]> git.ipfire.org Git - people/ms/linux.git/blob - block/blk-mq.c
Merge tag 'devicetree-fixes-for-4.4-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[people/ms/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25
26 #include <trace/events/block.h>
27
28 #include <linux/blk-mq.h>
29 #include "blk.h"
30 #include "blk-mq.h"
31 #include "blk-mq-tag.h"
32
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
35
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
38 /*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 {
43 unsigned int i;
44
45 for (i = 0; i < hctx->ctx_map.size; i++)
46 if (hctx->ctx_map.map[i].word)
47 return true;
48
49 return false;
50 }
51
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54 {
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56 }
57
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
61 /*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66 {
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71 }
72
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75 {
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 }
80
81 void blk_mq_freeze_queue_start(struct request_queue *q)
82 {
83 int freeze_depth;
84
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
87 percpu_ref_kill(&q->q_usage_counter);
88 blk_mq_run_hw_queues(q, false);
89 }
90 }
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
94 {
95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 }
97
98 /*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 void blk_mq_wake_waiters(struct request_queue *q)
139 {
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
142
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
146
147 /*
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
151 */
152 wake_up_all(&q->mq_freeze_wq);
153 }
154
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, unsigned int rw_flags)
163 {
164 if (blk_queue_io_stat(q))
165 rw_flags |= REQ_IO_STAT;
166
167 INIT_LIST_HEAD(&rq->queuelist);
168 /* csd/requeue_work/fifo_time is initialized before use */
169 rq->q = q;
170 rq->mq_ctx = ctx;
171 rq->cmd_flags |= rw_flags;
172 /* do not touch atomic flags, it needs atomic ops against the timer */
173 rq->cpu = -1;
174 INIT_HLIST_NODE(&rq->hash);
175 RB_CLEAR_NODE(&rq->rb_node);
176 rq->rq_disk = NULL;
177 rq->part = NULL;
178 rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 rq->rl = NULL;
181 set_start_time_ns(rq);
182 rq->io_start_time_ns = 0;
183 #endif
184 rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq->nr_integrity_segments = 0;
187 #endif
188 rq->special = NULL;
189 /* tag was already set */
190 rq->errors = 0;
191
192 rq->cmd = rq->__cmd;
193
194 rq->extra_len = 0;
195 rq->sense_len = 0;
196 rq->resid_len = 0;
197 rq->sense = NULL;
198
199 INIT_LIST_HEAD(&rq->timeout_list);
200 rq->timeout = 0;
201
202 rq->end_io = NULL;
203 rq->end_io_data = NULL;
204 rq->next_rq = NULL;
205
206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 struct request *rq;
213 unsigned int tag;
214
215 tag = blk_mq_get_tag(data);
216 if (tag != BLK_MQ_TAG_FAIL) {
217 rq = data->hctx->tags->rqs[tag];
218
219 if (blk_mq_tag_busy(data->hctx)) {
220 rq->cmd_flags = REQ_MQ_INFLIGHT;
221 atomic_inc(&data->hctx->nr_active);
222 }
223
224 rq->tag = tag;
225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 return rq;
227 }
228
229 return NULL;
230 }
231
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
233 bool reserved)
234 {
235 struct blk_mq_ctx *ctx;
236 struct blk_mq_hw_ctx *hctx;
237 struct request *rq;
238 struct blk_mq_alloc_data alloc_data;
239 int ret;
240
241 ret = blk_queue_enter(q, gfp);
242 if (ret)
243 return ERR_PTR(ret);
244
245 ctx = blk_mq_get_ctx(q);
246 hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_DIRECT_RECLAIM,
248 reserved, ctx, hctx);
249
250 rq = __blk_mq_alloc_request(&alloc_data, rw);
251 if (!rq && (gfp & __GFP_DIRECT_RECLAIM)) {
252 __blk_mq_run_hw_queue(hctx);
253 blk_mq_put_ctx(ctx);
254
255 ctx = blk_mq_get_ctx(q);
256 hctx = q->mq_ops->map_queue(q, ctx->cpu);
257 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
258 hctx);
259 rq = __blk_mq_alloc_request(&alloc_data, rw);
260 ctx = alloc_data.ctx;
261 }
262 blk_mq_put_ctx(ctx);
263 if (!rq) {
264 blk_queue_exit(q);
265 return ERR_PTR(-EWOULDBLOCK);
266 }
267 return rq;
268 }
269 EXPORT_SYMBOL(blk_mq_alloc_request);
270
271 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
272 struct blk_mq_ctx *ctx, struct request *rq)
273 {
274 const int tag = rq->tag;
275 struct request_queue *q = rq->q;
276
277 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
278 atomic_dec(&hctx->nr_active);
279 rq->cmd_flags = 0;
280
281 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
282 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
283 blk_queue_exit(q);
284 }
285
286 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
287 {
288 struct blk_mq_ctx *ctx = rq->mq_ctx;
289
290 ctx->rq_completed[rq_is_sync(rq)]++;
291 __blk_mq_free_request(hctx, ctx, rq);
292
293 }
294 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
295
296 void blk_mq_free_request(struct request *rq)
297 {
298 struct blk_mq_hw_ctx *hctx;
299 struct request_queue *q = rq->q;
300
301 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
302 blk_mq_free_hctx_request(hctx, rq);
303 }
304 EXPORT_SYMBOL_GPL(blk_mq_free_request);
305
306 inline void __blk_mq_end_request(struct request *rq, int error)
307 {
308 blk_account_io_done(rq);
309
310 if (rq->end_io) {
311 rq->end_io(rq, error);
312 } else {
313 if (unlikely(blk_bidi_rq(rq)))
314 blk_mq_free_request(rq->next_rq);
315 blk_mq_free_request(rq);
316 }
317 }
318 EXPORT_SYMBOL(__blk_mq_end_request);
319
320 void blk_mq_end_request(struct request *rq, int error)
321 {
322 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
323 BUG();
324 __blk_mq_end_request(rq, error);
325 }
326 EXPORT_SYMBOL(blk_mq_end_request);
327
328 static void __blk_mq_complete_request_remote(void *data)
329 {
330 struct request *rq = data;
331
332 rq->q->softirq_done_fn(rq);
333 }
334
335 static void blk_mq_ipi_complete_request(struct request *rq)
336 {
337 struct blk_mq_ctx *ctx = rq->mq_ctx;
338 bool shared = false;
339 int cpu;
340
341 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
342 rq->q->softirq_done_fn(rq);
343 return;
344 }
345
346 cpu = get_cpu();
347 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
348 shared = cpus_share_cache(cpu, ctx->cpu);
349
350 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
351 rq->csd.func = __blk_mq_complete_request_remote;
352 rq->csd.info = rq;
353 rq->csd.flags = 0;
354 smp_call_function_single_async(ctx->cpu, &rq->csd);
355 } else {
356 rq->q->softirq_done_fn(rq);
357 }
358 put_cpu();
359 }
360
361 static void __blk_mq_complete_request(struct request *rq)
362 {
363 struct request_queue *q = rq->q;
364
365 if (!q->softirq_done_fn)
366 blk_mq_end_request(rq, rq->errors);
367 else
368 blk_mq_ipi_complete_request(rq);
369 }
370
371 /**
372 * blk_mq_complete_request - end I/O on a request
373 * @rq: the request being processed
374 *
375 * Description:
376 * Ends all I/O on a request. It does not handle partial completions.
377 * The actual completion happens out-of-order, through a IPI handler.
378 **/
379 void blk_mq_complete_request(struct request *rq, int error)
380 {
381 struct request_queue *q = rq->q;
382
383 if (unlikely(blk_should_fake_timeout(q)))
384 return;
385 if (!blk_mark_rq_complete(rq)) {
386 rq->errors = error;
387 __blk_mq_complete_request(rq);
388 }
389 }
390 EXPORT_SYMBOL(blk_mq_complete_request);
391
392 int blk_mq_request_started(struct request *rq)
393 {
394 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
395 }
396 EXPORT_SYMBOL_GPL(blk_mq_request_started);
397
398 void blk_mq_start_request(struct request *rq)
399 {
400 struct request_queue *q = rq->q;
401
402 trace_block_rq_issue(q, rq);
403
404 rq->resid_len = blk_rq_bytes(rq);
405 if (unlikely(blk_bidi_rq(rq)))
406 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
407
408 blk_add_timer(rq);
409
410 /*
411 * Ensure that ->deadline is visible before set the started
412 * flag and clear the completed flag.
