]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
blk-mq: don't time out requests again that are in the timeout handler
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 /*
99 * index[0] counts the specific partition that was asked for. index[1]
100 * counts the ones that are active on the whole device, so increment
101 * that if mi->part is indeed a partition, and not a whole device.
102 */
103 if (rq->part == mi->part)
104 mi->inflight[0]++;
105 if (mi->part->partno)
106 mi->inflight[1]++;
107 }
108
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 unsigned int inflight[2])
111 {
112 struct mq_inflight mi = { .part = part, .inflight = inflight, };
113
114 inflight[0] = inflight[1] = 0;
115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
116 }
117
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 struct request *rq, void *priv,
120 bool reserved)
121 {
122 struct mq_inflight *mi = priv;
123
124 if (rq->part == mi->part)
125 mi->inflight[rq_data_dir(rq)]++;
126 }
127
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 unsigned int inflight[2])
130 {
131 struct mq_inflight mi = { .part = part, .inflight = inflight, };
132
133 inflight[0] = inflight[1] = 0;
134 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
135 }
136
137 void blk_freeze_queue_start(struct request_queue *q)
138 {
139 int freeze_depth;
140
141 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 if (freeze_depth == 1) {
143 percpu_ref_kill(&q->q_usage_counter);
144 if (q->mq_ops)
145 blk_mq_run_hw_queues(q, false);
146 }
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 unsigned long timeout)
158 {
159 return wait_event_timeout(q->mq_freeze_wq,
160 percpu_ref_is_zero(&q->q_usage_counter),
161 timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164
165 /*
166 * Guarantee no request is in use, so we can change any data structure of
167 * the queue afterward.
168 */
169 void blk_freeze_queue(struct request_queue *q)
170 {
171 /*
172 * In the !blk_mq case we are only calling this to kill the
173 * q_usage_counter, otherwise this increases the freeze depth
174 * and waits for it to return to zero. For this reason there is
175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 * exported to drivers as the only user for unfreeze is blk_mq.
177 */
178 blk_freeze_queue_start(q);
179 if (!q->mq_ops)
180 blk_drain_queue(q);
181 blk_mq_freeze_queue_wait(q);
182 }
183
184 void blk_mq_freeze_queue(struct request_queue *q)
185 {
186 /*
187 * ...just an alias to keep freeze and unfreeze actions balanced
188 * in the blk_mq_* namespace
189 */
190 blk_freeze_queue(q);
191 }
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 int freeze_depth;
197
198 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 WARN_ON_ONCE(freeze_depth < 0);
200 if (!freeze_depth) {
201 percpu_ref_reinit(&q->q_usage_counter);
202 wake_up_all(&q->mq_freeze_wq);
203 }
204 }
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
206
207 /*
208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209 * mpt3sas driver such that this function can be removed.
210 */
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 {
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
216
217 /**
218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 * @q: request queue.
220 *
221 * Note: this function does not prevent that the struct request end_io()
222 * callback function is invoked. Once this function is returned, we make
223 * sure no dispatch can happen until the queue is unquiesced via
224 * blk_mq_unquiesce_queue().
225 */
226 void blk_mq_quiesce_queue(struct request_queue *q)
227 {
228 struct blk_mq_hw_ctx *hctx;
229 unsigned int i;
230 bool rcu = false;
231
232 blk_mq_quiesce_queue_nowait(q);
233
234 queue_for_each_hw_ctx(q, hctx, i) {
235 if (hctx->flags & BLK_MQ_F_BLOCKING)
236 synchronize_srcu(hctx->srcu);
237 else
238 rcu = true;
239 }
240 if (rcu)
241 synchronize_rcu();
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
244
245 /*
246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247 * @q: request queue.
248 *
249 * This function recovers queue into the state before quiescing
250 * which is done by blk_mq_quiesce_queue.
251 */
252 void blk_mq_unquiesce_queue(struct request_queue *q)
253 {
254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255
256 /* dispatch requests which are inserted during quiescing */
257 blk_mq_run_hw_queues(q, true);
258 }
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260
261 void blk_mq_wake_waiters(struct request_queue *q)
262 {
263 struct blk_mq_hw_ctx *hctx;
264 unsigned int i;
265
266 queue_for_each_hw_ctx(q, hctx, i)
267 if (blk_mq_hw_queue_mapped(hctx))
268 blk_mq_tag_wakeup_all(hctx->tags, true);
269 }
270
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 {
273 return blk_mq_has_free_tags(hctx->tags);
274 }
275 EXPORT_SYMBOL(blk_mq_can_queue);
276
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, unsigned int op)
279 {
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
282 req_flags_t rq_flags = 0;
283
284 if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 rq->tag = -1;
286 rq->internal_tag = tag;
287 } else {
288 if (blk_mq_tag_busy(data->hctx)) {
289 rq_flags = RQF_MQ_INFLIGHT;
290 atomic_inc(&data->hctx->nr_active);
291 }
292 rq->tag = tag;
293 rq->internal_tag = -1;
294 data->hctx->tags->rqs[rq->tag] = rq;
295 }
296
297 /* csd/requeue_work/fifo_time is initialized before use */
298 rq->q = data->q;
299 rq->mq_ctx = data->ctx;
300 rq->rq_flags = rq_flags;
301 rq->cpu = -1;
302 rq->cmd_flags = op;
303 if (data->flags & BLK_MQ_REQ_PREEMPT)
304 rq->rq_flags |= RQF_PREEMPT;
305 if (blk_queue_io_stat(data->q))
306 rq->rq_flags |= RQF_IO_STAT;
307 INIT_LIST_HEAD(&rq->queuelist);
308 INIT_HLIST_NODE(&rq->hash);
309 RB_CLEAR_NODE(&rq->rb_node);
310 rq->rq_disk = NULL;
311 rq->part = NULL;
312 rq->start_time_ns = ktime_get_ns();
313 rq->io_start_time_ns = 0;
314 rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq->nr_integrity_segments = 0;
317 #endif
318 rq->special = NULL;
319 /* tag was already set */
320 rq->extra_len = 0;
321 rq->__deadline = 0;
322
323 INIT_LIST_HEAD(&rq->timeout_list);
324 rq->timeout = 0;
325
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
328 rq->next_rq = NULL;
329
330 #ifdef CONFIG_BLK_CGROUP
331 rq->rl = NULL;
332 #endif
333
334 data->ctx->rq_dispatched[op_is_sync(op)]++;
335 refcount_set(&rq->ref, 1);
336 return rq;
337 }
338
339 static struct request *blk_mq_get_request(struct request_queue *q,
340 struct bio *bio, unsigned int op,
341 struct blk_mq_alloc_data *data)
342 {
343 struct elevator_queue *e = q->elevator;
344 struct request *rq;
345 unsigned int tag;
346 bool put_ctx_on_error = false;
347
348 blk_queue_enter_live(q);
349 data->q = q;
350 if (likely(!data->ctx)) {
351 data->ctx = blk_mq_get_ctx(q);
352 put_ctx_on_error = true;
353 }
354 if (likely(!data->hctx))
355 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 if (op & REQ_NOWAIT)
357 data->flags |= BLK_MQ_REQ_NOWAIT;
358
359 if (e) {
360 data->flags |= BLK_MQ_REQ_INTERNAL;
361
362 /*
363 * Flush requests are special and go directly to the
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
366 */
367 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 !(data->flags & BLK_MQ_REQ_RESERVED))
369 e->type->ops.mq.limit_depth(op, data);
370 }
371
372 tag = blk_mq_get_tag(data);
373 if (tag == BLK_MQ_TAG_FAIL) {
374 if (put_ctx_on_error) {
375 blk_mq_put_ctx(data->ctx);
376 data->ctx = NULL;
377 }
378 blk_queue_exit(q);
379 return NULL;
380 }
381
382 rq = blk_mq_rq_ctx_init(data, tag, op);
383 if (!op_is_flush(op)) {
384 rq->elv.icq = NULL;
385 if (e && e->type->ops.mq.prepare_request) {
386 if (e->type->icq_cache && rq_ioc(bio))
387 blk_mq_sched_assign_ioc(rq, bio);
388
389 e->type->ops.mq.prepare_request(rq, bio);
390 rq->rq_flags |= RQF_ELVPRIV;
391 }
392 }
393 data->hctx->queued++;
394 return rq;
395 }
396
397 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
398 blk_mq_req_flags_t flags)
399 {
400 struct blk_mq_alloc_data alloc_data = { .flags = flags };
401 struct request *rq;
402 int ret;
403
404 ret = blk_queue_enter(q, flags);
405 if (ret)
406 return ERR_PTR(ret);
407
408 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409 blk_queue_exit(q);
410
411 if (!rq)
412 return ERR_PTR(-EWOULDBLOCK);
413
414 blk_mq_put_ctx(alloc_data.ctx);
415
416 rq->__data_len = 0;
417 rq->__sector = (sector_t) -1;
418 rq->bio = rq->biotail = NULL;
419 return rq;
420 }
421 EXPORT_SYMBOL(blk_mq_alloc_request);
422
423 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
424 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
425 {
426 struct blk_mq_alloc_data alloc_data = { .flags = flags };
427 struct request *rq;
428 unsigned int cpu;
429 int ret;
430
431 /*
432 * If the tag allocator sleeps we could get an allocation for a
433 * different hardware context. No need to complicate the low level
434 * allocator for this for the rare use case of a command tied to
435 * a specific queue.
436 */
437 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
438 return ERR_PTR(-EINVAL);
439
440 if (hctx_idx >= q->nr_hw_queues)
441 return ERR_PTR(-EIO);
442
443 ret = blk_queue_enter(q, flags);
444 if (ret)
445 return ERR_PTR(ret);
446
447 /*
448 * Check if the hardware context is actually mapped to anything.
449 * If not tell the caller that it should skip this queue.
