]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
block: return just one value from part_in_flight
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 const int bit = ctx->index_hw[hctx->type];
78
79 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85 {
86 const int bit = ctx->index_hw[hctx->type];
87
88 sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90
91 struct mq_inflight {
92 struct hd_struct *part;
93 unsigned int *inflight;
94 };
95
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97 struct request *rq, void *priv,
98 bool reserved)
99 {
100 struct mq_inflight *mi = priv;
101
102 /*
103 * index[0] counts the specific partition that was asked for.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107
108 return true;
109 }
110
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
112 {
113 unsigned inflight[2];
114 struct mq_inflight mi = { .part = part, .inflight = inflight, };
115
116 inflight[0] = inflight[1] = 0;
117 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118
119 return inflight[0];
120 }
121
122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125 {
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130
131 return true;
132 }
133
134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135 unsigned int inflight[2])
136 {
137 struct mq_inflight mi = { .part = part, .inflight = inflight, };
138
139 inflight[0] = inflight[1] = 0;
140 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
141 }
142
143 void blk_freeze_queue_start(struct request_queue *q)
144 {
145 int freeze_depth;
146
147 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148 if (freeze_depth == 1) {
149 percpu_ref_kill(&q->q_usage_counter);
150 if (queue_is_mq(q))
151 blk_mq_run_hw_queues(q, false);
152 }
153 }
154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
155
156 void blk_mq_freeze_queue_wait(struct request_queue *q)
157 {
158 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
159 }
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
161
162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163 unsigned long timeout)
164 {
165 return wait_event_timeout(q->mq_freeze_wq,
166 percpu_ref_is_zero(&q->q_usage_counter),
167 timeout);
168 }
169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
170
171 /*
172 * Guarantee no request is in use, so we can change any data structure of
173 * the queue afterward.
174 */
175 void blk_freeze_queue(struct request_queue *q)
176 {
177 /*
178 * In the !blk_mq case we are only calling this to kill the
179 * q_usage_counter, otherwise this increases the freeze depth
180 * and waits for it to return to zero. For this reason there is
181 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182 * exported to drivers as the only user for unfreeze is blk_mq.
183 */
184 blk_freeze_queue_start(q);
185 blk_mq_freeze_queue_wait(q);
186 }
187
188 void blk_mq_freeze_queue(struct request_queue *q)
189 {
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195 }
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198 void blk_mq_unfreeze_queue(struct request_queue *q)
199 {
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_resurrect(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208 }
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211 /*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216 {
217 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
218 }
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
220
221 /**
222 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223 * @q: request queue.
224 *
225 * Note: this function does not prevent that the struct request end_io()
226 * callback function is invoked. Once this function is returned, we make
227 * sure no dispatch can happen until the queue is unquiesced via
228 * blk_mq_unquiesce_queue().
229 */
230 void blk_mq_quiesce_queue(struct request_queue *q)
231 {
232 struct blk_mq_hw_ctx *hctx;
233 unsigned int i;
234 bool rcu = false;
235
236 blk_mq_quiesce_queue_nowait(q);
237
238 queue_for_each_hw_ctx(q, hctx, i) {
239 if (hctx->flags & BLK_MQ_F_BLOCKING)
240 synchronize_srcu(hctx->srcu);
241 else
242 rcu = true;
243 }
244 if (rcu)
245 synchronize_rcu();
246 }
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
248
249 /*
250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251 * @q: request queue.
252 *
253 * This function recovers queue into the state before quiescing
254 * which is done by blk_mq_quiesce_queue.
255 */
256 void blk_mq_unquiesce_queue(struct request_queue *q)
257 {
258 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
259
260 /* dispatch requests which are inserted during quiescing */
261 blk_mq_run_hw_queues(q, true);
262 }
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
264
265 void blk_mq_wake_waiters(struct request_queue *q)
266 {
267 struct blk_mq_hw_ctx *hctx;
268 unsigned int i;
269
270 queue_for_each_hw_ctx(q, hctx, i)
271 if (blk_mq_hw_queue_mapped(hctx))
272 blk_mq_tag_wakeup_all(hctx->tags, true);
273 }
274
275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
276 {
277 return blk_mq_has_free_tags(hctx->tags);
278 }
279 EXPORT_SYMBOL(blk_mq_can_queue);
280
281 /*
282 * Only need start/end time stamping if we have stats enabled, or using
283 * an IO scheduler.