413 */
414 smp_mb__before_atomic();
415
416 /*
417 * Mark us as started and clear complete. Complete might have been
418 * set if requeue raced with timeout, which then marked it as
419 * complete. So be sure to clear complete again when we start
420 * the request, otherwise we'll ignore the completion event.
421 */
422 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
423 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
424 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
425 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
426
427 if (q->dma_drain_size && blk_rq_bytes(rq)) {
428 /*
429 * Make sure space for the drain appears. We know we can do
430 * this because max_hw_segments has been adjusted to be one
431 * fewer than the device can handle.
432 */
433 rq->nr_phys_segments++;
434 }
435 }
436 EXPORT_SYMBOL(blk_mq_start_request);
437
438 static void __blk_mq_requeue_request(struct request *rq)
439 {
440 struct request_queue *q = rq->q;
441
442 trace_block_rq_requeue(q, rq);
443
444 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
445 if (q->dma_drain_size && blk_rq_bytes(rq))
446 rq->nr_phys_segments--;
447 }
448 }
449
450 void blk_mq_requeue_request(struct request *rq)
451 {
452 __blk_mq_requeue_request(rq);
453
454 BUG_ON(blk_queued_rq(rq));
455 blk_mq_add_to_requeue_list(rq, true);
456 }
457 EXPORT_SYMBOL(blk_mq_requeue_request);
458
459 static void blk_mq_requeue_work(struct work_struct *work)
460 {
461 struct request_queue *q =
462 container_of(work, struct request_queue, requeue_work);
463 LIST_HEAD(rq_list);
464 struct request *rq, *next;
465 unsigned long flags;
466
467 spin_lock_irqsave(&q->requeue_lock, flags);
468 list_splice_init(&q->requeue_list, &rq_list);
469 spin_unlock_irqrestore(&q->requeue_lock, flags);
470
471 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
472 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
473 continue;
474
475 rq->cmd_flags &= ~REQ_SOFTBARRIER;
476 list_del_init(&rq->queuelist);
477 blk_mq_insert_request(rq, true, false, false);
478 }
479
480 while (!list_empty(&rq_list)) {
481 rq = list_entry(rq_list.next, struct request, queuelist);
482 list_del_init(&rq->queuelist);
483 blk_mq_insert_request(rq, false, false, false);
484 }
485
486 /*
487 * Use the start variant of queue running here, so that running
488 * the requeue work will kick stopped queues.
489 */
490 blk_mq_start_hw_queues(q);
491 }
492
493 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
494 {
495 struct request_queue *q = rq->q;
496 unsigned long flags;
497
498 /*
499 * We abuse this flag that is otherwise used by the I/O scheduler to
500 * request head insertation from the workqueue.
501 */
502 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
503
504 spin_lock_irqsave(&q->requeue_lock, flags);
505 if (at_head) {
506 rq->cmd_flags |= REQ_SOFTBARRIER;
507 list_add(&rq->queuelist, &q->requeue_list);
508 } else {
509 list_add_tail(&rq->queuelist, &q->requeue_list);
510 }
511 spin_unlock_irqrestore(&q->requeue_lock, flags);
512 }
513 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
514
515 void blk_mq_cancel_requeue_work(struct request_queue *q)
516 {
517 cancel_work_sync(&q->requeue_work);
518 }
519 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
520
521 void blk_mq_kick_requeue_list(struct request_queue *q)
522 {
523 kblockd_schedule_work(&q->requeue_work);
524 }
525 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
526
527 void blk_mq_abort_requeue_list(struct request_queue *q)
528 {
529 unsigned long flags;
530 LIST_HEAD(rq_list);
531
532 spin_lock_irqsave(&q->requeue_lock, flags);
533 list_splice_init(&q->requeue_list, &rq_list);
534 spin_unlock_irqrestore(&q->requeue_lock, flags);
535
536 while (!list_empty(&rq_list)) {
537 struct request *rq;
538
539 rq = list_first_entry(&rq_list, struct request, queuelist);
540 list_del_init(&rq->queuelist);
541 rq->errors = -EIO;
542 blk_mq_end_request(rq, rq->errors);
543 }
544 }
545 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
546
547 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
548 {
549 return tags->rqs[tag];
550 }
551 EXPORT_SYMBOL(blk_mq_tag_to_rq);
552
553 struct blk_mq_timeout_data {
554 unsigned long next;
555 unsigned int next_set;
556 };
557
558 void blk_mq_rq_timed_out(struct request *req, bool reserved)
559 {
560 struct blk_mq_ops *ops = req->q->mq_ops;
561 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
562
563 /*
564 * We know that complete is set at this point. If STARTED isn't set
565 * anymore, then the request isn't active and the "timeout" should
566 * just be ignored. This can happen due to the bitflag ordering.
567 * Timeout first checks if STARTED is set, and if it is, assumes
568 * the request is active. But if we race with completion, then
569 * we both flags will get cleared. So check here again, and ignore
570 * a timeout event with a request that isn't active.
571 */
572 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
573 return;
574
575 if (ops->timeout)
576 ret = ops->timeout(req, reserved);
577
578 switch (ret) {
579 case BLK_EH_HANDLED:
580 __blk_mq_complete_request(req);
581 break;
582 case BLK_EH_RESET_TIMER:
583 blk_add_timer(req);
584 blk_clear_rq_complete(req);
585 break;
586 case BLK_EH_NOT_HANDLED:
587 break;
588 default:
589 printk(KERN_ERR "block: bad eh return: %d\n", ret);
590 break;
591 }
592 }
593
594 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
595 struct request *rq, void *priv, bool reserved)
596 {
597 struct blk_mq_timeout_data *data = priv;
598
599 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
600 /*
601 * If a request wasn't started before the queue was
602 * marked dying, kill it here or it'll go unnoticed.
603 */
604 if (unlikely(blk_queue_dying(rq->q)))
605 blk_mq_complete_request(rq, -EIO);
606 return;
607 }
608 if (rq->cmd_flags & REQ_NO_TIMEOUT)
609 return;
610
611 if (time_after_eq(jiffies, rq->deadline)) {
612 if (!blk_mark_rq_complete(rq))
613 blk_mq_rq_timed_out(rq, reserved);
614 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
615 data->next = rq->deadline;
616 data->next_set = 1;
617 }
618 }
619
620 static void blk_mq_rq_timer(unsigned long priv)
621 {
622 struct request_queue *q = (struct request_queue *)priv;
623 struct blk_mq_timeout_data data = {
624 .next = 0,
625 .next_set = 0,
626 };
627 int i;
628
629 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
630
631 if (data.next_set) {
632 data.next = blk_rq_timeout(round_jiffies_up(data.next));
633 mod_timer(&q->timeout, data.next);
634 } else {
635 struct blk_mq_hw_ctx *hctx;
636
637 queue_for_each_hw_ctx(q, hctx, i) {
638 /* the hctx may be unmapped, so check it here */
639 if (blk_mq_hw_queue_mapped(hctx))
640 blk_mq_tag_idle(hctx);
641 }
642 }
643 }
644
645 /*
646 * Reverse check our software queue for entries that we could potentially
647 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
648 * too much time checking for merges.
649 */
650 static bool blk_mq_attempt_merge(struct request_queue *q,
651 struct blk_mq_ctx *ctx, struct bio *bio)
652 {
653 struct request *rq;
654 int checked = 8;
655
656 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
657 int el_ret;
658
659 if (!checked--)
660 break;
661
662 if (!blk_rq_merge_ok(rq, bio))
663 continue;
664
665 el_ret = blk_try_merge(rq, bio);
666 if (el_ret == ELEVATOR_BACK_MERGE) {
667 if (bio_attempt_back_merge(q, rq, bio)) {
668 ctx->rq_merged++;
669 return true;
670 }
671 break;
672 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
673 if (bio_attempt_front_merge(q, rq, bio)) {
674 ctx->rq_merged++;
675 return true;
676 }
677 break;
678 }
679 }
680
681 return false;
682 }
683
684 /*
685 * Process software queues that have been marked busy, splicing them
686 * to the for-dispatch
687 */
688 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
689 {
690 struct blk_mq_ctx *ctx;
691 int i;
692
693 for (i = 0; i < hctx->ctx_map.size; i++) {
694 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
695 unsigned int off, bit;
696
697 if (!bm->word)
698 continue;
699
700 bit = 0;
701 off = i * hctx->ctx_map.bits_per_word;
702 do {
703 bit = find_next_bit(&bm->word, bm->depth, bit);
704 if (bit >= bm->depth)
705 break;
706
707 ctx = hctx->ctxs[bit + off];
708 clear_bit(bit, &bm->word);
709 spin_lock(&ctx->lock);
710 list_splice_tail_init(&ctx->rq_list, list);
711 spin_unlock(&ctx->lock);
712
713 bit++;
714 } while (1);
715 }
716 }
717
718 /*
719 * Run this hardware queue, pulling any software queues mapped to it in.
