]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-mq.c
block: optionally merge discontiguous discard bios into a single request
[thirdparty/linux.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
36
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
39
40 /*
41 * Check if any of the ctx's have pending work in this hardware queue
42 */
43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 {
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
48 }
49
50 /*
51 * Mark this ctx as having pending work in this hardware queue
52 */
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
55 {
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 }
59
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
62 {
63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 }
65
66 void blk_mq_freeze_queue_start(struct request_queue *q)
67 {
68 int freeze_depth;
69
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
72 percpu_ref_kill(&q->q_usage_counter);
73 blk_mq_run_hw_queues(q, false);
74 }
75 }
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
79 {
80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 }
82
83 /*
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
86 */
87 void blk_freeze_queue(struct request_queue *q)
88 {
89 /*
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
95 */
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
98 }
99
100 void blk_mq_freeze_queue(struct request_queue *q)
101 {
102 /*
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
105 */
106 blk_freeze_queue(q);
107 }
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109
110 void blk_mq_unfreeze_queue(struct request_queue *q)
111 {
112 int freeze_depth;
113
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
117 percpu_ref_reinit(&q->q_usage_counter);
118 wake_up_all(&q->mq_freeze_wq);
119 }
120 }
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122
123 /**
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
126 *
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
130 */
131 void blk_mq_quiesce_queue(struct request_queue *q)
132 {
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
136
137 blk_mq_stop_hw_queues(q);
138
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
144 }
145 if (rcu)
146 synchronize_rcu();
147 }
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
149
150 void blk_mq_wake_waiters(struct request_queue *q)
151 {
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
154
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
158
159 /*
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
163 */
164 wake_up_all(&q->mq_freeze_wq);
165 }
166
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
168 {
169 return blk_mq_has_free_tags(hctx->tags);
170 }
171 EXPORT_SYMBOL(blk_mq_can_queue);
172
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
175 {
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
179 rq->mq_ctx = ctx;
180 rq->cmd_flags = op;
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
187 rq->rq_disk = NULL;
188 rq->part = NULL;
189 rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
192 set_start_time_ns(rq);
193 rq->io_start_time_ns = 0;
194 #endif
195 rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198 #endif
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
202 rq->extra_len = 0;
203
204 INIT_LIST_HEAD(&rq->timeout_list);
205 rq->timeout = 0;
206
207 rq->end_io = NULL;
208 rq->end_io_data = NULL;
209 rq->next_rq = NULL;
210
211 ctx->rq_dispatched[op_is_sync(op)]++;
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
214
215 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
216 unsigned int op)
217 {
218 struct request *rq;
219 unsigned int tag;
220
221 tag = blk_mq_get_tag(data);
222 if (tag != BLK_MQ_TAG_FAIL) {
223 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
224
225 rq = tags->static_rqs[tag];
226
227 if (data->flags & BLK_MQ_REQ_INTERNAL) {
228 rq->tag = -1;
229 rq->internal_tag = tag;
230 } else {
231 if (blk_mq_tag_busy(data->hctx)) {
232 rq->rq_flags = RQF_MQ_INFLIGHT;
233 atomic_inc(&data->hctx->nr_active);
234 }
235 rq->tag = tag;
236 rq->internal_tag = -1;
237 }
238
239 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
240 return rq;
241 }
242
243 return NULL;
244 }
245 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
246
247 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
248 unsigned int flags)
249 {
250 struct blk_mq_alloc_data alloc_data = { .flags = flags };
251 struct request *rq;
252 int ret;
253
254 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
255 if (ret)
256 return ERR_PTR(ret);
257
258 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
259
260 blk_mq_put_ctx(alloc_data.ctx);
261 blk_queue_exit(q);
262
263 if (!rq)
264 return ERR_PTR(-EWOULDBLOCK);
265
266 rq->__data_len = 0;
267 rq->__sector = (sector_t) -1;
268 rq->bio = rq->biotail = NULL;
269 return rq;
270 }
271 EXPORT_SYMBOL(blk_mq_alloc_request);
272
273 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
274 unsigned int flags, unsigned int hctx_idx)
275 {
276 struct blk_mq_hw_ctx *hctx;
277 struct blk_mq_ctx *ctx;
278 struct request *rq;
279 struct blk_mq_alloc_data alloc_data;
280 int ret;
281
282 /*
283 * If the tag allocator sleeps we could get an allocation for a
284 * different hardware context. No need to complicate the low level
285 * allocator for this for the rare use case of a command tied to
286 * a specific queue.
287 */
288 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
289 return ERR_PTR(-EINVAL);
290
291 if (hctx_idx >= q->nr_hw_queues)
292 return ERR_PTR(-EIO);
293
294 ret = blk_queue_enter(q, true);
295 if (ret)
296 return ERR_PTR(ret);
297
298 /*
299 * Check if the hardware context is actually mapped to anything.
300 * If not tell the caller that it should skip this queue.
301 */
302 hctx = q->queue_hw_ctx[hctx_idx];
303 if (!blk_mq_hw_queue_mapped(hctx)) {
304 ret = -EXDEV;
305 goto out_queue_exit;
306 }
307 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
308
309 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
310 rq = __blk_mq_alloc_request(&alloc_data, rw);
311 if (!rq) {
312 ret = -EWOULDBLOCK;
313 goto out_queue_exit;
314 }
315
316 return rq;
317
318 out_queue_exit:
319 blk_queue_exit(q);
320 return ERR_PTR(ret);
321 }
322 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
323
324 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
325 struct request *rq)
326 {
327 const int sched_tag = rq->internal_tag;
328 struct request_queue *q = rq->q;
329
330 if (rq->rq_flags & RQF_MQ_INFLIGHT)
331 atomic_dec(&hctx->nr_active);
332
333 wbt_done(q->rq_wb, &rq->issue_stat);
334 rq->rq_flags = 0;
335
336 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
337 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
338 if (rq->tag != -1)
339 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
340 if (sched_tag != -1)
341 blk_mq_sched_completed_request(hctx, rq);
342 blk_mq_sched_restart_queues(hctx);
343 blk_queue_exit(q);
344 }
345
346 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
347 struct request *rq)
348 {
349 struct blk_mq_ctx *ctx = rq->mq_ctx;
350
351 ctx->rq_completed[rq_is_sync(rq)]++;
352 __blk_mq_finish_request(hctx, ctx, rq);
353 }
354
355 void blk_mq_finish_request(struct request *rq)
356 {
357 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
358 }
359
360 void blk_mq_free_request(struct request *rq)
361 {
362 blk_mq_sched_put_request(rq);
363 }
364 EXPORT_SYMBOL_GPL(blk_mq_free_request);
365
366 inline void __blk_mq_end_request(struct request *rq, int error)
367 {
368 blk_account_io_done(rq);
369
370 if (rq->end_io) {
371 wbt_done(rq->q->rq_wb, &rq->issue_stat);
372 rq->end_io(rq, error);
373 } else {
374 if (unlikely(blk_bidi_rq(rq)))
375 blk_mq_free_request(rq->next_rq);
376 blk_mq_free_request(rq);
377 }
378 }
379 EXPORT_SYMBOL(__blk_mq_end_request);
380
381 void blk_mq_end_request(struct request *rq, int error)
382 {
383 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
384 BUG();
385 __blk_mq_end_request(rq, error);
386 }
387 EXPORT_SYMBOL(blk_mq_end_request);
388
389 static void __blk_mq_complete_request_remote(void *data)
390 {
391 struct request *rq = data;
392
393 rq->q->softirq_done_fn(rq);
394 }
395
396 static void blk_mq_ipi_complete_request(struct request *rq)
397 {
398 struct blk_mq_ctx *ctx = rq->mq_ctx;
399 bool shared = false;
400 int cpu;
401
402 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
403 rq->q->softirq_done_fn(rq);
404 return;
405 }
406
407 cpu = get_cpu();
408 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
409 shared = cpus_share_cache(cpu, ctx->cpu);
410
411 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
412 rq->csd.func = __blk_mq_complete_request_remote;
413 rq->csd.info = rq;
414 rq->csd.flags = 0;
415 smp_call_function_single_async(ctx->cpu, &rq->csd);
416 } else {
417 rq->q->softirq_done_fn(rq);
418 }
419 put_cpu();
420 }
421
422 static void blk_mq_stat_add(struct request *rq)
423 {
424 if (rq->rq_flags & RQF_STATS) {
425 /*
426 * We could rq->mq_ctx here, but there's less of a risk
427 * of races if we have the completion event add the stats
428 * to the local software queue.
429 */
430 struct blk_mq_ctx *ctx;
431
432 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
433 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
434 }
435 }
436
437 static void __blk_mq_complete_request(struct request *rq)
438 {
439 struct request_queue *q = rq->q;
440
441 blk_mq_stat_add(rq);
442
443 if (!q->softirq_done_fn)
444 blk_mq_end_request(rq, rq->errors);
445 else
446 blk_mq_ipi_complete_request(rq);
447 }
448
449 /**
450 * blk_mq_complete_request - end I/O on a request
451 * @rq: the request being processed
452 *
453 * Description:
454 * Ends all I/O on a request. It does not handle partial completions.
455 * The actual completion happens out-of-order, through a IPI handler.
