]> git.ipfire.org Git - people/ms/linux.git/blob - block/blk-mq.c
hwmon: (lm90) Add support for unsigned and signed temperatures
[people/ms/linux.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 int ddir, sectors, bucket;
54
55 ddir = rq_data_dir(rq);
56 sectors = blk_rq_stats_sectors(rq);
57
58 bucket = ddir + 2 * ilog2(sectors);
59
60 if (bucket < 0)
61 return -1;
62 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65 return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT 16
69 #define BLK_QC_T_INTERNAL (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72 blk_qc_t qc)
73 {
74 return xa_load(&q->hctx_table,
75 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79 blk_qc_t qc)
80 {
81 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82
83 if (qc & BLK_QC_T_INTERNAL)
84 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85 return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91 (rq->tag != -1 ?
92 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94
95 /*
96 * Check if any of the ctx, dispatch list or elevator
97 * have pending work in this hardware queue.
98 */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101 return !list_empty_careful(&hctx->dispatch) ||
102 sbitmap_any_bit_set(&hctx->ctx_map) ||
103 blk_mq_sched_has_work(hctx);
104 }
105
106 /*
107 * Mark this ctx as having pending work in this hardware queue
108 */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110 struct blk_mq_ctx *ctx)
111 {
112 const int bit = ctx->index_hw[hctx->type];
113
114 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115 sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119 struct blk_mq_ctx *ctx)
120 {
121 const int bit = ctx->index_hw[hctx->type];
122
123 sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125
126 struct mq_inflight {
127 struct block_device *part;
128 unsigned int inflight[2];
129 };
130
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132 bool reserved)
133 {
134 struct mq_inflight *mi = priv;
135
136 if (rq->part && blk_do_io_stat(rq) &&
137 (!mi->part->bd_partno || rq->part == mi->part) &&
138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 mi->inflight[rq_data_dir(rq)]++;
140
141 return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 struct block_device *part)
146 {
147 struct mq_inflight mi = { .part = part };
148
149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151 return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 unsigned int inflight[2])
156 {
157 struct mq_inflight mi = { .part = part };
158
159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 inflight[0] = mi.inflight[0];
161 inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166 mutex_lock(&q->mq_freeze_lock);
167 if (++q->mq_freeze_depth == 1) {
168 percpu_ref_kill(&q->q_usage_counter);
169 mutex_unlock(&q->mq_freeze_lock);
170 if (queue_is_mq(q))
171 blk_mq_run_hw_queues(q, false);
172 } else {
173 mutex_unlock(&q->mq_freeze_lock);
174 }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 unsigned long timeout)
186 {
187 return wait_event_timeout(q->mq_freeze_wq,
188 percpu_ref_is_zero(&q->q_usage_counter),
189 timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194 * Guarantee no request is in use, so we can change any data structure of
195 * the queue afterward.
196 */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199 /*
200 * In the !blk_mq case we are only calling this to kill the
201 * q_usage_counter, otherwise this increases the freeze depth
202 * and waits for it to return to zero. For this reason there is
203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 * exported to drivers as the only user for unfreeze is blk_mq.
205 */
206 blk_freeze_queue_start(q);
207 blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212 /*
213 * ...just an alias to keep freeze and unfreeze actions balanced
214 * in the blk_mq_* namespace
215 */
216 blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222 mutex_lock(&q->mq_freeze_lock);
223 if (force_atomic)
224 q->q_usage_counter.data->force_atomic = true;
225 q->mq_freeze_depth--;
226 WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 if (!q->mq_freeze_depth) {
228 percpu_ref_resurrect(&q->q_usage_counter);
229 wake_up_all(&q->mq_freeze_wq);
230 }
231 mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236 __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242 * mpt3sas driver such that this function can be removed.
243 */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246 unsigned long flags;
247
248 spin_lock_irqsave(&q->queue_lock, flags);
249 if (!q->quiesce_depth++)
250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257 * @q: request queue.
258 *
259 * Note: it is driver's responsibility for making sure that quiesce has
260 * been started.
261 */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264 if (blk_queue_has_srcu(q))
265 synchronize_srcu(q->srcu);
266 else
267 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273 * @q: request queue.
274 *
275 * Note: this function does not prevent that the struct request end_io()
276 * callback function is invoked. Once this function is returned, we make
277 * sure no dispatch can happen until the queue is unquiesced via
278 * blk_mq_unquiesce_queue().
279 */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282 blk_mq_quiesce_queue_nowait(q);
283 blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289 * @q: request queue.
290 *
291 * This function recovers queue into the state before quiescing
292 * which is done by blk_mq_quiesce_queue.
293 */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296 unsigned long flags;
297 bool run_queue = false;
298
299 spin_lock_irqsave(&q->queue_lock, flags);
300 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301 ;
302 } else if (!--q->quiesce_depth) {
303 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304 run_queue = true;
305 }
306 spin_unlock_irqrestore(&q->queue_lock, flags);
307
308 /* dispatch requests which are inserted during quiescing */
309 if (run_queue)
310 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316 struct blk_mq_hw_ctx *hctx;
317 unsigned long i;
318
319 queue_for_each_hw_ctx(q, hctx, i)
320 if (blk_mq_hw_queue_mapped(hctx))
321 blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326 memset(rq, 0, sizeof(*rq));
327
328 INIT_LIST_HEAD(&rq->queuelist);
329 rq->q = q;
330 rq->__sector = (sector_t) -1;
331 INIT_HLIST_NODE(&rq->hash);
332 RB_CLEAR_NODE(&rq->rb_node);
333 rq->tag = BLK_MQ_NO_TAG;
334 rq->internal_tag = BLK_MQ_NO_TAG;
335 rq->start_time_ns = ktime_get_ns();
336 rq->part = NULL;
337 blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344 struct blk_mq_ctx *ctx = data->ctx;
345 struct blk_mq_hw_ctx *hctx = data->hctx;
346 struct request_queue *q = data->q;
347 struct request *rq = tags->static_rqs[tag];
348
349 rq->q = q;
350 rq->mq_ctx = ctx;
351 rq->mq_hctx = hctx;
352 rq->cmd_flags = data->cmd_flags;
353
354 if (data->flags & BLK_MQ_REQ_PM)
355 data->rq_flags |= RQF_PM;
356 if (blk_queue_io_stat(q))
357 data->rq_flags |= RQF_IO_STAT;
358 rq->rq_flags = data->rq_flags;
359
360 if (!(data->rq_flags & RQF_ELV)) {
361 rq->tag = tag;
362 rq->internal_tag = BLK_MQ_NO_TAG;
363 } else {
364 rq->tag = BLK_MQ_NO_TAG;
365 rq->internal_tag = tag;
366 }
367 rq->timeout = 0;
368
369 if (blk_mq_need_time_stamp(rq))
370 rq->start_time_ns = ktime_get_ns();
371 else
372 rq->start_time_ns = 0;
373 rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375 rq->alloc_time_ns = alloc_time_ns;
376 #endif
377 rq->io_start_time_ns = 0;
378 rq->stats_sectors = 0;
379 rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 rq->nr_integrity_segments = 0;
382 #endif
383 rq->end_io = NULL;
384 rq->end_io_data = NULL;
385
386 blk_crypto_rq_set_defaults(rq);
387 INIT_LIST_HEAD(&rq->queuelist);
388 /* tag was already set */
389 WRITE_ONCE(rq->deadline, 0);
390 req_ref_set(rq, 1);
391
392 if (rq->rq_flags & RQF_ELV) {
393 struct elevator_queue *e = data->q->elevator;
394
395 INIT_HLIST_NODE(&rq->hash);
396 RB_CLEAR_NODE(&rq->rb_node);
397
398 if (!op_is_flush(data->cmd_flags) &&
399 e->type->ops.prepare_request) {
400 e->type->ops.prepare_request(rq);
401 rq->rq_flags |= RQF_ELVPRIV;
402 }
403 }
404
405 return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410 u64 alloc_time_ns)
411 {
412 unsigned int tag, tag_offset;
413 struct blk_mq_tags *tags;
414 struct request *rq;
415 unsigned long tag_mask;
416 int i, nr = 0;
417
418 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419 if (unlikely(!tag_mask))
420 return NULL;
421
422 tags = blk_mq_tags_from_data(data);
423 for (i = 0; tag_mask; i++) {
424 if (!(tag_mask & (1UL << i)))
425 continue;
426 tag = tag_offset + i;
427 prefetch(tags->static_rqs[tag]);
428 tag_mask &= ~(1UL << i);
429 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430 rq_list_add(data->cached_rq, rq);
431 nr++;
432 }
433 /* caller already holds a reference, add for remainder */
434 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435 data->nr_tags -= nr;
436
437 return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442 struct request_queue *q = data->q;
443 u64 alloc_time_ns = 0;
444 struct request *rq;
445 unsigned int tag;
446
447 /* alloc_time includes depth and tag waits */
448 if (blk_queue_rq_alloc_time(q))
449 alloc_time_ns = ktime_get_ns();
450
451 if (data->cmd_flags & REQ_NOWAIT)
452 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454 if (q->elevator) {
455 struct elevator_queue *e = q->elevator;
456
457 data->rq_flags |= RQF_ELV;
458
459 /*
460 * Flush/passthrough requests are special and go directly to the
461 * dispatch list. Don't include reserved tags in the
462 * limiting, as it isn't useful.
463 */
464 if (!op_is_flush(data->cmd_flags) &&
465 !blk_op_is_passthrough(data->cmd_flags) &&
466 e->type->ops.limit_depth &&
467 !(data->flags & BLK_MQ_REQ_RESERVED))
468 e->type->ops.limit_depth(data->cmd_flags, data);
469 }
470
471 retry:
472 data->ctx = blk_mq_get_ctx(q);
473 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474 if (!(data->rq_flags & RQF_ELV))
475 blk_mq_tag_busy(data->hctx);
476
477 /*
478 * Try batched alloc if we want more than 1 tag.
479 */
480 if (data->nr_tags > 1) {
481 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
482 if (rq)
483 return rq;
484 data->nr_tags = 1;
485 }
486
487 /*
488 * Waiting allocations only fail because of an inactive hctx. In that
489 * case just retry the hctx assignment and tag allocation as CPU hotplug
490 * should have migrated us to an online CPU by now.
491 */
492 tag = blk_mq_get_tag(data);
493 if (tag == BLK_MQ_NO_TAG) {
494 if (data->flags & BLK_MQ_REQ_NOWAIT)
495 return NULL;
496 /*
497 * Give up the CPU and sleep for a random short time to
498 * ensure that thread using a realtime scheduling class
499 * are migrated off the CPU, and thus off the hctx that
500 * is going away.
501 */
502 msleep(3);
503 goto retry;
504 }
505
506 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
507 alloc_time_ns);
508 }
509
510 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
511 blk_mq_req_flags_t flags)
512 {
513 struct blk_mq_alloc_data data = {
514 .q = q,
515 .flags = flags,
516 .cmd_flags = op,
517 .nr_tags = 1,
518 };
519 struct request *rq;
520 int ret;
521
522 ret = blk_queue_enter(q, flags);
523 if (ret)
524 return ERR_PTR(ret);
525
526 rq = __blk_mq_alloc_requests(&data);
527 if (!rq)
528 goto out_queue_exit;
529 rq->__data_len = 0;
530 rq->__sector = (sector_t) -1;
531 rq->bio = rq->biotail = NULL;
532 return rq;
533 out_queue_exit:
534 blk_queue_exit(q);
535 return ERR_PTR(-EWOULDBLOCK);
536 }
537 EXPORT_SYMBOL(blk_mq_alloc_request);
538
539 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
540 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
541 {
542 struct blk_mq_alloc_data data = {
543 .q = q,
544 .flags = flags,
545 .cmd_flags = op,
546 .nr_tags = 1,
547 };
548 u64 alloc_time_ns = 0;
549 unsigned int cpu;
550 unsigned int tag;
551 int ret;
552
553 /* alloc_time includes depth and tag waits */
554 if (blk_queue_rq_alloc_time(q))
555 alloc_time_ns = ktime_get_ns();
556
557 /*
558 * If the tag allocator sleeps we could get an allocation for a
559 * different hardware context. No need to complicate the low level
560 * allocator for this for the rare use case of a command tied to
561 * a specific queue.
562 */
563 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
564 return ERR_PTR(-EINVAL);
565
566 if (hctx_idx >= q->nr_hw_queues)
567 return ERR_PTR(-EIO);
568
569 ret = blk_queue_enter(q, flags);
570 if (ret)
571 return ERR_PTR(ret);
572
573 /*
574 * Check if the hardware context is actually mapped to anything.
575 * If not tell the caller that it should skip this queue.
576 */
577 ret = -EXDEV;
578 data.hctx = xa_load(&q->hctx_table, hctx_idx);
579 if (!blk_mq_hw_queue_mapped(data.hctx))
580 goto out_queue_exit;
581 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
582 if (cpu >= nr_cpu_ids)
583 goto out_queue_exit;
584 data.ctx = __blk_mq_get_ctx(q, cpu);
585
586 if (!q->elevator)
587 blk_mq_tag_busy(data.hctx);
588 else
589 data.rq_flags |= RQF_ELV;
590
591 ret = -EWOULDBLOCK;
592 tag = blk_mq_get_tag(&data);
593 if (tag == BLK_MQ_NO_TAG)
594 goto out_queue_exit;
595 return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
596 alloc_time_ns);
597
598 out_queue_exit:
599 blk_queue_exit(q);
600 return ERR_PTR(ret);
601 }
602 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
603
604 static void __blk_mq_free_request(struct request *rq)
605 {
606 struct request_queue *q = rq->q;
607 struct blk_mq_ctx *ctx = rq->mq_ctx;
608 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
609 const int sched_tag = rq->internal_tag;
610
611 blk_crypto_free_request(rq);
612 blk_pm_mark_last_busy(rq);
613 rq->mq_hctx = NULL;
614 if (rq->tag != BLK_MQ_NO_TAG)
615 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
616 if (sched_tag != BLK_MQ_NO_TAG)
617 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
618 blk_mq_sched_restart(hctx);
619 blk_queue_exit(q);
620 }
621
622 void blk_mq_free_request(struct request *rq)
623 {
624 struct request_queue *q = rq->q;
625 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
626
627 if ((rq->rq_flags & RQF_ELVPRIV) &&
628 q->elevator->type->ops.finish_request)
629 q->elevator->type->ops.finish_request(rq);
630
631 if (rq->rq_flags & RQF_MQ_INFLIGHT)
632 __blk_mq_dec_active_requests(hctx);
633
634 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
635 laptop_io_completion(q->disk->bdi);
636
637 rq_qos_done(q, rq);
638
639 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
640 if (req_ref_put_and_test(rq))
641 __blk_mq_free_request(rq);
642 }
643 EXPORT_SYMBOL_GPL(blk_mq_free_request);
644
645 void blk_mq_free_plug_rqs(struct blk_plug *plug)
646 {
647 struct request *rq;
648
649 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
650 blk_mq_free_request(rq);
651 }
652
653 void blk_dump_rq_flags(struct request *rq, char *msg)
654 {
655 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
656 rq->q->disk ? rq->q->disk->disk_name : "?",
657 (unsigned long long) rq->cmd_flags);
658
659 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
660 (unsigned long long)blk_rq_pos(rq),
661 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
662 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
663 rq->bio, rq->biotail, blk_rq_bytes(rq));
664 }
665 EXPORT_SYMBOL(blk_dump_rq_flags);
666
667 static void req_bio_endio(struct request *rq, struct bio *bio,
668 unsigned int nbytes, blk_status_t error)
669 {
670 if (unlikely(error)) {
671 bio->bi_status = error;
672 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
673 /*
674 * Partial zone append completions cannot be supported as the
675 * BIO fragments may end up not being written sequentially.
676 */
677 if (bio->bi_iter.bi_size != nbytes)
678 bio->bi_status = BLK_STS_IOERR;
679 else
680 bio->bi_iter.bi_sector = rq->__sector;
681 }
682
683 bio_advance(bio, nbytes);
684
685 if (unlikely(rq->rq_flags & RQF_QUIET))
686 bio_set_flag(bio, BIO_QUIET);
687 /* don't actually finish bio if it's part of flush sequence */
688 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
689 bio_endio(bio);
690 }
691
692 static void blk_account_io_completion(struct request *req, unsigned int bytes)
693 {
694 if (req->part && blk_do_io_stat(req)) {
695 const int sgrp = op_stat_group(req_op(req));
696
697 part_stat_lock();
698 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
699 part_stat_unlock();
700 }
701 }
702
703 static void blk_print_req_error(struct request *req, blk_status_t status)
704 {
705 printk_ratelimited(KERN_ERR
706 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
707 "phys_seg %u prio class %u\n",
708 blk_status_to_str(status),
709 req->q->disk ? req->q->disk->disk_name : "?",
710 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
711 req->cmd_flags & ~REQ_OP_MASK,
712 req->nr_phys_segments,
713 IOPRIO_PRIO_CLASS(req->ioprio));
714 }
715
716 /*
717 * Fully end IO on a request. Does not support partial completions, or
718 * errors.