720 * Note that this function currently has various problems around ordering
721 * of IO. In particular, we'd like FIFO behaviour on handling existing
722 * items on the hctx->dispatch list. Ignore that for now.
723 */
724 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
725 {
726 struct request_queue *q = hctx->queue;
727 struct request *rq;
728 LIST_HEAD(rq_list);
729 LIST_HEAD(driver_list);
730 struct list_head *dptr;
731 int queued;
732
733 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
734
735 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
736 return;
737
738 hctx->run++;
739
740 /*
741 * Touch any software queue that has pending entries.
742 */
743 flush_busy_ctxs(hctx, &rq_list);
744
745 /*
746 * If we have previous entries on our dispatch list, grab them
747 * and stuff them at the front for more fair dispatch.
748 */
749 if (!list_empty_careful(&hctx->dispatch)) {
750 spin_lock(&hctx->lock);
751 if (!list_empty(&hctx->dispatch))
752 list_splice_init(&hctx->dispatch, &rq_list);
753 spin_unlock(&hctx->lock);
754 }
755
756 /*
757 * Start off with dptr being NULL, so we start the first request
758 * immediately, even if we have more pending.
759 */
760 dptr = NULL;
761
762 /*
763 * Now process all the entries, sending them to the driver.
764 */
765 queued = 0;
766 while (!list_empty(&rq_list)) {
767 struct blk_mq_queue_data bd;
768 int ret;
769
770 rq = list_first_entry(&rq_list, struct request, queuelist);
771 list_del_init(&rq->queuelist);
772
773 bd.rq = rq;
774 bd.list = dptr;
775 bd.last = list_empty(&rq_list);
776
777 ret = q->mq_ops->queue_rq(hctx, &bd);
778 switch (ret) {
779 case BLK_MQ_RQ_QUEUE_OK:
780 queued++;
781 continue;
782 case BLK_MQ_RQ_QUEUE_BUSY:
783 list_add(&rq->queuelist, &rq_list);
784 __blk_mq_requeue_request(rq);
785 break;
786 default:
787 pr_err("blk-mq: bad return on queue: %d\n", ret);
788 case BLK_MQ_RQ_QUEUE_ERROR:
789 rq->errors = -EIO;
790 blk_mq_end_request(rq, rq->errors);
791 break;
792 }
793
794 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
795 break;
796
797 /*
798 * We've done the first request. If we have more than 1
799 * left in the list, set dptr to defer issue.
800 */
801 if (!dptr && rq_list.next != rq_list.prev)
802 dptr = &driver_list;
803 }
804
805 if (!queued)
806 hctx->dispatched[0]++;
807 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
808 hctx->dispatched[ilog2(queued) + 1]++;
809
810 /*
811 * Any items that need requeuing? Stuff them into hctx->dispatch,
812 * that is where we will continue on next queue run.
813 */
814 if (!list_empty(&rq_list)) {
815 spin_lock(&hctx->lock);
816 list_splice(&rq_list, &hctx->dispatch);
817 spin_unlock(&hctx->lock);
818 /*
819 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
820 * it's possible the queue is stopped and restarted again
821 * before this. Queue restart will dispatch requests. And since
822 * requests in rq_list aren't added into hctx->dispatch yet,
823 * the requests in rq_list might get lost.
824 *
825 * blk_mq_run_hw_queue() already checks the STOPPED bit
826 **/
827 blk_mq_run_hw_queue(hctx, true);
828 }
829 }
830
831 /*
832 * It'd be great if the workqueue API had a way to pass
833 * in a mask and had some smarts for more clever placement.
834 * For now we just round-robin here, switching for every
835 * BLK_MQ_CPU_WORK_BATCH queued items.
836 */
837 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
838 {
839 if (hctx->queue->nr_hw_queues == 1)
840 return WORK_CPU_UNBOUND;
841
842 if (--hctx->next_cpu_batch <= 0) {
843 int cpu = hctx->next_cpu, next_cpu;
844
845 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
846 if (next_cpu >= nr_cpu_ids)
847 next_cpu = cpumask_first(hctx->cpumask);
848
849 hctx->next_cpu = next_cpu;
850 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
851
852 return cpu;
853 }
854
855 return hctx->next_cpu;
856 }
857
858 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
859 {
860 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
861 !blk_mq_hw_queue_mapped(hctx)))
862 return;
863
864 if (!async) {
865 int cpu = get_cpu();
866 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
867 __blk_mq_run_hw_queue(hctx);
868 put_cpu();
869 return;
870 }
871
872 put_cpu();
873 }
874
875 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
876 &hctx->run_work, 0);
877 }
878
879 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
880 {
881 struct blk_mq_hw_ctx *hctx;
882 int i;
883
884 queue_for_each_hw_ctx(q, hctx, i) {
885 if ((!blk_mq_hctx_has_pending(hctx) &&
886 list_empty_careful(&hctx->dispatch)) ||
887 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
888 continue;
889
890 blk_mq_run_hw_queue(hctx, async);
891 }
892 }
893 EXPORT_SYMBOL(blk_mq_run_hw_queues);
894
895 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
896 {
897 cancel_delayed_work(&hctx->run_work);
898 cancel_delayed_work(&hctx->delay_work);
899 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
900 }
901 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
902
903 void blk_mq_stop_hw_queues(struct request_queue *q)
904 {
905 struct blk_mq_hw_ctx *hctx;
906 int i;
907
908 queue_for_each_hw_ctx(q, hctx, i)
909 blk_mq_stop_hw_queue(hctx);
910 }
911 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
912
913 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
914 {
915 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
916
917 blk_mq_run_hw_queue(hctx, false);
918 }
919 EXPORT_SYMBOL(blk_mq_start_hw_queue);
920
921 void blk_mq_start_hw_queues(struct request_queue *q)
922 {
923 struct blk_mq_hw_ctx *hctx;
924 int i;
925
926 queue_for_each_hw_ctx(q, hctx, i)
927 blk_mq_start_hw_queue(hctx);
928 }
929 EXPORT_SYMBOL(blk_mq_start_hw_queues);
930
931 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
932 {
933 struct blk_mq_hw_ctx *hctx;
934 int i;
935
936 queue_for_each_hw_ctx(q, hctx, i) {
937 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
938 continue;
939
940 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
941 blk_mq_run_hw_queue(hctx, async);
942 }
943 }
944 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
945
946 static void blk_mq_run_work_fn(struct work_struct *work)
947 {
948 struct blk_mq_hw_ctx *hctx;
949
950 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
951
952 __blk_mq_run_hw_queue(hctx);
953 }
954
955 static void blk_mq_delay_work_fn(struct work_struct *work)
956 {
957 struct blk_mq_hw_ctx *hctx;
958
959 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
960
961 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
962 __blk_mq_run_hw_queue(hctx);
963 }
964
965 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
966 {
967 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
968 return;
969
970 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
971 &hctx->delay_work, msecs_to_jiffies(msecs));
972 }
973 EXPORT_SYMBOL(blk_mq_delay_queue);
974
975 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
976 struct blk_mq_ctx *ctx,