456 **/
457 void blk_mq_complete_request(struct request *rq, int error)
458 {
459 struct request_queue *q = rq->q;
460
461 if (unlikely(blk_should_fake_timeout(q)))
462 return;
463 if (!blk_mark_rq_complete(rq)) {
464 rq->errors = error;
465 __blk_mq_complete_request(rq);
466 }
467 }
468 EXPORT_SYMBOL(blk_mq_complete_request);
469
470 int blk_mq_request_started(struct request *rq)
471 {
472 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
473 }
474 EXPORT_SYMBOL_GPL(blk_mq_request_started);
475
476 void blk_mq_start_request(struct request *rq)
477 {
478 struct request_queue *q = rq->q;
479
480 blk_mq_sched_started_request(rq);
481
482 trace_block_rq_issue(q, rq);
483
484 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
485 blk_stat_set_issue_time(&rq->issue_stat);
486 rq->rq_flags |= RQF_STATS;
487 wbt_issue(q->rq_wb, &rq->issue_stat);
488 }
489
490 blk_add_timer(rq);
491
492 /*
493 * Ensure that ->deadline is visible before set the started
494 * flag and clear the completed flag.
495 */
496 smp_mb__before_atomic();
497
498 /*
499 * Mark us as started and clear complete. Complete might have been
500 * set if requeue raced with timeout, which then marked it as
501 * complete. So be sure to clear complete again when we start
502 * the request, otherwise we'll ignore the completion event.
503 */
504 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
505 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
506 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
507 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
508
509 if (q->dma_drain_size && blk_rq_bytes(rq)) {
510 /*
511 * Make sure space for the drain appears. We know we can do
512 * this because max_hw_segments has been adjusted to be one
513 * fewer than the device can handle.
514 */
515 rq->nr_phys_segments++;
516 }
517 }
518 EXPORT_SYMBOL(blk_mq_start_request);
519
520 static void __blk_mq_requeue_request(struct request *rq)
521 {
522 struct request_queue *q = rq->q;
523
524 trace_block_rq_requeue(q, rq);
525 wbt_requeue(q->rq_wb, &rq->issue_stat);
526 blk_mq_sched_requeue_request(rq);
527
528 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
529 if (q->dma_drain_size && blk_rq_bytes(rq))
530 rq->nr_phys_segments--;
531 }
532 }
533
534 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
535 {
536 __blk_mq_requeue_request(rq);
537
538 BUG_ON(blk_queued_rq(rq));
539 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
540 }
541 EXPORT_SYMBOL(blk_mq_requeue_request);
542
543 static void blk_mq_requeue_work(struct work_struct *work)
544 {
545 struct request_queue *q =
546 container_of(work, struct request_queue, requeue_work.work);
547 LIST_HEAD(rq_list);
548 struct request *rq, *next;
549 unsigned long flags;
550
551 spin_lock_irqsave(&q->requeue_lock, flags);
552 list_splice_init(&q->requeue_list, &rq_list);
553 spin_unlock_irqrestore(&q->requeue_lock, flags);
554
555 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
556 if (!(rq->rq_flags & RQF_SOFTBARRIER))
557 continue;
558
559 rq->rq_flags &= ~RQF_SOFTBARRIER;
560 list_del_init(&rq->queuelist);
561 blk_mq_sched_insert_request(rq, true, false, false, true);
562 }
563
564 while (!list_empty(&rq_list)) {
565 rq = list_entry(rq_list.next, struct request, queuelist);
566 list_del_init(&rq->queuelist);
567 blk_mq_sched_insert_request(rq, false, false, false, true);
568 }
569
570 blk_mq_run_hw_queues(q, false);
571 }
572
573 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
574 bool kick_requeue_list)
575 {
576 struct request_queue *q = rq->q;
577 unsigned long flags;
578
579 /*
580 * We abuse this flag that is otherwise used by the I/O scheduler to
581 * request head insertation from the workqueue.
582 */
583 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
584
585 spin_lock_irqsave(&q->requeue_lock, flags);
586 if (at_head) {
587 rq->rq_flags |= RQF_SOFTBARRIER;
588 list_add(&rq->queuelist, &q->requeue_list);
589 } else {
590 list_add_tail(&rq->queuelist, &q->requeue_list);
591 }
592 spin_unlock_irqrestore(&q->requeue_lock, flags);
593
594 if (kick_requeue_list)
595 blk_mq_kick_requeue_list(q);
596 }
597 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
598
599 void blk_mq_kick_requeue_list(struct request_queue *q)
600 {
601 kblockd_schedule_delayed_work(&q->requeue_work, 0);
602 }
603 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
604
605 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
606 unsigned long msecs)
607 {
608 kblockd_schedule_delayed_work(&q->requeue_work,
609 msecs_to_jiffies(msecs));
610 }
611 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
612
613 void blk_mq_abort_requeue_list(struct request_queue *q)
614 {
615 unsigned long flags;
616 LIST_HEAD(rq_list);
617
618 spin_lock_irqsave(&q->requeue_lock, flags);
619 list_splice_init(&q->requeue_list, &rq_list);
620 spin_unlock_irqrestore(&q->requeue_lock, flags);
621
622 while (!list_empty(&rq_list)) {
623 struct request *rq;
624
625 rq = list_first_entry(&rq_list, struct request, queuelist);
626 list_del_init(&rq->queuelist);
627 rq->errors = -EIO;
628 blk_mq_end_request(rq, rq->errors);
629 }
630 }
631 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
632
633 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
634 {
635 if (tag < tags->nr_tags) {
636 prefetch(tags->rqs[tag]);
637 return tags->rqs[tag];
638 }
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(blk_mq_tag_to_rq);
643
644 struct blk_mq_timeout_data {
645 unsigned long next;
646 unsigned int next_set;
647 };
648
649 void blk_mq_rq_timed_out(struct request *req, bool reserved)
650 {
651 const struct blk_mq_ops *ops = req->q->mq_ops;
652 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
653
654 /*
655 * We know that complete is set at this point. If STARTED isn't set
656 * anymore, then the request isn't active and the "timeout" should
657 * just be ignored. This can happen due to the bitflag ordering.
658 * Timeout first checks if STARTED is set, and if it is, assumes
659 * the request is active. But if we race with completion, then
660 * we both flags will get cleared. So check here again, and ignore
661 * a timeout event with a request that isn't active.
662 */
663 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
664 return;
665
666 if (ops->timeout)
667 ret = ops->timeout(req, reserved);
668
669 switch (ret) {
670 case BLK_EH_HANDLED:
671 __blk_mq_complete_request(req);
672 break;
673 case BLK_EH_RESET_TIMER:
674 blk_add_timer(req);
675 blk_clear_rq_complete(req);
676 break;
677 case BLK_EH_NOT_HANDLED:
678 break;
679 default:
680 printk(KERN_ERR "block: bad eh return: %d\n", ret);
681 break;
682 }
683 }
684
685 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
686 struct request *rq, void *priv, bool reserved)
687 {
688 struct blk_mq_timeout_data *data = priv;
689
690 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
691 /*
692 * If a request wasn't started before the queue was
693 * marked dying, kill it here or it'll go unnoticed.
694 */
695 if (unlikely(blk_queue_dying(rq->q))) {
696 rq->errors = -EIO;
697 blk_mq_end_request(rq, rq->errors);
698 }
699 return;
700 }
701
702 if (time_after_eq(jiffies, rq->deadline)) {
703 if (!blk_mark_rq_complete(rq))
704 blk_mq_rq_timed_out(rq, reserved);
705 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
706 data->next = rq->deadline;
707 data->next_set = 1;
708 }
709 }
710
711 static void blk_mq_timeout_work(struct work_struct *work)
712 {
713 struct request_queue *q =
714 container_of(work, struct request_queue, timeout_work);
715 struct blk_mq_timeout_data data = {
716 .next = 0,
717 .next_set = 0,
718 };
719 int i;
720
721 /* A deadlock might occur if a request is stuck requiring a
722 * timeout at the same time a queue freeze is waiting
723 * completion, since the timeout code would not be able to
724 * acquire the queue reference here.
725 *
726 * That's why we don't use blk_queue_enter here; instead, we use
727 * percpu_ref_tryget directly, because we need to be able to
728 * obtain a reference even in the short window between the queue
729 * starting to freeze, by dropping the first reference in
730 * blk_mq_freeze_queue_start, and the moment the last request is
731 * consumed, marked by the instant q_usage_counter reaches
732 * zero.
733 */
734 if (!percpu_ref_tryget(&q->q_usage_counter))
735 return;
736
737 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
738
739 if (data.next_set) {
740 data.next = blk_rq_timeout(round_jiffies_up(data.next));
741 mod_timer(&q->timeout, data.next);
742 } else {
743 struct blk_mq_hw_ctx *hctx;
744
745 queue_for_each_hw_ctx(q, hctx, i) {
746 /* the hctx may be unmapped, so check it here */
747 if (blk_mq_hw_queue_mapped(hctx))
748 blk_mq_tag_idle(hctx);
749 }
750 }
751 blk_queue_exit(q);
752 }
753
754 /*
755 * Reverse check our software queue for entries that we could potentially
756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757 * too much time checking for merges.