719 */
720 static void blk_complete_request(struct request *req)
721 {
722 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
723 int total_bytes = blk_rq_bytes(req);
724 struct bio *bio = req->bio;
725
726 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
727
728 if (!bio)
729 return;
730
731 #ifdef CONFIG_BLK_DEV_INTEGRITY
732 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
733 req->q->integrity.profile->complete_fn(req, total_bytes);
734 #endif
735
736 blk_account_io_completion(req, total_bytes);
737
738 do {
739 struct bio *next = bio->bi_next;
740
741 /* Completion has already been traced */
742 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
743
744 if (req_op(req) == REQ_OP_ZONE_APPEND)
745 bio->bi_iter.bi_sector = req->__sector;
746
747 if (!is_flush)
748 bio_endio(bio);
749 bio = next;
750 } while (bio);
751
752 /*
753 * Reset counters so that the request stacking driver
754 * can find how many bytes remain in the request
755 * later.
756 */
757 req->bio = NULL;
758 req->__data_len = 0;
759 }
760
761 /**
762 * blk_update_request - Complete multiple bytes without completing the request
763 * @req: the request being processed
764 * @error: block status code
765 * @nr_bytes: number of bytes to complete for @req
766 *
767 * Description:
768 * Ends I/O on a number of bytes attached to @req, but doesn't complete
769 * the request structure even if @req doesn't have leftover.
770 * If @req has leftover, sets it up for the next range of segments.
771 *
772 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
773 * %false return from this function.
774 *
775 * Note:
776 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
777 * except in the consistency check at the end of this function.
778 *
779 * Return:
780 * %false - this request doesn't have any more data
781 * %true - this request has more data
782 **/
783 bool blk_update_request(struct request *req, blk_status_t error,
784 unsigned int nr_bytes)
785 {
786 int total_bytes;
787
788 trace_block_rq_complete(req, error, nr_bytes);
789
790 if (!req->bio)
791 return false;
792
793 #ifdef CONFIG_BLK_DEV_INTEGRITY
794 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
795 error == BLK_STS_OK)
796 req->q->integrity.profile->complete_fn(req, nr_bytes);
797 #endif
798
799 if (unlikely(error && !blk_rq_is_passthrough(req) &&
800 !(req->rq_flags & RQF_QUIET)) &&
801 !test_bit(GD_DEAD, &req->q->disk->state)) {
802 blk_print_req_error(req, error);
803 trace_block_rq_error(req, error, nr_bytes);
804 }
805
806 blk_account_io_completion(req, nr_bytes);
807
808 total_bytes = 0;
809 while (req->bio) {
810 struct bio *bio = req->bio;
811 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
812
813 if (bio_bytes == bio->bi_iter.bi_size)
814 req->bio = bio->bi_next;
815
816 /* Completion has already been traced */
817 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
818 req_bio_endio(req, bio, bio_bytes, error);
819
820 total_bytes += bio_bytes;
821 nr_bytes -= bio_bytes;
822
823 if (!nr_bytes)
824 break;
825 }
826
827 /*
828 * completely done
829 */
830 if (!req->bio) {
831 /*
832 * Reset counters so that the request stacking driver
833 * can find how many bytes remain in the request
834 * later.
835 */
836 req->__data_len = 0;
837 return false;
838 }
839
840 req->__data_len -= total_bytes;
841
842 /* update sector only for requests with clear definition of sector */
843 if (!blk_rq_is_passthrough(req))
844 req->__sector += total_bytes >> 9;
845
846 /* mixed attributes always follow the first bio */
847 if (req->rq_flags & RQF_MIXED_MERGE) {
848 req->cmd_flags &= ~REQ_FAILFAST_MASK;
849 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
850 }
851
852 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
853 /*
854 * If total number of sectors is less than the first segment
855 * size, something has gone terribly wrong.
856 */
857 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
858 blk_dump_rq_flags(req, "request botched");
859 req->__data_len = blk_rq_cur_bytes(req);
860 }
861
862 /* recalculate the number of segments */
863 req->nr_phys_segments = blk_recalc_rq_segments(req);
864 }
865
866 return true;
867 }
868 EXPORT_SYMBOL_GPL(blk_update_request);
869
870 static void __blk_account_io_done(struct request *req, u64 now)
871 {
872 const int sgrp = op_stat_group(req_op(req));
873
874 part_stat_lock();
875 update_io_ticks(req->part, jiffies, true);
876 part_stat_inc(req->part, ios[sgrp]);
877 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
878 part_stat_unlock();
879 }
880
881 static inline void blk_account_io_done(struct request *req, u64 now)
882 {
883 /*
884 * Account IO completion. flush_rq isn't accounted as a
885 * normal IO on queueing nor completion. Accounting the
886 * containing request is enough.
887 */
888 if (blk_do_io_stat(req) && req->part &&
889 !(req->rq_flags & RQF_FLUSH_SEQ))
890 __blk_account_io_done(req, now);
891 }
892
893 static void __blk_account_io_start(struct request *rq)
894 {
895 /*
896 * All non-passthrough requests are created from a bio with one
897 * exception: when a flush command that is part of a flush sequence
898 * generated by the state machine in blk-flush.c is cloned onto the
899 * lower device by dm-multipath we can get here without a bio.
900 */
901 if (rq->bio)
902 rq->part = rq->bio->bi_bdev;
903 else
904 rq->part = rq->q->disk->part0;
905
906 part_stat_lock();
907 update_io_ticks(rq->part, jiffies, false);
908 part_stat_unlock();
909 }
910
911 static inline void blk_account_io_start(struct request *req)
912 {
913 if (blk_do_io_stat(req))
914 __blk_account_io_start(req);
915 }
916
917 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
918 {
919 if (rq->rq_flags & RQF_STATS) {
920 blk_mq_poll_stats_start(rq->q);
921 blk_stat_add(rq, now);
922 }
923
924 blk_mq_sched_completed_request(rq, now);
925 blk_account_io_done(rq, now);
926 }
927
928 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
929 {
930 if (blk_mq_need_time_stamp(rq))
931 __blk_mq_end_request_acct(rq, ktime_get_ns());
932
933 if (rq->end_io) {
934 rq_qos_done(rq->q, rq);
935 rq->end_io(rq, error);
936 } else {
937 blk_mq_free_request(rq);
938 }
939 }
940 EXPORT_SYMBOL(__blk_mq_end_request);
941
942 void blk_mq_end_request(struct request *rq, blk_status_t error)
943 {
944 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
945 BUG();
946 __blk_mq_end_request(rq, error);
947 }
948 EXPORT_SYMBOL(blk_mq_end_request);
949
950 #define TAG_COMP_BATCH 32
951
952 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
953 int *tag_array, int nr_tags)
954 {
955 struct request_queue *q = hctx->queue;
956
957 /*
958 * All requests should have been marked as RQF_MQ_INFLIGHT, so
959 * update hctx->nr_active in batch
960 */
961 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
962 __blk_mq_sub_active_requests(hctx, nr_tags);
963
964 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
965 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
966 }
967
968 void blk_mq_end_request_batch(struct io_comp_batch *iob)
969 {
970 int tags[TAG_COMP_BATCH], nr_tags = 0;
971 struct blk_mq_hw_ctx *cur_hctx = NULL;
972 struct request *rq;
973 u64 now = 0;
974
975 if (iob->need_ts)
976 now = ktime_get_ns();
977
978 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
979 prefetch(rq->bio);
980 prefetch(rq->rq_next);
981
982 blk_complete_request(rq);
983 if (iob->need_ts)
984 __blk_mq_end_request_acct(rq, now);
985
986 rq_qos_done(rq->q, rq);
987
988 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
989 if (!req_ref_put_and_test(rq))
990 continue;
991
992 blk_crypto_free_request(rq);
993 blk_pm_mark_last_busy(rq);
994
995 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
996 if (cur_hctx)
997 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
998 nr_tags = 0;
999 cur_hctx = rq->mq_hctx;
1000 }
1001 tags[nr_tags++] = rq->tag;
1002 }
1003
1004 if (nr_tags)
1005 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1006 }
1007 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1008
1009 static void blk_complete_reqs(struct llist_head *list)
1010 {
1011 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1012 struct request *rq, *next;
1013
1014 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1015 rq->q->mq_ops->complete(rq);
1016 }
1017
1018 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1019 {
1020 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1021 }
1022
1023 static int blk_softirq_cpu_dead(unsigned int cpu)
1024 {
1025 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1026 return 0;
1027 }
1028
1029 static void __blk_mq_complete_request_remote(void *data)
1030 {
1031 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1032 }
1033
1034 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1035 {
1036 int cpu = raw_smp_processor_id();
1037
1038 if (!IS_ENABLED(CONFIG_SMP) ||
1039 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1040 return false;
1041 /*
1042 * With force threaded interrupts enabled, raising softirq from an SMP
1043 * function call will always result in waking the ksoftirqd thread.
1044 * This is probably worse than completing the request on a different
1045 * cache domain.
1046 */
1047 if (force_irqthreads())
1048 return false;
1049
1050 /* same CPU or cache domain? Complete locally */
1051 if (cpu == rq->mq_ctx->cpu ||
1052 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1053 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1054 return false;
1055
1056 /* don't try to IPI to an offline CPU */
1057 return cpu_online(rq->mq_ctx->cpu);
1058 }
1059
1060 static void blk_mq_complete_send_ipi(struct request *rq)
1061 {
1062 struct llist_head *list;
1063 unsigned int cpu;
1064
1065 cpu = rq->mq_ctx->cpu;
1066 list = &per_cpu(blk_cpu_done, cpu);
1067 if (llist_add(&rq->ipi_list, list)) {
1068 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1069 smp_call_function_single_async(cpu, &rq->csd);
1070 }
1071 }
1072
1073 static void blk_mq_raise_softirq(struct request *rq)
1074 {
1075 struct llist_head *list;
1076
1077 preempt_disable();
1078 list = this_cpu_ptr(&blk_cpu_done);
1079 if (llist_add(&rq->ipi_list, list))
1080 raise_softirq(BLOCK_SOFTIRQ);
1081 preempt_enable();
1082 }
1083
1084 bool blk_mq_complete_request_remote(struct request *rq)
1085 {
1086 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1087
1088 /*
1089 * For a polled request, always complete locally, it's pointless
1090 * to redirect the completion.
1091 */
1092 if (rq->cmd_flags & REQ_POLLED)
1093 return false;
1094
1095 if (blk_mq_complete_need_ipi(rq)) {
1096 blk_mq_complete_send_ipi(rq);
1097 return true;
1098 }
1099
1100 if (rq->q->nr_hw_queues == 1) {
1101 blk_mq_raise_softirq(rq);
1102 return true;
1103 }
1104 return false;
1105 }
1106 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1107
1108 /**
1109 * blk_mq_complete_request - end I/O on a request
1110 * @rq: the request being processed
1111 *
1112 * Description:
1113 * Complete a request by scheduling the ->complete_rq operation.
1114 **/
1115 void blk_mq_complete_request(struct request *rq)
1116 {
1117 if (!blk_mq_complete_request_remote(rq))
1118 rq->q->mq_ops->complete(rq);
1119 }
1120 EXPORT_SYMBOL(blk_mq_complete_request);
1121
1122 /**
1123 * blk_mq_start_request - Start processing a request
1124 * @rq: Pointer to request to be started
1125 *
1126 * Function used by device drivers to notify the block layer that a request
1127 * is going to be processed now, so blk layer can do proper initializations
1128 * such as starting the timeout timer.
1129 */
1130 void blk_mq_start_request(struct request *rq)
1131 {
1132 struct request_queue *q = rq->q;
1133
1134 trace_block_rq_issue(rq);
1135
1136 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1137 rq->io_start_time_ns = ktime_get_ns();
1138 rq->stats_sectors = blk_rq_sectors(rq);
1139 rq->rq_flags |= RQF_STATS;
1140 rq_qos_issue(q, rq);
1141 }
1142
1143 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1144
1145 blk_add_timer(rq);
1146 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1147
1148 #ifdef CONFIG_BLK_DEV_INTEGRITY
1149 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1150 q->integrity.profile->prepare_fn(rq);
1151 #endif
1152 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1153 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1154 }
1155 EXPORT_SYMBOL(blk_mq_start_request);
1156
1157 /*
1158 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1159 * queues. This is important for md arrays to benefit from merging
1160 * requests.
1161 */
1162 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1163 {
1164 if (plug->multiple_queues)
1165 return BLK_MAX_REQUEST_COUNT * 2;
1166 return BLK_MAX_REQUEST_COUNT;
1167 }
1168
1169 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1170 {
1171 struct request *last = rq_list_peek(&plug->mq_list);
1172
1173 if (!plug->rq_count) {
1174 trace_block_plug(rq->q);
1175 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1176 (!blk_queue_nomerges(rq->q) &&
1177 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1178 blk_mq_flush_plug_list(plug, false);
1179 trace_block_plug(rq->q);
1180 }
1181
1182 if (!plug->multiple_queues && last && last->q != rq->q)
1183 plug->multiple_queues = true;
1184 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1185 plug->has_elevator = true;
1186 rq->rq_next = NULL;
1187 rq_list_add(&plug->mq_list, rq);
1188 plug->rq_count++;
1189 }
1190
1191 /**
1192 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1193 * @rq: request to insert
1194 * @at_head: insert request at head or tail of queue
1195 *
1196 * Description:
1197 * Insert a fully prepared request at the back of the I/O scheduler queue
1198 * for execution. Don't wait for completion.
1199 *
1200 * Note:
1201 * This function will invoke @done directly if the queue is dead.
1202 */
1203 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1204 {
1205 WARN_ON(irqs_disabled());
1206 WARN_ON(!blk_rq_is_passthrough(rq));
1207
1208 blk_account_io_start(rq);
1209 if (current->plug)
1210 blk_add_rq_to_plug(current->plug, rq);
1211 else
1212 blk_mq_sched_insert_request(rq, at_head, true, false);
1213 }
1214 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1215
1216 struct blk_rq_wait {
1217 struct completion done;
1218 blk_status_t ret;
1219 };
1220
1221 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1222 {
1223 struct blk_rq_wait *wait = rq->end_io_data;
1224
1225 wait->ret = ret;
1226 complete(&wait->done);
1227 }
1228
1229 static bool blk_rq_is_poll(struct request *rq)
1230 {
1231 if (!rq->mq_hctx)
1232 return false;
1233 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1234 return false;
1235 if (WARN_ON_ONCE(!rq->bio))
1236 return false;
1237 return true;
1238 }
1239
1240 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1241 {
1242 do {
1243 bio_poll(rq->bio, NULL, 0);
1244 cond_resched();
1245 } while (!completion_done(wait));
1246 }
1247
1248 /**
1249 * blk_execute_rq - insert a request into queue for execution
1250 * @rq: request to insert
1251 * @at_head: insert request at head or tail of queue
1252 *
1253 * Description:
1254 * Insert a fully prepared request at the back of the I/O scheduler queue
1255 * for execution and wait for completion.
1256 * Return: The blk_status_t result provided to blk_mq_end_request().
1257 */
1258 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1259 {
1260 struct blk_rq_wait wait = {
1261 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1262 };
1263
1264 WARN_ON(irqs_disabled());
1265 WARN_ON(!blk_rq_is_passthrough(rq));
1266
1267 rq->end_io_data = &wait;
1268 rq->end_io = blk_end_sync_rq;
1269
1270 blk_account_io_start(rq);
1271 blk_mq_sched_insert_request(rq, at_head, true, false);
1272
1273 if (blk_rq_is_poll(rq)) {
1274 blk_rq_poll_completion(rq, &wait.done);
1275 } else {
1276 /*
1277 * Prevent hang_check timer from firing at us during very long
1278 * I/O
1279 */
1280 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1281
1282 if (hang_check)
1283 while (!wait_for_completion_io_timeout(&wait.done,
1284 hang_check * (HZ/2)))
1285 ;
1286 else
1287 wait_for_completion_io(&wait.done);
1288 }
1289
1290 return wait.ret;
1291 }
1292 EXPORT_SYMBOL(blk_execute_rq);
1293
1294 static void __blk_mq_requeue_request(struct request *rq)
1295 {
1296 struct request_queue *q = rq->q;
1297
1298 blk_mq_put_driver_tag(rq);
1299
1300 trace_block_rq_requeue(rq);
1301 rq_qos_requeue(q, rq);
1302
1303 if (blk_mq_request_started(rq)) {
1304 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1305 rq->rq_flags &= ~RQF_TIMED_OUT;
1306 }
1307 }
1308
1309 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1310 {
1311 __blk_mq_requeue_request(rq);
1312
1313 /* this request will be re-inserted to io scheduler queue */
1314 blk_mq_sched_requeue_request(rq);
1315
1316 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1317 }
1318 EXPORT_SYMBOL(blk_mq_requeue_request);
1319
1320 static void blk_mq_requeue_work(struct work_struct *work)
1321 {
1322 struct request_queue *q =
1323 container_of(work, struct request_queue, requeue_work.work);
1324 LIST_HEAD(rq_list);
1325 struct request *rq, *next;
1326
1327 spin_lock_irq(&q->requeue_lock);
1328 list_splice_init(&q->requeue_list, &rq_list);
1329 spin_unlock_irq(&q->requeue_lock);
1330
1331 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1332 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1333 continue;
1334
1335 rq->rq_flags &= ~RQF_SOFTBARRIER;
1336 list_del_init(&rq->queuelist);
1337 /*
1338 * If RQF_DONTPREP, rq has contained some driver specific
1339 * data, so insert it to hctx dispatch list to avoid any
1340 * merge.