977 struct request *rq,
978 bool at_head)
979 {
980 trace_block_rq_insert(hctx->queue, rq);
981
982 if (at_head)
983 list_add(&rq->queuelist, &ctx->rq_list);
984 else
985 list_add_tail(&rq->queuelist, &ctx->rq_list);
986 }
987
988 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
989 struct request *rq, bool at_head)
990 {
991 struct blk_mq_ctx *ctx = rq->mq_ctx;
992
993 __blk_mq_insert_req_list(hctx, ctx, rq, at_head);
994 blk_mq_hctx_mark_pending(hctx, ctx);
995 }
996
997 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
998 bool async)
999 {
1000 struct request_queue *q = rq->q;
1001 struct blk_mq_hw_ctx *hctx;
1002 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1003
1004 current_ctx = blk_mq_get_ctx(q);
1005 if (!cpu_online(ctx->cpu))
1006 rq->mq_ctx = ctx = current_ctx;
1007
1008 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1009
1010 spin_lock(&ctx->lock);
1011 __blk_mq_insert_request(hctx, rq, at_head);
1012 spin_unlock(&ctx->lock);
1013
1014 if (run_queue)
1015 blk_mq_run_hw_queue(hctx, async);
1016
1017 blk_mq_put_ctx(current_ctx);
1018 }
1019
1020 static void blk_mq_insert_requests(struct request_queue *q,
1021 struct blk_mq_ctx *ctx,
1022 struct list_head *list,
1023 int depth,
1024 bool from_schedule)
1025
1026 {
1027 struct blk_mq_hw_ctx *hctx;
1028 struct blk_mq_ctx *current_ctx;
1029
1030 trace_block_unplug(q, depth, !from_schedule);
1031
1032 current_ctx = blk_mq_get_ctx(q);
1033
1034 if (!cpu_online(ctx->cpu))
1035 ctx = current_ctx;
1036 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1037
1038 /*
1039 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1040 * offline now
1041 */
1042 spin_lock(&ctx->lock);
1043 while (!list_empty(list)) {
1044 struct request *rq;
1045
1046 rq = list_first_entry(list, struct request, queuelist);
1047 list_del_init(&rq->queuelist);
1048 rq->mq_ctx = ctx;
1049 __blk_mq_insert_req_list(hctx, ctx, rq, false);
1050 }
1051 blk_mq_hctx_mark_pending(hctx, ctx);
1052 spin_unlock(&ctx->lock);
1053
1054 blk_mq_run_hw_queue(hctx, from_schedule);
1055 blk_mq_put_ctx(current_ctx);
1056 }
1057
1058 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1059 {
1060 struct request *rqa = container_of(a, struct request, queuelist);
1061 struct request *rqb = container_of(b, struct request, queuelist);
1062
1063 return !(rqa->mq_ctx < rqb->mq_ctx ||
1064 (rqa->mq_ctx == rqb->mq_ctx &&
1065 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1066 }
1067
1068 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1069 {
1070 struct blk_mq_ctx *this_ctx;
1071 struct request_queue *this_q;
1072 struct request *rq;
1073 LIST_HEAD(list);
1074 LIST_HEAD(ctx_list);
1075 unsigned int depth;
1076
1077 list_splice_init(&plug->mq_list, &list);
1078
1079 list_sort(NULL, &list, plug_ctx_cmp);
1080
1081 this_q = NULL;
1082 this_ctx = NULL;
1083 depth = 0;
1084
1085 while (!list_empty(&list)) {
1086 rq = list_entry_rq(list.next);
1087 list_del_init(&rq->queuelist);
1088 BUG_ON(!rq->q);
1089 if (rq->mq_ctx != this_ctx) {
1090 if (this_ctx) {
1091 blk_mq_insert_requests(this_q, this_ctx,
1092 &ctx_list, depth,
1093 from_schedule);
1094 }
1095
1096 this_ctx = rq->mq_ctx;
1097 this_q = rq->q;
1098 depth = 0;
1099 }
1100
1101 depth++;
1102 list_add_tail(&rq->queuelist, &ctx_list);
1103 }
1104
1105 /*
1106 * If 'this_ctx' is set, we know we have entries to complete
1107 * on 'ctx_list'. Do those.
1108 */
1109 if (this_ctx) {
1110 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1111 from_schedule);
1112 }
1113 }
1114
1115 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1116 {
1117 init_request_from_bio(rq, bio);
1118
1119 if (blk_do_io_stat(rq))
1120 blk_account_io_start(rq, 1);
1121 }
1122
1123 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1124 {
1125 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1126 !blk_queue_nomerges(hctx->queue);
1127 }
1128
1129 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1130 struct blk_mq_ctx *ctx,
1131 struct request *rq, struct bio *bio)
1132 {
1133 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1134 blk_mq_bio_to_request(rq, bio);
1135 spin_lock(&ctx->lock);
1136 insert_rq:
1137 __blk_mq_insert_request(hctx, rq, false);
1138 spin_unlock(&ctx->lock);
1139 return false;
1140 } else {
1141 struct request_queue *q = hctx->queue;
1142
1143 spin_lock(&ctx->lock);
1144 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1145 blk_mq_bio_to_request(rq, bio);
1146 goto insert_rq;
1147 }
1148
1149 spin_unlock(&ctx->lock);
1150 __blk_mq_free_request(hctx, ctx, rq);
1151 return true;
1152 }
1153 }
1154
1155 struct blk_map_ctx {
1156 struct blk_mq_hw_ctx *hctx;
1157 struct blk_mq_ctx *ctx;
1158 };
1159
1160 static struct request *blk_mq_map_request(struct request_queue *q,
1161 struct bio *bio,
1162 struct blk_map_ctx *data)
1163 {
1164 struct blk_mq_hw_ctx *hctx;
1165 struct blk_mq_ctx *ctx;
1166 struct request *rq;
1167 int rw = bio_data_dir(bio);
1168 struct blk_mq_alloc_data alloc_data;
1169
1170 blk_queue_enter_live(q);
1171 ctx = blk_mq_get_ctx(q);
1172 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1173
1174 if (rw_is_sync(bio->bi_rw))
1175 rw |= REQ_SYNC;
1176
1177 trace_block_getrq(q, bio, rw);
1178 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1179 hctx);
1180 rq = __blk_mq_alloc_request(&alloc_data, rw);
1181 if (unlikely(!rq)) {
1182 __blk_mq_run_hw_queue(hctx);
1183 blk_mq_put_ctx(ctx);
1184 trace_block_sleeprq(q, bio, rw);
1185
1186 ctx = blk_mq_get_ctx(q);
1187 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1188 blk_mq_set_alloc_data(&alloc_data, q,
1189 __GFP_RECLAIM|__GFP_HIGH, false, ctx, hctx);
1190 rq = __blk_mq_alloc_request(&alloc_data, rw);
1191 ctx = alloc_data.ctx;
1192 hctx = alloc_data.hctx;
1193 }
1194
1195 hctx->queued++;
1196 data->hctx = hctx;
1197 data->ctx = ctx;
1198 return rq;
1199 }
1200
1201 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1202 {
1203 int ret;
1204 struct request_queue *q = rq->q;
1205 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1206 rq->mq_ctx->cpu);
1207 struct blk_mq_queue_data bd = {
1208 .rq = rq,
1209 .list = NULL,
1210 .last = 1
1211 };
1212 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1213
1214 /*
1215 * For OK queue, we are done. For error, kill it. Any other
1216 * error (busy), just add it to our list as we previously
1217 * would have done
1218 */
1219 ret = q->mq_ops->queue_rq(hctx, &bd);
1220 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1221 *cookie = new_cookie;
1222 return 0;
1223 }
1224
1225 __blk_mq_requeue_request(rq);
1226
1227 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1228 *cookie = BLK_QC_T_NONE;
1229 rq->errors = -EIO;
1230 blk_mq_end_request(rq, rq->errors);
1231 return 0;
1232 }
1233
1234 return -1;
1235 }
1236
1237 /*
1238 * Multiple hardware queue variant. This will not use per-process plugs,
1239 * but will attempt to bypass the hctx queueing if we can go straight to
1240 * hardware for SYNC IO.