450 */
451 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
452 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
453 blk_queue_exit(q);
454 return ERR_PTR(-EXDEV);
455 }
456 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
457 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
458
459 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460 blk_queue_exit(q);
461
462 if (!rq)
463 return ERR_PTR(-EWOULDBLOCK);
464
465 return rq;
466 }
467 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
468
469 static void __blk_mq_free_request(struct request *rq)
470 {
471 struct request_queue *q = rq->q;
472 struct blk_mq_ctx *ctx = rq->mq_ctx;
473 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
474 const int sched_tag = rq->internal_tag;
475
476 if (rq->tag != -1)
477 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
478 if (sched_tag != -1)
479 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
480 blk_mq_sched_restart(hctx);
481 blk_queue_exit(q);
482 }
483
484 void blk_mq_free_request(struct request *rq)
485 {
486 struct request_queue *q = rq->q;
487 struct elevator_queue *e = q->elevator;
488 struct blk_mq_ctx *ctx = rq->mq_ctx;
489 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
490
491 if (rq->rq_flags & RQF_ELVPRIV) {
492 if (e && e->type->ops.mq.finish_request)
493 e->type->ops.mq.finish_request(rq);
494 if (rq->elv.icq) {
495 put_io_context(rq->elv.icq->ioc);
496 rq->elv.icq = NULL;
497 }
498 }
499
500 ctx->rq_completed[rq_is_sync(rq)]++;
501 if (rq->rq_flags & RQF_MQ_INFLIGHT)
502 atomic_dec(&hctx->nr_active);
503
504 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
505 laptop_io_completion(q->backing_dev_info);
506
507 wbt_done(q->rq_wb, rq);
508
509 if (blk_rq_rl(rq))
510 blk_put_rl(blk_rq_rl(rq));
511
512 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 if (refcount_dec_and_test(&rq->ref))
514 __blk_mq_free_request(rq);
515 }
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
517
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519 {
520 u64 now = ktime_get_ns();
521
522 if (rq->rq_flags & RQF_STATS) {
523 blk_mq_poll_stats_start(rq->q);
524 blk_stat_add(rq, now);
525 }
526
527 blk_account_io_done(rq, now);
528
529 if (rq->end_io) {
530 wbt_done(rq->q->rq_wb, rq);
531 rq->end_io(rq, error);
532 } else {
533 if (unlikely(blk_bidi_rq(rq)))
534 blk_mq_free_request(rq->next_rq);
535 blk_mq_free_request(rq);
536 }
537 }
538 EXPORT_SYMBOL(__blk_mq_end_request);
539
540 void blk_mq_end_request(struct request *rq, blk_status_t error)
541 {
542 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
543 BUG();
544 __blk_mq_end_request(rq, error);
545 }
546 EXPORT_SYMBOL(blk_mq_end_request);
547
548 static void __blk_mq_complete_request_remote(void *data)
549 {
550 struct request *rq = data;
551
552 rq->q->softirq_done_fn(rq);
553 }
554
555 static void __blk_mq_complete_request(struct request *rq)
556 {
557 struct blk_mq_ctx *ctx = rq->mq_ctx;
558 bool shared = false;
559 int cpu;
560
561 if (cmpxchg(&rq->state, MQ_RQ_IN_FLIGHT, MQ_RQ_COMPLETE) !=
562 MQ_RQ_IN_FLIGHT)
563 return;
564
565 if (rq->internal_tag != -1)
566 blk_mq_sched_completed_request(rq);
567
568 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 rq->q->softirq_done_fn(rq);
570 return;
571 }
572
573 cpu = get_cpu();
574 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 shared = cpus_share_cache(cpu, ctx->cpu);
576
577 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 rq->csd.func = __blk_mq_complete_request_remote;
579 rq->csd.info = rq;
580 rq->csd.flags = 0;
581 smp_call_function_single_async(ctx->cpu, &rq->csd);
582 } else {
583 rq->q->softirq_done_fn(rq);
584 }
585 put_cpu();
586 }
587
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 __releases(hctx->srcu)
590 {
591 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592 rcu_read_unlock();
593 else
594 srcu_read_unlock(hctx->srcu, srcu_idx);
595 }
596
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 __acquires(hctx->srcu)
599 {
600 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 /* shut up gcc false positive */
602 *srcu_idx = 0;
603 rcu_read_lock();
604 } else
605 *srcu_idx = srcu_read_lock(hctx->srcu);
606 }
607
608 /**
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
611 *
612 * Description:
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
615 **/
616 void blk_mq_complete_request(struct request *rq)
617 {
618 if (unlikely(blk_should_fake_timeout(rq->q)))
619 return;
620 __blk_mq_complete_request(rq);
621 }
622 EXPORT_SYMBOL(blk_mq_complete_request);
623
624 int blk_mq_request_started(struct request *rq)
625 {
626 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
627 }
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
629
630 void blk_mq_start_request(struct request *rq)
631 {
632 struct request_queue *q = rq->q;
633
634 blk_mq_sched_started_request(rq);
635
636 trace_block_rq_issue(q, rq);
637
638 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643 rq->rq_flags |= RQF_STATS;
644 wbt_issue(q->rq_wb, rq);
645 }
646
647 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
648
649 blk_add_timer(rq);
650 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
651
652 if (q->dma_drain_size && blk_rq_bytes(rq)) {
653 /*
654 * Make sure space for the drain appears. We know we can do
655 * this because max_hw_segments has been adjusted to be one
656 * fewer than the device can handle.
657 */
658 rq->nr_phys_segments++;
659 }
660 }
661 EXPORT_SYMBOL(blk_mq_start_request);
662
663 static void __blk_mq_requeue_request(struct request *rq)
664 {
665 struct request_queue *q = rq->q;
666
667 blk_mq_put_driver_tag(rq);
668
669 trace_block_rq_requeue(q, rq);
670 wbt_requeue(q->rq_wb, rq);
671
672 if (blk_mq_request_started(rq)) {
673 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 rq->rq_flags &= ~RQF_TIMED_OUT;
675 if (q->dma_drain_size && blk_rq_bytes(rq))
676 rq->nr_phys_segments--;
677 }
678 }
679
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
681 {
682 __blk_mq_requeue_request(rq);
683
684 /* this request will be re-inserted to io scheduler queue */
685 blk_mq_sched_requeue_request(rq);
686
687 BUG_ON(blk_queued_rq(rq));
688 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
689 }
690 EXPORT_SYMBOL(blk_mq_requeue_request);
691
692 static void blk_mq_requeue_work(struct work_struct *work)
693 {
694 struct request_queue *q =
695 container_of(work, struct request_queue, requeue_work.work);
696 LIST_HEAD(rq_list);
697 struct request *rq, *next;
698
699 spin_lock_irq(&q->requeue_lock);
700 list_splice_init(&q->requeue_list, &rq_list);
701 spin_unlock_irq(&q->requeue_lock);
702
703 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704 if (!(rq->rq_flags & RQF_SOFTBARRIER))
705 continue;
706
707 rq->rq_flags &= ~RQF_SOFTBARRIER;
708 list_del_init(&rq->queuelist);
709 blk_mq_sched_insert_request(rq, true, false, false);
710 }
711
712 while (!list_empty(&rq_list)) {
713 rq = list_entry(rq_list.next, struct request, queuelist);
714 list_del_init(&rq->queuelist);
715 blk_mq_sched_insert_request(rq, false, false, false);
716 }
717
718 blk_mq_run_hw_queues(q, false);
719 }
720
721 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
722 bool kick_requeue_list)
723 {
724 struct request_queue *q = rq->q;
725 unsigned long flags;
726
727 /*
728 * We abuse this flag that is otherwise used by the I/O scheduler to
729 * request head insertion from the workqueue.
730 */
731 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
732
733 spin_lock_irqsave(&q->requeue_lock, flags);
734 if (at_head) {
735 rq->rq_flags |= RQF_SOFTBARRIER;
736 list_add(&rq->queuelist, &q->requeue_list);
737 } else {
738 list_add_tail(&rq->queuelist, &q->requeue_list);
739 }
740 spin_unlock_irqrestore(&q->requeue_lock, flags);
741
742 if (kick_requeue_list)
743 blk_mq_kick_requeue_list(q);
744 }
745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
746
747 void blk_mq_kick_requeue_list(struct request_queue *q)
748 {
749 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
750 }
751 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
752
753 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
754 unsigned long msecs)
755 {
756 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
757 msecs_to_jiffies(msecs));
758 }
759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
760
761 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
762 {
763 if (tag < tags->nr_tags) {
764 prefetch(tags->rqs[tag]);
765 return tags->rqs[tag];
766 }
767
768 return NULL;
769 }
770 EXPORT_SYMBOL(blk_mq_tag_to_rq);
771
772 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
773 {
774 req->rq_flags |= RQF_TIMED_OUT;
775 if (req->q->mq_ops->timeout) {
776 enum blk_eh_timer_return ret;
777
778 ret = req->q->mq_ops->timeout(req, reserved);
779 if (ret == BLK_EH_DONE)
780 return;
781 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
782 }
783
784 req->rq_flags &= ~RQF_TIMED_OUT;
785 blk_add_timer(req);
786 }
787
788 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
789 {
790 unsigned long deadline;
791
792 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
793 return false;
794 if (rq->rq_flags & RQF_TIMED_OUT)
795 return false;
796
797 deadline = blk_rq_deadline(rq);
798 if (time_after_eq(jiffies, deadline))
799 return true;
800
801 if (*next == 0)
802 *next = deadline;
803 else if (time_after(*next, deadline))
804 *next = deadline;
805 return false;
806 }
807
808 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
809 struct request *rq, void *priv, bool reserved)
810 {
811 unsigned long *next = priv;
812
813 /*
814 * Just do a quick check if it is expired before locking the request in
815 * so we're not unnecessarilly synchronizing across CPUs.
816 */
817 if (!blk_mq_req_expired(rq, next))
818 return;
819
820 /*
821 * We have reason to believe the request may be expired. Take a
822 * reference on the request to lock this request lifetime into its
823 * currently allocated context to prevent it from being reallocated in
824 * the event the completion by-passes this timeout handler.
825 *
826 * If the reference was already released, then the driver beat the
827 * timeout handler to posting a natural completion.
828 */
829 if (!refcount_inc_not_zero(&rq->ref))
830 return;
831
832 /*
833 * The request is now locked and cannot be reallocated underneath the
834 * timeout handler's processing. Re-verify this exact request is truly
835 * expired; if it is not expired, then the request was completed and
836 * reallocated as a new request.
837 */
838 if (blk_mq_req_expired(rq, next))
839 blk_mq_rq_timed_out(rq, reserved);
840 if (refcount_dec_and_test(&rq->ref))
841 __blk_mq_free_request(rq);
842 }
843
844 static void blk_mq_timeout_work(struct work_struct *work)
845 {
846 struct request_queue *q =
847 container_of(work, struct request_queue, timeout_work);
848 unsigned long next = 0;
849 struct blk_mq_hw_ctx *hctx;
850 int i;
851
852 /* A deadlock might occur if a request is stuck requiring a
853 * timeout at the same time a queue freeze is waiting
854 * completion, since the timeout code would not be able to
855 * acquire the queue reference here.