1341 */
1342 if (rq->rq_flags & RQF_DONTPREP)
1343 blk_mq_request_bypass_insert(rq, false, false);
1344 else
1345 blk_mq_sched_insert_request(rq, true, false, false);
1346 }
1347
1348 while (!list_empty(&rq_list)) {
1349 rq = list_entry(rq_list.next, struct request, queuelist);
1350 list_del_init(&rq->queuelist);
1351 blk_mq_sched_insert_request(rq, false, false, false);
1352 }
1353
1354 blk_mq_run_hw_queues(q, false);
1355 }
1356
1357 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1358 bool kick_requeue_list)
1359 {
1360 struct request_queue *q = rq->q;
1361 unsigned long flags;
1362
1363 /*
1364 * We abuse this flag that is otherwise used by the I/O scheduler to
1365 * request head insertion from the workqueue.
1366 */
1367 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1368
1369 spin_lock_irqsave(&q->requeue_lock, flags);
1370 if (at_head) {
1371 rq->rq_flags |= RQF_SOFTBARRIER;
1372 list_add(&rq->queuelist, &q->requeue_list);
1373 } else {
1374 list_add_tail(&rq->queuelist, &q->requeue_list);
1375 }
1376 spin_unlock_irqrestore(&q->requeue_lock, flags);
1377
1378 if (kick_requeue_list)
1379 blk_mq_kick_requeue_list(q);
1380 }
1381
1382 void blk_mq_kick_requeue_list(struct request_queue *q)
1383 {
1384 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1385 }
1386 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1387
1388 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1389 unsigned long msecs)
1390 {
1391 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1392 msecs_to_jiffies(msecs));
1393 }
1394 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1395
1396 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1397 bool reserved)
1398 {
1399 /*
1400 * If we find a request that isn't idle we know the queue is busy
1401 * as it's checked in the iter.
1402 * Return false to stop the iteration.
1403 */
1404 if (blk_mq_request_started(rq)) {
1405 bool *busy = priv;
1406
1407 *busy = true;
1408 return false;
1409 }
1410
1411 return true;
1412 }
1413
1414 bool blk_mq_queue_inflight(struct request_queue *q)
1415 {
1416 bool busy = false;
1417
1418 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1419 return busy;
1420 }
1421 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1422
1423 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1424 {
1425 req->rq_flags |= RQF_TIMED_OUT;
1426 if (req->q->mq_ops->timeout) {
1427 enum blk_eh_timer_return ret;
1428
1429 ret = req->q->mq_ops->timeout(req, reserved);
1430 if (ret == BLK_EH_DONE)
1431 return;
1432 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1433 }
1434
1435 blk_add_timer(req);
1436 }
1437
1438 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1439 {
1440 unsigned long deadline;
1441
1442 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1443 return false;
1444 if (rq->rq_flags & RQF_TIMED_OUT)
1445 return false;
1446
1447 deadline = READ_ONCE(rq->deadline);
1448 if (time_after_eq(jiffies, deadline))
1449 return true;
1450
1451 if (*next == 0)
1452 *next = deadline;
1453 else if (time_after(*next, deadline))
1454 *next = deadline;
1455 return false;
1456 }
1457
1458 void blk_mq_put_rq_ref(struct request *rq)
1459 {
1460 if (is_flush_rq(rq))
1461 rq->end_io(rq, 0);
1462 else if (req_ref_put_and_test(rq))
1463 __blk_mq_free_request(rq);
1464 }
1465
1466 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1467 {
1468 unsigned long *next = priv;
1469
1470 /*
1471 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1472 * be reallocated underneath the timeout handler's processing, then
1473 * the expire check is reliable. If the request is not expired, then
1474 * it was completed and reallocated as a new request after returning
1475 * from blk_mq_check_expired().
1476 */
1477 if (blk_mq_req_expired(rq, next))
1478 blk_mq_rq_timed_out(rq, reserved);
1479 return true;
1480 }
1481
1482 static void blk_mq_timeout_work(struct work_struct *work)
1483 {
1484 struct request_queue *q =
1485 container_of(work, struct request_queue, timeout_work);
1486 unsigned long next = 0;
1487 struct blk_mq_hw_ctx *hctx;
1488 unsigned long i;
1489
1490 /* A deadlock might occur if a request is stuck requiring a
1491 * timeout at the same time a queue freeze is waiting
1492 * completion, since the timeout code would not be able to
1493 * acquire the queue reference here.
1494 *
1495 * That's why we don't use blk_queue_enter here; instead, we use
1496 * percpu_ref_tryget directly, because we need to be able to
1497 * obtain a reference even in the short window between the queue
1498 * starting to freeze, by dropping the first reference in
1499 * blk_freeze_queue_start, and the moment the last request is
1500 * consumed, marked by the instant q_usage_counter reaches
1501 * zero.
1502 */
1503 if (!percpu_ref_tryget(&q->q_usage_counter))
1504 return;
1505
1506 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1507
1508 if (next != 0) {
1509 mod_timer(&q->timeout, next);
1510 } else {
1511 /*
1512 * Request timeouts are handled as a forward rolling timer. If
1513 * we end up here it means that no requests are pending and
1514 * also that no request has been pending for a while. Mark
1515 * each hctx as idle.
1516 */
1517 queue_for_each_hw_ctx(q, hctx, i) {
1518 /* the hctx may be unmapped, so check it here */
1519 if (blk_mq_hw_queue_mapped(hctx))
1520 blk_mq_tag_idle(hctx);
1521 }
1522 }
1523 blk_queue_exit(q);
1524 }
1525
1526 struct flush_busy_ctx_data {
1527 struct blk_mq_hw_ctx *hctx;
1528 struct list_head *list;
1529 };
1530
1531 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1532 {
1533 struct flush_busy_ctx_data *flush_data = data;
1534 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1535 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1536 enum hctx_type type = hctx->type;
1537
1538 spin_lock(&ctx->lock);
1539 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1540 sbitmap_clear_bit(sb, bitnr);
1541 spin_unlock(&ctx->lock);
1542 return true;
1543 }
1544
1545 /*
1546 * Process software queues that have been marked busy, splicing them
1547 * to the for-dispatch
1548 */
1549 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1550 {
1551 struct flush_busy_ctx_data data = {
1552 .hctx = hctx,
1553 .list = list,
1554 };
1555
1556 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1557 }
1558 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1559
1560 struct dispatch_rq_data {
1561 struct blk_mq_hw_ctx *hctx;
1562 struct request *rq;
1563 };
1564
1565 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1566 void *data)
1567 {
1568 struct dispatch_rq_data *dispatch_data = data;
1569 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1570 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1571 enum hctx_type type = hctx->type;
1572
1573 spin_lock(&ctx->lock);
1574 if (!list_empty(&ctx->rq_lists[type])) {
1575 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1576 list_del_init(&dispatch_data->rq->queuelist);
1577 if (list_empty(&ctx->rq_lists[type]))
1578 sbitmap_clear_bit(sb, bitnr);
1579 }
1580 spin_unlock(&ctx->lock);
1581
1582 return !dispatch_data->rq;
1583 }
1584
1585 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1586 struct blk_mq_ctx *start)
1587 {
1588 unsigned off = start ? start->index_hw[hctx->type] : 0;
1589 struct dispatch_rq_data data = {
1590 .hctx = hctx,
1591 .rq = NULL,
1592 };
1593
1594 __sbitmap_for_each_set(&hctx->ctx_map, off,
1595 dispatch_rq_from_ctx, &data);
1596
1597 return data.rq;
1598 }
1599
1600 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1601 {
1602 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1603 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1604 int tag;
1605
1606 blk_mq_tag_busy(rq->mq_hctx);
1607
1608 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1609 bt = &rq->mq_hctx->tags->breserved_tags;
1610 tag_offset = 0;
1611 } else {
1612 if (!hctx_may_queue(rq->mq_hctx, bt))
1613 return false;
1614 }
1615
1616 tag = __sbitmap_queue_get(bt);
1617 if (tag == BLK_MQ_NO_TAG)
1618 return false;
1619
1620 rq->tag = tag + tag_offset;
1621 return true;
1622 }
1623
1624 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1625 {
1626 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1627 return false;
1628
1629 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1630 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1631 rq->rq_flags |= RQF_MQ_INFLIGHT;
1632 __blk_mq_inc_active_requests(hctx);
1633 }
1634 hctx->tags->rqs[rq->tag] = rq;
1635 return true;
1636 }
1637
1638 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1639 int flags, void *key)
1640 {
1641 struct blk_mq_hw_ctx *hctx;
1642
1643 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1644
1645 spin_lock(&hctx->dispatch_wait_lock);
1646 if (!list_empty(&wait->entry)) {
1647 struct sbitmap_queue *sbq;
1648
1649 list_del_init(&wait->entry);
1650 sbq = &hctx->tags->bitmap_tags;
1651 atomic_dec(&sbq->ws_active);
1652 }
1653 spin_unlock(&hctx->dispatch_wait_lock);
1654
1655 blk_mq_run_hw_queue(hctx, true);
1656 return 1;
1657 }
1658
1659 /*
1660 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1661 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1662 * restart. For both cases, take care to check the condition again after
1663 * marking us as waiting.
1664 */
1665 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1666 struct request *rq)
1667 {
1668 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1669 struct wait_queue_head *wq;
1670 wait_queue_entry_t *wait;
1671 bool ret;
1672
1673 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1674 blk_mq_sched_mark_restart_hctx(hctx);
1675
1676 /*
1677 * It's possible that a tag was freed in the window between the
1678 * allocation failure and adding the hardware queue to the wait
1679 * queue.
1680 *
1681 * Don't clear RESTART here, someone else could have set it.
1682 * At most this will cost an extra queue run.
1683 */
1684 return blk_mq_get_driver_tag(rq);
1685 }
1686
1687 wait = &hctx->dispatch_wait;
1688 if (!list_empty_careful(&wait->entry))
1689 return false;
1690
1691 wq = &bt_wait_ptr(sbq, hctx)->wait;
1692
1693 spin_lock_irq(&wq->lock);
1694 spin_lock(&hctx->dispatch_wait_lock);
1695 if (!list_empty(&wait->entry)) {
1696 spin_unlock(&hctx->dispatch_wait_lock);
1697 spin_unlock_irq(&wq->lock);
1698 return false;
1699 }
1700
1701 atomic_inc(&sbq->ws_active);
1702 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1703 __add_wait_queue(wq, wait);
1704
1705 /*
1706 * It's possible that a tag was freed in the window between the
1707 * allocation failure and adding the hardware queue to the wait
1708 * queue.
1709 */
1710 ret = blk_mq_get_driver_tag(rq);
1711 if (!ret) {
1712 spin_unlock(&hctx->dispatch_wait_lock);
1713 spin_unlock_irq(&wq->lock);
1714 return false;
1715 }
1716
1717 /*
1718 * We got a tag, remove ourselves from the wait queue to ensure
1719 * someone else gets the wakeup.
1720 */
1721 list_del_init(&wait->entry);
1722 atomic_dec(&sbq->ws_active);
1723 spin_unlock(&hctx->dispatch_wait_lock);
1724 spin_unlock_irq(&wq->lock);
1725
1726 return true;
1727 }
1728
1729 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1730 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1731 /*
1732 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1733 * - EWMA is one simple way to compute running average value
1734 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1735 * - take 4 as factor for avoiding to get too small(0) result, and this
1736 * factor doesn't matter because EWMA decreases exponentially
1737 */
1738 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1739 {
1740 unsigned int ewma;
1741
1742 ewma = hctx->dispatch_busy;
1743
1744 if (!ewma && !busy)
1745 return;
1746
1747 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1748 if (busy)
1749 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1750 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1751
1752 hctx->dispatch_busy = ewma;
1753 }
1754
1755 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1756
1757 static void blk_mq_handle_dev_resource(struct request *rq,
1758 struct list_head *list)
1759 {
1760 struct request *next =
1761 list_first_entry_or_null(list, struct request, queuelist);
1762
1763 /*
1764 * If an I/O scheduler has been configured and we got a driver tag for
1765 * the next request already, free it.
1766 */
1767 if (next)
1768 blk_mq_put_driver_tag(next);
1769
1770 list_add(&rq->queuelist, list);
1771 __blk_mq_requeue_request(rq);
1772 }
1773
1774 static void blk_mq_handle_zone_resource(struct request *rq,
1775 struct list_head *zone_list)
1776 {
1777 /*
1778 * If we end up here it is because we cannot dispatch a request to a
1779 * specific zone due to LLD level zone-write locking or other zone
1780 * related resource not being available. In this case, set the request
1781 * aside in zone_list for retrying it later.
1782 */
1783 list_add(&rq->queuelist, zone_list);
1784 __blk_mq_requeue_request(rq);
1785 }
1786
1787 enum prep_dispatch {
1788 PREP_DISPATCH_OK,
1789 PREP_DISPATCH_NO_TAG,
1790 PREP_DISPATCH_NO_BUDGET,
1791 };
1792
1793 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1794 bool need_budget)
1795 {
1796 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1797 int budget_token = -1;
1798
1799 if (need_budget) {
1800 budget_token = blk_mq_get_dispatch_budget(rq->q);
1801 if (budget_token < 0) {
1802 blk_mq_put_driver_tag(rq);
1803 return PREP_DISPATCH_NO_BUDGET;
1804 }
1805 blk_mq_set_rq_budget_token(rq, budget_token);
1806 }
1807
1808 if (!blk_mq_get_driver_tag(rq)) {
1809 /*
1810 * The initial allocation attempt failed, so we need to
1811 * rerun the hardware queue when a tag is freed. The
1812 * waitqueue takes care of that. If the queue is run
1813 * before we add this entry back on the dispatch list,
1814 * we'll re-run it below.
1815 */
1816 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1817 /*
1818 * All budgets not got from this function will be put
1819 * together during handling partial dispatch
1820 */
1821 if (need_budget)
1822 blk_mq_put_dispatch_budget(rq->q, budget_token);
1823 return PREP_DISPATCH_NO_TAG;
1824 }
1825 }
1826
1827 return PREP_DISPATCH_OK;
1828 }
1829
1830 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1831 static void blk_mq_release_budgets(struct request_queue *q,
1832 struct list_head *list)
1833 {
1834 struct request *rq;
1835
1836 list_for_each_entry(rq, list, queuelist) {
1837 int budget_token = blk_mq_get_rq_budget_token(rq);
1838
1839 if (budget_token >= 0)
1840 blk_mq_put_dispatch_budget(q, budget_token);
1841 }
1842 }
1843
1844 /*
1845 * Returns true if we did some work AND can potentially do more.
1846 */
1847 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1848 unsigned int nr_budgets)
1849 {
1850 enum prep_dispatch prep;
1851 struct request_queue *q = hctx->queue;
1852 struct request *rq, *nxt;
1853 int errors, queued;
1854 blk_status_t ret = BLK_STS_OK;
1855 LIST_HEAD(zone_list);
1856 bool needs_resource = false;
1857
1858 if (list_empty(list))
1859 return false;
1860
1861 /*
1862 * Now process all the entries, sending them to the driver.
1863 */
1864 errors = queued = 0;
1865 do {
1866 struct blk_mq_queue_data bd;
1867
1868 rq = list_first_entry(list, struct request, queuelist);
1869
1870 WARN_ON_ONCE(hctx != rq->mq_hctx);
1871 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1872 if (prep != PREP_DISPATCH_OK)
1873 break;
1874
1875 list_del_init(&rq->queuelist);
1876
1877 bd.rq = rq;
1878
1879 /*
1880 * Flag last if we have no more requests, or if we have more
1881 * but can't assign a driver tag to it.