758 */
759 static bool blk_mq_attempt_merge(struct request_queue *q,
760 struct blk_mq_ctx *ctx, struct bio *bio)
761 {
762 struct request *rq;
763 int checked = 8;
764
765 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
766 bool merged = false;
767
768 if (!checked--)
769 break;
770
771 if (!blk_rq_merge_ok(rq, bio))
772 continue;
773
774 switch (blk_try_merge(rq, bio)) {
775 case ELEVATOR_BACK_MERGE:
776 if (blk_mq_sched_allow_merge(q, rq, bio))
777 merged = bio_attempt_back_merge(q, rq, bio);
778 break;
779 case ELEVATOR_FRONT_MERGE:
780 if (blk_mq_sched_allow_merge(q, rq, bio))
781 merged = bio_attempt_front_merge(q, rq, bio);
782 break;
783 case ELEVATOR_DISCARD_MERGE:
784 merged = bio_attempt_discard_merge(q, rq, bio);
785 break;
786 default:
787 continue;
788 }
789
790 if (merged)
791 ctx->rq_merged++;
792 return merged;
793 }
794
795 return false;
796 }
797
798 struct flush_busy_ctx_data {
799 struct blk_mq_hw_ctx *hctx;
800 struct list_head *list;
801 };
802
803 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
804 {
805 struct flush_busy_ctx_data *flush_data = data;
806 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
808
809 sbitmap_clear_bit(sb, bitnr);
810 spin_lock(&ctx->lock);
811 list_splice_tail_init(&ctx->rq_list, flush_data->list);
812 spin_unlock(&ctx->lock);
813 return true;
814 }
815
816 /*
817 * Process software queues that have been marked busy, splicing them
818 * to the for-dispatch
819 */
820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
821 {
822 struct flush_busy_ctx_data data = {
823 .hctx = hctx,
824 .list = list,
825 };
826
827 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
828 }
829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
830
831 static inline unsigned int queued_to_index(unsigned int queued)
832 {
833 if (!queued)
834 return 0;
835
836 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
837 }
838
839 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
840 bool wait)
841 {
842 struct blk_mq_alloc_data data = {
843 .q = rq->q,
844 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
845 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
846 };
847
848 if (blk_mq_hctx_stopped(data.hctx))
849 return false;
850
851 if (rq->tag != -1) {
852 done:
853 if (hctx)
854 *hctx = data.hctx;
855 return true;
856 }
857
858 rq->tag = blk_mq_get_tag(&data);
859 if (rq->tag >= 0) {
860 if (blk_mq_tag_busy(data.hctx)) {
861 rq->rq_flags |= RQF_MQ_INFLIGHT;
862 atomic_inc(&data.hctx->nr_active);
863 }
864 data.hctx->tags->rqs[rq->tag] = rq;
865 goto done;
866 }
867
868 return false;
869 }
870
871 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
872 struct request *rq)
873 {
874 if (rq->tag == -1 || rq->internal_tag == -1)
875 return;
876
877 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
878 rq->tag = -1;
879
880 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
881 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
882 atomic_dec(&hctx->nr_active);
883 }
884 }
885
886 /*
887 * If we fail getting a driver tag because all the driver tags are already
888 * assigned and on the dispatch list, BUT the first entry does not have a
889 * tag, then we could deadlock. For that case, move entries with assigned
890 * driver tags to the front, leaving the set of tagged requests in the
891 * same order, and the untagged set in the same order.
892 */
893 static bool reorder_tags_to_front(struct list_head *list)
894 {
895 struct request *rq, *tmp, *first = NULL;
896
897 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
898 if (rq == first)
899 break;
900 if (rq->tag != -1) {
901 list_move(&rq->queuelist, list);
902 if (!first)
903 first = rq;
904 }
905 }
906
907 return first != NULL;
908 }
909
910 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
911 {
912 struct request_queue *q = hctx->queue;
913 struct request *rq;
914 LIST_HEAD(driver_list);
915 struct list_head *dptr;
916 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
917
918 /*
919 * Start off with dptr being NULL, so we start the first request
920 * immediately, even if we have more pending.
921 */
922 dptr = NULL;
923
924 /*
925 * Now process all the entries, sending them to the driver.
926 */
927 queued = 0;
928 while (!list_empty(list)) {
929 struct blk_mq_queue_data bd;
930
931 rq = list_first_entry(list, struct request, queuelist);
932 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
933 if (!queued && reorder_tags_to_front(list))
934 continue;
935
936 /*
937 * We failed getting a driver tag. Mark the queue(s)
938 * as needing a restart. Retry getting a tag again,
939 * in case the needed IO completed right before we
940 * marked the queue as needing a restart.
941 */
942 blk_mq_sched_mark_restart(hctx);
943 if (!blk_mq_get_driver_tag(rq, &hctx, false))
944 break;
945 }
946 list_del_init(&rq->queuelist);
947
948 bd.rq = rq;
949 bd.list = dptr;
950 bd.last = list_empty(list);
951
952 ret = q->mq_ops->queue_rq(hctx, &bd);
953 switch (ret) {
954 case BLK_MQ_RQ_QUEUE_OK:
955 queued++;
956 break;
957 case BLK_MQ_RQ_QUEUE_BUSY:
958 blk_mq_put_driver_tag(hctx, rq);
959 list_add(&rq->queuelist, list);
960 __blk_mq_requeue_request(rq);
961 break;
962 default:
963 pr_err("blk-mq: bad return on queue: %d\n", ret);
964 case BLK_MQ_RQ_QUEUE_ERROR:
965 rq->errors = -EIO;
966 blk_mq_end_request(rq, rq->errors);
967 break;
968 }
969
970 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
971 break;
972
973 /*
974 * We've done the first request. If we have more than 1
975 * left in the list, set dptr to defer issue.
976 */
977 if (!dptr && list->next != list->prev)
978 dptr = &driver_list;
979 }
980
981 hctx->dispatched[queued_to_index(queued)]++;
982
983 /*
984 * Any items that need requeuing? Stuff them into hctx->dispatch,
985 * that is where we will continue on next queue run.
986 */
987 if (!list_empty(list)) {
988 spin_lock(&hctx->lock);
989 list_splice_init(list, &hctx->dispatch);
990 spin_unlock(&hctx->lock);
991
992 /*
993 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
994 * it's possible the queue is stopped and restarted again
995 * before this. Queue restart will dispatch requests. And since
996 * requests in rq_list aren't added into hctx->dispatch yet,
997 * the requests in rq_list might get lost.
998 *
999 * blk_mq_run_hw_queue() already checks the STOPPED bit
1000 *
1001 * If RESTART is set, then let completion restart the queue
1002 * instead of potentially looping here.
1003 */
1004 if (!blk_mq_sched_needs_restart(hctx))
1005 blk_mq_run_hw_queue(hctx, true);
1006 }
1007
1008 return ret != BLK_MQ_RQ_QUEUE_BUSY;
1009 }
1010
1011 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1012 {
1013 int srcu_idx;
1014
1015 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1016 cpu_online(hctx->next_cpu));
1017
1018 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1019 rcu_read_lock();
1020 blk_mq_sched_dispatch_requests(hctx);
1021 rcu_read_unlock();
1022 } else {
1023 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1024 blk_mq_sched_dispatch_requests(hctx);
1025 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1026 }
1027 }
1028
1029 /*
1030 * It'd be great if the workqueue API had a way to pass
1031 * in a mask and had some smarts for more clever placement.
1032 * For now we just round-robin here, switching for every
1033 * BLK_MQ_CPU_WORK_BATCH queued items.
1034 */
1035 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1036 {
1037 if (hctx->queue->nr_hw_queues == 1)
1038 return WORK_CPU_UNBOUND;
1039
1040 if (--hctx->next_cpu_batch <= 0) {
1041 int next_cpu;
1042
1043 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1044 if (next_cpu >= nr_cpu_ids)
1045 next_cpu = cpumask_first(hctx->cpumask);
1046
1047 hctx->next_cpu = next_cpu;
1048 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1049 }
1050
1051 return hctx->next_cpu;
1052 }
1053
1054 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1055 {
1056 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1057 !blk_mq_hw_queue_mapped(hctx)))
1058 return;
1059
1060 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1061 int cpu = get_cpu();
1062 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1063 __blk_mq_run_hw_queue(hctx);
1064 put_cpu();
1065 return;
1066 }
1067
1068 put_cpu();
1069 }
1070
1071 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1072 }
1073
1074 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1075 {
1076 struct blk_mq_hw_ctx *hctx;
1077 int i;
1078
1079 queue_for_each_hw_ctx(q, hctx, i) {
1080 if (!blk_mq_hctx_has_pending(hctx) ||
1081 blk_mq_hctx_stopped(hctx))
1082 continue;
1083
1084 blk_mq_run_hw_queue(hctx, async);
1085 }
1086 }
1087 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1088
1089 /**
1090 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1091 * @q: request queue.
1092 *
1093 * The caller is responsible for serializing this function against
1094 * blk_mq_{start,stop}_hw_queue().