856 *
857 * That's why we don't use blk_queue_enter here; instead, we use
858 * percpu_ref_tryget directly, because we need to be able to
859 * obtain a reference even in the short window between the queue
860 * starting to freeze, by dropping the first reference in
861 * blk_freeze_queue_start, and the moment the last request is
862 * consumed, marked by the instant q_usage_counter reaches
863 * zero.
864 */
865 if (!percpu_ref_tryget(&q->q_usage_counter))
866 return;
867
868 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
869
870 if (next != 0) {
871 mod_timer(&q->timeout, next);
872 } else {
873 /*
874 * Request timeouts are handled as a forward rolling timer. If
875 * we end up here it means that no requests are pending and
876 * also that no request has been pending for a while. Mark
877 * each hctx as idle.
878 */
879 queue_for_each_hw_ctx(q, hctx, i) {
880 /* the hctx may be unmapped, so check it here */
881 if (blk_mq_hw_queue_mapped(hctx))
882 blk_mq_tag_idle(hctx);
883 }
884 }
885 blk_queue_exit(q);
886 }
887
888 struct flush_busy_ctx_data {
889 struct blk_mq_hw_ctx *hctx;
890 struct list_head *list;
891 };
892
893 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
894 {
895 struct flush_busy_ctx_data *flush_data = data;
896 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
897 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
898
899 spin_lock(&ctx->lock);
900 list_splice_tail_init(&ctx->rq_list, flush_data->list);
901 sbitmap_clear_bit(sb, bitnr);
902 spin_unlock(&ctx->lock);
903 return true;
904 }
905
906 /*
907 * Process software queues that have been marked busy, splicing them
908 * to the for-dispatch
909 */
910 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
911 {
912 struct flush_busy_ctx_data data = {
913 .hctx = hctx,
914 .list = list,
915 };
916
917 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
918 }
919 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
920
921 struct dispatch_rq_data {
922 struct blk_mq_hw_ctx *hctx;
923 struct request *rq;
924 };
925
926 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
927 void *data)
928 {
929 struct dispatch_rq_data *dispatch_data = data;
930 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
931 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
932
933 spin_lock(&ctx->lock);
934 if (!list_empty(&ctx->rq_list)) {
935 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
936 list_del_init(&dispatch_data->rq->queuelist);
937 if (list_empty(&ctx->rq_list))
938 sbitmap_clear_bit(sb, bitnr);
939 }
940 spin_unlock(&ctx->lock);
941
942 return !dispatch_data->rq;
943 }
944
945 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
946 struct blk_mq_ctx *start)
947 {
948 unsigned off = start ? start->index_hw : 0;
949 struct dispatch_rq_data data = {
950 .hctx = hctx,
951 .rq = NULL,
952 };
953
954 __sbitmap_for_each_set(&hctx->ctx_map, off,
955 dispatch_rq_from_ctx, &data);
956
957 return data.rq;
958 }
959
960 static inline unsigned int queued_to_index(unsigned int queued)
961 {
962 if (!queued)
963 return 0;
964
965 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
966 }
967
968 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
969 bool wait)
970 {
971 struct blk_mq_alloc_data data = {
972 .q = rq->q,
973 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
974 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
975 };
976
977 might_sleep_if(wait);
978
979 if (rq->tag != -1)
980 goto done;
981
982 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
983 data.flags |= BLK_MQ_REQ_RESERVED;
984
985 rq->tag = blk_mq_get_tag(&data);
986 if (rq->tag >= 0) {
987 if (blk_mq_tag_busy(data.hctx)) {
988 rq->rq_flags |= RQF_MQ_INFLIGHT;
989 atomic_inc(&data.hctx->nr_active);
990 }
991 data.hctx->tags->rqs[rq->tag] = rq;
992 }
993
994 done:
995 if (hctx)
996 *hctx = data.hctx;
997 return rq->tag != -1;
998 }
999
1000 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1001 int flags, void *key)
1002 {
1003 struct blk_mq_hw_ctx *hctx;
1004
1005 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1006
1007 list_del_init(&wait->entry);
1008 blk_mq_run_hw_queue(hctx, true);
1009 return 1;
1010 }
1011
1012 /*
1013 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1014 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1015 * restart. For both cases, take care to check the condition again after
1016 * marking us as waiting.
1017 */
1018 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1019 struct request *rq)
1020 {
1021 struct blk_mq_hw_ctx *this_hctx = *hctx;
1022 struct sbq_wait_state *ws;
1023 wait_queue_entry_t *wait;
1024 bool ret;
1025
1026 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1027 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1028 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1029
1030 /*
1031 * It's possible that a tag was freed in the window between the
1032 * allocation failure and adding the hardware queue to the wait
1033 * queue.
1034 *
1035 * Don't clear RESTART here, someone else could have set it.
1036 * At most this will cost an extra queue run.
1037 */
1038 return blk_mq_get_driver_tag(rq, hctx, false);
1039 }
1040
1041 wait = &this_hctx->dispatch_wait;
1042 if (!list_empty_careful(&wait->entry))
1043 return false;
1044
1045 spin_lock(&this_hctx->lock);
1046 if (!list_empty(&wait->entry)) {
1047 spin_unlock(&this_hctx->lock);
1048 return false;
1049 }
1050
1051 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1052 add_wait_queue(&ws->wait, wait);
1053
1054 /*
1055 * It's possible that a tag was freed in the window between the
1056 * allocation failure and adding the hardware queue to the wait
1057 * queue.
1058 */
1059 ret = blk_mq_get_driver_tag(rq, hctx, false);
1060 if (!ret) {
1061 spin_unlock(&this_hctx->lock);
1062 return false;
1063 }
1064
1065 /*
1066 * We got a tag, remove ourselves from the wait queue to ensure
1067 * someone else gets the wakeup.
1068 */
1069 spin_lock_irq(&ws->wait.lock);
1070 list_del_init(&wait->entry);
1071 spin_unlock_irq(&ws->wait.lock);
1072 spin_unlock(&this_hctx->lock);
1073
1074 return true;
1075 }
1076
1077 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1078
1079 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1080 bool got_budget)
1081 {
1082 struct blk_mq_hw_ctx *hctx;
1083 struct request *rq, *nxt;
1084 bool no_tag = false;
1085 int errors, queued;
1086 blk_status_t ret = BLK_STS_OK;
1087
1088 if (list_empty(list))
1089 return false;
1090
1091 WARN_ON(!list_is_singular(list) && got_budget);
1092
1093 /*
1094 * Now process all the entries, sending them to the driver.
1095 */
1096 errors = queued = 0;
1097 do {
1098 struct blk_mq_queue_data bd;
1099
1100 rq = list_first_entry(list, struct request, queuelist);
1101
1102 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1103 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1104 break;
1105
1106 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1107 /*
1108 * The initial allocation attempt failed, so we need to
1109 * rerun the hardware queue when a tag is freed. The
1110 * waitqueue takes care of that. If the queue is run
1111 * before we add this entry back on the dispatch list,
1112 * we'll re-run it below.
1113 */
1114 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1115 blk_mq_put_dispatch_budget(hctx);
1116 /*
1117 * For non-shared tags, the RESTART check
1118 * will suffice.
1119 */
1120 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1121 no_tag = true;
1122 break;
1123 }
1124 }
1125
1126 list_del_init(&rq->queuelist);
1127
1128 bd.rq = rq;
1129
1130 /*
1131 * Flag last if we have no more requests, or if we have more
1132 * but can't assign a driver tag to it.
1133 */
1134 if (list_empty(list))
1135 bd.last = true;
1136 else {
1137 nxt = list_first_entry(list, struct request, queuelist);
1138 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1139 }
1140
1141 ret = q->mq_ops->queue_rq(hctx, &bd);
1142 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1143 /*
1144 * If an I/O scheduler has been configured and we got a
1145 * driver tag for the next request already, free it
1146 * again.
1147 */
1148 if (!list_empty(list)) {
1149 nxt = list_first_entry(list, struct request, queuelist);
1150 blk_mq_put_driver_tag(nxt);
1151 }
1152 list_add(&rq->queuelist, list);
1153 __blk_mq_requeue_request(rq);
1154 break;
1155 }
1156
1157 if (unlikely(ret != BLK_STS_OK)) {
1158 errors++;
1159 blk_mq_end_request(rq, BLK_STS_IOERR);
1160 continue;
1161 }
1162
1163 queued++;
1164 } while (!list_empty(list));
1165
1166 hctx->dispatched[queued_to_index(queued)]++;
1167
1168 /*
1169 * Any items that need requeuing? Stuff them into hctx->dispatch,
1170 * that is where we will continue on next queue run.
1171 */
1172 if (!list_empty(list)) {
1173 bool needs_restart;
1174
1175 spin_lock(&hctx->lock);
1176 list_splice_init(list, &hctx->dispatch);
1177 spin_unlock(&hctx->lock);
1178
1179 /*
1180 * If SCHED_RESTART was set by the caller of this function and
1181 * it is no longer set that means that it was cleared by another
1182 * thread and hence that a queue rerun is needed.
1183 *
1184 * If 'no_tag' is set, that means that we failed getting
1185 * a driver tag with an I/O scheduler attached. If our dispatch
1186 * waitqueue is no longer active, ensure that we run the queue
1187 * AFTER adding our entries back to the list.
1188 *
1189 * If no I/O scheduler has been configured it is possible that
1190 * the hardware queue got stopped and restarted before requests
1191 * were pushed back onto the dispatch list. Rerun the queue to
1192 * avoid starvation. Notes:
1193 * - blk_mq_run_hw_queue() checks whether or not a queue has
1194 * been stopped before rerunning a queue.
1195 * - Some but not all block drivers stop a queue before
1196 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1197 * and dm-rq.
1198 *
1199 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1200 * bit is set, run queue after a delay to avoid IO stalls
1201 * that could otherwise occur if the queue is idle.
1202 */
1203 needs_restart = blk_mq_sched_needs_restart(hctx);
1204 if (!needs_restart ||
1205 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1206 blk_mq_run_hw_queue(hctx, true);
1207 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1208 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1209 }
1210
1211 return (queued + errors) != 0;
1212 }
1213
1214 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1215 {
1216 int srcu_idx;
1217
1218 /*
1219 * We should be running this queue from one of the CPUs that
1220 * are mapped to it.