1241 */
1242 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1243 {
1244 const int is_sync = rw_is_sync(bio->bi_rw);
1245 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1246 struct blk_map_ctx data;
1247 struct request *rq;
1248 unsigned int request_count = 0;
1249 struct blk_plug *plug;
1250 struct request *same_queue_rq = NULL;
1251 blk_qc_t cookie;
1252
1253 blk_queue_bounce(q, &bio);
1254
1255 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1256 bio_io_error(bio);
1257 return BLK_QC_T_NONE;
1258 }
1259
1260 blk_queue_split(q, &bio, q->bio_split);
1261
1262 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1263 if (blk_attempt_plug_merge(q, bio, &request_count,
1264 &same_queue_rq))
1265 return BLK_QC_T_NONE;
1266 } else
1267 request_count = blk_plug_queued_count(q);
1268
1269 rq = blk_mq_map_request(q, bio, &data);
1270 if (unlikely(!rq))
1271 return BLK_QC_T_NONE;
1272
1273 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1274
1275 if (unlikely(is_flush_fua)) {
1276 blk_mq_bio_to_request(rq, bio);
1277 blk_insert_flush(rq);
1278 goto run_queue;
1279 }
1280
1281 plug = current->plug;
1282 /*
1283 * If the driver supports defer issued based on 'last', then
1284 * queue it up like normal since we can potentially save some
1285 * CPU this way.
1286 */
1287 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1288 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1289 struct request *old_rq = NULL;
1290
1291 blk_mq_bio_to_request(rq, bio);
1292
1293 /*
1294 * We do limited pluging. If the bio can be merged, do that.
1295 * Otherwise the existing request in the plug list will be
1296 * issued. So the plug list will have one request at most
1297 */
1298 if (plug) {
1299 /*
1300 * The plug list might get flushed before this. If that
1301 * happens, same_queue_rq is invalid and plug list is
1302 * empty
1303 */
1304 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1305 old_rq = same_queue_rq;
1306 list_del_init(&old_rq->queuelist);
1307 }
1308 list_add_tail(&rq->queuelist, &plug->mq_list);
1309 } else /* is_sync */
1310 old_rq = rq;
1311 blk_mq_put_ctx(data.ctx);
1312 if (!old_rq)
1313 goto done;
1314 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1315 goto done;
1316 blk_mq_insert_request(old_rq, false, true, true);
1317 goto done;
1318 }
1319
1320 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1321 /*
1322 * For a SYNC request, send it to the hardware immediately. For
1323 * an ASYNC request, just ensure that we run it later on. The
1324 * latter allows for merging opportunities and more efficient
1325 * dispatching.
1326 */
1327 run_queue:
1328 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1329 }
1330 blk_mq_put_ctx(data.ctx);
1331 done:
1332 return cookie;
1333 }
1334
1335 /*
1336 * Single hardware queue variant. This will attempt to use any per-process
1337 * plug for merging and IO deferral.
1338 */
1339 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1340 {
1341 const int is_sync = rw_is_sync(bio->bi_rw);
1342 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1343 struct blk_plug *plug;
1344 unsigned int request_count = 0;
1345 struct blk_map_ctx data;
1346 struct request *rq;
1347 blk_qc_t cookie;
1348
1349 blk_queue_bounce(q, &bio);
1350
1351 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1352 bio_io_error(bio);
1353 return BLK_QC_T_NONE;
1354 }
1355
1356 blk_queue_split(q, &bio, q->bio_split);
1357
1358 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1359 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1360 return BLK_QC_T_NONE;
1361
1362 rq = blk_mq_map_request(q, bio, &data);
1363 if (unlikely(!rq))
1364 return BLK_QC_T_NONE;
1365
1366 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1367
1368 if (unlikely(is_flush_fua)) {
1369 blk_mq_bio_to_request(rq, bio);
1370 blk_insert_flush(rq);
1371 goto run_queue;
1372 }
1373
1374 /*
1375 * A task plug currently exists. Since this is completely lockless,
1376 * utilize that to temporarily store requests until the task is
1377 * either done or scheduled away.
1378 */
1379 plug = current->plug;
1380 if (plug) {
1381 blk_mq_bio_to_request(rq, bio);
1382 if (!request_count)
1383 trace_block_plug(q);
1384
1385 blk_mq_put_ctx(data.ctx);
1386
1387 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1388 blk_flush_plug_list(plug, false);
1389 trace_block_plug(q);
1390 }
1391
1392 list_add_tail(&rq->queuelist, &plug->mq_list);
1393 return cookie;
1394 }
1395
1396 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1397 /*
1398 * For a SYNC request, send it to the hardware immediately. For
1399 * an ASYNC request, just ensure that we run it later on. The
1400 * latter allows for merging opportunities and more efficient
1401 * dispatching.
1402 */
1403 run_queue:
1404 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1405 }
1406
1407 blk_mq_put_ctx(data.ctx);
1408 return cookie;
1409 }
1410
1411 /*
1412 * Default mapping to a software queue, since we use one per CPU.
1413 */
1414 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1415 {
1416 return q->queue_hw_ctx[q->mq_map[cpu]];
1417 }
1418 EXPORT_SYMBOL(blk_mq_map_queue);
1419
1420 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1421 struct blk_mq_tags *tags, unsigned int hctx_idx)
1422 {
1423 struct page *page;
1424
1425 if (tags->rqs && set->ops->exit_request) {
1426 int i;
1427
1428 for (i = 0; i < tags->nr_tags; i++) {
1429 if (!tags->rqs[i])
1430 continue;
1431 set->ops->exit_request(set->driver_data, tags->rqs[i],
1432 hctx_idx, i);
1433 tags->rqs[i] = NULL;
1434 }
1435 }
1436
1437 while (!list_empty(&tags->page_list)) {
1438 page = list_first_entry(&tags->page_list, struct page, lru);
1439 list_del_init(&page->lru);
1440 /*
1441 * Remove kmemleak object previously allocated in
1442 * blk_mq_init_rq_map().
1443 */
1444 kmemleak_free(page_address(page));
1445 __free_pages(page, page->private);
1446 }
1447
1448 kfree(tags->rqs);
1449
1450 blk_mq_free_tags(tags);
1451 }
1452
1453 static size_t order_to_size(unsigned int order)
1454 {
1455 return (size_t)PAGE_SIZE << order;
1456 }
1457
1458 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1459 unsigned int hctx_idx)
1460 {
1461 struct blk_mq_tags *tags;
1462 unsigned int i, j, entries_per_page, max_order = 4;
1463 size_t rq_size, left;
1464
1465 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1466 set->numa_node,
1467 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1468 if (!tags)
1469 return NULL;
1470
1471 INIT_LIST_HEAD(&tags->page_list);
1472
1473 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1474 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1475 set->numa_node);
1476 if (!tags->rqs) {
1477 blk_mq_free_tags(tags);
1478 return NULL;
1479 }
1480
1481 /*
1482 * rq_size is the size of the request plus driver payload, rounded
1483 * to the cacheline size
1484 */
1485 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1486 cache_line_size());
1487 left = rq_size * set->queue_depth;
1488
1489 for (i = 0; i < set->queue_depth; ) {
1490 int this_order = max_order;
1491 struct page *page;
1492 int to_do;
1493 void *p;
1494
1495 while (left < order_to_size(this_order - 1) && this_order)
1496 this_order--;
1497
1498 do {
1499 page = alloc_pages_node(set->numa_node,
1500 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1501 this_order);
1502 if (page)
1503 break;
1504 if (!this_order--)
1505 break;
1506 if (order_to_size(this_order) < rq_size)
1507 break;
1508 } while (1);
1509
1510 if (!page)
1511 goto fail;
1512
1513 page->private = this_order;
1514 list_add_tail(&page->lru, &tags->page_list);
1515
1516 p = page_address(page);
1517 /*
1518 * Allow kmemleak to scan these pages as they contain pointers
1519 * to additional allocations like via ops->init_request().
1520 */
1521 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1522 entries_per_page = order_to_size(this_order) / rq_size;
1523 to_do = min(entries_per_page, set->queue_depth - i);
1524 left -= to_do * rq_size;
1525 for (j = 0; j < to_do; j++) {
1526 tags->rqs[i] = p;
1527 if (set->ops->init_request) {
1528 if (set->ops->init_request(set->driver_data,
1529 tags->rqs[i], hctx_idx, i,
1530 set->numa_node)) {
1531 tags->rqs[i] = NULL;
1532 goto fail;
1533 }
1534 }
1535
1536 p += rq_size;
1537 i++;
1538 }
1539 }
1540 return tags;
1541
1542 fail:
1543 blk_mq_free_rq_map(set, tags, hctx_idx);
1544 return NULL;
1545 }
1546
1547 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1548 {
1549 kfree(bitmap->map);
1550 }
1551
1552 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1553 {
1554 unsigned int bpw = 8, total, num_maps, i;
1555
1556 bitmap->bits_per_word = bpw;
1557
1558 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1559 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1560 GFP_KERNEL, node);
1561 if (!bitmap->map)
1562 return -ENOMEM;
1563
1564 total = nr_cpu_ids;
1565 for (i = 0; i < num_maps; i++) {
1566 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1567 total -= bitmap->map[i].depth;
1568 }
1569
1570 return 0;
1571 }
1572
1573 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1574 {
1575 struct request_queue *q = hctx->queue;
1576 struct blk_mq_ctx *ctx;
1577 LIST_HEAD(tmp);
1578
1579 /*
1580 * Move ctx entries to new CPU, if this one is going away.