1095 */
1096 bool blk_mq_queue_stopped(struct request_queue *q)
1097 {
1098 struct blk_mq_hw_ctx *hctx;
1099 int i;
1100
1101 queue_for_each_hw_ctx(q, hctx, i)
1102 if (blk_mq_hctx_stopped(hctx))
1103 return true;
1104
1105 return false;
1106 }
1107 EXPORT_SYMBOL(blk_mq_queue_stopped);
1108
1109 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1110 {
1111 cancel_work(&hctx->run_work);
1112 cancel_delayed_work(&hctx->delay_work);
1113 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1114 }
1115 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1116
1117 void blk_mq_stop_hw_queues(struct request_queue *q)
1118 {
1119 struct blk_mq_hw_ctx *hctx;
1120 int i;
1121
1122 queue_for_each_hw_ctx(q, hctx, i)
1123 blk_mq_stop_hw_queue(hctx);
1124 }
1125 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1126
1127 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1128 {
1129 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1130
1131 blk_mq_run_hw_queue(hctx, false);
1132 }
1133 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1134
1135 void blk_mq_start_hw_queues(struct request_queue *q)
1136 {
1137 struct blk_mq_hw_ctx *hctx;
1138 int i;
1139
1140 queue_for_each_hw_ctx(q, hctx, i)
1141 blk_mq_start_hw_queue(hctx);
1142 }
1143 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1144
1145 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1146 {
1147 if (!blk_mq_hctx_stopped(hctx))
1148 return;
1149
1150 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1151 blk_mq_run_hw_queue(hctx, async);
1152 }
1153 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1154
1155 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1156 {
1157 struct blk_mq_hw_ctx *hctx;
1158 int i;
1159
1160 queue_for_each_hw_ctx(q, hctx, i)
1161 blk_mq_start_stopped_hw_queue(hctx, async);
1162 }
1163 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1164
1165 static void blk_mq_run_work_fn(struct work_struct *work)
1166 {
1167 struct blk_mq_hw_ctx *hctx;
1168
1169 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1170
1171 __blk_mq_run_hw_queue(hctx);
1172 }
1173
1174 static void blk_mq_delay_work_fn(struct work_struct *work)
1175 {
1176 struct blk_mq_hw_ctx *hctx;
1177
1178 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1179
1180 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1181 __blk_mq_run_hw_queue(hctx);
1182 }
1183
1184 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1185 {
1186 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1187 return;
1188
1189 blk_mq_stop_hw_queue(hctx);
1190 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1191 &hctx->delay_work, msecs_to_jiffies(msecs));
1192 }
1193 EXPORT_SYMBOL(blk_mq_delay_queue);
1194
1195 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1196 struct request *rq,
1197 bool at_head)
1198 {
1199 struct blk_mq_ctx *ctx = rq->mq_ctx;
1200
1201 trace_block_rq_insert(hctx->queue, rq);
1202
1203 if (at_head)
1204 list_add(&rq->queuelist, &ctx->rq_list);
1205 else
1206 list_add_tail(&rq->queuelist, &ctx->rq_list);
1207 }
1208
1209 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1210 bool at_head)
1211 {
1212 struct blk_mq_ctx *ctx = rq->mq_ctx;
1213
1214 __blk_mq_insert_req_list(hctx, rq, at_head);
1215 blk_mq_hctx_mark_pending(hctx, ctx);
1216 }
1217
1218 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1219 struct list_head *list)
1220
1221 {
1222 /*
1223 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1224 * offline now
1225 */
1226 spin_lock(&ctx->lock);
1227 while (!list_empty(list)) {
1228 struct request *rq;
1229
1230 rq = list_first_entry(list, struct request, queuelist);
1231 BUG_ON(rq->mq_ctx != ctx);
1232 list_del_init(&rq->queuelist);
1233 __blk_mq_insert_req_list(hctx, rq, false);
1234 }
1235 blk_mq_hctx_mark_pending(hctx, ctx);
1236 spin_unlock(&ctx->lock);
1237 }
1238
1239 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1240 {
1241 struct request *rqa = container_of(a, struct request, queuelist);
1242 struct request *rqb = container_of(b, struct request, queuelist);
1243
1244 return !(rqa->mq_ctx < rqb->mq_ctx ||
1245 (rqa->mq_ctx == rqb->mq_ctx &&
1246 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1247 }
1248
1249 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1250 {
1251 struct blk_mq_ctx *this_ctx;
1252 struct request_queue *this_q;
1253 struct request *rq;
1254 LIST_HEAD(list);
1255 LIST_HEAD(ctx_list);
1256 unsigned int depth;
1257
1258 list_splice_init(&plug->mq_list, &list);
1259
1260 list_sort(NULL, &list, plug_ctx_cmp);
1261
1262 this_q = NULL;
1263 this_ctx = NULL;
1264 depth = 0;
1265
1266 while (!list_empty(&list)) {
1267 rq = list_entry_rq(list.next);
1268 list_del_init(&rq->queuelist);
1269 BUG_ON(!rq->q);
1270 if (rq->mq_ctx != this_ctx) {
1271 if (this_ctx) {
1272 trace_block_unplug(this_q, depth, from_schedule);
1273 blk_mq_sched_insert_requests(this_q, this_ctx,
1274 &ctx_list,
1275 from_schedule);
1276 }
1277
1278 this_ctx = rq->mq_ctx;
1279 this_q = rq->q;
1280 depth = 0;
1281 }
1282
1283 depth++;
1284 list_add_tail(&rq->queuelist, &ctx_list);
1285 }
1286
1287 /*
1288 * If 'this_ctx' is set, we know we have entries to complete
1289 * on 'ctx_list'. Do those.
1290 */
1291 if (this_ctx) {
1292 trace_block_unplug(this_q, depth, from_schedule);
1293 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1294 from_schedule);
1295 }
1296 }
1297
1298 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1299 {
1300 init_request_from_bio(rq, bio);
1301
1302 blk_account_io_start(rq, true);
1303 }
1304
1305 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1306 {
1307 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1308 !blk_queue_nomerges(hctx->queue);
1309 }
1310
1311 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1312 struct blk_mq_ctx *ctx,
1313 struct request *rq, struct bio *bio)
1314 {
1315 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1316 blk_mq_bio_to_request(rq, bio);
1317 spin_lock(&ctx->lock);
1318 insert_rq:
1319 __blk_mq_insert_request(hctx, rq, false);
1320 spin_unlock(&ctx->lock);
1321 return false;
1322 } else {
1323 struct request_queue *q = hctx->queue;
1324
1325 spin_lock(&ctx->lock);
1326 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1327 blk_mq_bio_to_request(rq, bio);
1328 goto insert_rq;
1329 }
1330
1331 spin_unlock(&ctx->lock);
1332 __blk_mq_finish_request(hctx, ctx, rq);
1333 return true;
1334 }
1335 }
1336
1337 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1338 {
1339 if (rq->tag != -1)
1340 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1341
1342 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1343 }
1344
1345 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1346 {
1347 struct request_queue *q = rq->q;
1348 struct blk_mq_queue_data bd = {
1349 .rq = rq,
1350 .list = NULL,
1351 .last = 1
1352 };
1353 struct blk_mq_hw_ctx *hctx;
1354 blk_qc_t new_cookie;
1355 int ret;
1356
1357 if (q->elevator)
1358 goto insert;
1359
1360 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1361 goto insert;
1362
1363 new_cookie = request_to_qc_t(hctx, rq);
1364
1365 /*
1366 * For OK queue, we are done. For error, kill it. Any other
1367 * error (busy), just add it to our list as we previously
1368 * would have done
1369 */
1370 ret = q->mq_ops->queue_rq(hctx, &bd);
1371 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1372 *cookie = new_cookie;
1373 return;
1374 }
1375
1376 __blk_mq_requeue_request(rq);
1377
1378 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1379 *cookie = BLK_QC_T_NONE;
1380 rq->errors = -EIO;
1381 blk_mq_end_request(rq, rq->errors);
1382 return;
1383 }
1384
1385 insert:
1386 blk_mq_sched_insert_request(rq, false, true, true, false);
1387 }
1388
1389 /*
1390 * Multiple hardware queue variant. This will not use per-process plugs,
1391 * but will attempt to bypass the hctx queueing if we can go straight to
1392 * hardware for SYNC IO.
1393 */
1394 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1395 {
1396 const int is_sync = op_is_sync(bio->bi_opf);
1397 const int is_flush_fua = op_is_flush(bio->bi_opf);
1398 struct blk_mq_alloc_data data = { .flags = 0 };
1399 struct request *rq;
1400 unsigned int request_count = 0, srcu_idx;
1401 struct blk_plug *plug;
1402 struct request *same_queue_rq = NULL;
1403 blk_qc_t cookie;
1404 unsigned int wb_acct;
1405
1406 blk_queue_bounce(q, &bio);
1407
1408 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1409 bio_io_error(bio);
1410 return BLK_QC_T_NONE;
1411 }
1412
1413 blk_queue_split(q, &bio, q->bio_split);
1414
1415 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1416 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1417 return BLK_QC_T_NONE;
1418
1419 if (blk_mq_sched_bio_merge(q, bio))
1420 return BLK_QC_T_NONE;
1421
1422 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1423
1424 trace_block_getrq(q, bio, bio->bi_opf);
1425
1426 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1427 if (unlikely(!rq)) {
1428 __wbt_done(q->rq_wb, wb_acct);
1429 return BLK_QC_T_NONE;
1430 }
1431
1432 wbt_track(&rq->issue_stat, wb_acct);
1433
1434 cookie = request_to_qc_t(data.hctx, rq);
1435
1436 if (unlikely(is_flush_fua)) {
1437 blk_mq_put_ctx(data.ctx);
1438 blk_mq_bio_to_request(rq, bio);
1439 blk_mq_get_driver_tag(rq, NULL, true);
1440 blk_insert_flush(rq);
1441 blk_mq_run_hw_queue(data.hctx, true);
1442 goto done;
1443 }
1444
1445 plug = current->plug;
1446 /*
1447 * If the driver supports defer issued based on 'last', then
1448 * queue it up like normal since we can potentially save some
1449 * CPU this way.
1450 */
1451 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1452 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1453 struct request *old_rq = NULL;
1454
1455 blk_mq_bio_to_request(rq, bio);
1456
1457 /*
1458 * We do limited plugging. If the bio can be merged, do that.
1459 * Otherwise the existing request in the plug list will be
1460 * issued. So the plug list will have one request at most
1461 */
1462 if (plug) {
1463 /*
1464 * The plug list might get flushed before this. If that
1465 * happens, same_queue_rq is invalid and plug list is
1466 * empty
1467 */
1468 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1469 old_rq = same_queue_rq;
1470 list_del_init(&old_rq->queuelist);
1471 }
1472 list_add_tail(&rq->queuelist, &plug->mq_list);
1473 } else /* is_sync */
1474 old_rq = rq;
1475 blk_mq_put_ctx(data.ctx);
1476 if (!old_rq)
1477 goto done;
1478
1479 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1480 rcu_read_lock();
1481 blk_mq_try_issue_directly(old_rq, &cookie);
1482 rcu_read_unlock();
1483 } else {
1484 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1485 blk_mq_try_issue_directly(old_rq, &cookie);
1486 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1487 }
1488 goto done;
1489 }
1490
1491 if (q->elevator) {
1492 blk_mq_put_ctx(data.ctx);
1493 blk_mq_bio_to_request(rq, bio);
1494 blk_mq_sched_insert_request(rq, false, true,
1495 !is_sync || is_flush_fua, true);
1496 goto done;
1497 }
1498 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1499 /*
1500 * For a SYNC request, send it to the hardware immediately. For
1501 * an ASYNC request, just ensure that we run it later on. The
1502 * latter allows for merging opportunities and more efficient
1503 * dispatching.