1221 *
1222 * There are at least two related races now between setting
1223 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1224 * __blk_mq_run_hw_queue():
1225 *
1226 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1227 * but later it becomes online, then this warning is harmless
1228 * at all
1229 *
1230 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1231 * but later it becomes offline, then the warning can't be
1232 * triggered, and we depend on blk-mq timeout handler to
1233 * handle dispatched requests to this hctx
1234 */
1235 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1236 cpu_online(hctx->next_cpu)) {
1237 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1238 raw_smp_processor_id(),
1239 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1240 dump_stack();
1241 }
1242
1243 /*
1244 * We can't run the queue inline with ints disabled. Ensure that
1245 * we catch bad users of this early.
1246 */
1247 WARN_ON_ONCE(in_interrupt());
1248
1249 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1250
1251 hctx_lock(hctx, &srcu_idx);
1252 blk_mq_sched_dispatch_requests(hctx);
1253 hctx_unlock(hctx, srcu_idx);
1254 }
1255
1256 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1257 {
1258 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1259
1260 if (cpu >= nr_cpu_ids)
1261 cpu = cpumask_first(hctx->cpumask);
1262 return cpu;
1263 }
1264
1265 /*
1266 * It'd be great if the workqueue API had a way to pass
1267 * in a mask and had some smarts for more clever placement.
1268 * For now we just round-robin here, switching for every
1269 * BLK_MQ_CPU_WORK_BATCH queued items.
1270 */
1271 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1272 {
1273 bool tried = false;
1274 int next_cpu = hctx->next_cpu;
1275
1276 if (hctx->queue->nr_hw_queues == 1)
1277 return WORK_CPU_UNBOUND;
1278
1279 if (--hctx->next_cpu_batch <= 0) {
1280 select_cpu:
1281 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1282 cpu_online_mask);
1283 if (next_cpu >= nr_cpu_ids)
1284 next_cpu = blk_mq_first_mapped_cpu(hctx);
1285 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1286 }
1287
1288 /*
1289 * Do unbound schedule if we can't find a online CPU for this hctx,
1290 * and it should only happen in the path of handling CPU DEAD.
1291 */
1292 if (!cpu_online(next_cpu)) {
1293 if (!tried) {
1294 tried = true;
1295 goto select_cpu;
1296 }
1297
1298 /*
1299 * Make sure to re-select CPU next time once after CPUs
1300 * in hctx->cpumask become online again.
1301 */
1302 hctx->next_cpu = next_cpu;
1303 hctx->next_cpu_batch = 1;
1304 return WORK_CPU_UNBOUND;
1305 }
1306
1307 hctx->next_cpu = next_cpu;
1308 return next_cpu;
1309 }
1310
1311 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1312 unsigned long msecs)
1313 {
1314 if (unlikely(blk_mq_hctx_stopped(hctx)))
1315 return;
1316
1317 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1318 int cpu = get_cpu();
1319 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1320 __blk_mq_run_hw_queue(hctx);
1321 put_cpu();
1322 return;
1323 }
1324
1325 put_cpu();
1326 }
1327
1328 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1329 msecs_to_jiffies(msecs));
1330 }
1331
1332 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1333 {
1334 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1335 }
1336 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1337
1338 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1339 {
1340 int srcu_idx;
1341 bool need_run;
1342
1343 /*
1344 * When queue is quiesced, we may be switching io scheduler, or
1345 * updating nr_hw_queues, or other things, and we can't run queue
1346 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1347 *
1348 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1349 * quiesced.
1350 */
1351 hctx_lock(hctx, &srcu_idx);
1352 need_run = !blk_queue_quiesced(hctx->queue) &&
1353 blk_mq_hctx_has_pending(hctx);
1354 hctx_unlock(hctx, srcu_idx);
1355
1356 if (need_run) {
1357 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1358 return true;
1359 }
1360
1361 return false;
1362 }
1363 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1364
1365 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1366 {
1367 struct blk_mq_hw_ctx *hctx;
1368 int i;
1369
1370 queue_for_each_hw_ctx(q, hctx, i) {
1371 if (blk_mq_hctx_stopped(hctx))
1372 continue;
1373
1374 blk_mq_run_hw_queue(hctx, async);
1375 }
1376 }
1377 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1378
1379 /**
1380 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1381 * @q: request queue.
1382 *
1383 * The caller is responsible for serializing this function against
1384 * blk_mq_{start,stop}_hw_queue().
1385 */
1386 bool blk_mq_queue_stopped(struct request_queue *q)
1387 {
1388 struct blk_mq_hw_ctx *hctx;
1389 int i;
1390
1391 queue_for_each_hw_ctx(q, hctx, i)
1392 if (blk_mq_hctx_stopped(hctx))
1393 return true;
1394
1395 return false;
1396 }
1397 EXPORT_SYMBOL(blk_mq_queue_stopped);
1398
1399 /*
1400 * This function is often used for pausing .queue_rq() by driver when
1401 * there isn't enough resource or some conditions aren't satisfied, and
1402 * BLK_STS_RESOURCE is usually returned.
1403 *
1404 * We do not guarantee that dispatch can be drained or blocked
1405 * after blk_mq_stop_hw_queue() returns. Please use
1406 * blk_mq_quiesce_queue() for that requirement.
1407 */
1408 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1409 {
1410 cancel_delayed_work(&hctx->run_work);
1411
1412 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1413 }
1414 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1415
1416 /*
1417 * This function is often used for pausing .queue_rq() by driver when
1418 * there isn't enough resource or some conditions aren't satisfied, and
1419 * BLK_STS_RESOURCE is usually returned.
1420 *
1421 * We do not guarantee that dispatch can be drained or blocked
1422 * after blk_mq_stop_hw_queues() returns. Please use
1423 * blk_mq_quiesce_queue() for that requirement.
1424 */
1425 void blk_mq_stop_hw_queues(struct request_queue *q)
1426 {
1427 struct blk_mq_hw_ctx *hctx;
1428 int i;
1429
1430 queue_for_each_hw_ctx(q, hctx, i)
1431 blk_mq_stop_hw_queue(hctx);
1432 }
1433 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1434
1435 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1436 {
1437 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1438
1439 blk_mq_run_hw_queue(hctx, false);
1440 }
1441 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1442
1443 void blk_mq_start_hw_queues(struct request_queue *q)
1444 {
1445 struct blk_mq_hw_ctx *hctx;
1446 int i;
1447
1448 queue_for_each_hw_ctx(q, hctx, i)
1449 blk_mq_start_hw_queue(hctx);
1450 }
1451 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1452
1453 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1454 {
1455 if (!blk_mq_hctx_stopped(hctx))
1456 return;
1457
1458 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1459 blk_mq_run_hw_queue(hctx, async);
1460 }
1461 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1462
1463 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1464 {
1465 struct blk_mq_hw_ctx *hctx;
1466 int i;
1467
1468 queue_for_each_hw_ctx(q, hctx, i)
1469 blk_mq_start_stopped_hw_queue(hctx, async);
1470 }
1471 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1472
1473 static void blk_mq_run_work_fn(struct work_struct *work)
1474 {
1475 struct blk_mq_hw_ctx *hctx;
1476
1477 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1478
1479 /*
1480 * If we are stopped, don't run the queue.
1481 */
1482 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1483 return;
1484
1485 __blk_mq_run_hw_queue(hctx);
1486 }
1487
1488 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1489 struct request *rq,
1490 bool at_head)
1491 {
1492 struct blk_mq_ctx *ctx = rq->mq_ctx;
1493
1494 lockdep_assert_held(&ctx->lock);
1495
1496 trace_block_rq_insert(hctx->queue, rq);
1497
1498 if (at_head)
1499 list_add(&rq->queuelist, &ctx->rq_list);
1500 else
1501 list_add_tail(&rq->queuelist, &ctx->rq_list);
1502 }
1503
1504 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1505 bool at_head)
1506 {
1507 struct blk_mq_ctx *ctx = rq->mq_ctx;
1508
1509 lockdep_assert_held(&ctx->lock);
1510
1511 __blk_mq_insert_req_list(hctx, rq, at_head);
1512 blk_mq_hctx_mark_pending(hctx, ctx);
1513 }
1514
1515 /*
1516 * Should only be used carefully, when the caller knows we want to
1517 * bypass a potential IO scheduler on the target device.
1518 */
1519 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1520 {
1521 struct blk_mq_ctx *ctx = rq->mq_ctx;
1522 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1523
1524 spin_lock(&hctx->lock);
1525 list_add_tail(&rq->queuelist, &hctx->dispatch);
1526 spin_unlock(&hctx->lock);
1527
1528 if (run_queue)
1529 blk_mq_run_hw_queue(hctx, false);
1530 }
1531
1532 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1533 struct list_head *list)
1534
1535 {
1536 /*
1537 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1538 * offline now
1539 */
1540 spin_lock(&ctx->lock);
1541 while (!list_empty(list)) {
1542 struct request *rq;
1543
1544 rq = list_first_entry(list, struct request, queuelist);
1545 BUG_ON(rq->mq_ctx != ctx);
1546 list_del_init(&rq->queuelist);
1547 __blk_mq_insert_req_list(hctx, rq, false);
1548 }
1549 blk_mq_hctx_mark_pending(hctx, ctx);
1550 spin_unlock(&ctx->lock);
1551 }
1552
1553 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1554 {
1555 struct request *rqa = container_of(a, struct request, queuelist);
1556 struct request *rqb = container_of(b, struct request, queuelist);
1557
1558 return !(rqa->mq_ctx < rqb->mq_ctx ||
1559 (rqa->mq_ctx == rqb->mq_ctx &&
1560 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1561 }
1562
1563 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1564 {
1565 struct blk_mq_ctx *this_ctx;
1566 struct request_queue *this_q;
1567 struct request *rq;
1568 LIST_HEAD(list);
1569 LIST_HEAD(ctx_list);
1570 unsigned int depth;
1571
1572 list_splice_init(&plug->mq_list, &list);
1573
1574 list_sort(NULL, &list, plug_ctx_cmp);
1575
1576 this_q = NULL;
1577 this_ctx = NULL;
1578 depth = 0;
1579
1580 while (!list_empty(&list)) {
1581 rq = list_entry_rq(list.next);
1582 list_del_init(&rq->queuelist);
1583 BUG_ON(!rq->q);
1584 if (rq->mq_ctx != this_ctx) {
1585 if (this_ctx) {
1586 trace_block_unplug(this_q, depth, from_schedule);
1587 blk_mq_sched_insert_requests(this_q, this_ctx,
1588 &ctx_list,
1589 from_schedule);
1590 }
1591
1592 this_ctx = rq->mq_ctx;
1593 this_q = rq->q;
1594 depth = 0;
1595 }
1596
1597 depth++;
1598 list_add_tail(&rq->queuelist, &ctx_list);
1599 }
1600
1601 /*
1602 * If 'this_ctx' is set, we know we have entries to complete
1603 * on 'ctx_list'. Do those.