1882 */
1883 if (list_empty(list))
1884 bd.last = true;
1885 else {
1886 nxt = list_first_entry(list, struct request, queuelist);
1887 bd.last = !blk_mq_get_driver_tag(nxt);
1888 }
1889
1890 /*
1891 * once the request is queued to lld, no need to cover the
1892 * budget any more
1893 */
1894 if (nr_budgets)
1895 nr_budgets--;
1896 ret = q->mq_ops->queue_rq(hctx, &bd);
1897 switch (ret) {
1898 case BLK_STS_OK:
1899 queued++;
1900 break;
1901 case BLK_STS_RESOURCE:
1902 needs_resource = true;
1903 fallthrough;
1904 case BLK_STS_DEV_RESOURCE:
1905 blk_mq_handle_dev_resource(rq, list);
1906 goto out;
1907 case BLK_STS_ZONE_RESOURCE:
1908 /*
1909 * Move the request to zone_list and keep going through
1910 * the dispatch list to find more requests the drive can
1911 * accept.
1912 */
1913 blk_mq_handle_zone_resource(rq, &zone_list);
1914 needs_resource = true;
1915 break;
1916 default:
1917 errors++;
1918 blk_mq_end_request(rq, ret);
1919 }
1920 } while (!list_empty(list));
1921 out:
1922 if (!list_empty(&zone_list))
1923 list_splice_tail_init(&zone_list, list);
1924
1925 /* If we didn't flush the entire list, we could have told the driver
1926 * there was more coming, but that turned out to be a lie.
1927 */
1928 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1929 q->mq_ops->commit_rqs(hctx);
1930 /*
1931 * Any items that need requeuing? Stuff them into hctx->dispatch,
1932 * that is where we will continue on next queue run.
1933 */
1934 if (!list_empty(list)) {
1935 bool needs_restart;
1936 /* For non-shared tags, the RESTART check will suffice */
1937 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1938 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1939
1940 if (nr_budgets)
1941 blk_mq_release_budgets(q, list);
1942
1943 spin_lock(&hctx->lock);
1944 list_splice_tail_init(list, &hctx->dispatch);
1945 spin_unlock(&hctx->lock);
1946
1947 /*
1948 * Order adding requests to hctx->dispatch and checking
1949 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1950 * in blk_mq_sched_restart(). Avoid restart code path to
1951 * miss the new added requests to hctx->dispatch, meantime
1952 * SCHED_RESTART is observed here.
1953 */
1954 smp_mb();
1955
1956 /*
1957 * If SCHED_RESTART was set by the caller of this function and
1958 * it is no longer set that means that it was cleared by another
1959 * thread and hence that a queue rerun is needed.
1960 *
1961 * If 'no_tag' is set, that means that we failed getting
1962 * a driver tag with an I/O scheduler attached. If our dispatch
1963 * waitqueue is no longer active, ensure that we run the queue
1964 * AFTER adding our entries back to the list.
1965 *
1966 * If no I/O scheduler has been configured it is possible that
1967 * the hardware queue got stopped and restarted before requests
1968 * were pushed back onto the dispatch list. Rerun the queue to
1969 * avoid starvation. Notes:
1970 * - blk_mq_run_hw_queue() checks whether or not a queue has
1971 * been stopped before rerunning a queue.
1972 * - Some but not all block drivers stop a queue before
1973 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1974 * and dm-rq.
1975 *
1976 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1977 * bit is set, run queue after a delay to avoid IO stalls
1978 * that could otherwise occur if the queue is idle. We'll do
1979 * similar if we couldn't get budget or couldn't lock a zone
1980 * and SCHED_RESTART is set.
1981 */
1982 needs_restart = blk_mq_sched_needs_restart(hctx);
1983 if (prep == PREP_DISPATCH_NO_BUDGET)
1984 needs_resource = true;
1985 if (!needs_restart ||
1986 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1987 blk_mq_run_hw_queue(hctx, true);
1988 else if (needs_restart && needs_resource)
1989 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1990
1991 blk_mq_update_dispatch_busy(hctx, true);
1992 return false;
1993 } else
1994 blk_mq_update_dispatch_busy(hctx, false);
1995
1996 return (queued + errors) != 0;
1997 }
1998
1999 /**
2000 * __blk_mq_run_hw_queue - Run a hardware queue.
2001 * @hctx: Pointer to the hardware queue to run.
2002 *
2003 * Send pending requests to the hardware.
2004 */
2005 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2006 {
2007 /*
2008 * We can't run the queue inline with ints disabled. Ensure that
2009 * we catch bad users of this early.
2010 */
2011 WARN_ON_ONCE(in_interrupt());
2012
2013 blk_mq_run_dispatch_ops(hctx->queue,
2014 blk_mq_sched_dispatch_requests(hctx));
2015 }
2016
2017 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2018 {
2019 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2020
2021 if (cpu >= nr_cpu_ids)
2022 cpu = cpumask_first(hctx->cpumask);
2023 return cpu;
2024 }
2025
2026 /*
2027 * It'd be great if the workqueue API had a way to pass
2028 * in a mask and had some smarts for more clever placement.
2029 * For now we just round-robin here, switching for every
2030 * BLK_MQ_CPU_WORK_BATCH queued items.
2031 */
2032 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2033 {
2034 bool tried = false;
2035 int next_cpu = hctx->next_cpu;
2036
2037 if (hctx->queue->nr_hw_queues == 1)
2038 return WORK_CPU_UNBOUND;
2039
2040 if (--hctx->next_cpu_batch <= 0) {
2041 select_cpu:
2042 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2043 cpu_online_mask);
2044 if (next_cpu >= nr_cpu_ids)
2045 next_cpu = blk_mq_first_mapped_cpu(hctx);
2046 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2047 }
2048
2049 /*
2050 * Do unbound schedule if we can't find a online CPU for this hctx,
2051 * and it should only happen in the path of handling CPU DEAD.
2052 */
2053 if (!cpu_online(next_cpu)) {
2054 if (!tried) {
2055 tried = true;
2056 goto select_cpu;
2057 }
2058
2059 /*
2060 * Make sure to re-select CPU next time once after CPUs
2061 * in hctx->cpumask become online again.
2062 */
2063 hctx->next_cpu = next_cpu;
2064 hctx->next_cpu_batch = 1;
2065 return WORK_CPU_UNBOUND;
2066 }
2067
2068 hctx->next_cpu = next_cpu;
2069 return next_cpu;
2070 }
2071
2072 /**
2073 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2074 * @hctx: Pointer to the hardware queue to run.
2075 * @async: If we want to run the queue asynchronously.
2076 * @msecs: Milliseconds of delay to wait before running the queue.
2077 *
2078 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2079 * with a delay of @msecs.
2080 */
2081 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2082 unsigned long msecs)
2083 {
2084 if (unlikely(blk_mq_hctx_stopped(hctx)))
2085 return;
2086
2087 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2088 int cpu = get_cpu();
2089 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2090 __blk_mq_run_hw_queue(hctx);
2091 put_cpu();
2092 return;
2093 }
2094
2095 put_cpu();
2096 }
2097
2098 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2099 msecs_to_jiffies(msecs));
2100 }
2101
2102 /**
2103 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2104 * @hctx: Pointer to the hardware queue to run.
2105 * @msecs: Milliseconds of delay to wait before running the queue.
2106 *
2107 * Run a hardware queue asynchronously with a delay of @msecs.
2108 */
2109 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2110 {
2111 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2112 }
2113 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2114
2115 /**
2116 * blk_mq_run_hw_queue - Start to run a hardware queue.
2117 * @hctx: Pointer to the hardware queue to run.
2118 * @async: If we want to run the queue asynchronously.
2119 *
2120 * Check if the request queue is not in a quiesced state and if there are
2121 * pending requests to be sent. If this is true, run the queue to send requests
2122 * to hardware.
2123 */
2124 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2125 {
2126 bool need_run;
2127
2128 /*
2129 * When queue is quiesced, we may be switching io scheduler, or
2130 * updating nr_hw_queues, or other things, and we can't run queue
2131 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2132 *
2133 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2134 * quiesced.
2135 */
2136 __blk_mq_run_dispatch_ops(hctx->queue, false,
2137 need_run = !blk_queue_quiesced(hctx->queue) &&
2138 blk_mq_hctx_has_pending(hctx));
2139
2140 if (need_run)
2141 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2142 }
2143 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2144
2145 /*
2146 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2147 * scheduler.
2148 */
2149 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2150 {
2151 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2152 /*
2153 * If the IO scheduler does not respect hardware queues when
2154 * dispatching, we just don't bother with multiple HW queues and
2155 * dispatch from hctx for the current CPU since running multiple queues
2156 * just causes lock contention inside the scheduler and pointless cache
2157 * bouncing.
2158 */
2159 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
2160
2161 if (!blk_mq_hctx_stopped(hctx))
2162 return hctx;
2163 return NULL;
2164 }
2165
2166 /**
2167 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2168 * @q: Pointer to the request queue to run.
2169 * @async: If we want to run the queue asynchronously.
2170 */
2171 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2172 {
2173 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2174 unsigned long i;
2175
2176 sq_hctx = NULL;
2177 if (blk_queue_sq_sched(q))
2178 sq_hctx = blk_mq_get_sq_hctx(q);
2179 queue_for_each_hw_ctx(q, hctx, i) {
2180 if (blk_mq_hctx_stopped(hctx))
2181 continue;
2182 /*
2183 * Dispatch from this hctx either if there's no hctx preferred
2184 * by IO scheduler or if it has requests that bypass the
2185 * scheduler.
2186 */
2187 if (!sq_hctx || sq_hctx == hctx ||
2188 !list_empty_careful(&hctx->dispatch))
2189 blk_mq_run_hw_queue(hctx, async);
2190 }
2191 }
2192 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2193
2194 /**
2195 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2196 * @q: Pointer to the request queue to run.
2197 * @msecs: Milliseconds of delay to wait before running the queues.
2198 */
2199 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2200 {
2201 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2202 unsigned long i;
2203
2204 sq_hctx = NULL;
2205 if (blk_queue_sq_sched(q))
2206 sq_hctx = blk_mq_get_sq_hctx(q);
2207 queue_for_each_hw_ctx(q, hctx, i) {
2208 if (blk_mq_hctx_stopped(hctx))
2209 continue;
2210 /*
2211 * If there is already a run_work pending, leave the
2212 * pending delay untouched. Otherwise, a hctx can stall
2213 * if another hctx is re-delaying the other's work
2214 * before the work executes.
2215 */
2216 if (delayed_work_pending(&hctx->run_work))
2217 continue;
2218 /*
2219 * Dispatch from this hctx either if there's no hctx preferred
2220 * by IO scheduler or if it has requests that bypass the
2221 * scheduler.
2222 */
2223 if (!sq_hctx || sq_hctx == hctx ||
2224 !list_empty_careful(&hctx->dispatch))
2225 blk_mq_delay_run_hw_queue(hctx, msecs);
2226 }
2227 }
2228 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2229
2230 /**
2231 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2232 * @q: request queue.
2233 *
2234 * The caller is responsible for serializing this function against
2235 * blk_mq_{start,stop}_hw_queue().
2236 */
2237 bool blk_mq_queue_stopped(struct request_queue *q)
2238 {
2239 struct blk_mq_hw_ctx *hctx;
2240 unsigned long i;
2241
2242 queue_for_each_hw_ctx(q, hctx, i)
2243 if (blk_mq_hctx_stopped(hctx))
2244 return true;
2245
2246 return false;
2247 }
2248 EXPORT_SYMBOL(blk_mq_queue_stopped);
2249
2250 /*
2251 * This function is often used for pausing .queue_rq() by driver when
2252 * there isn't enough resource or some conditions aren't satisfied, and
2253 * BLK_STS_RESOURCE is usually returned.
2254 *
2255 * We do not guarantee that dispatch can be drained or blocked
2256 * after blk_mq_stop_hw_queue() returns. Please use
2257 * blk_mq_quiesce_queue() for that requirement.
2258 */
2259 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2260 {
2261 cancel_delayed_work(&hctx->run_work);
2262
2263 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2264 }
2265 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2266
2267 /*
2268 * This function is often used for pausing .queue_rq() by driver when
2269 * there isn't enough resource or some conditions aren't satisfied, and
2270 * BLK_STS_RESOURCE is usually returned.
2271 *
2272 * We do not guarantee that dispatch can be drained or blocked
2273 * after blk_mq_stop_hw_queues() returns. Please use
2274 * blk_mq_quiesce_queue() for that requirement.
2275 */
2276 void blk_mq_stop_hw_queues(struct request_queue *q)
2277 {
2278 struct blk_mq_hw_ctx *hctx;
2279 unsigned long i;
2280
2281 queue_for_each_hw_ctx(q, hctx, i)
2282 blk_mq_stop_hw_queue(hctx);
2283 }
2284 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2285
2286 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2287 {
2288 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2289
2290 blk_mq_run_hw_queue(hctx, false);
2291 }
2292 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2293
2294 void blk_mq_start_hw_queues(struct request_queue *q)
2295 {
2296 struct blk_mq_hw_ctx *hctx;
2297 unsigned long i;
2298
2299 queue_for_each_hw_ctx(q, hctx, i)
2300 blk_mq_start_hw_queue(hctx);
2301 }
2302 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2303
2304 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2305 {
2306 if (!blk_mq_hctx_stopped(hctx))
2307 return;
2308
2309 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2310 blk_mq_run_hw_queue(hctx, async);
2311 }
2312 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2313
2314 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2315 {
2316 struct blk_mq_hw_ctx *hctx;
2317 unsigned long i;
2318
2319 queue_for_each_hw_ctx(q, hctx, i)
2320 blk_mq_start_stopped_hw_queue(hctx, async);
2321 }
2322 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2323
2324 static void blk_mq_run_work_fn(struct work_struct *work)
2325 {
2326 struct blk_mq_hw_ctx *hctx;
2327
2328 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2329
2330 /*
2331 * If we are stopped, don't run the queue.
2332 */
2333 if (blk_mq_hctx_stopped(hctx))
2334 return;
2335
2336 __blk_mq_run_hw_queue(hctx);
2337 }
2338
2339 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2340 struct request *rq,
2341 bool at_head)
2342 {
2343 struct blk_mq_ctx *ctx = rq->mq_ctx;
2344 enum hctx_type type = hctx->type;
2345
2346 lockdep_assert_held(&ctx->lock);
2347
2348 trace_block_rq_insert(rq);
2349
2350 if (at_head)
2351 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2352 else
2353 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2354 }
2355
2356 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2357 bool at_head)
2358 {
2359 struct blk_mq_ctx *ctx = rq->mq_ctx;
2360
2361 lockdep_assert_held(&ctx->lock);
2362
2363 __blk_mq_insert_req_list(hctx, rq, at_head);
2364 blk_mq_hctx_mark_pending(hctx, ctx);
2365 }
2366
2367 /**
2368 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2369 * @rq: Pointer to request to be inserted.
2370 * @at_head: true if the request should be inserted at the head of the list.
2371 * @run_queue: If we should run the hardware queue after inserting the request.
2372 *
2373 * Should only be used carefully, when the caller knows we want to
2374 * bypass a potential IO scheduler on the target device.
2375 */
2376 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2377 bool run_queue)
2378 {
2379 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2380
2381 spin_lock(&hctx->lock);
2382 if (at_head)
2383 list_add(&rq->queuelist, &hctx->dispatch);
2384 else
2385 list_add_tail(&rq->queuelist, &hctx->dispatch);
2386 spin_unlock(&hctx->lock);
2387
2388 if (run_queue)
2389 blk_mq_run_hw_queue(hctx, false);
2390 }
2391
2392 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2393 struct list_head *list)
2394
2395 {
2396 struct request *rq;
2397 enum hctx_type type = hctx->type;
2398
2399 /*
2400 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2401 * offline now
2402 */
2403 list_for_each_entry(rq, list, queuelist) {
2404 BUG_ON(rq->mq_ctx != ctx);
2405 trace_block_rq_insert(rq);
2406 }
2407
2408 spin_lock(&ctx->lock);
2409 list_splice_tail_init(list, &ctx->rq_lists[type]);
2410 blk_mq_hctx_mark_pending(hctx, ctx);
2411 spin_unlock(&ctx->lock);
2412 }
2413
2414 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2415 bool from_schedule)
2416 {
2417 if (hctx->queue->mq_ops->commit_rqs) {
2418 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2419 hctx->queue->mq_ops->commit_rqs(hctx);
2420 }
2421 *queued = 0;
2422 }
2423
2424 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2425 unsigned int nr_segs)
2426 {
2427 int err;
2428
2429 if (bio->bi_opf & REQ_RAHEAD)
2430 rq->cmd_flags |= REQ_FAILFAST_MASK;
2431
2432 rq->__sector = bio->bi_iter.bi_sector;
2433 blk_rq_bio_prep(rq, bio, nr_segs);
2434
2435 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2436 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2437 WARN_ON_ONCE(err);
2438
2439 blk_account_io_start(rq);
2440 }
2441
2442 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2443 struct request *rq, bool last)
2444 {
2445 struct request_queue *q = rq->q;
2446 struct blk_mq_queue_data bd = {
2447 .rq = rq,
2448 .last = last,
2449 };
2450 blk_status_t ret;
2451
2452 /*
2453 * For OK queue, we are done. For error, caller may kill it.