1504 */
1505 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1506 }
1507 blk_mq_put_ctx(data.ctx);
1508 done:
1509 return cookie;
1510 }
1511
1512 /*
1513 * Single hardware queue variant. This will attempt to use any per-process
1514 * plug for merging and IO deferral.
1515 */
1516 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1517 {
1518 const int is_sync = op_is_sync(bio->bi_opf);
1519 const int is_flush_fua = op_is_flush(bio->bi_opf);
1520 struct blk_plug *plug;
1521 unsigned int request_count = 0;
1522 struct blk_mq_alloc_data data = { .flags = 0 };
1523 struct request *rq;
1524 blk_qc_t cookie;
1525 unsigned int wb_acct;
1526
1527 blk_queue_bounce(q, &bio);
1528
1529 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1530 bio_io_error(bio);
1531 return BLK_QC_T_NONE;
1532 }
1533
1534 blk_queue_split(q, &bio, q->bio_split);
1535
1536 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1537 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1538 return BLK_QC_T_NONE;
1539 } else
1540 request_count = blk_plug_queued_count(q);
1541
1542 if (blk_mq_sched_bio_merge(q, bio))
1543 return BLK_QC_T_NONE;
1544
1545 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1546
1547 trace_block_getrq(q, bio, bio->bi_opf);
1548
1549 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1550 if (unlikely(!rq)) {
1551 __wbt_done(q->rq_wb, wb_acct);
1552 return BLK_QC_T_NONE;
1553 }
1554
1555 wbt_track(&rq->issue_stat, wb_acct);
1556
1557 cookie = request_to_qc_t(data.hctx, rq);
1558
1559 if (unlikely(is_flush_fua)) {
1560 blk_mq_put_ctx(data.ctx);
1561 blk_mq_bio_to_request(rq, bio);
1562 blk_mq_get_driver_tag(rq, NULL, true);
1563 blk_insert_flush(rq);
1564 blk_mq_run_hw_queue(data.hctx, true);
1565 goto done;
1566 }
1567
1568 /*
1569 * A task plug currently exists. Since this is completely lockless,
1570 * utilize that to temporarily store requests until the task is
1571 * either done or scheduled away.
1572 */
1573 plug = current->plug;
1574 if (plug) {
1575 struct request *last = NULL;
1576
1577 blk_mq_bio_to_request(rq, bio);
1578
1579 /*
1580 * @request_count may become stale because of schedule
1581 * out, so check the list again.
1582 */
1583 if (list_empty(&plug->mq_list))
1584 request_count = 0;
1585 if (!request_count)
1586 trace_block_plug(q);
1587 else
1588 last = list_entry_rq(plug->mq_list.prev);
1589
1590 blk_mq_put_ctx(data.ctx);
1591
1592 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1593 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1594 blk_flush_plug_list(plug, false);
1595 trace_block_plug(q);
1596 }
1597
1598 list_add_tail(&rq->queuelist, &plug->mq_list);
1599 return cookie;
1600 }
1601
1602 if (q->elevator) {
1603 blk_mq_put_ctx(data.ctx);
1604 blk_mq_bio_to_request(rq, bio);
1605 blk_mq_sched_insert_request(rq, false, true,
1606 !is_sync || is_flush_fua, true);
1607 goto done;
1608 }
1609 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1610 /*
1611 * For a SYNC request, send it to the hardware immediately. For
1612 * an ASYNC request, just ensure that we run it later on. The
1613 * latter allows for merging opportunities and more efficient
1614 * dispatching.
1615 */
1616 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1617 }
1618
1619 blk_mq_put_ctx(data.ctx);
1620 done:
1621 return cookie;
1622 }
1623
1624 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1625 unsigned int hctx_idx)
1626 {
1627 struct page *page;
1628
1629 if (tags->rqs && set->ops->exit_request) {
1630 int i;
1631
1632 for (i = 0; i < tags->nr_tags; i++) {
1633 struct request *rq = tags->static_rqs[i];
1634
1635 if (!rq)
1636 continue;
1637 set->ops->exit_request(set->driver_data, rq,
1638 hctx_idx, i);
1639 tags->static_rqs[i] = NULL;
1640 }
1641 }
1642
1643 while (!list_empty(&tags->page_list)) {
1644 page = list_first_entry(&tags->page_list, struct page, lru);
1645 list_del_init(&page->lru);
1646 /*
1647 * Remove kmemleak object previously allocated in
1648 * blk_mq_init_rq_map().
1649 */
1650 kmemleak_free(page_address(page));
1651 __free_pages(page, page->private);
1652 }
1653 }
1654
1655 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1656 {
1657 kfree(tags->rqs);
1658 tags->rqs = NULL;
1659 kfree(tags->static_rqs);
1660 tags->static_rqs = NULL;
1661
1662 blk_mq_free_tags(tags);
1663 }
1664
1665 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1666 unsigned int hctx_idx,
1667 unsigned int nr_tags,
1668 unsigned int reserved_tags)
1669 {
1670 struct blk_mq_tags *tags;
1671
1672 tags = blk_mq_init_tags(nr_tags, reserved_tags,
1673 set->numa_node,
1674 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1675 if (!tags)
1676 return NULL;
1677
1678 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1679 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1680 set->numa_node);
1681 if (!tags->rqs) {
1682 blk_mq_free_tags(tags);
1683 return NULL;
1684 }
1685
1686 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1687 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1688 set->numa_node);
1689 if (!tags->static_rqs) {
1690 kfree(tags->rqs);
1691 blk_mq_free_tags(tags);
1692 return NULL;
1693 }
1694
1695 return tags;
1696 }
1697
1698 static size_t order_to_size(unsigned int order)
1699 {
1700 return (size_t)PAGE_SIZE << order;
1701 }
1702
1703 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1704 unsigned int hctx_idx, unsigned int depth)
1705 {
1706 unsigned int i, j, entries_per_page, max_order = 4;
1707 size_t rq_size, left;
1708
1709 INIT_LIST_HEAD(&tags->page_list);
1710
1711 /*
1712 * rq_size is the size of the request plus driver payload, rounded
1713 * to the cacheline size
1714 */
1715 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1716 cache_line_size());
1717 left = rq_size * depth;
1718
1719 for (i = 0; i < depth; ) {
1720 int this_order = max_order;
1721 struct page *page;
1722 int to_do;
1723 void *p;
1724
1725 while (this_order && left < order_to_size(this_order - 1))
1726 this_order--;
1727
1728 do {
1729 page = alloc_pages_node(set->numa_node,
1730 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1731 this_order);
1732 if (page)
1733 break;
1734 if (!this_order--)
1735 break;
1736 if (order_to_size(this_order) < rq_size)
1737 break;
1738 } while (1);
1739
1740 if (!page)
1741 goto fail;
1742
1743 page->private = this_order;
1744 list_add_tail(&page->lru, &tags->page_list);
1745
1746 p = page_address(page);
1747 /*
1748 * Allow kmemleak to scan these pages as they contain pointers
1749 * to additional allocations like via ops->init_request().
1750 */
1751 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1752 entries_per_page = order_to_size(this_order) / rq_size;
1753 to_do = min(entries_per_page, depth - i);
1754 left -= to_do * rq_size;
1755 for (j = 0; j < to_do; j++) {
1756 struct request *rq = p;
1757
1758 tags->static_rqs[i] = rq;
1759 if (set->ops->init_request) {
1760 if (set->ops->init_request(set->driver_data,
1761 rq, hctx_idx, i,
1762 set->numa_node)) {
1763 tags->static_rqs[i] = NULL;
1764 goto fail;
1765 }
1766 }
1767
1768 p += rq_size;
1769 i++;
1770 }
1771 }
1772 return 0;
1773
1774 fail:
1775 blk_mq_free_rqs(set, tags, hctx_idx);
1776 return -ENOMEM;
1777 }
1778
1779 /*
1780 * 'cpu' is going away. splice any existing rq_list entries from this
1781 * software queue to the hw queue dispatch list, and ensure that it
1782 * gets run.