1604 */
1605 if (this_ctx) {
1606 trace_block_unplug(this_q, depth, from_schedule);
1607 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1608 from_schedule);
1609 }
1610 }
1611
1612 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1613 {
1614 blk_init_request_from_bio(rq, bio);
1615
1616 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1617
1618 blk_account_io_start(rq, true);
1619 }
1620
1621 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1622 {
1623 if (rq->tag != -1)
1624 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1625
1626 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1627 }
1628
1629 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1630 struct request *rq,
1631 blk_qc_t *cookie)
1632 {
1633 struct request_queue *q = rq->q;
1634 struct blk_mq_queue_data bd = {
1635 .rq = rq,
1636 .last = true,
1637 };
1638 blk_qc_t new_cookie;
1639 blk_status_t ret;
1640
1641 new_cookie = request_to_qc_t(hctx, rq);
1642
1643 /*
1644 * For OK queue, we are done. For error, caller may kill it.
1645 * Any other error (busy), just add it to our list as we
1646 * previously would have done.
1647 */
1648 ret = q->mq_ops->queue_rq(hctx, &bd);
1649 switch (ret) {
1650 case BLK_STS_OK:
1651 *cookie = new_cookie;
1652 break;
1653 case BLK_STS_RESOURCE:
1654 case BLK_STS_DEV_RESOURCE:
1655 __blk_mq_requeue_request(rq);
1656 break;
1657 default:
1658 *cookie = BLK_QC_T_NONE;
1659 break;
1660 }
1661
1662 return ret;
1663 }
1664
1665 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1666 struct request *rq,
1667 blk_qc_t *cookie,
1668 bool bypass_insert)
1669 {
1670 struct request_queue *q = rq->q;
1671 bool run_queue = true;
1672
1673 /*
1674 * RCU or SRCU read lock is needed before checking quiesced flag.
1675 *
1676 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1677 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1678 * and avoid driver to try to dispatch again.
1679 */
1680 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1681 run_queue = false;
1682 bypass_insert = false;
1683 goto insert;
1684 }
1685
1686 if (q->elevator && !bypass_insert)
1687 goto insert;
1688
1689 if (!blk_mq_get_dispatch_budget(hctx))
1690 goto insert;
1691
1692 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1693 blk_mq_put_dispatch_budget(hctx);
1694 goto insert;
1695 }
1696
1697 return __blk_mq_issue_directly(hctx, rq, cookie);
1698 insert:
1699 if (bypass_insert)
1700 return BLK_STS_RESOURCE;
1701
1702 blk_mq_sched_insert_request(rq, false, run_queue, false);
1703 return BLK_STS_OK;
1704 }
1705
1706 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1707 struct request *rq, blk_qc_t *cookie)
1708 {
1709 blk_status_t ret;
1710 int srcu_idx;
1711
1712 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1713
1714 hctx_lock(hctx, &srcu_idx);
1715
1716 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1717 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1718 blk_mq_sched_insert_request(rq, false, true, false);
1719 else if (ret != BLK_STS_OK)
1720 blk_mq_end_request(rq, ret);
1721
1722 hctx_unlock(hctx, srcu_idx);
1723 }
1724
1725 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1726 {
1727 blk_status_t ret;
1728 int srcu_idx;
1729 blk_qc_t unused_cookie;
1730 struct blk_mq_ctx *ctx = rq->mq_ctx;
1731 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1732
1733 hctx_lock(hctx, &srcu_idx);
1734 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1735 hctx_unlock(hctx, srcu_idx);
1736
1737 return ret;
1738 }
1739
1740 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1741 {
1742 const int is_sync = op_is_sync(bio->bi_opf);
1743 const int is_flush_fua = op_is_flush(bio->bi_opf);
1744 struct blk_mq_alloc_data data = { .flags = 0 };
1745 struct request *rq;
1746 unsigned int request_count = 0;
1747 struct blk_plug *plug;
1748 struct request *same_queue_rq = NULL;
1749 blk_qc_t cookie;
1750 unsigned int wb_acct;
1751
1752 blk_queue_bounce(q, &bio);
1753
1754 blk_queue_split(q, &bio);
1755
1756 if (!bio_integrity_prep(bio))
1757 return BLK_QC_T_NONE;
1758
1759 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1760 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1761 return BLK_QC_T_NONE;
1762
1763 if (blk_mq_sched_bio_merge(q, bio))
1764 return BLK_QC_T_NONE;
1765
1766 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1767
1768 trace_block_getrq(q, bio, bio->bi_opf);
1769
1770 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1771 if (unlikely(!rq)) {
1772 __wbt_done(q->rq_wb, wb_acct);
1773 if (bio->bi_opf & REQ_NOWAIT)
1774 bio_wouldblock_error(bio);
1775 return BLK_QC_T_NONE;
1776 }
1777
1778 wbt_track(rq, wb_acct);
1779
1780 cookie = request_to_qc_t(data.hctx, rq);
1781
1782 plug = current->plug;
1783 if (unlikely(is_flush_fua)) {
1784 blk_mq_put_ctx(data.ctx);
1785 blk_mq_bio_to_request(rq, bio);
1786
1787 /* bypass scheduler for flush rq */
1788 blk_insert_flush(rq);
1789 blk_mq_run_hw_queue(data.hctx, true);
1790 } else if (plug && q->nr_hw_queues == 1) {
1791 struct request *last = NULL;
1792
1793 blk_mq_put_ctx(data.ctx);
1794 blk_mq_bio_to_request(rq, bio);
1795
1796 /*
1797 * @request_count may become stale because of schedule
1798 * out, so check the list again.
1799 */
1800 if (list_empty(&plug->mq_list))
1801 request_count = 0;
1802 else if (blk_queue_nomerges(q))
1803 request_count = blk_plug_queued_count(q);
1804
1805 if (!request_count)
1806 trace_block_plug(q);
1807 else
1808 last = list_entry_rq(plug->mq_list.prev);
1809
1810 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1811 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1812 blk_flush_plug_list(plug, false);
1813 trace_block_plug(q);
1814 }
1815
1816 list_add_tail(&rq->queuelist, &plug->mq_list);
1817 } else if (plug && !blk_queue_nomerges(q)) {
1818 blk_mq_bio_to_request(rq, bio);
1819
1820 /*
1821 * We do limited plugging. If the bio can be merged, do that.
1822 * Otherwise the existing request in the plug list will be
1823 * issued. So the plug list will have one request at most
1824 * The plug list might get flushed before this. If that happens,
1825 * the plug list is empty, and same_queue_rq is invalid.
1826 */
1827 if (list_empty(&plug->mq_list))
1828 same_queue_rq = NULL;
1829 if (same_queue_rq)
1830 list_del_init(&same_queue_rq->queuelist);
1831 list_add_tail(&rq->queuelist, &plug->mq_list);
1832
1833 blk_mq_put_ctx(data.ctx);
1834
1835 if (same_queue_rq) {
1836 data.hctx = blk_mq_map_queue(q,
1837 same_queue_rq->mq_ctx->cpu);
1838 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1839 &cookie);
1840 }
1841 } else if (q->nr_hw_queues > 1 && is_sync) {
1842 blk_mq_put_ctx(data.ctx);
1843 blk_mq_bio_to_request(rq, bio);
1844 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1845 } else {
1846 blk_mq_put_ctx(data.ctx);
1847 blk_mq_bio_to_request(rq, bio);
1848 blk_mq_sched_insert_request(rq, false, true, true);
1849 }
1850
1851 return cookie;
1852 }
1853
1854 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1855 unsigned int hctx_idx)
1856 {
1857 struct page *page;
1858
1859 if (tags->rqs && set->ops->exit_request) {
1860 int i;
1861
1862 for (i = 0; i < tags->nr_tags; i++) {
1863 struct request *rq = tags->static_rqs[i];
1864
1865 if (!rq)
1866 continue;
1867 set->ops->exit_request(set, rq, hctx_idx);
1868 tags->static_rqs[i] = NULL;
1869 }
1870 }
1871
1872 while (!list_empty(&tags->page_list)) {
1873 page = list_first_entry(&tags->page_list, struct page, lru);
1874 list_del_init(&page->lru);
1875 /*
1876 * Remove kmemleak object previously allocated in
1877 * blk_mq_init_rq_map().
1878 */
1879 kmemleak_free(page_address(page));
1880 __free_pages(page, page->private);
1881 }
1882 }
1883
1884 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1885 {
1886 kfree(tags->rqs);
1887 tags->rqs = NULL;
1888 kfree(tags->static_rqs);
1889 tags->static_rqs = NULL;
1890
1891 blk_mq_free_tags(tags);
1892 }
1893
1894 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1895 unsigned int hctx_idx,
1896 unsigned int nr_tags,
1897 unsigned int reserved_tags)
1898 {
1899 struct blk_mq_tags *tags;
1900 int node;
1901
1902 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1903 if (node == NUMA_NO_NODE)
1904 node = set->numa_node;
1905
1906 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1907 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1908 if (!tags)
1909 return NULL;
1910
1911 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1912 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1913 node);
1914 if (!tags->rqs) {
1915 blk_mq_free_tags(tags);
1916 return NULL;
1917 }
1918
1919 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1920 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1921 node);
1922 if (!tags->static_rqs) {
1923 kfree(tags->rqs);
1924 blk_mq_free_tags(tags);
1925 return NULL;
1926 }
1927
1928 return tags;
1929 }
1930
1931 static size_t order_to_size(unsigned int order)
1932 {
1933 return (size_t)PAGE_SIZE << order;
1934 }
1935
1936 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1937 unsigned int hctx_idx, int node)
1938 {
1939 int ret;
1940
1941 if (set->ops->init_request) {
1942 ret = set->ops->init_request(set, rq, hctx_idx, node);
1943 if (ret)
1944 return ret;
1945 }
1946
1947 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1948 return 0;
1949 }
1950
1951 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1952 unsigned int hctx_idx, unsigned int depth)
1953 {
1954 unsigned int i, j, entries_per_page, max_order = 4;
1955 size_t rq_size, left;
1956 int node;
1957
1958 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1959 if (node == NUMA_NO_NODE)
1960 node = set->numa_node;
1961
1962 INIT_LIST_HEAD(&tags->page_list);
1963
1964 /*
1965 * rq_size is the size of the request plus driver payload, rounded
1966 * to the cacheline size
1967 */
1968 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1969 cache_line_size());
1970 left = rq_size * depth;
1971
1972 for (i = 0; i < depth; ) {
1973 int this_order = max_order;
1974 struct page *page;
1975 int to_do;
1976 void *p;
1977
1978 while (this_order && left < order_to_size(this_order - 1))
1979 this_order--;
1980
1981 do {
1982 page = alloc_pages_node(node,
1983 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1984 this_order);
1985 if (page)
1986 break;
1987 if (!this_order--)
1988 break;
1989 if (order_to_size(this_order) < rq_size)
1990 break;
1991 } while (1);
1992
1993 if (!page)
1994 goto fail;
1995
1996 page->private = this_order;
1997 list_add_tail(&page->lru, &tags->page_list);
1998
1999 p = page_address(page);
2000 /*
2001 * Allow kmemleak to scan these pages as they contain pointers
2002 * to additional allocations like via ops->init_request().