2454 * Any other error (busy), just add it to our list as we
2455 * previously would have done.
2456 */
2457 ret = q->mq_ops->queue_rq(hctx, &bd);
2458 switch (ret) {
2459 case BLK_STS_OK:
2460 blk_mq_update_dispatch_busy(hctx, false);
2461 break;
2462 case BLK_STS_RESOURCE:
2463 case BLK_STS_DEV_RESOURCE:
2464 blk_mq_update_dispatch_busy(hctx, true);
2465 __blk_mq_requeue_request(rq);
2466 break;
2467 default:
2468 blk_mq_update_dispatch_busy(hctx, false);
2469 break;
2470 }
2471
2472 return ret;
2473 }
2474
2475 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2476 struct request *rq,
2477 bool bypass_insert, bool last)
2478 {
2479 struct request_queue *q = rq->q;
2480 bool run_queue = true;
2481 int budget_token;
2482
2483 /*
2484 * RCU or SRCU read lock is needed before checking quiesced flag.
2485 *
2486 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2487 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2488 * and avoid driver to try to dispatch again.
2489 */
2490 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2491 run_queue = false;
2492 bypass_insert = false;
2493 goto insert;
2494 }
2495
2496 if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2497 goto insert;
2498
2499 budget_token = blk_mq_get_dispatch_budget(q);
2500 if (budget_token < 0)
2501 goto insert;
2502
2503 blk_mq_set_rq_budget_token(rq, budget_token);
2504
2505 if (!blk_mq_get_driver_tag(rq)) {
2506 blk_mq_put_dispatch_budget(q, budget_token);
2507 goto insert;
2508 }
2509
2510 return __blk_mq_issue_directly(hctx, rq, last);
2511 insert:
2512 if (bypass_insert)
2513 return BLK_STS_RESOURCE;
2514
2515 blk_mq_sched_insert_request(rq, false, run_queue, false);
2516
2517 return BLK_STS_OK;
2518 }
2519
2520 /**
2521 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2522 * @hctx: Pointer of the associated hardware queue.
2523 * @rq: Pointer to request to be sent.
2524 *
2525 * If the device has enough resources to accept a new request now, send the
2526 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2527 * we can try send it another time in the future. Requests inserted at this
2528 * queue have higher priority.
2529 */
2530 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2531 struct request *rq)
2532 {
2533 blk_status_t ret =
2534 __blk_mq_try_issue_directly(hctx, rq, false, true);
2535
2536 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2537 blk_mq_request_bypass_insert(rq, false, true);
2538 else if (ret != BLK_STS_OK)
2539 blk_mq_end_request(rq, ret);
2540 }
2541
2542 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2543 {
2544 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2545 }
2546
2547 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2548 {
2549 struct blk_mq_hw_ctx *hctx = NULL;
2550 struct request *rq;
2551 int queued = 0;
2552 int errors = 0;
2553
2554 while ((rq = rq_list_pop(&plug->mq_list))) {
2555 bool last = rq_list_empty(plug->mq_list);
2556 blk_status_t ret;
2557
2558 if (hctx != rq->mq_hctx) {
2559 if (hctx)
2560 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2561 hctx = rq->mq_hctx;
2562 }
2563
2564 ret = blk_mq_request_issue_directly(rq, last);
2565 switch (ret) {
2566 case BLK_STS_OK:
2567 queued++;
2568 break;
2569 case BLK_STS_RESOURCE:
2570 case BLK_STS_DEV_RESOURCE:
2571 blk_mq_request_bypass_insert(rq, false, last);
2572 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2573 return;
2574 default:
2575 blk_mq_end_request(rq, ret);
2576 errors++;
2577 break;
2578 }
2579 }
2580
2581 /*
2582 * If we didn't flush the entire list, we could have told the driver
2583 * there was more coming, but that turned out to be a lie.
2584 */
2585 if (errors)
2586 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2587 }
2588
2589 static void __blk_mq_flush_plug_list(struct request_queue *q,
2590 struct blk_plug *plug)
2591 {
2592 if (blk_queue_quiesced(q))
2593 return;
2594 q->mq_ops->queue_rqs(&plug->mq_list);
2595 }
2596
2597 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2598 {
2599 struct blk_mq_hw_ctx *this_hctx = NULL;
2600 struct blk_mq_ctx *this_ctx = NULL;
2601 struct request *requeue_list = NULL;
2602 unsigned int depth = 0;
2603 LIST_HEAD(list);
2604
2605 do {
2606 struct request *rq = rq_list_pop(&plug->mq_list);
2607
2608 if (!this_hctx) {
2609 this_hctx = rq->mq_hctx;
2610 this_ctx = rq->mq_ctx;
2611 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2612 rq_list_add(&requeue_list, rq);
2613 continue;
2614 }
2615 list_add_tail(&rq->queuelist, &list);
2616 depth++;
2617 } while (!rq_list_empty(plug->mq_list));
2618
2619 plug->mq_list = requeue_list;
2620 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2621 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2622 }
2623
2624 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2625 {
2626 struct request *rq;
2627
2628 if (rq_list_empty(plug->mq_list))
2629 return;
2630 plug->rq_count = 0;
2631
2632 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2633 struct request_queue *q;
2634
2635 rq = rq_list_peek(&plug->mq_list);
2636 q = rq->q;
2637
2638 /*
2639 * Peek first request and see if we have a ->queue_rqs() hook.
2640 * If we do, we can dispatch the whole plug list in one go. We
2641 * already know at this point that all requests belong to the
2642 * same queue, caller must ensure that's the case.
2643 *
2644 * Since we pass off the full list to the driver at this point,
2645 * we do not increment the active request count for the queue.
2646 * Bypass shared tags for now because of that.
2647 */
2648 if (q->mq_ops->queue_rqs &&
2649 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2650 blk_mq_run_dispatch_ops(q,
2651 __blk_mq_flush_plug_list(q, plug));
2652 if (rq_list_empty(plug->mq_list))
2653 return;
2654 }
2655
2656 blk_mq_run_dispatch_ops(q,
2657 blk_mq_plug_issue_direct(plug, false));
2658 if (rq_list_empty(plug->mq_list))
2659 return;
2660 }
2661
2662 do {
2663 blk_mq_dispatch_plug_list(plug, from_schedule);
2664 } while (!rq_list_empty(plug->mq_list));
2665 }
2666
2667 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2668 struct list_head *list)
2669 {
2670 int queued = 0;
2671 int errors = 0;
2672
2673 while (!list_empty(list)) {
2674 blk_status_t ret;
2675 struct request *rq = list_first_entry(list, struct request,
2676 queuelist);
2677
2678 list_del_init(&rq->queuelist);
2679 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2680 if (ret != BLK_STS_OK) {
2681 if (ret == BLK_STS_RESOURCE ||
2682 ret == BLK_STS_DEV_RESOURCE) {
2683 blk_mq_request_bypass_insert(rq, false,
2684 list_empty(list));
2685 break;
2686 }
2687 blk_mq_end_request(rq, ret);
2688 errors++;
2689 } else
2690 queued++;
2691 }
2692
2693 /*
2694 * If we didn't flush the entire list, we could have told
2695 * the driver there was more coming, but that turned out to
2696 * be a lie.
2697 */
2698 if ((!list_empty(list) || errors) &&
2699 hctx->queue->mq_ops->commit_rqs && queued)
2700 hctx->queue->mq_ops->commit_rqs(hctx);
2701 }
2702
2703 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2704 struct bio *bio, unsigned int nr_segs)
2705 {
2706 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2707 if (blk_attempt_plug_merge(q, bio, nr_segs))
2708 return true;
2709 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2710 return true;
2711 }
2712 return false;
2713 }
2714
2715 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2716 struct blk_plug *plug,
2717 struct bio *bio,
2718 unsigned int nsegs)
2719 {
2720 struct blk_mq_alloc_data data = {
2721 .q = q,
2722 .nr_tags = 1,
2723 .cmd_flags = bio->bi_opf,
2724 };
2725 struct request *rq;
2726
2727 if (unlikely(bio_queue_enter(bio)))
2728 return NULL;
2729
2730 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2731 goto queue_exit;
2732
2733 rq_qos_throttle(q, bio);
2734
2735 if (plug) {
2736 data.nr_tags = plug->nr_ios;
2737 plug->nr_ios = 1;
2738 data.cached_rq = &plug->cached_rq;
2739 }
2740
2741 rq = __blk_mq_alloc_requests(&data);
2742 if (rq)
2743 return rq;
2744 rq_qos_cleanup(q, bio);
2745 if (bio->bi_opf & REQ_NOWAIT)
2746 bio_wouldblock_error(bio);
2747 queue_exit:
2748 blk_queue_exit(q);
2749 return NULL;
2750 }
2751
2752 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2753 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2754 {
2755 struct request *rq;
2756
2757 if (!plug)
2758 return NULL;
2759 rq = rq_list_peek(&plug->cached_rq);
2760 if (!rq || rq->q != q)
2761 return NULL;
2762
2763 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2764 *bio = NULL;
2765 return NULL;
2766 }
2767
2768 if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2769 return NULL;
2770 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2771 return NULL;
2772
2773 /*
2774 * If any qos ->throttle() end up blocking, we will have flushed the
2775 * plug and hence killed the cached_rq list as well. Pop this entry
2776 * before we throttle.
2777 */
2778 plug->cached_rq = rq_list_next(rq);
2779 rq_qos_throttle(q, *bio);
2780
2781 rq->cmd_flags = (*bio)->bi_opf;
2782 INIT_LIST_HEAD(&rq->queuelist);
2783 return rq;
2784 }
2785
2786 /**
2787 * blk_mq_submit_bio - Create and send a request to block device.
2788 * @bio: Bio pointer.
2789 *
2790 * Builds up a request structure from @q and @bio and send to the device. The
2791 * request may not be queued directly to hardware if:
2792 * * This request can be merged with another one
2793 * * We want to place request at plug queue for possible future merging
2794 * * There is an IO scheduler active at this queue
2795 *
2796 * It will not queue the request if there is an error with the bio, or at the
2797 * request creation.
2798 */
2799 void blk_mq_submit_bio(struct bio *bio)
2800 {
2801 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2802 struct blk_plug *plug = blk_mq_plug(q, bio);
2803 const int is_sync = op_is_sync(bio->bi_opf);
2804 struct request *rq;
2805 unsigned int nr_segs = 1;
2806 blk_status_t ret;
2807
2808 blk_queue_bounce(q, &bio);
2809 if (blk_may_split(q, bio))
2810 __blk_queue_split(q, &bio, &nr_segs);
2811
2812 if (!bio_integrity_prep(bio))
2813 return;
2814
2815 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2816 if (!rq) {
2817 if (!bio)
2818 return;
2819 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2820 if (unlikely(!rq))
2821 return;
2822 }
2823
2824 trace_block_getrq(bio);
2825
2826 rq_qos_track(q, rq, bio);
2827
2828 blk_mq_bio_to_request(rq, bio, nr_segs);
2829
2830 ret = blk_crypto_init_request(rq);
2831 if (ret != BLK_STS_OK) {
2832 bio->bi_status = ret;
2833 bio_endio(bio);
2834 blk_mq_free_request(rq);
2835 return;
2836 }
2837
2838 if (op_is_flush(bio->bi_opf)) {
2839 blk_insert_flush(rq);
2840 return;
2841 }
2842
2843 if (plug)
2844 blk_add_rq_to_plug(plug, rq);
2845 else if ((rq->rq_flags & RQF_ELV) ||
2846 (rq->mq_hctx->dispatch_busy &&
2847 (q->nr_hw_queues == 1 || !is_sync)))
2848 blk_mq_sched_insert_request(rq, false, true, true);
2849 else
2850 blk_mq_run_dispatch_ops(rq->q,
2851 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2852 }
2853
2854 #ifdef CONFIG_BLK_MQ_STACKING
2855 /**
2856 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2857 * @rq: the request being queued
2858 */
2859 blk_status_t blk_insert_cloned_request(struct request *rq)
2860 {
2861 struct request_queue *q = rq->q;
2862 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2863 blk_status_t ret;
2864
2865 if (blk_rq_sectors(rq) > max_sectors) {
2866 /*
2867 * SCSI device does not have a good way to return if
2868 * Write Same/Zero is actually supported. If a device rejects
2869 * a non-read/write command (discard, write same,etc.) the
2870 * low-level device driver will set the relevant queue limit to
2871 * 0 to prevent blk-lib from issuing more of the offending
2872 * operations. Commands queued prior to the queue limit being
2873 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2874 * errors being propagated to upper layers.
2875 */
2876 if (max_sectors == 0)
2877 return BLK_STS_NOTSUPP;
2878
2879 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2880 __func__, blk_rq_sectors(rq), max_sectors);
2881 return BLK_STS_IOERR;
2882 }
2883
2884 /*
2885 * The queue settings related to segment counting may differ from the
2886 * original queue.
2887 */
2888 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2889 if (rq->nr_phys_segments > queue_max_segments(q)) {
2890 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2891 __func__, rq->nr_phys_segments, queue_max_segments(q));
2892 return BLK_STS_IOERR;
2893 }
2894
2895 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2896 return BLK_STS_IOERR;
2897
2898 if (blk_crypto_insert_cloned_request(rq))
2899 return BLK_STS_IOERR;
2900
2901 blk_account_io_start(rq);
2902
2903 /*
2904 * Since we have a scheduler attached on the top device,
2905 * bypass a potential scheduler on the bottom device for
2906 * insert.
2907 */
2908 blk_mq_run_dispatch_ops(q,
2909 ret = blk_mq_request_issue_directly(rq, true));
2910 if (ret)
2911 blk_account_io_done(rq, ktime_get_ns());
2912 return ret;
2913 }
2914 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2915
2916 /**
2917 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2918 * @rq: the clone request to be cleaned up
2919 *
2920 * Description:
2921 * Free all bios in @rq for a cloned request.
2922 */
2923 void blk_rq_unprep_clone(struct request *rq)
2924 {
2925 struct bio *bio;
2926
2927 while ((bio = rq->bio) != NULL) {
2928 rq->bio = bio->bi_next;
2929
2930 bio_put(bio);
2931 }
2932 }
2933 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2934
2935 /**
2936 * blk_rq_prep_clone - Helper function to setup clone request
2937 * @rq: the request to be setup
2938 * @rq_src: original request to be cloned
2939 * @bs: bio_set that bios for clone are allocated from
2940 * @gfp_mask: memory allocation mask for bio
2941 * @bio_ctr: setup function to be called for each clone bio.
2942 * Returns %0 for success, non %0 for failure.
2943 * @data: private data to be passed to @bio_ctr
2944 *
2945 * Description:
2946 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2947 * Also, pages which the original bios are pointing to are not copied
2948 * and the cloned bios just point same pages.
2949 * So cloned bios must be completed before original bios, which means
2950 * the caller must complete @rq before @rq_src.
2951 */
2952 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2953 struct bio_set *bs, gfp_t gfp_mask,
2954 int (*bio_ctr)(struct bio *, struct bio *, void *),
2955 void *data)
2956 {
2957 struct bio *bio, *bio_src;
2958
2959 if (!bs)
2960 bs = &fs_bio_set;
2961
2962 __rq_for_each_bio(bio_src, rq_src) {
2963 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2964 bs);
2965 if (!bio)
2966 goto free_and_out;
2967
2968 if (bio_ctr && bio_ctr(bio, bio_src, data))
2969 goto free_and_out;
2970
2971 if (rq->bio) {
2972 rq->biotail->bi_next = bio;
2973 rq->biotail = bio;
2974 } else {
2975 rq->bio = rq->biotail = bio;
2976 }
2977 bio = NULL;
2978 }
2979
2980 /* Copy attributes of the original request to the clone request. */
2981 rq->__sector = blk_rq_pos(rq_src);
2982 rq->__data_len = blk_rq_bytes(rq_src);
2983 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2984 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2985 rq->special_vec = rq_src->special_vec;
2986 }
2987 rq->nr_phys_segments = rq_src->nr_phys_segments;
2988 rq->ioprio = rq_src->ioprio;
2989
2990 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2991 goto free_and_out;
2992
2993 return 0;
2994
2995 free_and_out:
2996 if (bio)
2997 bio_put(bio);
2998 blk_rq_unprep_clone(rq);
2999
3000 return -ENOMEM;
3001 }
3002 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3003 #endif /* CONFIG_BLK_MQ_STACKING */
3004
3005 /*
3006 * Steal bios from a request and add them to a bio list.
3007 * The request must not have been partially completed before.