1783 */
1784 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1785 {
1786 struct blk_mq_hw_ctx *hctx;
1787 struct blk_mq_ctx *ctx;
1788 LIST_HEAD(tmp);
1789
1790 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1791 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1792
1793 spin_lock(&ctx->lock);
1794 if (!list_empty(&ctx->rq_list)) {
1795 list_splice_init(&ctx->rq_list, &tmp);
1796 blk_mq_hctx_clear_pending(hctx, ctx);
1797 }
1798 spin_unlock(&ctx->lock);
1799
1800 if (list_empty(&tmp))
1801 return 0;
1802
1803 spin_lock(&hctx->lock);
1804 list_splice_tail_init(&tmp, &hctx->dispatch);
1805 spin_unlock(&hctx->lock);
1806
1807 blk_mq_run_hw_queue(hctx, true);
1808 return 0;
1809 }
1810
1811 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1812 {
1813 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1814 &hctx->cpuhp_dead);
1815 }
1816
1817 /* hctx->ctxs will be freed in queue's release handler */
1818 static void blk_mq_exit_hctx(struct request_queue *q,
1819 struct blk_mq_tag_set *set,
1820 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1821 {
1822 unsigned flush_start_tag = set->queue_depth;
1823
1824 blk_mq_tag_idle(hctx);
1825
1826 if (set->ops->exit_request)
1827 set->ops->exit_request(set->driver_data,
1828 hctx->fq->flush_rq, hctx_idx,
1829 flush_start_tag + hctx_idx);
1830
1831 if (set->ops->exit_hctx)
1832 set->ops->exit_hctx(hctx, hctx_idx);
1833
1834 if (hctx->flags & BLK_MQ_F_BLOCKING)
1835 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1836
1837 blk_mq_remove_cpuhp(hctx);
1838 blk_free_flush_queue(hctx->fq);
1839 sbitmap_free(&hctx->ctx_map);
1840 }
1841
1842 static void blk_mq_exit_hw_queues(struct request_queue *q,
1843 struct blk_mq_tag_set *set, int nr_queue)
1844 {
1845 struct blk_mq_hw_ctx *hctx;
1846 unsigned int i;
1847
1848 queue_for_each_hw_ctx(q, hctx, i) {
1849 if (i == nr_queue)
1850 break;
1851 blk_mq_exit_hctx(q, set, hctx, i);
1852 }
1853 }
1854
1855 static void blk_mq_free_hw_queues(struct request_queue *q,
1856 struct blk_mq_tag_set *set)
1857 {
1858 struct blk_mq_hw_ctx *hctx;
1859 unsigned int i;
1860
1861 queue_for_each_hw_ctx(q, hctx, i)
1862 free_cpumask_var(hctx->cpumask);
1863 }
1864
1865 static int blk_mq_init_hctx(struct request_queue *q,
1866 struct blk_mq_tag_set *set,
1867 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1868 {
1869 int node;
1870 unsigned flush_start_tag = set->queue_depth;
1871
1872 node = hctx->numa_node;
1873 if (node == NUMA_NO_NODE)
1874 node = hctx->numa_node = set->numa_node;
1875
1876 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1877 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1878 spin_lock_init(&hctx->lock);
1879 INIT_LIST_HEAD(&hctx->dispatch);
1880 hctx->queue = q;
1881 hctx->queue_num = hctx_idx;
1882 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1883
1884 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1885
1886 hctx->tags = set->tags[hctx_idx];
1887
1888 /*
1889 * Allocate space for all possible cpus to avoid allocation at
1890 * runtime
1891 */
1892 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1893 GFP_KERNEL, node);
1894 if (!hctx->ctxs)
1895 goto unregister_cpu_notifier;
1896
1897 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1898 node))
1899 goto free_ctxs;
1900
1901 hctx->nr_ctx = 0;
1902
1903 if (set->ops->init_hctx &&
1904 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1905 goto free_bitmap;
1906
1907 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1908 if (!hctx->fq)
1909 goto exit_hctx;
1910
1911 if (set->ops->init_request &&
1912 set->ops->init_request(set->driver_data,
1913 hctx->fq->flush_rq, hctx_idx,
1914 flush_start_tag + hctx_idx, node))
1915 goto free_fq;
1916
1917 if (hctx->flags & BLK_MQ_F_BLOCKING)
1918 init_srcu_struct(&hctx->queue_rq_srcu);
1919
1920 return 0;
1921
1922 free_fq:
1923 kfree(hctx->fq);
1924 exit_hctx:
1925 if (set->ops->exit_hctx)
1926 set->ops->exit_hctx(hctx, hctx_idx);
1927 free_bitmap:
1928 sbitmap_free(&hctx->ctx_map);
1929 free_ctxs:
1930 kfree(hctx->ctxs);
1931 unregister_cpu_notifier:
1932 blk_mq_remove_cpuhp(hctx);
1933 return -1;
1934 }
1935
1936 static void blk_mq_init_cpu_queues(struct request_queue *q,
1937 unsigned int nr_hw_queues)
1938 {
1939 unsigned int i;
1940
1941 for_each_possible_cpu(i) {
1942 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1943 struct blk_mq_hw_ctx *hctx;
1944
1945 memset(__ctx, 0, sizeof(*__ctx));
1946 __ctx->cpu = i;
1947 spin_lock_init(&__ctx->lock);
1948 INIT_LIST_HEAD(&__ctx->rq_list);
1949 __ctx->queue = q;
1950 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1951 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1952
1953 /* If the cpu isn't online, the cpu is mapped to first hctx */
1954 if (!cpu_online(i))
1955 continue;
1956
1957 hctx = blk_mq_map_queue(q, i);
1958
1959 /*
1960 * Set local node, IFF we have more than one hw queue. If
1961 * not, we remain on the home node of the device
1962 */
1963 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1964 hctx->numa_node = local_memory_node(cpu_to_node(i));
1965 }
1966 }
1967
1968 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1969 {
1970 int ret = 0;
1971
1972 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1973 set->queue_depth, set->reserved_tags);
1974 if (!set->tags[hctx_idx])
1975 return false;
1976
1977 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1978 set->queue_depth);
1979 if (!ret)
1980 return true;
1981
1982 blk_mq_free_rq_map(set->tags[hctx_idx]);
1983 set->tags[hctx_idx] = NULL;
1984 return false;
1985 }
1986
1987 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1988 unsigned int hctx_idx)
1989 {
1990 if (set->tags[hctx_idx]) {
1991 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1992 blk_mq_free_rq_map(set->tags[hctx_idx]);
1993 set->tags[hctx_idx] = NULL;
1994 }
1995 }
1996
1997 static void blk_mq_map_swqueue(struct request_queue *q,
1998 const struct cpumask *online_mask)
1999 {
2000 unsigned int i, hctx_idx;
2001 struct blk_mq_hw_ctx *hctx;
2002 struct blk_mq_ctx *ctx;
2003 struct blk_mq_tag_set *set = q->tag_set;
2004
2005 /*
2006 * Avoid others reading imcomplete hctx->cpumask through sysfs
2007 */
2008 mutex_lock(&q->sysfs_lock);
2009
2010 queue_for_each_hw_ctx(q, hctx, i) {
2011 cpumask_clear(hctx->cpumask);
2012 hctx->nr_ctx = 0;
2013 }
2014
2015 /*
2016 * Map software to hardware queues
2017 */
2018 for_each_possible_cpu(i) {
2019 /* If the cpu isn't online, the cpu is mapped to first hctx */
2020 if (!cpumask_test_cpu(i, online_mask))
2021 continue;
2022
2023 hctx_idx = q->mq_map[i];
2024 /* unmapped hw queue can be remapped after CPU topo changed */
2025 if (!set->tags[hctx_idx] &&
2026 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2027 /*
2028 * If tags initialization fail for some hctx,
2029 * that hctx won't be brought online. In this
2030 * case, remap the current ctx to hctx[0] which
2031 * is guaranteed to always have tags allocated
2032 */
2033 q->mq_map[i] = 0;
2034 }
2035
2036 ctx = per_cpu_ptr(q->queue_ctx, i);
2037 hctx = blk_mq_map_queue(q, i);
2038
2039 cpumask_set_cpu(i, hctx->cpumask);
2040 ctx->index_hw = hctx->nr_ctx;
2041 hctx->ctxs[hctx->nr_ctx++] = ctx;
2042 }
2043
2044 mutex_unlock(&q->sysfs_lock);
2045
2046 queue_for_each_hw_ctx(q, hctx, i) {
2047 /*
2048 * If no software queues are mapped to this hardware queue,
2049 * disable it and free the request entries.
2050 */
2051 if (!hctx->nr_ctx) {
2052 /* Never unmap queue 0. We need it as a
2053 * fallback in case of a new remap fails
2054 * allocation
2055 */
2056 if (i && set->tags[i])
2057 blk_mq_free_map_and_requests(set, i);
2058
2059 hctx->tags = NULL;
2060 continue;
2061 }
2062
2063 hctx->tags = set->tags[i];
2064 WARN_ON(!hctx->tags);
2065
2066 /*
2067 * Set the map size to the number of mapped software queues.
2068 * This is more accurate and more efficient than looping
2069 * over all possibly mapped software queues.
2070 */
2071 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2072
2073 /*
2074 * Initialize batch roundrobin counts
2075 */
2076 hctx->next_cpu = cpumask_first(hctx->cpumask);
2077 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2078 }
2079 }
2080
2081 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2082 {
2083 struct blk_mq_hw_ctx *hctx;
2084 int i;
2085
2086 queue_for_each_hw_ctx(q, hctx, i) {
2087 if (shared)
2088 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2089 else
2090 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2091 }
2092 }
2093
2094 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2095 {
2096 struct request_queue *q;
2097
2098 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2099 blk_mq_freeze_queue(q);
2100 queue_set_hctx_shared(q, shared);
2101 blk_mq_unfreeze_queue(q);
2102 }
2103 }
2104
2105 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2106 {
2107 struct blk_mq_tag_set *set = q->tag_set;
2108
2109 mutex_lock(&set->tag_list_lock);
2110 list_del_init(&q->tag_set_list);
2111 if (list_is_singular(&set->tag_list)) {
2112 /* just transitioned to unshared */
2113 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2114 /* update existing queue */
2115 blk_mq_update_tag_set_depth(set, false);
2116 }
2117 mutex_unlock(&set->tag_list_lock);
2118 }
2119
2120 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2121 struct request_queue *q)
2122 {
2123 q->tag_set = set;
2124
2125 mutex_lock(&set->tag_list_lock);
2126
2127 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2128 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2129 set->flags |= BLK_MQ_F_TAG_SHARED;
2130 /* update existing queue */
2131 blk_mq_update_tag_set_depth(set, true);
2132 }
2133 if (set->flags & BLK_MQ_F_TAG_SHARED)
2134 queue_set_hctx_shared(q, true);
2135 list_add_tail(&q->tag_set_list, &set->tag_list);
2136
2137 mutex_unlock(&set->tag_list_lock);
2138 }
2139
2140 /*
2141 * It is the actual release handler for mq, but we do it from
2142 * request queue's release handler for avoiding use-after-free
2143 * and headache because q->mq_kobj shouldn't have been introduced,
2144 * but we can't group ctx/kctx kobj without it.