1581 */
1582 ctx = __blk_mq_get_ctx(q, cpu);
1583
1584 spin_lock(&ctx->lock);
1585 if (!list_empty(&ctx->rq_list)) {
1586 list_splice_init(&ctx->rq_list, &tmp);
1587 blk_mq_hctx_clear_pending(hctx, ctx);
1588 }
1589 spin_unlock(&ctx->lock);
1590
1591 if (list_empty(&tmp))
1592 return NOTIFY_OK;
1593
1594 ctx = blk_mq_get_ctx(q);
1595 spin_lock(&ctx->lock);
1596
1597 while (!list_empty(&tmp)) {
1598 struct request *rq;
1599
1600 rq = list_first_entry(&tmp, struct request, queuelist);
1601 rq->mq_ctx = ctx;
1602 list_move_tail(&rq->queuelist, &ctx->rq_list);
1603 }
1604
1605 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1606 blk_mq_hctx_mark_pending(hctx, ctx);
1607
1608 spin_unlock(&ctx->lock);
1609
1610 blk_mq_run_hw_queue(hctx, true);
1611 blk_mq_put_ctx(ctx);
1612 return NOTIFY_OK;
1613 }
1614
1615 static int blk_mq_hctx_notify(void *data, unsigned long action,
1616 unsigned int cpu)
1617 {
1618 struct blk_mq_hw_ctx *hctx = data;
1619
1620 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1621 return blk_mq_hctx_cpu_offline(hctx, cpu);
1622
1623 /*
1624 * In case of CPU online, tags may be reallocated
1625 * in blk_mq_map_swqueue() after mapping is updated.
1626 */
1627
1628 return NOTIFY_OK;
1629 }
1630
1631 /* hctx->ctxs will be freed in queue's release handler */
1632 static void blk_mq_exit_hctx(struct request_queue *q,
1633 struct blk_mq_tag_set *set,
1634 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1635 {
1636 unsigned flush_start_tag = set->queue_depth;
1637
1638 blk_mq_tag_idle(hctx);
1639
1640 if (set->ops->exit_request)
1641 set->ops->exit_request(set->driver_data,
1642 hctx->fq->flush_rq, hctx_idx,
1643 flush_start_tag + hctx_idx);
1644
1645 if (set->ops->exit_hctx)
1646 set->ops->exit_hctx(hctx, hctx_idx);
1647
1648 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1649 blk_free_flush_queue(hctx->fq);
1650 blk_mq_free_bitmap(&hctx->ctx_map);
1651 }
1652
1653 static void blk_mq_exit_hw_queues(struct request_queue *q,
1654 struct blk_mq_tag_set *set, int nr_queue)
1655 {
1656 struct blk_mq_hw_ctx *hctx;
1657 unsigned int i;
1658
1659 queue_for_each_hw_ctx(q, hctx, i) {
1660 if (i == nr_queue)
1661 break;
1662 blk_mq_exit_hctx(q, set, hctx, i);
1663 }
1664 }
1665
1666 static void blk_mq_free_hw_queues(struct request_queue *q,
1667 struct blk_mq_tag_set *set)
1668 {
1669 struct blk_mq_hw_ctx *hctx;
1670 unsigned int i;
1671
1672 queue_for_each_hw_ctx(q, hctx, i)
1673 free_cpumask_var(hctx->cpumask);
1674 }
1675
1676 static int blk_mq_init_hctx(struct request_queue *q,
1677 struct blk_mq_tag_set *set,
1678 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1679 {
1680 int node;
1681 unsigned flush_start_tag = set->queue_depth;
1682
1683 node = hctx->numa_node;
1684 if (node == NUMA_NO_NODE)
1685 node = hctx->numa_node = set->numa_node;
1686
1687 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1688 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1689 spin_lock_init(&hctx->lock);
1690 INIT_LIST_HEAD(&hctx->dispatch);
1691 hctx->queue = q;
1692 hctx->queue_num = hctx_idx;
1693 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1694
1695 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1696 blk_mq_hctx_notify, hctx);
1697 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1698
1699 hctx->tags = set->tags[hctx_idx];
1700
1701 /*
1702 * Allocate space for all possible cpus to avoid allocation at
1703 * runtime
1704 */
1705 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1706 GFP_KERNEL, node);
1707 if (!hctx->ctxs)
1708 goto unregister_cpu_notifier;
1709
1710 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1711 goto free_ctxs;
1712
1713 hctx->nr_ctx = 0;
1714
1715 if (set->ops->init_hctx &&
1716 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1717 goto free_bitmap;
1718
1719 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1720 if (!hctx->fq)
1721 goto exit_hctx;
1722
1723 if (set->ops->init_request &&
1724 set->ops->init_request(set->driver_data,
1725 hctx->fq->flush_rq, hctx_idx,
1726 flush_start_tag + hctx_idx, node))
1727 goto free_fq;
1728
1729 return 0;
1730
1731 free_fq:
1732 kfree(hctx->fq);
1733 exit_hctx:
1734 if (set->ops->exit_hctx)
1735 set->ops->exit_hctx(hctx, hctx_idx);
1736 free_bitmap:
1737 blk_mq_free_bitmap(&hctx->ctx_map);
1738 free_ctxs:
1739 kfree(hctx->ctxs);
1740 unregister_cpu_notifier:
1741 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1742
1743 return -1;
1744 }
1745
1746 static int blk_mq_init_hw_queues(struct request_queue *q,
1747 struct blk_mq_tag_set *set)
1748 {
1749 struct blk_mq_hw_ctx *hctx;
1750 unsigned int i;
1751
1752 /*
1753 * Initialize hardware queues
1754 */
1755 queue_for_each_hw_ctx(q, hctx, i) {
1756 if (blk_mq_init_hctx(q, set, hctx, i))
1757 break;
1758 }
1759
1760 if (i == q->nr_hw_queues)
1761 return 0;
1762
1763 /*
1764 * Init failed
1765 */
1766 blk_mq_exit_hw_queues(q, set, i);
1767
1768 return 1;
1769 }
1770
1771 static void blk_mq_init_cpu_queues(struct request_queue *q,
1772 unsigned int nr_hw_queues)
1773 {
1774 unsigned int i;
1775
1776 for_each_possible_cpu(i) {
1777 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1778 struct blk_mq_hw_ctx *hctx;
1779
1780 memset(__ctx, 0, sizeof(*__ctx));
1781 __ctx->cpu = i;
1782 spin_lock_init(&__ctx->lock);
1783 INIT_LIST_HEAD(&__ctx->rq_list);
1784 __ctx->queue = q;
1785
1786 /* If the cpu isn't online, the cpu is mapped to first hctx */
1787 if (!cpu_online(i))
1788 continue;
1789
1790 hctx = q->mq_ops->map_queue(q, i);
1791
1792 /*
1793 * Set local node, IFF we have more than one hw queue. If
1794 * not, we remain on the home node of the device
1795 */
1796 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1797 hctx->numa_node = cpu_to_node(i);
1798 }
1799 }
1800
1801 static void blk_mq_map_swqueue(struct request_queue *q,
1802 const struct cpumask *online_mask)
1803 {
1804 unsigned int i;
1805 struct blk_mq_hw_ctx *hctx;
1806 struct blk_mq_ctx *ctx;
1807 struct blk_mq_tag_set *set = q->tag_set;
1808
1809 /*
1810 * Avoid others reading imcomplete hctx->cpumask through sysfs
1811 */
1812 mutex_lock(&q->sysfs_lock);
1813
1814 queue_for_each_hw_ctx(q, hctx, i) {
1815 cpumask_clear(hctx->cpumask);
1816 hctx->nr_ctx = 0;
1817 }
1818
1819 /*
1820 * Map software to hardware queues
1821 */
1822 queue_for_each_ctx(q, ctx, i) {
1823 /* If the cpu isn't online, the cpu is mapped to first hctx */
1824 if (!cpumask_test_cpu(i, online_mask))
1825 continue;
1826
1827 hctx = q->mq_ops->map_queue(q, i);
1828 cpumask_set_cpu(i, hctx->cpumask);
1829 ctx->index_hw = hctx->nr_ctx;
1830 hctx->ctxs[hctx->nr_ctx++] = ctx;
1831 }
1832
1833 mutex_unlock(&q->sysfs_lock);
1834
1835 queue_for_each_hw_ctx(q, hctx, i) {
1836 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1837
1838 /*
1839 * If no software queues are mapped to this hardware queue,
1840 * disable it and free the request entries.