3008 */
3009 void blk_steal_bios(struct bio_list *list, struct request *rq)
3010 {
3011 if (rq->bio) {
3012 if (list->tail)
3013 list->tail->bi_next = rq->bio;
3014 else
3015 list->head = rq->bio;
3016 list->tail = rq->biotail;
3017
3018 rq->bio = NULL;
3019 rq->biotail = NULL;
3020 }
3021
3022 rq->__data_len = 0;
3023 }
3024 EXPORT_SYMBOL_GPL(blk_steal_bios);
3025
3026 static size_t order_to_size(unsigned int order)
3027 {
3028 return (size_t)PAGE_SIZE << order;
3029 }
3030
3031 /* called before freeing request pool in @tags */
3032 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3033 struct blk_mq_tags *tags)
3034 {
3035 struct page *page;
3036 unsigned long flags;
3037
3038 /* There is no need to clear a driver tags own mapping */
3039 if (drv_tags == tags)
3040 return;
3041
3042 list_for_each_entry(page, &tags->page_list, lru) {
3043 unsigned long start = (unsigned long)page_address(page);
3044 unsigned long end = start + order_to_size(page->private);
3045 int i;
3046
3047 for (i = 0; i < drv_tags->nr_tags; i++) {
3048 struct request *rq = drv_tags->rqs[i];
3049 unsigned long rq_addr = (unsigned long)rq;
3050
3051 if (rq_addr >= start && rq_addr < end) {
3052 WARN_ON_ONCE(req_ref_read(rq) != 0);
3053 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3054 }
3055 }
3056 }
3057
3058 /*
3059 * Wait until all pending iteration is done.
3060 *
3061 * Request reference is cleared and it is guaranteed to be observed
3062 * after the ->lock is released.
3063 */
3064 spin_lock_irqsave(&drv_tags->lock, flags);
3065 spin_unlock_irqrestore(&drv_tags->lock, flags);
3066 }
3067
3068 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3069 unsigned int hctx_idx)
3070 {
3071 struct blk_mq_tags *drv_tags;
3072 struct page *page;
3073
3074 if (list_empty(&tags->page_list))
3075 return;
3076
3077 if (blk_mq_is_shared_tags(set->flags))
3078 drv_tags = set->shared_tags;
3079 else
3080 drv_tags = set->tags[hctx_idx];
3081
3082 if (tags->static_rqs && set->ops->exit_request) {
3083 int i;
3084
3085 for (i = 0; i < tags->nr_tags; i++) {
3086 struct request *rq = tags->static_rqs[i];
3087
3088 if (!rq)
3089 continue;
3090 set->ops->exit_request(set, rq, hctx_idx);
3091 tags->static_rqs[i] = NULL;
3092 }
3093 }
3094
3095 blk_mq_clear_rq_mapping(drv_tags, tags);
3096
3097 while (!list_empty(&tags->page_list)) {
3098 page = list_first_entry(&tags->page_list, struct page, lru);
3099 list_del_init(&page->lru);
3100 /*
3101 * Remove kmemleak object previously allocated in
3102 * blk_mq_alloc_rqs().
3103 */
3104 kmemleak_free(page_address(page));
3105 __free_pages(page, page->private);
3106 }
3107 }
3108
3109 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3110 {
3111 kfree(tags->rqs);
3112 tags->rqs = NULL;
3113 kfree(tags->static_rqs);
3114 tags->static_rqs = NULL;
3115
3116 blk_mq_free_tags(tags);
3117 }
3118
3119 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3120 unsigned int hctx_idx)
3121 {
3122 int i;
3123
3124 for (i = 0; i < set->nr_maps; i++) {
3125 unsigned int start = set->map[i].queue_offset;
3126 unsigned int end = start + set->map[i].nr_queues;
3127
3128 if (hctx_idx >= start && hctx_idx < end)
3129 break;
3130 }
3131
3132 if (i >= set->nr_maps)
3133 i = HCTX_TYPE_DEFAULT;
3134
3135 return i;
3136 }
3137
3138 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3139 unsigned int hctx_idx)
3140 {
3141 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3142
3143 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3144 }
3145
3146 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3147 unsigned int hctx_idx,
3148 unsigned int nr_tags,
3149 unsigned int reserved_tags)
3150 {
3151 int node = blk_mq_get_hctx_node(set, hctx_idx);
3152 struct blk_mq_tags *tags;
3153
3154 if (node == NUMA_NO_NODE)
3155 node = set->numa_node;
3156
3157 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3158 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3159 if (!tags)
3160 return NULL;
3161
3162 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3163 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3164 node);
3165 if (!tags->rqs) {
3166 blk_mq_free_tags(tags);
3167 return NULL;
3168 }
3169
3170 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3171 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3172 node);
3173 if (!tags->static_rqs) {
3174 kfree(tags->rqs);
3175 blk_mq_free_tags(tags);
3176 return NULL;
3177 }
3178
3179 return tags;
3180 }
3181
3182 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3183 unsigned int hctx_idx, int node)
3184 {
3185 int ret;
3186
3187 if (set->ops->init_request) {
3188 ret = set->ops->init_request(set, rq, hctx_idx, node);
3189 if (ret)
3190 return ret;
3191 }
3192
3193 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3194 return 0;
3195 }
3196
3197 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3198 struct blk_mq_tags *tags,
3199 unsigned int hctx_idx, unsigned int depth)
3200 {
3201 unsigned int i, j, entries_per_page, max_order = 4;
3202 int node = blk_mq_get_hctx_node(set, hctx_idx);
3203 size_t rq_size, left;
3204
3205 if (node == NUMA_NO_NODE)
3206 node = set->numa_node;
3207
3208 INIT_LIST_HEAD(&tags->page_list);
3209
3210 /*
3211 * rq_size is the size of the request plus driver payload, rounded
3212 * to the cacheline size
3213 */
3214 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3215 cache_line_size());
3216 left = rq_size * depth;
3217
3218 for (i = 0; i < depth; ) {
3219 int this_order = max_order;
3220 struct page *page;
3221 int to_do;
3222 void *p;
3223
3224 while (this_order && left < order_to_size(this_order - 1))
3225 this_order--;
3226
3227 do {
3228 page = alloc_pages_node(node,
3229 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3230 this_order);
3231 if (page)
3232 break;
3233 if (!this_order--)
3234 break;
3235 if (order_to_size(this_order) < rq_size)
3236 break;
3237 } while (1);
3238
3239 if (!page)
3240 goto fail;
3241
3242 page->private = this_order;
3243 list_add_tail(&page->lru, &tags->page_list);
3244
3245 p = page_address(page);
3246 /*
3247 * Allow kmemleak to scan these pages as they contain pointers
3248 * to additional allocations like via ops->init_request().
3249 */
3250 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3251 entries_per_page = order_to_size(this_order) / rq_size;
3252 to_do = min(entries_per_page, depth - i);
3253 left -= to_do * rq_size;
3254 for (j = 0; j < to_do; j++) {
3255 struct request *rq = p;
3256
3257 tags->static_rqs[i] = rq;
3258 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3259 tags->static_rqs[i] = NULL;
3260 goto fail;
3261 }
3262
3263 p += rq_size;
3264 i++;
3265 }
3266 }
3267 return 0;
3268
3269 fail:
3270 blk_mq_free_rqs(set, tags, hctx_idx);
3271 return -ENOMEM;
3272 }
3273
3274 struct rq_iter_data {
3275 struct blk_mq_hw_ctx *hctx;
3276 bool has_rq;
3277 };
3278
3279 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3280 {
3281 struct rq_iter_data *iter_data = data;
3282
3283 if (rq->mq_hctx != iter_data->hctx)
3284 return true;
3285 iter_data->has_rq = true;
3286 return false;
3287 }
3288
3289 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3290 {
3291 struct blk_mq_tags *tags = hctx->sched_tags ?
3292 hctx->sched_tags : hctx->tags;
3293 struct rq_iter_data data = {
3294 .hctx = hctx,
3295 };
3296
3297 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3298 return data.has_rq;
3299 }
3300
3301 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3302 struct blk_mq_hw_ctx *hctx)
3303 {
3304 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3305 return false;
3306 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3307 return false;
3308 return true;
3309 }
3310
3311 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3312 {
3313 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3314 struct blk_mq_hw_ctx, cpuhp_online);
3315
3316 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3317 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3318 return 0;
3319
3320 /*
3321 * Prevent new request from being allocated on the current hctx.
3322 *
3323 * The smp_mb__after_atomic() Pairs with the implied barrier in
3324 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3325 * seen once we return from the tag allocator.
3326 */
3327 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3328 smp_mb__after_atomic();
3329
3330 /*
3331 * Try to grab a reference to the queue and wait for any outstanding
3332 * requests. If we could not grab a reference the queue has been
3333 * frozen and there are no requests.
3334 */
3335 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3336 while (blk_mq_hctx_has_requests(hctx))
3337 msleep(5);
3338 percpu_ref_put(&hctx->queue->q_usage_counter);
3339 }
3340
3341 return 0;
3342 }
3343
3344 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3345 {
3346 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3347 struct blk_mq_hw_ctx, cpuhp_online);
3348
3349 if (cpumask_test_cpu(cpu, hctx->cpumask))
3350 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3351 return 0;
3352 }
3353
3354 /*
3355 * 'cpu' is going away. splice any existing rq_list entries from this
3356 * software queue to the hw queue dispatch list, and ensure that it
3357 * gets run.
3358 */
3359 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3360 {
3361 struct blk_mq_hw_ctx *hctx;
3362 struct blk_mq_ctx *ctx;
3363 LIST_HEAD(tmp);
3364 enum hctx_type type;
3365
3366 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3367 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3368 return 0;
3369
3370 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3371 type = hctx->type;
3372
3373 spin_lock(&ctx->lock);
3374 if (!list_empty(&ctx->rq_lists[type])) {
3375 list_splice_init(&ctx->rq_lists[type], &tmp);
3376 blk_mq_hctx_clear_pending(hctx, ctx);
3377 }
3378 spin_unlock(&ctx->lock);
3379
3380 if (list_empty(&tmp))
3381 return 0;
3382
3383 spin_lock(&hctx->lock);
3384 list_splice_tail_init(&tmp, &hctx->dispatch);
3385 spin_unlock(&hctx->lock);
3386
3387 blk_mq_run_hw_queue(hctx, true);
3388 return 0;
3389 }
3390
3391 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3392 {
3393 if (!(hctx->flags & BLK_MQ_F_STACKING))
3394 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3395 &hctx->cpuhp_online);
3396 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3397 &hctx->cpuhp_dead);
3398 }
3399
3400 /*
3401 * Before freeing hw queue, clearing the flush request reference in
3402 * tags->rqs[] for avoiding potential UAF.
3403 */
3404 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3405 unsigned int queue_depth, struct request *flush_rq)
3406 {
3407 int i;
3408 unsigned long flags;
3409
3410 /* The hw queue may not be mapped yet */
3411 if (!tags)
3412 return;
3413
3414 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3415
3416 for (i = 0; i < queue_depth; i++)
3417 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3418
3419 /*
3420 * Wait until all pending iteration is done.
3421 *
3422 * Request reference is cleared and it is guaranteed to be observed
3423 * after the ->lock is released.
3424 */
3425 spin_lock_irqsave(&tags->lock, flags);
3426 spin_unlock_irqrestore(&tags->lock, flags);
3427 }
3428
3429 /* hctx->ctxs will be freed in queue's release handler */
3430 static void blk_mq_exit_hctx(struct request_queue *q,
3431 struct blk_mq_tag_set *set,
3432 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3433 {
3434 struct request *flush_rq = hctx->fq->flush_rq;
3435
3436 if (blk_mq_hw_queue_mapped(hctx))
3437 blk_mq_tag_idle(hctx);
3438
3439 if (blk_queue_init_done(q))
3440 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3441 set->queue_depth, flush_rq);
3442 if (set->ops->exit_request)
3443 set->ops->exit_request(set, flush_rq, hctx_idx);
3444
3445 if (set->ops->exit_hctx)
3446 set->ops->exit_hctx(hctx, hctx_idx);
3447
3448 blk_mq_remove_cpuhp(hctx);
3449
3450 xa_erase(&q->hctx_table, hctx_idx);
3451
3452 spin_lock(&q->unused_hctx_lock);
3453 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3454 spin_unlock(&q->unused_hctx_lock);
3455 }
3456
3457 static void blk_mq_exit_hw_queues(struct request_queue *q,
3458 struct blk_mq_tag_set *set, int nr_queue)
3459 {
3460 struct blk_mq_hw_ctx *hctx;
3461 unsigned long i;
3462
3463 queue_for_each_hw_ctx(q, hctx, i) {
3464 if (i == nr_queue)
3465 break;
3466 blk_mq_exit_hctx(q, set, hctx, i);
3467 }
3468 }
3469
3470 static int blk_mq_init_hctx(struct request_queue *q,
3471 struct blk_mq_tag_set *set,
3472 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3473 {
3474 hctx->queue_num = hctx_idx;
3475
3476 if (!(hctx->flags & BLK_MQ_F_STACKING))
3477 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3478 &hctx->cpuhp_online);
3479 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3480
3481 hctx->tags = set->tags[hctx_idx];
3482
3483 if (set->ops->init_hctx &&
3484 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3485 goto unregister_cpu_notifier;
3486
3487 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3488 hctx->numa_node))
3489 goto exit_hctx;
3490
3491 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3492 goto exit_flush_rq;
3493
3494 return 0;
3495
3496 exit_flush_rq:
3497 if (set->ops->exit_request)
3498 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3499 exit_hctx:
3500 if (set->ops->exit_hctx)
3501 set->ops->exit_hctx(hctx, hctx_idx);
3502 unregister_cpu_notifier:
3503 blk_mq_remove_cpuhp(hctx);
3504 return -1;
3505 }
3506
3507 static struct blk_mq_hw_ctx *
3508 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3509 int node)
3510 {
3511 struct blk_mq_hw_ctx *hctx;
3512 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3513
3514 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3515 if (!hctx)
3516 goto fail_alloc_hctx;
3517
3518 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3519 goto free_hctx;
3520
3521 atomic_set(&hctx->nr_active, 0);
3522 if (node == NUMA_NO_NODE)
3523 node = set->numa_node;
3524 hctx->numa_node = node;
3525
3526 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3527 spin_lock_init(&hctx->lock);
3528 INIT_LIST_HEAD(&hctx->dispatch);
3529 hctx->queue = q;
3530 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3531
3532 INIT_LIST_HEAD(&hctx->hctx_list);
3533
3534 /*
3535 * Allocate space for all possible cpus to avoid allocation at
3536 * runtime
3537 */
3538 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3539 gfp, node);
3540 if (!hctx->ctxs)
3541 goto free_cpumask;
3542
3543 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3544 gfp, node, false, false))
3545 goto free_ctxs;
3546 hctx->nr_ctx = 0;
3547
3548 spin_lock_init(&hctx->dispatch_wait_lock);
3549 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3550 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3551
3552 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3553 if (!hctx->fq)
3554 goto free_bitmap;
3555
3556 blk_mq_hctx_kobj_init(hctx);
3557
3558 return hctx;
3559
3560 free_bitmap:
3561 sbitmap_free(&hctx->ctx_map);
3562 free_ctxs:
3563 kfree(hctx->ctxs);
3564 free_cpumask:
3565 free_cpumask_var(hctx->cpumask);
3566 free_hctx:
3567 kfree(hctx);
3568 fail_alloc_hctx:
3569 return NULL;
3570 }
3571
3572 static void blk_mq_init_cpu_queues(struct request_queue *q,
3573 unsigned int nr_hw_queues)
3574 {
3575 struct blk_mq_tag_set *set = q->tag_set;
3576 unsigned int i, j;
3577
3578 for_each_possible_cpu(i) {
3579 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3580 struct blk_mq_hw_ctx *hctx;
3581 int k;
3582
3583 __ctx->cpu = i;
3584 spin_lock_init(&__ctx->lock);
3585 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3586 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3587
3588 __ctx->queue = q;
3589
3590 /*
3591 * Set local node, IFF we have more than one hw queue. If
3592 * not, we remain on the home node of the device
3593 */
3594 for (j = 0; j < set->nr_maps; j++) {
3595 hctx = blk_mq_map_queue_type(q, j, i);
3596 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3597 hctx->numa_node = cpu_to_node(i);
3598 }
3599 }
3600 }
3601
3602 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3603 unsigned int hctx_idx,
3604 unsigned int depth)
3605 {
3606 struct blk_mq_tags *tags;
3607 int ret;
3608
3609 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3610 if (!tags)
3611 return NULL;
3612
3613 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3614 if (ret) {
3615 blk_mq_free_rq_map(tags);
3616 return NULL;
3617 }
3618
3619 return tags;
3620 }
3621
3622 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3623 int hctx_idx)
3624 {
3625 if (blk_mq_is_shared_tags(set->flags)) {
3626 set->tags[hctx_idx] = set->shared_tags;
3627
3628 return true;
3629 }
3630
3631 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3632 set->queue_depth);
3633
3634 return set->tags[hctx_idx];
3635 }
3636
3637 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3638 struct blk_mq_tags *tags,
3639 unsigned int hctx_idx)
3640 {
3641 if (tags) {
3642 blk_mq_free_rqs(set, tags, hctx_idx);
3643 blk_mq_free_rq_map(tags);
3644 }
3645 }
3646
3647 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3648 unsigned int hctx_idx)
3649 {
3650 if (!blk_mq_is_shared_tags(set->flags))
3651 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3652
3653 set->tags[hctx_idx] = NULL;
3654 }
3655
3656 static void blk_mq_map_swqueue(struct request_queue *q)
3657 {
3658 unsigned int j, hctx_idx;
3659 unsigned long i;
3660 struct blk_mq_hw_ctx *hctx;
3661 struct blk_mq_ctx *ctx;
3662 struct blk_mq_tag_set *set = q->tag_set;
3663
3664 queue_for_each_hw_ctx(q, hctx, i) {
3665 cpumask_clear(hctx->cpumask);
3666 hctx->nr_ctx = 0;
3667 hctx->dispatch_from = NULL;
3668 }
3669
3670 /*
3671 * Map software to hardware queues.