2003 */
2004 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2005 entries_per_page = order_to_size(this_order) / rq_size;
2006 to_do = min(entries_per_page, depth - i);
2007 left -= to_do * rq_size;
2008 for (j = 0; j < to_do; j++) {
2009 struct request *rq = p;
2010
2011 tags->static_rqs[i] = rq;
2012 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2013 tags->static_rqs[i] = NULL;
2014 goto fail;
2015 }
2016
2017 p += rq_size;
2018 i++;
2019 }
2020 }
2021 return 0;
2022
2023 fail:
2024 blk_mq_free_rqs(set, tags, hctx_idx);
2025 return -ENOMEM;
2026 }
2027
2028 /*
2029 * 'cpu' is going away. splice any existing rq_list entries from this
2030 * software queue to the hw queue dispatch list, and ensure that it
2031 * gets run.
2032 */
2033 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2034 {
2035 struct blk_mq_hw_ctx *hctx;
2036 struct blk_mq_ctx *ctx;
2037 LIST_HEAD(tmp);
2038
2039 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2040 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2041
2042 spin_lock(&ctx->lock);
2043 if (!list_empty(&ctx->rq_list)) {
2044 list_splice_init(&ctx->rq_list, &tmp);
2045 blk_mq_hctx_clear_pending(hctx, ctx);
2046 }
2047 spin_unlock(&ctx->lock);
2048
2049 if (list_empty(&tmp))
2050 return 0;
2051
2052 spin_lock(&hctx->lock);
2053 list_splice_tail_init(&tmp, &hctx->dispatch);
2054 spin_unlock(&hctx->lock);
2055
2056 blk_mq_run_hw_queue(hctx, true);
2057 return 0;
2058 }
2059
2060 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2061 {
2062 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2063 &hctx->cpuhp_dead);
2064 }
2065
2066 /* hctx->ctxs will be freed in queue's release handler */
2067 static void blk_mq_exit_hctx(struct request_queue *q,
2068 struct blk_mq_tag_set *set,
2069 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2070 {
2071 blk_mq_debugfs_unregister_hctx(hctx);
2072
2073 if (blk_mq_hw_queue_mapped(hctx))
2074 blk_mq_tag_idle(hctx);
2075
2076 if (set->ops->exit_request)
2077 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2078
2079 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2080
2081 if (set->ops->exit_hctx)
2082 set->ops->exit_hctx(hctx, hctx_idx);
2083
2084 if (hctx->flags & BLK_MQ_F_BLOCKING)
2085 cleanup_srcu_struct(hctx->srcu);
2086
2087 blk_mq_remove_cpuhp(hctx);
2088 blk_free_flush_queue(hctx->fq);
2089 sbitmap_free(&hctx->ctx_map);
2090 }
2091
2092 static void blk_mq_exit_hw_queues(struct request_queue *q,
2093 struct blk_mq_tag_set *set, int nr_queue)
2094 {
2095 struct blk_mq_hw_ctx *hctx;
2096 unsigned int i;
2097
2098 queue_for_each_hw_ctx(q, hctx, i) {
2099 if (i == nr_queue)
2100 break;
2101 blk_mq_exit_hctx(q, set, hctx, i);
2102 }
2103 }
2104
2105 static int blk_mq_init_hctx(struct request_queue *q,
2106 struct blk_mq_tag_set *set,
2107 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2108 {
2109 int node;
2110
2111 node = hctx->numa_node;
2112 if (node == NUMA_NO_NODE)
2113 node = hctx->numa_node = set->numa_node;
2114
2115 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2116 spin_lock_init(&hctx->lock);
2117 INIT_LIST_HEAD(&hctx->dispatch);
2118 hctx->queue = q;
2119 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2120
2121 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2122
2123 hctx->tags = set->tags[hctx_idx];
2124
2125 /*
2126 * Allocate space for all possible cpus to avoid allocation at
2127 * runtime
2128 */
2129 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2130 GFP_KERNEL, node);
2131 if (!hctx->ctxs)
2132 goto unregister_cpu_notifier;
2133
2134 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2135 node))
2136 goto free_ctxs;
2137
2138 hctx->nr_ctx = 0;
2139
2140 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2141 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2142
2143 if (set->ops->init_hctx &&
2144 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2145 goto free_bitmap;
2146
2147 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2148 goto exit_hctx;
2149
2150 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2151 if (!hctx->fq)
2152 goto sched_exit_hctx;
2153
2154 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2155 goto free_fq;
2156
2157 if (hctx->flags & BLK_MQ_F_BLOCKING)
2158 init_srcu_struct(hctx->srcu);
2159
2160 blk_mq_debugfs_register_hctx(q, hctx);
2161
2162 return 0;
2163
2164 free_fq:
2165 kfree(hctx->fq);
2166 sched_exit_hctx:
2167 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2168 exit_hctx:
2169 if (set->ops->exit_hctx)
2170 set->ops->exit_hctx(hctx, hctx_idx);
2171 free_bitmap:
2172 sbitmap_free(&hctx->ctx_map);
2173 free_ctxs:
2174 kfree(hctx->ctxs);
2175 unregister_cpu_notifier:
2176 blk_mq_remove_cpuhp(hctx);
2177 return -1;
2178 }
2179
2180 static void blk_mq_init_cpu_queues(struct request_queue *q,
2181 unsigned int nr_hw_queues)
2182 {
2183 unsigned int i;
2184
2185 for_each_possible_cpu(i) {
2186 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2187 struct blk_mq_hw_ctx *hctx;
2188
2189 __ctx->cpu = i;
2190 spin_lock_init(&__ctx->lock);
2191 INIT_LIST_HEAD(&__ctx->rq_list);
2192 __ctx->queue = q;
2193
2194 /*
2195 * Set local node, IFF we have more than one hw queue. If
2196 * not, we remain on the home node of the device
2197 */
2198 hctx = blk_mq_map_queue(q, i);
2199 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2200 hctx->numa_node = local_memory_node(cpu_to_node(i));
2201 }
2202 }
2203
2204 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2205 {
2206 int ret = 0;
2207
2208 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2209 set->queue_depth, set->reserved_tags);
2210 if (!set->tags[hctx_idx])
2211 return false;
2212
2213 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2214 set->queue_depth);
2215 if (!ret)
2216 return true;
2217
2218 blk_mq_free_rq_map(set->tags[hctx_idx]);
2219 set->tags[hctx_idx] = NULL;
2220 return false;
2221 }
2222
2223 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2224 unsigned int hctx_idx)
2225 {
2226 if (set->tags[hctx_idx]) {
2227 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2228 blk_mq_free_rq_map(set->tags[hctx_idx]);
2229 set->tags[hctx_idx] = NULL;
2230 }
2231 }
2232
2233 static void blk_mq_map_swqueue(struct request_queue *q)
2234 {
2235 unsigned int i, hctx_idx;
2236 struct blk_mq_hw_ctx *hctx;
2237 struct blk_mq_ctx *ctx;
2238 struct blk_mq_tag_set *set = q->tag_set;
2239
2240 /*
2241 * Avoid others reading imcomplete hctx->cpumask through sysfs
2242 */
2243 mutex_lock(&q->sysfs_lock);
2244
2245 queue_for_each_hw_ctx(q, hctx, i) {
2246 cpumask_clear(hctx->cpumask);
2247 hctx->nr_ctx = 0;
2248 hctx->dispatch_from = NULL;
2249 }
2250
2251 /*
2252 * Map software to hardware queues.
2253 *
2254 * If the cpu isn't present, the cpu is mapped to first hctx.
2255 */
2256 for_each_possible_cpu(i) {
2257 hctx_idx = q->mq_map[i];
2258 /* unmapped hw queue can be remapped after CPU topo changed */
2259 if (!set->tags[hctx_idx] &&
2260 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2261 /*
2262 * If tags initialization fail for some hctx,
2263 * that hctx won't be brought online. In this
2264 * case, remap the current ctx to hctx[0] which
2265 * is guaranteed to always have tags allocated
2266 */
2267 q->mq_map[i] = 0;
2268 }
2269
2270 ctx = per_cpu_ptr(q->queue_ctx, i);
2271 hctx = blk_mq_map_queue(q, i);
2272
2273 cpumask_set_cpu(i, hctx->cpumask);
2274 ctx->index_hw = hctx->nr_ctx;
2275 hctx->ctxs[hctx->nr_ctx++] = ctx;
2276 }
2277
2278 mutex_unlock(&q->sysfs_lock);
2279
2280 queue_for_each_hw_ctx(q, hctx, i) {
2281 /*
2282 * If no software queues are mapped to this hardware queue,
2283 * disable it and free the request entries.
2284 */
2285 if (!hctx->nr_ctx) {
2286 /* Never unmap queue 0. We need it as a
2287 * fallback in case of a new remap fails
2288 * allocation
2289 */
2290 if (i && set->tags[i])
2291 blk_mq_free_map_and_requests(set, i);
2292
2293 hctx->tags = NULL;
2294 continue;
2295 }
2296
2297 hctx->tags = set->tags[i];
2298 WARN_ON(!hctx->tags);
2299
2300 /*
2301 * Set the map size to the number of mapped software queues.
2302 * This is more accurate and more efficient than looping
2303 * over all possibly mapped software queues.
2304 */
2305 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2306
2307 /*
2308 * Initialize batch roundrobin counts
2309 */
2310 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2311 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2312 }
2313 }
2314
2315 /*
2316 * Caller needs to ensure that we're either frozen/quiesced, or that
2317 * the queue isn't live yet.