1841 */
1842 if (!hctx->nr_ctx) {
1843 if (set->tags[i]) {
1844 blk_mq_free_rq_map(set, set->tags[i], i);
1845 set->tags[i] = NULL;
1846 }
1847 hctx->tags = NULL;
1848 continue;
1849 }
1850
1851 /* unmapped hw queue can be remapped after CPU topo changed */
1852 if (!set->tags[i])
1853 set->tags[i] = blk_mq_init_rq_map(set, i);
1854 hctx->tags = set->tags[i];
1855 WARN_ON(!hctx->tags);
1856
1857 /*
1858 * Set the map size to the number of mapped software queues.
1859 * This is more accurate and more efficient than looping
1860 * over all possibly mapped software queues.
1861 */
1862 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1863
1864 /*
1865 * Initialize batch roundrobin counts
1866 */
1867 hctx->next_cpu = cpumask_first(hctx->cpumask);
1868 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1869 }
1870
1871 queue_for_each_ctx(q, ctx, i) {
1872 if (!cpumask_test_cpu(i, online_mask))
1873 continue;
1874
1875 hctx = q->mq_ops->map_queue(q, i);
1876 cpumask_set_cpu(i, hctx->tags->cpumask);
1877 }
1878 }
1879
1880 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1881 {
1882 struct blk_mq_hw_ctx *hctx;
1883 int i;
1884
1885 queue_for_each_hw_ctx(q, hctx, i) {
1886 if (shared)
1887 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1888 else
1889 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1890 }
1891 }
1892
1893 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1894 {
1895 struct request_queue *q;
1896
1897 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1898 blk_mq_freeze_queue(q);
1899 queue_set_hctx_shared(q, shared);
1900 blk_mq_unfreeze_queue(q);
1901 }
1902 }
1903
1904 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1905 {
1906 struct blk_mq_tag_set *set = q->tag_set;
1907
1908 mutex_lock(&set->tag_list_lock);
1909 list_del_init(&q->tag_set_list);
1910 if (list_is_singular(&set->tag_list)) {
1911 /* just transitioned to unshared */
1912 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1913 /* update existing queue */
1914 blk_mq_update_tag_set_depth(set, false);
1915 }
1916 mutex_unlock(&set->tag_list_lock);
1917 }
1918
1919 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1920 struct request_queue *q)
1921 {
1922 q->tag_set = set;
1923
1924 mutex_lock(&set->tag_list_lock);
1925
1926 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1927 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1928 set->flags |= BLK_MQ_F_TAG_SHARED;
1929 /* update existing queue */
1930 blk_mq_update_tag_set_depth(set, true);
1931 }
1932 if (set->flags & BLK_MQ_F_TAG_SHARED)
1933 queue_set_hctx_shared(q, true);
1934 list_add_tail(&q->tag_set_list, &set->tag_list);
1935
1936 mutex_unlock(&set->tag_list_lock);
1937 }
1938
1939 /*
1940 * It is the actual release handler for mq, but we do it from
1941 * request queue's release handler for avoiding use-after-free
1942 * and headache because q->mq_kobj shouldn't have been introduced,
1943 * but we can't group ctx/kctx kobj without it.
1944 */
1945 void blk_mq_release(struct request_queue *q)
1946 {
1947 struct blk_mq_hw_ctx *hctx;
1948 unsigned int i;
1949
1950 /* hctx kobj stays in hctx */
1951 queue_for_each_hw_ctx(q, hctx, i) {
1952 if (!hctx)
1953 continue;
1954 kfree(hctx->ctxs);
1955 kfree(hctx);
1956 }
1957
1958 kfree(q->mq_map);
1959 q->mq_map = NULL;
1960
1961 kfree(q->queue_hw_ctx);
1962
1963 /* ctx kobj stays in queue_ctx */
1964 free_percpu(q->queue_ctx);
1965 }
1966
1967 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1968 {
1969 struct request_queue *uninit_q, *q;
1970
1971 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1972 if (!uninit_q)
1973 return ERR_PTR(-ENOMEM);
1974
1975 q = blk_mq_init_allocated_queue(set, uninit_q);
1976 if (IS_ERR(q))
1977 blk_cleanup_queue(uninit_q);
1978
1979 return q;
1980 }
1981 EXPORT_SYMBOL(blk_mq_init_queue);
1982
1983 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1984 struct request_queue *q)
1985 {
1986 struct blk_mq_hw_ctx **hctxs;
1987 struct blk_mq_ctx __percpu *ctx;
1988 unsigned int *map;
1989 int i;
1990
1991 ctx = alloc_percpu(struct blk_mq_ctx);
1992 if (!ctx)
1993 return ERR_PTR(-ENOMEM);
1994
1995 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1996 set->numa_node);
1997
1998 if (!hctxs)
1999 goto err_percpu;
2000
2001 map = blk_mq_make_queue_map(set);
2002 if (!map)
2003 goto err_map;
2004
2005 for (i = 0; i < set->nr_hw_queues; i++) {
2006 int node = blk_mq_hw_queue_to_node(map, i);
2007
2008 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2009 GFP_KERNEL, node);
2010 if (!hctxs[i])
2011 goto err_hctxs;
2012
2013 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2014 node))
2015 goto err_hctxs;
2016
2017 atomic_set(&hctxs[i]->nr_active, 0);
2018 hctxs[i]->numa_node = node;
2019 hctxs[i]->queue_num = i;
2020 }
2021
2022 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2023 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2024
2025 q->nr_queues = nr_cpu_ids;
2026 q->nr_hw_queues = set->nr_hw_queues;
2027 q->mq_map = map;
2028
2029 q->queue_ctx = ctx;
2030 q->queue_hw_ctx = hctxs;
2031
2032 q->mq_ops = set->ops;
2033 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2034
2035 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2036 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2037
2038 q->sg_reserved_size = INT_MAX;
2039
2040 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2041 INIT_LIST_HEAD(&q->requeue_list);
2042 spin_lock_init(&q->requeue_lock);
2043
2044 if (q->nr_hw_queues > 1)
2045 blk_queue_make_request(q, blk_mq_make_request);
2046 else
2047 blk_queue_make_request(q, blk_sq_make_request);
2048
2049 /*
2050 * Do this after blk_queue_make_request() overrides it...
2051 */
2052 q->nr_requests = set->queue_depth;
2053
2054 if (set->ops->complete)
2055 blk_queue_softirq_done(q, set->ops->complete);
2056
2057 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2058
2059 if (blk_mq_init_hw_queues(q, set))
2060 goto err_hctxs;
2061
2062 get_online_cpus();
2063 mutex_lock(&all_q_mutex);
2064
2065 list_add_tail(&q->all_q_node, &all_q_list);
2066 blk_mq_add_queue_tag_set(set, q);
2067 blk_mq_map_swqueue(q, cpu_online_mask);
2068
2069 mutex_unlock(&all_q_mutex);
2070 put_online_cpus();
2071
2072 return q;
2073
2074 err_hctxs:
2075 kfree(map);
2076 for (i = 0; i < set->nr_hw_queues; i++) {
2077 if (!hctxs[i])
2078 break;
2079 free_cpumask_var(hctxs[i]->cpumask);
2080 kfree(hctxs[i]);
2081 }
2082 err_map:
2083 kfree(hctxs);
2084 err_percpu:
2085 free_percpu(ctx);
2086 return ERR_PTR(-ENOMEM);
2087 }
2088 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2089
2090 void blk_mq_free_queue(struct request_queue *q)
2091 {
2092 struct blk_mq_tag_set *set = q->tag_set;
2093
2094 mutex_lock(&all_q_mutex);
2095 list_del_init(&q->all_q_node);
2096 mutex_unlock(&all_q_mutex);
2097
2098 blk_mq_del_queue_tag_set(q);
2099
2100 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2101 blk_mq_free_hw_queues(q, set);
2102 }
2103
2104 /* Basically redo blk_mq_init_queue with queue frozen */
2105 static void blk_mq_queue_reinit(struct request_queue *q,
2106 const struct cpumask *online_mask)
2107 {
2108 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2109
2110 blk_mq_sysfs_unregister(q);
2111
2112 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2113
2114 /*
2115 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2116 * we should change hctx numa_node according to new topology (this
2117 * involves free and re-allocate memory, worthy doing?)