3672 *
3673 * If the cpu isn't present, the cpu is mapped to first hctx.
3674 */
3675 for_each_possible_cpu(i) {
3676
3677 ctx = per_cpu_ptr(q->queue_ctx, i);
3678 for (j = 0; j < set->nr_maps; j++) {
3679 if (!set->map[j].nr_queues) {
3680 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3681 HCTX_TYPE_DEFAULT, i);
3682 continue;
3683 }
3684 hctx_idx = set->map[j].mq_map[i];
3685 /* unmapped hw queue can be remapped after CPU topo changed */
3686 if (!set->tags[hctx_idx] &&
3687 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3688 /*
3689 * If tags initialization fail for some hctx,
3690 * that hctx won't be brought online. In this
3691 * case, remap the current ctx to hctx[0] which
3692 * is guaranteed to always have tags allocated
3693 */
3694 set->map[j].mq_map[i] = 0;
3695 }
3696
3697 hctx = blk_mq_map_queue_type(q, j, i);
3698 ctx->hctxs[j] = hctx;
3699 /*
3700 * If the CPU is already set in the mask, then we've
3701 * mapped this one already. This can happen if
3702 * devices share queues across queue maps.
3703 */
3704 if (cpumask_test_cpu(i, hctx->cpumask))
3705 continue;
3706
3707 cpumask_set_cpu(i, hctx->cpumask);
3708 hctx->type = j;
3709 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3710 hctx->ctxs[hctx->nr_ctx++] = ctx;
3711
3712 /*
3713 * If the nr_ctx type overflows, we have exceeded the
3714 * amount of sw queues we can support.
3715 */
3716 BUG_ON(!hctx->nr_ctx);
3717 }
3718
3719 for (; j < HCTX_MAX_TYPES; j++)
3720 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3721 HCTX_TYPE_DEFAULT, i);
3722 }
3723
3724 queue_for_each_hw_ctx(q, hctx, i) {
3725 /*
3726 * If no software queues are mapped to this hardware queue,
3727 * disable it and free the request entries.
3728 */
3729 if (!hctx->nr_ctx) {
3730 /* Never unmap queue 0. We need it as a
3731 * fallback in case of a new remap fails
3732 * allocation
3733 */
3734 if (i)
3735 __blk_mq_free_map_and_rqs(set, i);
3736
3737 hctx->tags = NULL;
3738 continue;
3739 }
3740
3741 hctx->tags = set->tags[i];
3742 WARN_ON(!hctx->tags);
3743
3744 /*
3745 * Set the map size to the number of mapped software queues.
3746 * This is more accurate and more efficient than looping
3747 * over all possibly mapped software queues.
3748 */
3749 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3750
3751 /*
3752 * Initialize batch roundrobin counts
3753 */
3754 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3755 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3756 }
3757 }
3758
3759 /*
3760 * Caller needs to ensure that we're either frozen/quiesced, or that
3761 * the queue isn't live yet.
3762 */
3763 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3764 {
3765 struct blk_mq_hw_ctx *hctx;
3766 unsigned long i;
3767
3768 queue_for_each_hw_ctx(q, hctx, i) {
3769 if (shared) {
3770 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3771 } else {
3772 blk_mq_tag_idle(hctx);
3773 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3774 }
3775 }
3776 }
3777
3778 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3779 bool shared)
3780 {
3781 struct request_queue *q;
3782
3783 lockdep_assert_held(&set->tag_list_lock);
3784
3785 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3786 blk_mq_freeze_queue(q);
3787 queue_set_hctx_shared(q, shared);
3788 blk_mq_unfreeze_queue(q);
3789 }
3790 }
3791
3792 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3793 {
3794 struct blk_mq_tag_set *set = q->tag_set;
3795
3796 mutex_lock(&set->tag_list_lock);
3797 list_del(&q->tag_set_list);
3798 if (list_is_singular(&set->tag_list)) {
3799 /* just transitioned to unshared */
3800 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3801 /* update existing queue */
3802 blk_mq_update_tag_set_shared(set, false);
3803 }
3804 mutex_unlock(&set->tag_list_lock);
3805 INIT_LIST_HEAD(&q->tag_set_list);
3806 }
3807
3808 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3809 struct request_queue *q)
3810 {
3811 mutex_lock(&set->tag_list_lock);
3812
3813 /*
3814 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3815 */
3816 if (!list_empty(&set->tag_list) &&
3817 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3818 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3819 /* update existing queue */
3820 blk_mq_update_tag_set_shared(set, true);
3821 }
3822 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3823 queue_set_hctx_shared(q, true);
3824 list_add_tail(&q->tag_set_list, &set->tag_list);
3825
3826 mutex_unlock(&set->tag_list_lock);
3827 }
3828
3829 /* All allocations will be freed in release handler of q->mq_kobj */
3830 static int blk_mq_alloc_ctxs(struct request_queue *q)
3831 {
3832 struct blk_mq_ctxs *ctxs;
3833 int cpu;
3834
3835 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3836 if (!ctxs)
3837 return -ENOMEM;
3838
3839 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3840 if (!ctxs->queue_ctx)
3841 goto fail;
3842
3843 for_each_possible_cpu(cpu) {
3844 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3845 ctx->ctxs = ctxs;
3846 }
3847
3848 q->mq_kobj = &ctxs->kobj;
3849 q->queue_ctx = ctxs->queue_ctx;
3850
3851 return 0;
3852 fail:
3853 kfree(ctxs);
3854 return -ENOMEM;
3855 }
3856
3857 /*
3858 * It is the actual release handler for mq, but we do it from
3859 * request queue's release handler for avoiding use-after-free
3860 * and headache because q->mq_kobj shouldn't have been introduced,
3861 * but we can't group ctx/kctx kobj without it.
3862 */
3863 void blk_mq_release(struct request_queue *q)
3864 {
3865 struct blk_mq_hw_ctx *hctx, *next;
3866 unsigned long i;
3867
3868 queue_for_each_hw_ctx(q, hctx, i)
3869 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3870
3871 /* all hctx are in .unused_hctx_list now */
3872 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3873 list_del_init(&hctx->hctx_list);
3874 kobject_put(&hctx->kobj);
3875 }
3876
3877 xa_destroy(&q->hctx_table);
3878
3879 /*
3880 * release .mq_kobj and sw queue's kobject now because
3881 * both share lifetime with request queue.
3882 */
3883 blk_mq_sysfs_deinit(q);
3884 }
3885
3886 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3887 void *queuedata)
3888 {
3889 struct request_queue *q;
3890 int ret;
3891
3892 q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3893 if (!q)
3894 return ERR_PTR(-ENOMEM);
3895 q->queuedata = queuedata;
3896 ret = blk_mq_init_allocated_queue(set, q);
3897 if (ret) {
3898 blk_cleanup_queue(q);
3899 return ERR_PTR(ret);
3900 }
3901 return q;
3902 }
3903
3904 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3905 {
3906 return blk_mq_init_queue_data(set, NULL);
3907 }
3908 EXPORT_SYMBOL(blk_mq_init_queue);
3909
3910 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3911 struct lock_class_key *lkclass)
3912 {
3913 struct request_queue *q;
3914 struct gendisk *disk;
3915
3916 q = blk_mq_init_queue_data(set, queuedata);
3917 if (IS_ERR(q))
3918 return ERR_CAST(q);
3919
3920 disk = __alloc_disk_node(q, set->numa_node, lkclass);
3921 if (!disk) {
3922 blk_cleanup_queue(q);
3923 return ERR_PTR(-ENOMEM);
3924 }
3925 return disk;
3926 }
3927 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3928
3929 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3930 struct blk_mq_tag_set *set, struct request_queue *q,
3931 int hctx_idx, int node)
3932 {
3933 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3934
3935 /* reuse dead hctx first */
3936 spin_lock(&q->unused_hctx_lock);
3937 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3938 if (tmp->numa_node == node) {
3939 hctx = tmp;
3940 break;
3941 }
3942 }
3943 if (hctx)
3944 list_del_init(&hctx->hctx_list);
3945 spin_unlock(&q->unused_hctx_lock);
3946
3947 if (!hctx)
3948 hctx = blk_mq_alloc_hctx(q, set, node);
3949 if (!hctx)
3950 goto fail;
3951
3952 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3953 goto free_hctx;
3954
3955 return hctx;
3956
3957 free_hctx:
3958 kobject_put(&hctx->kobj);
3959 fail:
3960 return NULL;
3961 }
3962
3963 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3964 struct request_queue *q)
3965 {
3966 struct blk_mq_hw_ctx *hctx;
3967 unsigned long i, j;
3968
3969 /* protect against switching io scheduler */
3970 mutex_lock(&q->sysfs_lock);
3971 for (i = 0; i < set->nr_hw_queues; i++) {
3972 int old_node;
3973 int node = blk_mq_get_hctx_node(set, i);
3974 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3975
3976 if (old_hctx) {
3977 old_node = old_hctx->numa_node;
3978 blk_mq_exit_hctx(q, set, old_hctx, i);
3979 }
3980
3981 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3982 if (!old_hctx)
3983 break;
3984 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3985 node, old_node);
3986 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3987 WARN_ON_ONCE(!hctx);
3988 }
3989 }
3990 /*
3991 * Increasing nr_hw_queues fails. Free the newly allocated
3992 * hctxs and keep the previous q->nr_hw_queues.
3993 */
3994 if (i != set->nr_hw_queues) {
3995 j = q->nr_hw_queues;
3996 } else {
3997 j = i;
3998 q->nr_hw_queues = set->nr_hw_queues;
3999 }
4000
4001 xa_for_each_start(&q->hctx_table, j, hctx, j)
4002 blk_mq_exit_hctx(q, set, hctx, j);
4003 mutex_unlock(&q->sysfs_lock);
4004 }
4005
4006 static void blk_mq_update_poll_flag(struct request_queue *q)
4007 {
4008 struct blk_mq_tag_set *set = q->tag_set;
4009
4010 if (set->nr_maps > HCTX_TYPE_POLL &&
4011 set->map[HCTX_TYPE_POLL].nr_queues)
4012 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4013 else
4014 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4015 }
4016
4017 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4018 struct request_queue *q)
4019 {
4020 WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4021 !!(set->flags & BLK_MQ_F_BLOCKING));
4022
4023 /* mark the queue as mq asap */
4024 q->mq_ops = set->ops;
4025
4026 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4027 blk_mq_poll_stats_bkt,
4028 BLK_MQ_POLL_STATS_BKTS, q);
4029 if (!q->poll_cb)
4030 goto err_exit;
4031
4032 if (blk_mq_alloc_ctxs(q))
4033 goto err_poll;
4034
4035 /* init q->mq_kobj and sw queues' kobjects */
4036 blk_mq_sysfs_init(q);
4037
4038 INIT_LIST_HEAD(&q->unused_hctx_list);
4039 spin_lock_init(&q->unused_hctx_lock);
4040
4041 xa_init(&q->hctx_table);
4042
4043 blk_mq_realloc_hw_ctxs(set, q);
4044 if (!q->nr_hw_queues)
4045 goto err_hctxs;
4046
4047 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4048 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4049
4050 q->tag_set = set;
4051
4052 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4053 blk_mq_update_poll_flag(q);
4054
4055 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4056 INIT_LIST_HEAD(&q->requeue_list);
4057 spin_lock_init(&q->requeue_lock);
4058
4059 q->nr_requests = set->queue_depth;
4060
4061 /*
4062 * Default to classic polling
4063 */
4064 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4065
4066 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4067 blk_mq_add_queue_tag_set(set, q);
4068 blk_mq_map_swqueue(q);
4069 return 0;
4070
4071 err_hctxs:
4072 xa_destroy(&q->hctx_table);
4073 q->nr_hw_queues = 0;
4074 blk_mq_sysfs_deinit(q);
4075 err_poll:
4076 blk_stat_free_callback(q->poll_cb);
4077 q->poll_cb = NULL;
4078 err_exit:
4079 q->mq_ops = NULL;
4080 return -ENOMEM;
4081 }
4082 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4083
4084 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4085 void blk_mq_exit_queue(struct request_queue *q)
4086 {
4087 struct blk_mq_tag_set *set = q->tag_set;
4088
4089 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4090 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4091 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4092 blk_mq_del_queue_tag_set(q);
4093 }
4094
4095 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4096 {
4097 int i;
4098
4099 if (blk_mq_is_shared_tags(set->flags)) {
4100 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4101 BLK_MQ_NO_HCTX_IDX,
4102 set->queue_depth);
4103 if (!set->shared_tags)
4104 return -ENOMEM;
4105 }
4106
4107 for (i = 0; i < set->nr_hw_queues; i++) {
4108 if (!__blk_mq_alloc_map_and_rqs(set, i))
4109 goto out_unwind;
4110 cond_resched();
4111 }
4112
4113 return 0;
4114
4115 out_unwind:
4116 while (--i >= 0)
4117 __blk_mq_free_map_and_rqs(set, i);
4118
4119 if (blk_mq_is_shared_tags(set->flags)) {
4120 blk_mq_free_map_and_rqs(set, set->shared_tags,
4121 BLK_MQ_NO_HCTX_IDX);
4122 }
4123
4124 return -ENOMEM;
4125 }
4126
4127 /*
4128 * Allocate the request maps associated with this tag_set. Note that this
4129 * may reduce the depth asked for, if memory is tight. set->queue_depth
4130 * will be updated to reflect the allocated depth.
4131 */
4132 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4133 {
4134 unsigned int depth;
4135 int err;
4136
4137 depth = set->queue_depth;
4138 do {
4139 err = __blk_mq_alloc_rq_maps(set);
4140 if (!err)
4141 break;
4142
4143 set->queue_depth >>= 1;
4144 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4145 err = -ENOMEM;
4146 break;
4147 }
4148 } while (set->queue_depth);
4149
4150 if (!set->queue_depth || err) {
4151 pr_err("blk-mq: failed to allocate request map\n");
4152 return -ENOMEM;
4153 }
4154
4155 if (depth != set->queue_depth)
4156 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4157 depth, set->queue_depth);
4158
4159 return 0;
4160 }
4161
4162 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4163 {
4164 /*
4165 * blk_mq_map_queues() and multiple .map_queues() implementations
4166 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4167 * number of hardware queues.
4168 */
4169 if (set->nr_maps == 1)
4170 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4171
4172 if (set->ops->map_queues && !is_kdump_kernel()) {
4173 int i;
4174
4175 /*
4176 * transport .map_queues is usually done in the following
4177 * way:
4178 *
4179 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4180 * mask = get_cpu_mask(queue)
4181 * for_each_cpu(cpu, mask)
4182 * set->map[x].mq_map[cpu] = queue;
4183 * }
4184 *
4185 * When we need to remap, the table has to be cleared for
4186 * killing stale mapping since one CPU may not be mapped
4187 * to any hw queue.
4188 */
4189 for (i = 0; i < set->nr_maps; i++)
4190 blk_mq_clear_mq_map(&set->map[i]);
4191
4192 return set->ops->map_queues(set);
4193 } else {
4194 BUG_ON(set->nr_maps > 1);
4195 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4196 }
4197 }
4198
4199 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4200 int cur_nr_hw_queues, int new_nr_hw_queues)
4201 {
4202 struct blk_mq_tags **new_tags;
4203
4204 if (cur_nr_hw_queues >= new_nr_hw_queues)
4205 return 0;
4206
4207 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4208 GFP_KERNEL, set->numa_node);
4209 if (!new_tags)
4210 return -ENOMEM;
4211
4212 if (set->tags)
4213 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4214 sizeof(*set->tags));
4215 kfree(set->tags);
4216 set->tags = new_tags;
4217 set->nr_hw_queues = new_nr_hw_queues;
4218
4219 return 0;
4220 }
4221
4222 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4223 int new_nr_hw_queues)
4224 {
4225 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4226 }
4227
4228 /*
4229 * Alloc a tag set to be associated with one or more request queues.