2318 */
2319 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2320 {
2321 struct blk_mq_hw_ctx *hctx;
2322 int i;
2323
2324 queue_for_each_hw_ctx(q, hctx, i) {
2325 if (shared) {
2326 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2327 atomic_inc(&q->shared_hctx_restart);
2328 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2329 } else {
2330 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2331 atomic_dec(&q->shared_hctx_restart);
2332 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2333 }
2334 }
2335 }
2336
2337 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2338 bool shared)
2339 {
2340 struct request_queue *q;
2341
2342 lockdep_assert_held(&set->tag_list_lock);
2343
2344 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2345 blk_mq_freeze_queue(q);
2346 queue_set_hctx_shared(q, shared);
2347 blk_mq_unfreeze_queue(q);
2348 }
2349 }
2350
2351 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2352 {
2353 struct blk_mq_tag_set *set = q->tag_set;
2354
2355 mutex_lock(&set->tag_list_lock);
2356 list_del_rcu(&q->tag_set_list);
2357 if (list_is_singular(&set->tag_list)) {
2358 /* just transitioned to unshared */
2359 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2360 /* update existing queue */
2361 blk_mq_update_tag_set_depth(set, false);
2362 }
2363 mutex_unlock(&set->tag_list_lock);
2364 synchronize_rcu();
2365 INIT_LIST_HEAD(&q->tag_set_list);
2366 }
2367
2368 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2369 struct request_queue *q)
2370 {
2371 q->tag_set = set;
2372
2373 mutex_lock(&set->tag_list_lock);
2374
2375 /*
2376 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2377 */
2378 if (!list_empty(&set->tag_list) &&
2379 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2380 set->flags |= BLK_MQ_F_TAG_SHARED;
2381 /* update existing queue */
2382 blk_mq_update_tag_set_depth(set, true);
2383 }
2384 if (set->flags & BLK_MQ_F_TAG_SHARED)
2385 queue_set_hctx_shared(q, true);
2386 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2387
2388 mutex_unlock(&set->tag_list_lock);
2389 }
2390
2391 /*
2392 * It is the actual release handler for mq, but we do it from
2393 * request queue's release handler for avoiding use-after-free
2394 * and headache because q->mq_kobj shouldn't have been introduced,
2395 * but we can't group ctx/kctx kobj without it.
2396 */
2397 void blk_mq_release(struct request_queue *q)
2398 {
2399 struct blk_mq_hw_ctx *hctx;
2400 unsigned int i;
2401
2402 /* hctx kobj stays in hctx */
2403 queue_for_each_hw_ctx(q, hctx, i) {
2404 if (!hctx)
2405 continue;
2406 kobject_put(&hctx->kobj);
2407 }
2408
2409 q->mq_map = NULL;
2410
2411 kfree(q->queue_hw_ctx);
2412
2413 /*
2414 * release .mq_kobj and sw queue's kobject now because
2415 * both share lifetime with request queue.
2416 */
2417 blk_mq_sysfs_deinit(q);
2418
2419 free_percpu(q->queue_ctx);
2420 }
2421
2422 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2423 {
2424 struct request_queue *uninit_q, *q;
2425
2426 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2427 if (!uninit_q)
2428 return ERR_PTR(-ENOMEM);
2429
2430 q = blk_mq_init_allocated_queue(set, uninit_q);
2431 if (IS_ERR(q))
2432 blk_cleanup_queue(uninit_q);
2433
2434 return q;
2435 }
2436 EXPORT_SYMBOL(blk_mq_init_queue);
2437
2438 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2439 {
2440 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2441
2442 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2443 __alignof__(struct blk_mq_hw_ctx)) !=
2444 sizeof(struct blk_mq_hw_ctx));
2445
2446 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2447 hw_ctx_size += sizeof(struct srcu_struct);
2448
2449 return hw_ctx_size;
2450 }
2451
2452 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2453 struct request_queue *q)
2454 {
2455 int i, j;
2456 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2457
2458 blk_mq_sysfs_unregister(q);
2459
2460 /* protect against switching io scheduler */
2461 mutex_lock(&q->sysfs_lock);
2462 for (i = 0; i < set->nr_hw_queues; i++) {
2463 int node;
2464
2465 if (hctxs[i])
2466 continue;
2467
2468 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2469 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2470 GFP_KERNEL, node);
2471 if (!hctxs[i])
2472 break;
2473
2474 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2475 node)) {
2476 kfree(hctxs[i]);
2477 hctxs[i] = NULL;
2478 break;
2479 }
2480
2481 atomic_set(&hctxs[i]->nr_active, 0);
2482 hctxs[i]->numa_node = node;
2483 hctxs[i]->queue_num = i;
2484
2485 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2486 free_cpumask_var(hctxs[i]->cpumask);
2487 kfree(hctxs[i]);
2488 hctxs[i] = NULL;
2489 break;
2490 }
2491 blk_mq_hctx_kobj_init(hctxs[i]);
2492 }
2493 for (j = i; j < q->nr_hw_queues; j++) {
2494 struct blk_mq_hw_ctx *hctx = hctxs[j];
2495
2496 if (hctx) {
2497 if (hctx->tags)
2498 blk_mq_free_map_and_requests(set, j);
2499 blk_mq_exit_hctx(q, set, hctx, j);
2500 kobject_put(&hctx->kobj);
2501 hctxs[j] = NULL;
2502
2503 }
2504 }
2505 q->nr_hw_queues = i;
2506 mutex_unlock(&q->sysfs_lock);
2507 blk_mq_sysfs_register(q);
2508 }
2509
2510 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2511 struct request_queue *q)
2512 {
2513 /* mark the queue as mq asap */
2514 q->mq_ops = set->ops;
2515
2516 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2517 blk_mq_poll_stats_bkt,
2518 BLK_MQ_POLL_STATS_BKTS, q);
2519 if (!q->poll_cb)
2520 goto err_exit;
2521
2522 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2523 if (!q->queue_ctx)
2524 goto err_exit;
2525
2526 /* init q->mq_kobj and sw queues' kobjects */
2527 blk_mq_sysfs_init(q);
2528
2529 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2530 GFP_KERNEL, set->numa_node);
2531 if (!q->queue_hw_ctx)
2532 goto err_percpu;
2533
2534 q->mq_map = set->mq_map;
2535
2536 blk_mq_realloc_hw_ctxs(set, q);
2537 if (!q->nr_hw_queues)
2538 goto err_hctxs;
2539
2540 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2541 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2542
2543 q->nr_queues = nr_cpu_ids;
2544
2545 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2546
2547 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2548 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2549
2550 q->sg_reserved_size = INT_MAX;
2551
2552 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2553 INIT_LIST_HEAD(&q->requeue_list);
2554 spin_lock_init(&q->requeue_lock);
2555
2556 blk_queue_make_request(q, blk_mq_make_request);
2557 if (q->mq_ops->poll)
2558 q->poll_fn = blk_mq_poll;
2559
2560 /*
2561 * Do this after blk_queue_make_request() overrides it...
2562 */
2563 q->nr_requests = set->queue_depth;
2564
2565 /*
2566 * Default to classic polling
2567 */
2568 q->poll_nsec = -1;
2569
2570 if (set->ops->complete)
2571 blk_queue_softirq_done(q, set->ops->complete);
2572
2573 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2574 blk_mq_add_queue_tag_set(set, q);
2575 blk_mq_map_swqueue(q);
2576
2577 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2578 int ret;
2579
2580 ret = elevator_init_mq(q);
2581 if (ret)
2582 return ERR_PTR(ret);
2583 }
2584
2585 return q;
2586
2587 err_hctxs:
2588 kfree(q->queue_hw_ctx);
2589 err_percpu:
2590 free_percpu(q->queue_ctx);
2591 err_exit:
2592 q->mq_ops = NULL;
2593 return ERR_PTR(-ENOMEM);
2594 }
2595 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2596
2597 void blk_mq_free_queue(struct request_queue *q)
2598 {
2599 struct blk_mq_tag_set *set = q->tag_set;
2600
2601 blk_mq_del_queue_tag_set(q);
2602 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2603 }
2604
2605 /* Basically redo blk_mq_init_queue with queue frozen */
2606 static void blk_mq_queue_reinit(struct request_queue *q)
2607 {
2608 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2609
2610 blk_mq_debugfs_unregister_hctxs(q);
2611 blk_mq_sysfs_unregister(q);
2612
2613 /*
2614 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2615 * we should change hctx numa_node according to the new topology (this
2616 * involves freeing and re-allocating memory, worth doing?)
2617 */
2618 blk_mq_map_swqueue(q);
2619
2620 blk_mq_sysfs_register(q);
2621 blk_mq_debugfs_register_hctxs(q);
2622 }
2623
2624 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2625 {
2626 int i;
2627
2628 for (i = 0; i < set->nr_hw_queues; i++)
2629 if (!__blk_mq_alloc_rq_map(set, i))
2630 goto out_unwind;
2631
2632 return 0;
2633
2634 out_unwind:
2635 while (--i >= 0)
2636 blk_mq_free_rq_map(set->tags[i]);
2637
2638 return -ENOMEM;
2639 }
2640
2641 /*
2642 * Allocate the request maps associated with this tag_set. Note that this
2643 * may reduce the depth asked for, if memory is tight. set->queue_depth
2644 * will be updated to reflect the allocated depth.
2645 */
2646 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2647 {
2648 unsigned int depth;
2649 int err;
2650
2651 depth = set->queue_depth;
2652 do {
2653 err = __blk_mq_alloc_rq_maps(set);
2654 if (!err)
2655 break;
2656
2657 set->queue_depth >>= 1;
2658 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2659 err = -ENOMEM;
2660 break;
2661 }
2662 } while (set->queue_depth);
2663
2664 if (!set->queue_depth || err) {
2665 pr_err("blk-mq: failed to allocate request map\n");
2666 return -ENOMEM;
2667 }
2668
2669 if (depth != set->queue_depth)
2670 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2671 depth, set->queue_depth);
2672
2673 return 0;
2674 }
2675
2676 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2677 {
2678 if (set->ops->map_queues) {
2679 int cpu;
2680 /*
2681 * transport .map_queues is usually done in the following
2682 * way:
2683 *
2684 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2685 * mask = get_cpu_mask(queue)
2686 * for_each_cpu(cpu, mask)
2687 * set->mq_map[cpu] = queue;
2688 * }
2689 *
2690 * When we need to remap, the table has to be cleared for
2691 * killing stale mapping since one CPU may not be mapped
2692 * to any hw queue.
2693 */
2694 for_each_possible_cpu(cpu)
2695 set->mq_map[cpu] = 0;
2696
2697 return set->ops->map_queues(set);
2698 } else
2699 return blk_mq_map_queues(set);
2700 }
2701
2702 /*
2703 * Alloc a tag set to be associated with one or more request queues.