2145 */
2146 void blk_mq_release(struct request_queue *q)
2147 {
2148 struct blk_mq_hw_ctx *hctx;
2149 unsigned int i;
2150
2151 blk_mq_sched_teardown(q);
2152
2153 /* hctx kobj stays in hctx */
2154 queue_for_each_hw_ctx(q, hctx, i) {
2155 if (!hctx)
2156 continue;
2157 kfree(hctx->ctxs);
2158 kfree(hctx);
2159 }
2160
2161 q->mq_map = NULL;
2162
2163 kfree(q->queue_hw_ctx);
2164
2165 /* ctx kobj stays in queue_ctx */
2166 free_percpu(q->queue_ctx);
2167 }
2168
2169 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2170 {
2171 struct request_queue *uninit_q, *q;
2172
2173 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2174 if (!uninit_q)
2175 return ERR_PTR(-ENOMEM);
2176
2177 q = blk_mq_init_allocated_queue(set, uninit_q);
2178 if (IS_ERR(q))
2179 blk_cleanup_queue(uninit_q);
2180
2181 return q;
2182 }
2183 EXPORT_SYMBOL(blk_mq_init_queue);
2184
2185 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2186 struct request_queue *q)
2187 {
2188 int i, j;
2189 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2190
2191 blk_mq_sysfs_unregister(q);
2192 for (i = 0; i < set->nr_hw_queues; i++) {
2193 int node;
2194
2195 if (hctxs[i])
2196 continue;
2197
2198 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2199 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2200 GFP_KERNEL, node);
2201 if (!hctxs[i])
2202 break;
2203
2204 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2205 node)) {
2206 kfree(hctxs[i]);
2207 hctxs[i] = NULL;
2208 break;
2209 }
2210
2211 atomic_set(&hctxs[i]->nr_active, 0);
2212 hctxs[i]->numa_node = node;
2213 hctxs[i]->queue_num = i;
2214
2215 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2216 free_cpumask_var(hctxs[i]->cpumask);
2217 kfree(hctxs[i]);
2218 hctxs[i] = NULL;
2219 break;
2220 }
2221 blk_mq_hctx_kobj_init(hctxs[i]);
2222 }
2223 for (j = i; j < q->nr_hw_queues; j++) {
2224 struct blk_mq_hw_ctx *hctx = hctxs[j];
2225
2226 if (hctx) {
2227 if (hctx->tags)
2228 blk_mq_free_map_and_requests(set, j);
2229 blk_mq_exit_hctx(q, set, hctx, j);
2230 free_cpumask_var(hctx->cpumask);
2231 kobject_put(&hctx->kobj);
2232 kfree(hctx->ctxs);
2233 kfree(hctx);
2234 hctxs[j] = NULL;
2235
2236 }
2237 }
2238 q->nr_hw_queues = i;
2239 blk_mq_sysfs_register(q);
2240 }
2241
2242 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2243 struct request_queue *q)
2244 {
2245 /* mark the queue as mq asap */
2246 q->mq_ops = set->ops;
2247
2248 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2249 if (!q->queue_ctx)
2250 goto err_exit;
2251
2252 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2253 GFP_KERNEL, set->numa_node);
2254 if (!q->queue_hw_ctx)
2255 goto err_percpu;
2256
2257 q->mq_map = set->mq_map;
2258
2259 blk_mq_realloc_hw_ctxs(set, q);
2260 if (!q->nr_hw_queues)
2261 goto err_hctxs;
2262
2263 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2264 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2265
2266 q->nr_queues = nr_cpu_ids;
2267
2268 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2269
2270 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2271 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2272
2273 q->sg_reserved_size = INT_MAX;
2274
2275 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2276 INIT_LIST_HEAD(&q->requeue_list);
2277 spin_lock_init(&q->requeue_lock);
2278
2279 if (q->nr_hw_queues > 1)
2280 blk_queue_make_request(q, blk_mq_make_request);
2281 else
2282 blk_queue_make_request(q, blk_sq_make_request);
2283
2284 /*
2285 * Do this after blk_queue_make_request() overrides it...
2286 */
2287 q->nr_requests = set->queue_depth;
2288
2289 /*
2290 * Default to classic polling
2291 */
2292 q->poll_nsec = -1;
2293
2294 if (set->ops->complete)
2295 blk_queue_softirq_done(q, set->ops->complete);
2296
2297 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2298
2299 get_online_cpus();
2300 mutex_lock(&all_q_mutex);
2301
2302 list_add_tail(&q->all_q_node, &all_q_list);
2303 blk_mq_add_queue_tag_set(set, q);
2304 blk_mq_map_swqueue(q, cpu_online_mask);
2305
2306 mutex_unlock(&all_q_mutex);
2307 put_online_cpus();
2308
2309 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2310 int ret;
2311
2312 ret = blk_mq_sched_init(q);
2313 if (ret)
2314 return ERR_PTR(ret);
2315 }
2316
2317 return q;
2318
2319 err_hctxs:
2320 kfree(q->queue_hw_ctx);
2321 err_percpu:
2322 free_percpu(q->queue_ctx);
2323 err_exit:
2324 q->mq_ops = NULL;
2325 return ERR_PTR(-ENOMEM);
2326 }
2327 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2328
2329 void blk_mq_free_queue(struct request_queue *q)
2330 {
2331 struct blk_mq_tag_set *set = q->tag_set;
2332
2333 mutex_lock(&all_q_mutex);
2334 list_del_init(&q->all_q_node);
2335 mutex_unlock(&all_q_mutex);
2336
2337 wbt_exit(q);
2338
2339 blk_mq_del_queue_tag_set(q);
2340
2341 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2342 blk_mq_free_hw_queues(q, set);
2343 }
2344
2345 /* Basically redo blk_mq_init_queue with queue frozen */
2346 static void blk_mq_queue_reinit(struct request_queue *q,
2347 const struct cpumask *online_mask)
2348 {
2349 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2350
2351 blk_mq_sysfs_unregister(q);
2352
2353 /*
2354 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2355 * we should change hctx numa_node according to new topology (this
2356 * involves free and re-allocate memory, worthy doing?)
2357 */
2358
2359 blk_mq_map_swqueue(q, online_mask);
2360
2361 blk_mq_sysfs_register(q);
2362 }
2363
2364 /*
2365 * New online cpumask which is going to be set in this hotplug event.
2366 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2367 * one-by-one and dynamically allocating this could result in a failure.
2368 */
2369 static struct cpumask cpuhp_online_new;
2370
2371 static void blk_mq_queue_reinit_work(void)
2372 {
2373 struct request_queue *q;
2374
2375 mutex_lock(&all_q_mutex);
2376 /*
2377 * We need to freeze and reinit all existing queues. Freezing
2378 * involves synchronous wait for an RCU grace period and doing it
2379 * one by one may take a long time. Start freezing all queues in
2380 * one swoop and then wait for the completions so that freezing can
2381 * take place in parallel.
2382 */
2383 list_for_each_entry(q, &all_q_list, all_q_node)
2384 blk_mq_freeze_queue_start(q);
2385 list_for_each_entry(q, &all_q_list, all_q_node)
2386 blk_mq_freeze_queue_wait(q);
2387
2388 list_for_each_entry(q, &all_q_list, all_q_node)
2389 blk_mq_queue_reinit(q, &cpuhp_online_new);
2390
2391 list_for_each_entry(q, &all_q_list, all_q_node)
2392 blk_mq_unfreeze_queue(q);
2393
2394 mutex_unlock(&all_q_mutex);
2395 }
2396
2397 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2398 {
2399 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2400 blk_mq_queue_reinit_work();
2401 return 0;
2402 }
2403
2404 /*
2405 * Before hotadded cpu starts handling requests, new mappings must be
2406 * established. Otherwise, these requests in hw queue might never be
2407 * dispatched.
2408 *
2409 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2410 * for CPU0, and ctx1 for CPU1).
2411 *
2412 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2413 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2414 *
2415 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2416 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2417 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2418 * ignored.
2419 */
2420 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2421 {
2422 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2423 cpumask_set_cpu(cpu, &cpuhp_online_new);
2424 blk_mq_queue_reinit_work();
2425 return 0;
2426 }
2427
2428 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2429 {
2430 int i;
2431
2432 for (i = 0; i < set->nr_hw_queues; i++)
2433 if (!__blk_mq_alloc_rq_map(set, i))
2434 goto out_unwind;
2435
2436 return 0;
2437
2438 out_unwind:
2439 while (--i >= 0)
2440 blk_mq_free_rq_map(set->tags[i]);
2441
2442 return -ENOMEM;
2443 }
2444
2445 /*
2446 * Allocate the request maps associated with this tag_set. Note that this
2447 * may reduce the depth asked for, if memory is tight. set->queue_depth
2448 * will be updated to reflect the allocated depth.
2449 */
2450 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2451 {
2452 unsigned int depth;
2453 int err;
2454
2455 depth = set->queue_depth;
2456 do {
2457 err = __blk_mq_alloc_rq_maps(set);
2458 if (!err)
2459 break;
2460
2461 set->queue_depth >>= 1;
2462 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2463 err = -ENOMEM;
2464 break;
2465 }
2466 } while (set->queue_depth);
2467
2468 if (!set->queue_depth || err) {
2469 pr_err("blk-mq: failed to allocate request map\n");
2470 return -ENOMEM;
2471 }
2472
2473 if (depth != set->queue_depth)
2474 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2475 depth, set->queue_depth);
2476
2477 return 0;
2478 }
2479
2480 /*
2481 * Alloc a tag set to be associated with one or more request queues.