2118 */
2119
2120 blk_mq_map_swqueue(q, online_mask);
2121
2122 blk_mq_sysfs_register(q);
2123 }
2124
2125 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2126 unsigned long action, void *hcpu)
2127 {
2128 struct request_queue *q;
2129 int cpu = (unsigned long)hcpu;
2130 /*
2131 * New online cpumask which is going to be set in this hotplug event.
2132 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2133 * one-by-one and dynamically allocating this could result in a failure.
2134 */
2135 static struct cpumask online_new;
2136
2137 /*
2138 * Before hotadded cpu starts handling requests, new mappings must
2139 * be established. Otherwise, these requests in hw queue might
2140 * never be dispatched.
2141 *
2142 * For example, there is a single hw queue (hctx) and two CPU queues
2143 * (ctx0 for CPU0, and ctx1 for CPU1).
2144 *
2145 * Now CPU1 is just onlined and a request is inserted into
2146 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2147 * still zero.
2148 *
2149 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2150 * set in pending bitmap and tries to retrieve requests in
2151 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2152 * so the request in ctx1->rq_list is ignored.
2153 */
2154 switch (action & ~CPU_TASKS_FROZEN) {
2155 case CPU_DEAD:
2156 case CPU_UP_CANCELED:
2157 cpumask_copy(&online_new, cpu_online_mask);
2158 break;
2159 case CPU_UP_PREPARE:
2160 cpumask_copy(&online_new, cpu_online_mask);
2161 cpumask_set_cpu(cpu, &online_new);
2162 break;
2163 default:
2164 return NOTIFY_OK;
2165 }
2166
2167 mutex_lock(&all_q_mutex);
2168
2169 /*
2170 * We need to freeze and reinit all existing queues. Freezing
2171 * involves synchronous wait for an RCU grace period and doing it
2172 * one by one may take a long time. Start freezing all queues in
2173 * one swoop and then wait for the completions so that freezing can
2174 * take place in parallel.
2175 */
2176 list_for_each_entry(q, &all_q_list, all_q_node)
2177 blk_mq_freeze_queue_start(q);
2178 list_for_each_entry(q, &all_q_list, all_q_node) {
2179 blk_mq_freeze_queue_wait(q);
2180
2181 /*
2182 * timeout handler can't touch hw queue during the
2183 * reinitialization
2184 */
2185 del_timer_sync(&q->timeout);
2186 }
2187
2188 list_for_each_entry(q, &all_q_list, all_q_node)
2189 blk_mq_queue_reinit(q, &online_new);
2190
2191 list_for_each_entry(q, &all_q_list, all_q_node)
2192 blk_mq_unfreeze_queue(q);
2193
2194 mutex_unlock(&all_q_mutex);
2195 return NOTIFY_OK;
2196 }
2197
2198 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2199 {
2200 int i;
2201
2202 for (i = 0; i < set->nr_hw_queues; i++) {
2203 set->tags[i] = blk_mq_init_rq_map(set, i);
2204 if (!set->tags[i])
2205 goto out_unwind;
2206 }
2207
2208 return 0;
2209
2210 out_unwind:
2211 while (--i >= 0)
2212 blk_mq_free_rq_map(set, set->tags[i], i);
2213
2214 return -ENOMEM;
2215 }
2216
2217 /*
2218 * Allocate the request maps associated with this tag_set. Note that this
2219 * may reduce the depth asked for, if memory is tight. set->queue_depth
2220 * will be updated to reflect the allocated depth.
2221 */
2222 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2223 {
2224 unsigned int depth;
2225 int err;
2226
2227 depth = set->queue_depth;
2228 do {
2229 err = __blk_mq_alloc_rq_maps(set);
2230 if (!err)
2231 break;
2232
2233 set->queue_depth >>= 1;
2234 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2235 err = -ENOMEM;
2236 break;
2237 }
2238 } while (set->queue_depth);
2239
2240 if (!set->queue_depth || err) {
2241 pr_err("blk-mq: failed to allocate request map\n");
2242 return -ENOMEM;
2243 }
2244
2245 if (depth != set->queue_depth)
2246 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2247 depth, set->queue_depth);
2248
2249 return 0;
2250 }
2251
2252 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2253 {
2254 return tags->cpumask;
2255 }
2256 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2257
2258 /*
2259 * Alloc a tag set to be associated with one or more request queues.
2260 * May fail with EINVAL for various error conditions. May adjust the
2261 * requested depth down, if if it too large. In that case, the set
2262 * value will be stored in set->queue_depth.
2263 */
2264 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2265 {
2266 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2267
2268 if (!set->nr_hw_queues)
2269 return -EINVAL;
2270 if (!set->queue_depth)
2271 return -EINVAL;
2272 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2273 return -EINVAL;
2274
2275 if (!set->ops->queue_rq || !set->ops->map_queue)
2276 return -EINVAL;
2277
2278 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2279 pr_info("blk-mq: reduced tag depth to %u\n",
2280 BLK_MQ_MAX_DEPTH);
2281 set->queue_depth = BLK_MQ_MAX_DEPTH;
2282 }
2283
2284 /*
2285 * If a crashdump is active, then we are potentially in a very
2286 * memory constrained environment. Limit us to 1 queue and
2287 * 64 tags to prevent using too much memory.
2288 */
2289 if (is_kdump_kernel()) {
2290 set->nr_hw_queues = 1;
2291 set->queue_depth = min(64U, set->queue_depth);
2292 }
2293
2294 set->tags = kmalloc_node(set->nr_hw_queues *
2295 sizeof(struct blk_mq_tags *),
2296 GFP_KERNEL, set->numa_node);
2297 if (!set->tags)
2298 return -ENOMEM;
2299
2300 if (blk_mq_alloc_rq_maps(set))
2301 goto enomem;
2302
2303 mutex_init(&set->tag_list_lock);
2304 INIT_LIST_HEAD(&set->tag_list);
2305
2306 return 0;
2307 enomem:
2308 kfree(set->tags);
2309 set->tags = NULL;
2310 return -ENOMEM;
2311 }
2312 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2313
2314 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2315 {
2316 int i;
2317
2318 for (i = 0; i < set->nr_hw_queues; i++) {
2319 if (set->tags[i])
2320 blk_mq_free_rq_map(set, set->tags[i], i);
2321 }
2322
2323 kfree(set->tags);
2324 set->tags = NULL;
2325 }
2326 EXPORT_SYMBOL(blk_mq_free_tag_set);
2327
2328 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2329 {
2330 struct blk_mq_tag_set *set = q->tag_set;
2331 struct blk_mq_hw_ctx *hctx;
2332 int i, ret;
2333
2334 if (!set || nr > set->queue_depth)
2335 return -EINVAL;
2336
2337 ret = 0;
2338 queue_for_each_hw_ctx(q, hctx, i) {
2339 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2340 if (ret)
2341 break;
2342 }
2343
2344 if (!ret)
2345 q->nr_requests = nr;
2346
2347 return ret;
2348 }
2349
2350 void blk_mq_disable_hotplug(void)
2351 {
2352 mutex_lock(&all_q_mutex);
2353 }
2354
2355 void blk_mq_enable_hotplug(void)
2356 {
2357 mutex_unlock(&all_q_mutex);
2358 }
2359
2360 static int __init blk_mq_init(void)
2361 {
2362 blk_mq_cpu_init();
2363
2364 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2365
2366 return 0;
2367 }
2368 subsys_initcall(blk_mq_init);