2704 * May fail with EINVAL for various error conditions. May adjust the
2705 * requested depth down, if if it too large. In that case, the set
2706 * value will be stored in set->queue_depth.
2707 */
2708 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2709 {
2710 int ret;
2711
2712 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2713
2714 if (!set->nr_hw_queues)
2715 return -EINVAL;
2716 if (!set->queue_depth)
2717 return -EINVAL;
2718 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2719 return -EINVAL;
2720
2721 if (!set->ops->queue_rq)
2722 return -EINVAL;
2723
2724 if (!set->ops->get_budget ^ !set->ops->put_budget)
2725 return -EINVAL;
2726
2727 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2728 pr_info("blk-mq: reduced tag depth to %u\n",
2729 BLK_MQ_MAX_DEPTH);
2730 set->queue_depth = BLK_MQ_MAX_DEPTH;
2731 }
2732
2733 /*
2734 * If a crashdump is active, then we are potentially in a very
2735 * memory constrained environment. Limit us to 1 queue and
2736 * 64 tags to prevent using too much memory.
2737 */
2738 if (is_kdump_kernel()) {
2739 set->nr_hw_queues = 1;
2740 set->queue_depth = min(64U, set->queue_depth);
2741 }
2742 /*
2743 * There is no use for more h/w queues than cpus.
2744 */
2745 if (set->nr_hw_queues > nr_cpu_ids)
2746 set->nr_hw_queues = nr_cpu_ids;
2747
2748 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2749 GFP_KERNEL, set->numa_node);
2750 if (!set->tags)
2751 return -ENOMEM;
2752
2753 ret = -ENOMEM;
2754 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2755 GFP_KERNEL, set->numa_node);
2756 if (!set->mq_map)
2757 goto out_free_tags;
2758
2759 ret = blk_mq_update_queue_map(set);
2760 if (ret)
2761 goto out_free_mq_map;
2762
2763 ret = blk_mq_alloc_rq_maps(set);
2764 if (ret)
2765 goto out_free_mq_map;
2766
2767 mutex_init(&set->tag_list_lock);
2768 INIT_LIST_HEAD(&set->tag_list);
2769
2770 return 0;
2771
2772 out_free_mq_map:
2773 kfree(set->mq_map);
2774 set->mq_map = NULL;
2775 out_free_tags:
2776 kfree(set->tags);
2777 set->tags = NULL;
2778 return ret;
2779 }
2780 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2781
2782 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2783 {
2784 int i;
2785
2786 for (i = 0; i < nr_cpu_ids; i++)
2787 blk_mq_free_map_and_requests(set, i);
2788
2789 kfree(set->mq_map);
2790 set->mq_map = NULL;
2791
2792 kfree(set->tags);
2793 set->tags = NULL;
2794 }
2795 EXPORT_SYMBOL(blk_mq_free_tag_set);
2796
2797 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2798 {
2799 struct blk_mq_tag_set *set = q->tag_set;
2800 struct blk_mq_hw_ctx *hctx;
2801 int i, ret;
2802
2803 if (!set)
2804 return -EINVAL;
2805
2806 blk_mq_freeze_queue(q);
2807 blk_mq_quiesce_queue(q);
2808
2809 ret = 0;
2810 queue_for_each_hw_ctx(q, hctx, i) {
2811 if (!hctx->tags)
2812 continue;
2813 /*
2814 * If we're using an MQ scheduler, just update the scheduler
2815 * queue depth. This is similar to what the old code would do.
2816 */
2817 if (!hctx->sched_tags) {
2818 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2819 false);
2820 } else {
2821 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2822 nr, true);
2823 }
2824 if (ret)
2825 break;
2826 }
2827
2828 if (!ret)
2829 q->nr_requests = nr;
2830
2831 blk_mq_unquiesce_queue(q);
2832 blk_mq_unfreeze_queue(q);
2833
2834 return ret;
2835 }
2836
2837 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2838 int nr_hw_queues)
2839 {
2840 struct request_queue *q;
2841
2842 lockdep_assert_held(&set->tag_list_lock);
2843
2844 if (nr_hw_queues > nr_cpu_ids)
2845 nr_hw_queues = nr_cpu_ids;
2846 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2847 return;
2848
2849 list_for_each_entry(q, &set->tag_list, tag_set_list)
2850 blk_mq_freeze_queue(q);
2851
2852 set->nr_hw_queues = nr_hw_queues;
2853 blk_mq_update_queue_map(set);
2854 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2855 blk_mq_realloc_hw_ctxs(set, q);
2856 blk_mq_queue_reinit(q);
2857 }
2858
2859 list_for_each_entry(q, &set->tag_list, tag_set_list)
2860 blk_mq_unfreeze_queue(q);
2861 }
2862
2863 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2864 {
2865 mutex_lock(&set->tag_list_lock);
2866 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2867 mutex_unlock(&set->tag_list_lock);
2868 }
2869 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2870
2871 /* Enable polling stats and return whether they were already enabled. */
2872 static bool blk_poll_stats_enable(struct request_queue *q)
2873 {
2874 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2875 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2876 return true;
2877 blk_stat_add_callback(q, q->poll_cb);
2878 return false;
2879 }
2880
2881 static void blk_mq_poll_stats_start(struct request_queue *q)
2882 {
2883 /*
2884 * We don't arm the callback if polling stats are not enabled or the
2885 * callback is already active.
2886 */
2887 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2888 blk_stat_is_active(q->poll_cb))
2889 return;
2890
2891 blk_stat_activate_msecs(q->poll_cb, 100);
2892 }
2893
2894 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2895 {
2896 struct request_queue *q = cb->data;
2897 int bucket;
2898
2899 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2900 if (cb->stat[bucket].nr_samples)
2901 q->poll_stat[bucket] = cb->stat[bucket];
2902 }
2903 }
2904
2905 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2906 struct blk_mq_hw_ctx *hctx,
2907 struct request *rq)
2908 {
2909 unsigned long ret = 0;
2910 int bucket;
2911
2912 /*
2913 * If stats collection isn't on, don't sleep but turn it on for
2914 * future users
2915 */
2916 if (!blk_poll_stats_enable(q))
2917 return 0;
2918
2919 /*
2920 * As an optimistic guess, use half of the mean service time
2921 * for this type of request. We can (and should) make this smarter.
2922 * For instance, if the completion latencies are tight, we can
2923 * get closer than just half the mean. This is especially
2924 * important on devices where the completion latencies are longer
2925 * than ~10 usec. We do use the stats for the relevant IO size
2926 * if available which does lead to better estimates.
2927 */
2928 bucket = blk_mq_poll_stats_bkt(rq);
2929 if (bucket < 0)
2930 return ret;
2931
2932 if (q->poll_stat[bucket].nr_samples)
2933 ret = (q->poll_stat[bucket].mean + 1) / 2;
2934
2935 return ret;
2936 }
2937
2938 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2939 struct blk_mq_hw_ctx *hctx,
2940 struct request *rq)
2941 {
2942 struct hrtimer_sleeper hs;
2943 enum hrtimer_mode mode;
2944 unsigned int nsecs;
2945 ktime_t kt;
2946
2947 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2948 return false;
2949
2950 /*
2951 * poll_nsec can be:
2952 *
2953 * -1: don't ever hybrid sleep
2954 * 0: use half of prev avg
2955 * >0: use this specific value
2956 */
2957 if (q->poll_nsec == -1)
2958 return false;
2959 else if (q->poll_nsec > 0)
2960 nsecs = q->poll_nsec;
2961 else
2962 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2963
2964 if (!nsecs)
2965 return false;
2966
2967 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
2968
2969 /*
2970 * This will be replaced with the stats tracking code, using
2971 * 'avg_completion_time / 2' as the pre-sleep target.
2972 */
2973 kt = nsecs;
2974
2975 mode = HRTIMER_MODE_REL;
2976 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2977 hrtimer_set_expires(&hs.timer, kt);
2978
2979 hrtimer_init_sleeper(&hs, current);
2980 do {
2981 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
2982 break;
2983 set_current_state(TASK_UNINTERRUPTIBLE);
2984 hrtimer_start_expires(&hs.timer, mode);
2985 if (hs.task)
2986 io_schedule();
2987 hrtimer_cancel(&hs.timer);
2988 mode = HRTIMER_MODE_ABS;
2989 } while (hs.task && !signal_pending(current));
2990
2991 __set_current_state(TASK_RUNNING);
2992 destroy_hrtimer_on_stack(&hs.timer);
2993 return true;
2994 }
2995
2996 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2997 {
2998 struct request_queue *q = hctx->queue;
2999 long state;
3000
3001 /*
3002 * If we sleep, have the caller restart the poll loop to reset
3003 * the state. Like for the other success return cases, the
3004 * caller is responsible for checking if the IO completed. If
3005 * the IO isn't complete, we'll get called again and will go
3006 * straight to the busy poll loop.
3007 */
3008 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3009 return true;
3010
3011 hctx->poll_considered++;
3012
3013 state = current->state;
3014 while (!need_resched()) {
3015 int ret;
3016
3017 hctx->poll_invoked++;
3018
3019 ret = q->mq_ops->poll(hctx, rq->tag);
3020 if (ret > 0) {
3021 hctx->poll_success++;
3022 set_current_state(TASK_RUNNING);
3023 return true;
3024 }
3025
3026 if (signal_pending_state(state, current))
3027 set_current_state(TASK_RUNNING);
3028
3029 if (current->state == TASK_RUNNING)
3030 return true;
3031 if (ret < 0)
3032 break;
3033 cpu_relax();
3034 }
3035
3036 __set_current_state(TASK_RUNNING);
3037 return false;
3038 }
3039
3040 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3041 {
3042 struct blk_mq_hw_ctx *hctx;
3043 struct request *rq;
3044
3045 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3046 return false;
3047
3048 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3049 if (!blk_qc_t_is_internal(cookie))
3050 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3051 else {
3052 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3053 /*
3054 * With scheduling, if the request has completed, we'll
3055 * get a NULL return here, as we clear the sched tag when
3056 * that happens. The request still remains valid, like always,
3057 * so we should be safe with just the NULL check.
3058 */
3059 if (!rq)
3060 return false;
3061 }
3062
3063 return __blk_mq_poll(hctx, rq);
3064 }
3065
3066 static int __init blk_mq_init(void)
3067 {
3068 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3069 blk_mq_hctx_notify_dead);
3070 return 0;
3071 }
3072 subsys_initcall(blk_mq_init);