2482 * May fail with EINVAL for various error conditions. May adjust the
2483 * requested depth down, if if it too large. In that case, the set
2484 * value will be stored in set->queue_depth.
2485 */
2486 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2487 {
2488 int ret;
2489
2490 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2491
2492 if (!set->nr_hw_queues)
2493 return -EINVAL;
2494 if (!set->queue_depth)
2495 return -EINVAL;
2496 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2497 return -EINVAL;
2498
2499 if (!set->ops->queue_rq)
2500 return -EINVAL;
2501
2502 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2503 pr_info("blk-mq: reduced tag depth to %u\n",
2504 BLK_MQ_MAX_DEPTH);
2505 set->queue_depth = BLK_MQ_MAX_DEPTH;
2506 }
2507
2508 /*
2509 * If a crashdump is active, then we are potentially in a very
2510 * memory constrained environment. Limit us to 1 queue and
2511 * 64 tags to prevent using too much memory.
2512 */
2513 if (is_kdump_kernel()) {
2514 set->nr_hw_queues = 1;
2515 set->queue_depth = min(64U, set->queue_depth);
2516 }
2517 /*
2518 * There is no use for more h/w queues than cpus.
2519 */
2520 if (set->nr_hw_queues > nr_cpu_ids)
2521 set->nr_hw_queues = nr_cpu_ids;
2522
2523 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2524 GFP_KERNEL, set->numa_node);
2525 if (!set->tags)
2526 return -ENOMEM;
2527
2528 ret = -ENOMEM;
2529 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2530 GFP_KERNEL, set->numa_node);
2531 if (!set->mq_map)
2532 goto out_free_tags;
2533
2534 if (set->ops->map_queues)
2535 ret = set->ops->map_queues(set);
2536 else
2537 ret = blk_mq_map_queues(set);
2538 if (ret)
2539 goto out_free_mq_map;
2540
2541 ret = blk_mq_alloc_rq_maps(set);
2542 if (ret)
2543 goto out_free_mq_map;
2544
2545 mutex_init(&set->tag_list_lock);
2546 INIT_LIST_HEAD(&set->tag_list);
2547
2548 return 0;
2549
2550 out_free_mq_map:
2551 kfree(set->mq_map);
2552 set->mq_map = NULL;
2553 out_free_tags:
2554 kfree(set->tags);
2555 set->tags = NULL;
2556 return ret;
2557 }
2558 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2559
2560 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2561 {
2562 int i;
2563
2564 for (i = 0; i < nr_cpu_ids; i++)
2565 blk_mq_free_map_and_requests(set, i);
2566
2567 kfree(set->mq_map);
2568 set->mq_map = NULL;
2569
2570 kfree(set->tags);
2571 set->tags = NULL;
2572 }
2573 EXPORT_SYMBOL(blk_mq_free_tag_set);
2574
2575 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2576 {
2577 struct blk_mq_tag_set *set = q->tag_set;
2578 struct blk_mq_hw_ctx *hctx;
2579 int i, ret;
2580
2581 if (!set)
2582 return -EINVAL;
2583
2584 blk_mq_freeze_queue(q);
2585 blk_mq_quiesce_queue(q);
2586
2587 ret = 0;
2588 queue_for_each_hw_ctx(q, hctx, i) {
2589 if (!hctx->tags)
2590 continue;
2591 /*
2592 * If we're using an MQ scheduler, just update the scheduler
2593 * queue depth. This is similar to what the old code would do.
2594 */
2595 if (!hctx->sched_tags) {
2596 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2597 min(nr, set->queue_depth),
2598 false);
2599 } else {
2600 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2601 nr, true);
2602 }
2603 if (ret)
2604 break;
2605 }
2606
2607 if (!ret)
2608 q->nr_requests = nr;
2609
2610 blk_mq_unfreeze_queue(q);
2611 blk_mq_start_stopped_hw_queues(q, true);
2612
2613 return ret;
2614 }
2615
2616 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2617 {
2618 struct request_queue *q;
2619
2620 if (nr_hw_queues > nr_cpu_ids)
2621 nr_hw_queues = nr_cpu_ids;
2622 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2623 return;
2624
2625 list_for_each_entry(q, &set->tag_list, tag_set_list)
2626 blk_mq_freeze_queue(q);
2627
2628 set->nr_hw_queues = nr_hw_queues;
2629 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2630 blk_mq_realloc_hw_ctxs(set, q);
2631
2632 if (q->nr_hw_queues > 1)
2633 blk_queue_make_request(q, blk_mq_make_request);
2634 else
2635 blk_queue_make_request(q, blk_sq_make_request);
2636
2637 blk_mq_queue_reinit(q, cpu_online_mask);
2638 }
2639
2640 list_for_each_entry(q, &set->tag_list, tag_set_list)
2641 blk_mq_unfreeze_queue(q);
2642 }
2643 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2644
2645 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2646 struct blk_mq_hw_ctx *hctx,
2647 struct request *rq)
2648 {
2649 struct blk_rq_stat stat[2];
2650 unsigned long ret = 0;
2651
2652 /*
2653 * If stats collection isn't on, don't sleep but turn it on for
2654 * future users
2655 */
2656 if (!blk_stat_enable(q))
2657 return 0;
2658
2659 /*
2660 * We don't have to do this once per IO, should optimize this
2661 * to just use the current window of stats until it changes
2662 */
2663 memset(&stat, 0, sizeof(stat));
2664 blk_hctx_stat_get(hctx, stat);
2665
2666 /*
2667 * As an optimistic guess, use half of the mean service time
2668 * for this type of request. We can (and should) make this smarter.
2669 * For instance, if the completion latencies are tight, we can
2670 * get closer than just half the mean. This is especially
2671 * important on devices where the completion latencies are longer
2672 * than ~10 usec.
2673 */
2674 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2675 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2676 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2677 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2678
2679 return ret;
2680 }
2681
2682 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2683 struct blk_mq_hw_ctx *hctx,
2684 struct request *rq)
2685 {
2686 struct hrtimer_sleeper hs;
2687 enum hrtimer_mode mode;
2688 unsigned int nsecs;
2689 ktime_t kt;
2690
2691 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2692 return false;
2693
2694 /*
2695 * poll_nsec can be:
2696 *
2697 * -1: don't ever hybrid sleep
2698 * 0: use half of prev avg
2699 * >0: use this specific value
2700 */
2701 if (q->poll_nsec == -1)
2702 return false;
2703 else if (q->poll_nsec > 0)
2704 nsecs = q->poll_nsec;
2705 else
2706 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2707
2708 if (!nsecs)
2709 return false;
2710
2711 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2712
2713 /*
2714 * This will be replaced with the stats tracking code, using
2715 * 'avg_completion_time / 2' as the pre-sleep target.
2716 */
2717 kt = nsecs;
2718
2719 mode = HRTIMER_MODE_REL;
2720 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2721 hrtimer_set_expires(&hs.timer, kt);
2722
2723 hrtimer_init_sleeper(&hs, current);
2724 do {
2725 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2726 break;
2727 set_current_state(TASK_UNINTERRUPTIBLE);
2728 hrtimer_start_expires(&hs.timer, mode);
2729 if (hs.task)
2730 io_schedule();
2731 hrtimer_cancel(&hs.timer);
2732 mode = HRTIMER_MODE_ABS;
2733 } while (hs.task && !signal_pending(current));
2734
2735 __set_current_state(TASK_RUNNING);
2736 destroy_hrtimer_on_stack(&hs.timer);
2737 return true;
2738 }
2739
2740 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2741 {
2742 struct request_queue *q = hctx->queue;
2743 long state;
2744
2745 /*
2746 * If we sleep, have the caller restart the poll loop to reset
2747 * the state. Like for the other success return cases, the
2748 * caller is responsible for checking if the IO completed. If
2749 * the IO isn't complete, we'll get called again and will go
2750 * straight to the busy poll loop.
2751 */
2752 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2753 return true;
2754
2755 hctx->poll_considered++;
2756
2757 state = current->state;
2758 while (!need_resched()) {
2759 int ret;
2760
2761 hctx->poll_invoked++;
2762
2763 ret = q->mq_ops->poll(hctx, rq->tag);
2764 if (ret > 0) {
2765 hctx->poll_success++;
2766 set_current_state(TASK_RUNNING);
2767 return true;
2768 }
2769
2770 if (signal_pending_state(state, current))
2771 set_current_state(TASK_RUNNING);
2772
2773 if (current->state == TASK_RUNNING)
2774 return true;
2775 if (ret < 0)
2776 break;
2777 cpu_relax();
2778 }
2779
2780 return false;
2781 }
2782
2783 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2784 {
2785 struct blk_mq_hw_ctx *hctx;
2786 struct blk_plug *plug;
2787 struct request *rq;
2788
2789 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2790 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2791 return false;
2792
2793 plug = current->plug;
2794 if (plug)
2795 blk_flush_plug_list(plug, false);
2796
2797 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2798 if (!blk_qc_t_is_internal(cookie))
2799 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2800 else
2801 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2802
2803 return __blk_mq_poll(hctx, rq);
2804 }
2805 EXPORT_SYMBOL_GPL(blk_mq_poll);
2806
2807 void blk_mq_disable_hotplug(void)
2808 {
2809 mutex_lock(&all_q_mutex);
2810 }
2811
2812 void blk_mq_enable_hotplug(void)
2813 {
2814 mutex_unlock(&all_q_mutex);
2815 }
2816
2817 static int __init blk_mq_init(void)
2818 {
2819 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2820 blk_mq_hctx_notify_dead);
2821
2822 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2823 blk_mq_queue_reinit_prepare,
2824 blk_mq_queue_reinit_dead);
2825 return 0;
2826 }
2827 subsys_initcall(blk_mq_init);