4230 * May fail with EINVAL for various error conditions. May adjust the
4231 * requested depth down, if it's too large. In that case, the set
4232 * value will be stored in set->queue_depth.
4233 */
4234 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4235 {
4236 int i, ret;
4237
4238 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4239
4240 if (!set->nr_hw_queues)
4241 return -EINVAL;
4242 if (!set->queue_depth)
4243 return -EINVAL;
4244 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4245 return -EINVAL;
4246
4247 if (!set->ops->queue_rq)
4248 return -EINVAL;
4249
4250 if (!set->ops->get_budget ^ !set->ops->put_budget)
4251 return -EINVAL;
4252
4253 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4254 pr_info("blk-mq: reduced tag depth to %u\n",
4255 BLK_MQ_MAX_DEPTH);
4256 set->queue_depth = BLK_MQ_MAX_DEPTH;
4257 }
4258
4259 if (!set->nr_maps)
4260 set->nr_maps = 1;
4261 else if (set->nr_maps > HCTX_MAX_TYPES)
4262 return -EINVAL;
4263
4264 /*
4265 * If a crashdump is active, then we are potentially in a very
4266 * memory constrained environment. Limit us to 1 queue and
4267 * 64 tags to prevent using too much memory.
4268 */
4269 if (is_kdump_kernel()) {
4270 set->nr_hw_queues = 1;
4271 set->nr_maps = 1;
4272 set->queue_depth = min(64U, set->queue_depth);
4273 }
4274 /*
4275 * There is no use for more h/w queues than cpus if we just have
4276 * a single map
4277 */
4278 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4279 set->nr_hw_queues = nr_cpu_ids;
4280
4281 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4282 return -ENOMEM;
4283
4284 ret = -ENOMEM;
4285 for (i = 0; i < set->nr_maps; i++) {
4286 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4287 sizeof(set->map[i].mq_map[0]),
4288 GFP_KERNEL, set->numa_node);
4289 if (!set->map[i].mq_map)
4290 goto out_free_mq_map;
4291 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4292 }
4293
4294 ret = blk_mq_update_queue_map(set);
4295 if (ret)
4296 goto out_free_mq_map;
4297
4298 ret = blk_mq_alloc_set_map_and_rqs(set);
4299 if (ret)
4300 goto out_free_mq_map;
4301
4302 mutex_init(&set->tag_list_lock);
4303 INIT_LIST_HEAD(&set->tag_list);
4304
4305 return 0;
4306
4307 out_free_mq_map:
4308 for (i = 0; i < set->nr_maps; i++) {
4309 kfree(set->map[i].mq_map);
4310 set->map[i].mq_map = NULL;
4311 }
4312 kfree(set->tags);
4313 set->tags = NULL;
4314 return ret;
4315 }
4316 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4317
4318 /* allocate and initialize a tagset for a simple single-queue device */
4319 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4320 const struct blk_mq_ops *ops, unsigned int queue_depth,
4321 unsigned int set_flags)
4322 {
4323 memset(set, 0, sizeof(*set));
4324 set->ops = ops;
4325 set->nr_hw_queues = 1;
4326 set->nr_maps = 1;
4327 set->queue_depth = queue_depth;
4328 set->numa_node = NUMA_NO_NODE;
4329 set->flags = set_flags;
4330 return blk_mq_alloc_tag_set(set);
4331 }
4332 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4333
4334 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4335 {
4336 int i, j;
4337
4338 for (i = 0; i < set->nr_hw_queues; i++)
4339 __blk_mq_free_map_and_rqs(set, i);
4340
4341 if (blk_mq_is_shared_tags(set->flags)) {
4342 blk_mq_free_map_and_rqs(set, set->shared_tags,
4343 BLK_MQ_NO_HCTX_IDX);
4344 }
4345
4346 for (j = 0; j < set->nr_maps; j++) {
4347 kfree(set->map[j].mq_map);
4348 set->map[j].mq_map = NULL;
4349 }
4350
4351 kfree(set->tags);
4352 set->tags = NULL;
4353 }
4354 EXPORT_SYMBOL(blk_mq_free_tag_set);
4355
4356 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4357 {
4358 struct blk_mq_tag_set *set = q->tag_set;
4359 struct blk_mq_hw_ctx *hctx;
4360 int ret;
4361 unsigned long i;
4362
4363 if (!set)
4364 return -EINVAL;
4365
4366 if (q->nr_requests == nr)
4367 return 0;
4368
4369 blk_mq_freeze_queue(q);
4370 blk_mq_quiesce_queue(q);
4371
4372 ret = 0;
4373 queue_for_each_hw_ctx(q, hctx, i) {
4374 if (!hctx->tags)
4375 continue;
4376 /*
4377 * If we're using an MQ scheduler, just update the scheduler
4378 * queue depth. This is similar to what the old code would do.
4379 */
4380 if (hctx->sched_tags) {
4381 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4382 nr, true);
4383 } else {
4384 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4385 false);
4386 }
4387 if (ret)
4388 break;
4389 if (q->elevator && q->elevator->type->ops.depth_updated)
4390 q->elevator->type->ops.depth_updated(hctx);
4391 }
4392 if (!ret) {
4393 q->nr_requests = nr;
4394 if (blk_mq_is_shared_tags(set->flags)) {
4395 if (q->elevator)
4396 blk_mq_tag_update_sched_shared_tags(q);
4397 else
4398 blk_mq_tag_resize_shared_tags(set, nr);
4399 }
4400 }
4401
4402 blk_mq_unquiesce_queue(q);
4403 blk_mq_unfreeze_queue(q);
4404
4405 return ret;
4406 }
4407
4408 /*
4409 * request_queue and elevator_type pair.
4410 * It is just used by __blk_mq_update_nr_hw_queues to cache
4411 * the elevator_type associated with a request_queue.
4412 */
4413 struct blk_mq_qe_pair {
4414 struct list_head node;
4415 struct request_queue *q;
4416 struct elevator_type *type;
4417 };
4418
4419 /*
4420 * Cache the elevator_type in qe pair list and switch the
4421 * io scheduler to 'none'
4422 */
4423 static bool blk_mq_elv_switch_none(struct list_head *head,
4424 struct request_queue *q)
4425 {
4426 struct blk_mq_qe_pair *qe;
4427
4428 if (!q->elevator)
4429 return true;
4430
4431 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4432 if (!qe)
4433 return false;
4434
4435 /* q->elevator needs protection from ->sysfs_lock */
4436 mutex_lock(&q->sysfs_lock);
4437
4438 INIT_LIST_HEAD(&qe->node);
4439 qe->q = q;
4440 qe->type = q->elevator->type;
4441 list_add(&qe->node, head);
4442
4443 /*
4444 * After elevator_switch_mq, the previous elevator_queue will be
4445 * released by elevator_release. The reference of the io scheduler
4446 * module get by elevator_get will also be put. So we need to get
4447 * a reference of the io scheduler module here to prevent it to be
4448 * removed.
4449 */
4450 __module_get(qe->type->elevator_owner);
4451 elevator_switch_mq(q, NULL);
4452 mutex_unlock(&q->sysfs_lock);
4453
4454 return true;
4455 }
4456
4457 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4458 struct request_queue *q)
4459 {
4460 struct blk_mq_qe_pair *qe;
4461
4462 list_for_each_entry(qe, head, node)
4463 if (qe->q == q)
4464 return qe;
4465
4466 return NULL;
4467 }
4468
4469 static void blk_mq_elv_switch_back(struct list_head *head,
4470 struct request_queue *q)
4471 {
4472 struct blk_mq_qe_pair *qe;
4473 struct elevator_type *t;
4474
4475 qe = blk_lookup_qe_pair(head, q);
4476 if (!qe)
4477 return;
4478 t = qe->type;
4479 list_del(&qe->node);
4480 kfree(qe);
4481
4482 mutex_lock(&q->sysfs_lock);
4483 elevator_switch_mq(q, t);
4484 mutex_unlock(&q->sysfs_lock);
4485 }
4486
4487 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4488 int nr_hw_queues)
4489 {
4490 struct request_queue *q;
4491 LIST_HEAD(head);
4492 int prev_nr_hw_queues;
4493
4494 lockdep_assert_held(&set->tag_list_lock);
4495
4496 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4497 nr_hw_queues = nr_cpu_ids;
4498 if (nr_hw_queues < 1)
4499 return;
4500 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4501 return;
4502
4503 list_for_each_entry(q, &set->tag_list, tag_set_list)
4504 blk_mq_freeze_queue(q);
4505 /*
4506 * Switch IO scheduler to 'none', cleaning up the data associated
4507 * with the previous scheduler. We will switch back once we are done
4508 * updating the new sw to hw queue mappings.
4509 */
4510 list_for_each_entry(q, &set->tag_list, tag_set_list)
4511 if (!blk_mq_elv_switch_none(&head, q))
4512 goto switch_back;
4513
4514 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4515 blk_mq_debugfs_unregister_hctxs(q);
4516 blk_mq_sysfs_unregister(q);
4517 }
4518
4519 prev_nr_hw_queues = set->nr_hw_queues;
4520 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4521 0)
4522 goto reregister;
4523
4524 set->nr_hw_queues = nr_hw_queues;
4525 fallback:
4526 blk_mq_update_queue_map(set);
4527 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4528 blk_mq_realloc_hw_ctxs(set, q);
4529 blk_mq_update_poll_flag(q);
4530 if (q->nr_hw_queues != set->nr_hw_queues) {
4531 int i = prev_nr_hw_queues;
4532
4533 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4534 nr_hw_queues, prev_nr_hw_queues);
4535 for (; i < set->nr_hw_queues; i++)
4536 __blk_mq_free_map_and_rqs(set, i);
4537
4538 set->nr_hw_queues = prev_nr_hw_queues;
4539 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4540 goto fallback;
4541 }
4542 blk_mq_map_swqueue(q);
4543 }
4544
4545 reregister:
4546 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4547 blk_mq_sysfs_register(q);
4548 blk_mq_debugfs_register_hctxs(q);
4549 }
4550
4551 switch_back:
4552 list_for_each_entry(q, &set->tag_list, tag_set_list)
4553 blk_mq_elv_switch_back(&head, q);
4554
4555 list_for_each_entry(q, &set->tag_list, tag_set_list)
4556 blk_mq_unfreeze_queue(q);
4557 }
4558
4559 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4560 {
4561 mutex_lock(&set->tag_list_lock);
4562 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4563 mutex_unlock(&set->tag_list_lock);
4564 }
4565 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4566
4567 /* Enable polling stats and return whether they were already enabled. */
4568 static bool blk_poll_stats_enable(struct request_queue *q)
4569 {
4570 if (q->poll_stat)
4571 return true;
4572
4573 return blk_stats_alloc_enable(q);
4574 }
4575
4576 static void blk_mq_poll_stats_start(struct request_queue *q)
4577 {
4578 /*
4579 * We don't arm the callback if polling stats are not enabled or the
4580 * callback is already active.
4581 */
4582 if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4583 return;
4584
4585 blk_stat_activate_msecs(q->poll_cb, 100);
4586 }
4587
4588 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4589 {
4590 struct request_queue *q = cb->data;
4591 int bucket;
4592
4593 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4594 if (cb->stat[bucket].nr_samples)
4595 q->poll_stat[bucket] = cb->stat[bucket];
4596 }
4597 }
4598
4599 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4600 struct request *rq)
4601 {
4602 unsigned long ret = 0;
4603 int bucket;
4604
4605 /*
4606 * If stats collection isn't on, don't sleep but turn it on for
4607 * future users
4608 */
4609 if (!blk_poll_stats_enable(q))
4610 return 0;
4611
4612 /*
4613 * As an optimistic guess, use half of the mean service time
4614 * for this type of request. We can (and should) make this smarter.
4615 * For instance, if the completion latencies are tight, we can
4616 * get closer than just half the mean. This is especially
4617 * important on devices where the completion latencies are longer
4618 * than ~10 usec. We do use the stats for the relevant IO size
4619 * if available which does lead to better estimates.
4620 */
4621 bucket = blk_mq_poll_stats_bkt(rq);
4622 if (bucket < 0)
4623 return ret;
4624
4625 if (q->poll_stat[bucket].nr_samples)
4626 ret = (q->poll_stat[bucket].mean + 1) / 2;
4627
4628 return ret;
4629 }
4630
4631 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4632 {
4633 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4634 struct request *rq = blk_qc_to_rq(hctx, qc);
4635 struct hrtimer_sleeper hs;
4636 enum hrtimer_mode mode;
4637 unsigned int nsecs;
4638 ktime_t kt;
4639
4640 /*
4641 * If a request has completed on queue that uses an I/O scheduler, we
4642 * won't get back a request from blk_qc_to_rq.
4643 */
4644 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4645 return false;
4646
4647 /*
4648 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4649 *
4650 * 0: use half of prev avg
4651 * >0: use this specific value
4652 */
4653 if (q->poll_nsec > 0)
4654 nsecs = q->poll_nsec;
4655 else
4656 nsecs = blk_mq_poll_nsecs(q, rq);
4657
4658 if (!nsecs)
4659 return false;
4660
4661 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4662
4663 /*
4664 * This will be replaced with the stats tracking code, using
4665 * 'avg_completion_time / 2' as the pre-sleep target.
4666 */
4667 kt = nsecs;
4668
4669 mode = HRTIMER_MODE_REL;
4670 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4671 hrtimer_set_expires(&hs.timer, kt);
4672
4673 do {
4674 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4675 break;
4676 set_current_state(TASK_UNINTERRUPTIBLE);
4677 hrtimer_sleeper_start_expires(&hs, mode);
4678 if (hs.task)
4679 io_schedule();
4680 hrtimer_cancel(&hs.timer);
4681 mode = HRTIMER_MODE_ABS;
4682 } while (hs.task && !signal_pending(current));
4683
4684 __set_current_state(TASK_RUNNING);
4685 destroy_hrtimer_on_stack(&hs.timer);
4686
4687 /*
4688 * If we sleep, have the caller restart the poll loop to reset the
4689 * state. Like for the other success return cases, the caller is
4690 * responsible for checking if the IO completed. If the IO isn't
4691 * complete, we'll get called again and will go straight to the busy
4692 * poll loop.
4693 */
4694 return true;
4695 }
4696
4697 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4698 struct io_comp_batch *iob, unsigned int flags)
4699 {
4700 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4701 long state = get_current_state();
4702 int ret;
4703
4704 do {
4705 ret = q->mq_ops->poll(hctx, iob);
4706 if (ret > 0) {
4707 __set_current_state(TASK_RUNNING);
4708 return ret;
4709 }
4710
4711 if (signal_pending_state(state, current))
4712 __set_current_state(TASK_RUNNING);
4713 if (task_is_running(current))
4714 return 1;
4715
4716 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4717 break;
4718 cpu_relax();
4719 } while (!need_resched());
4720
4721 __set_current_state(TASK_RUNNING);
4722 return 0;
4723 }
4724
4725 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4726 unsigned int flags)
4727 {
4728 if (!(flags & BLK_POLL_NOSLEEP) &&
4729 q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4730 if (blk_mq_poll_hybrid(q, cookie))
4731 return 1;
4732 }
4733 return blk_mq_poll_classic(q, cookie, iob, flags);
4734 }
4735
4736 unsigned int blk_mq_rq_cpu(struct request *rq)
4737 {
4738 return rq->mq_ctx->cpu;
4739 }
4740 EXPORT_SYMBOL(blk_mq_rq_cpu);
4741
4742 void blk_mq_cancel_work_sync(struct request_queue *q)
4743 {
4744 if (queue_is_mq(q)) {
4745 struct blk_mq_hw_ctx *hctx;
4746 unsigned long i;
4747
4748 cancel_delayed_work_sync(&q->requeue_work);
4749
4750 queue_for_each_hw_ctx(q, hctx, i)
4751 cancel_delayed_work_sync(&hctx->run_work);
4752 }
4753 }
4754
4755 static int __init blk_mq_init(void)
4756 {
4757 int i;
4758
4759 for_each_possible_cpu(i)
4760 init_llist_head(&per_cpu(blk_cpu_done, i));
4761 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4762
4763 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4764 "block/softirq:dead", NULL,
4765 blk_softirq_cpu_dead);
4766 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4767 blk_mq_hctx_notify_dead);
4768 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4769 blk_mq_hctx_notify_online,
4770 blk_mq_hctx_notify_offline);
4771 return 0;
4772 }
4773 subsys_initcall(blk_mq_init);