __set_current_state(TASK_RUNNING);
4708 return 0;
4709 }
4710
4711 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4712 unsigned int flags)
4713 {
4714 if (!(flags & BLK_POLL_NOSLEEP) &&
4715 q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4716 if (blk_mq_poll_hybrid(q, cookie))
4717 return 1;
4718 }
4719 return blk_mq_poll_classic(q, cookie, iob, flags);
4720 }
4721
4722 unsigned int blk_mq_rq_cpu(struct request *rq)
4723 {
4724 return rq->mq_ctx->cpu;
4725 }
4726 EXPORT_SYMBOL(blk_mq_rq_cpu);
4727
4728 void blk_mq_cancel_work_sync(struct request_queue *q)
4729 {
4730 if (queue_is_mq(q)) {
4731 struct blk_mq_hw_ctx *hctx;
4732 int i;
4733
4734 cancel_delayed_work_sync(&q->requeue_work);
4735
4736 queue_for_each_hw_ctx(q, hctx, i)
4737 cancel_delayed_work_sync(&hctx->run_work);
4738 }
4739 }
4740
4741 static int __init blk_mq_init(void)
4742 {
4743 int i;
4744
4745 for_each_possible_cpu(i)
4746 init_llist_head(&per_cpu(blk_cpu_done, i));
4747 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4748
4749 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4750 "block/softirq:dead", NULL,
4751 blk_softirq_cpu_dead);
4752 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4753 blk_mq_hctx_notify_dead);
4754 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4755 blk_mq_hctx_notify_online,
4756 blk_mq_hctx_notify_offline);
4757 return 0;
4758 }
4759 subsys_initcall(blk_mq_init);