284 */
285 static inline bool blk_mq_need_time_stamp(struct request *rq)
286 {
287 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
288 }
289
290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291 unsigned int tag, unsigned int op)
292 {
293 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294 struct request *rq = tags->static_rqs[tag];
295 req_flags_t rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 /* csd/requeue_work/fifo_time is initialized before use */
311 rq->q = data->q;
312 rq->mq_ctx = data->ctx;
313 rq->mq_hctx = data->hctx;
314 rq->rq_flags = rq_flags;
315 rq->cmd_flags = op;
316 if (data->flags & BLK_MQ_REQ_PREEMPT)
317 rq->rq_flags |= RQF_PREEMPT;
318 if (blk_queue_io_stat(data->q))
319 rq->rq_flags |= RQF_IO_STAT;
320 INIT_LIST_HEAD(&rq->queuelist);
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 if (blk_mq_need_time_stamp(rq))
326 rq->start_time_ns = ktime_get_ns();
327 else
328 rq->start_time_ns = 0;
329 rq->io_start_time_ns = 0;
330 rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 rq->nr_integrity_segments = 0;
333 #endif
334 rq->special = NULL;
335 /* tag was already set */
336 rq->extra_len = 0;
337 WRITE_ONCE(rq->deadline, 0);
338
339 rq->timeout = 0;
340
341 rq->end_io = NULL;
342 rq->end_io_data = NULL;
343 rq->next_rq = NULL;
344
345 data->ctx->rq_dispatched[op_is_sync(op)]++;
346 refcount_set(&rq->ref, 1);
347 return rq;
348 }
349
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio,
352 struct blk_mq_alloc_data *data)
353 {
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
367 data->ctx->cpu);
368 if (data->cmd_flags & REQ_NOWAIT)
369 data->flags |= BLK_MQ_REQ_NOWAIT;
370
371 if (e) {
372 data->flags |= BLK_MQ_REQ_INTERNAL;
373
374 /*
375 * Flush requests are special and go directly to the
376 * dispatch list. Don't include reserved tags in the
377 * limiting, as it isn't useful.
378 */
379 if (!op_is_flush(data->cmd_flags) &&
380 e->type->ops.limit_depth &&
381 !(data->flags & BLK_MQ_REQ_RESERVED))
382 e->type->ops.limit_depth(data->cmd_flags, data);
383 } else {
384 blk_mq_tag_busy(data->hctx);
385 }
386
387 tag = blk_mq_get_tag(data);
388 if (tag == BLK_MQ_TAG_FAIL) {
389 if (put_ctx_on_error) {
390 blk_mq_put_ctx(data->ctx);
391 data->ctx = NULL;
392 }
393 blk_queue_exit(q);
394 return NULL;
395 }
396
397 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
398 if (!op_is_flush(data->cmd_flags)) {
399 rq->elv.icq = NULL;
400 if (e && e->type->ops.prepare_request) {
401 if (e->type->icq_cache)
402 blk_mq_sched_assign_ioc(rq);
403
404 e->type->ops.prepare_request(rq, bio);
405 rq->rq_flags |= RQF_ELVPRIV;
406 }
407 }
408 data->hctx->queued++;
409 return rq;
410 }
411
412 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
413 blk_mq_req_flags_t flags)
414 {
415 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
416 struct request *rq;
417 int ret;
418
419 ret = blk_queue_enter(q, flags);
420 if (ret)
421 return ERR_PTR(ret);
422
423 rq = blk_mq_get_request(q, NULL, &alloc_data);
424 blk_queue_exit(q);
425
426 if (!rq)
427 return ERR_PTR(-EWOULDBLOCK);
428
429 blk_mq_put_ctx(alloc_data.ctx);
430
431 rq->__data_len = 0;
432 rq->__sector = (sector_t) -1;
433 rq->bio = rq->biotail = NULL;
434 return rq;
435 }
436 EXPORT_SYMBOL(blk_mq_alloc_request);
437
438 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
439 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
440 {
441 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
442 struct request *rq;
443 unsigned int cpu;
444 int ret;
445
446 /*
447 * If the tag allocator sleeps we could get an allocation for a
448 * different hardware context. No need to complicate the low level
449 * allocator for this for the rare use case of a command tied to
450 * a specific queue.
451 */
452 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
453 return ERR_PTR(-EINVAL);
454
455 if (hctx_idx >= q->nr_hw_queues)
456 return ERR_PTR(-EIO);
457
458 ret = blk_queue_enter(q, flags);
459 if (ret)
460 return ERR_PTR(ret);
461
462 /*
463 * Check if the hardware context is actually mapped to anything.
464 * If not tell the caller that it should skip this queue.
465 */
466 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
467 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
468 blk_queue_exit(q);
469 return ERR_PTR(-EXDEV);
470 }
471 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
472 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
473
474 rq = blk_mq_get_request(q, NULL, &alloc_data);
475 blk_queue_exit(q);
476
477 if (!rq)
478 return ERR_PTR(-EWOULDBLOCK);
479
480 return rq;
481 }
482 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
483
484 static void __blk_mq_free_request(struct request *rq)
485 {
486 struct request_queue *q = rq->q;
487 struct blk_mq_ctx *ctx = rq->mq_ctx;
488 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
489 const int sched_tag = rq->internal_tag;
490
491 blk_pm_mark_last_busy(rq);
492 rq->mq_hctx = NULL;
493 if (rq->tag != -1)
494 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
495 if (sched_tag != -1)
496 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
497 blk_mq_sched_restart(hctx);
498 blk_queue_exit(q);
499 }
500
501 void blk_mq_free_request(struct request *rq)
502 {
503 struct request_queue *q = rq->q;
504 struct elevator_queue *e = q->elevator;
505 struct blk_mq_ctx *ctx = rq->mq_ctx;
506 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
507
508 if (rq->rq_flags & RQF_ELVPRIV) {
509 if (e && e->type->ops.finish_request)
510 e->type->ops.finish_request(rq);
511 if (rq->elv.icq) {
512 put_io_context(rq->elv.icq->ioc);
513 rq->elv.icq = NULL;
514 }
515 }
516
517 ctx->rq_completed[rq_is_sync(rq)]++;
518 if (rq->rq_flags & RQF_MQ_INFLIGHT)
519 atomic_dec(&hctx->nr_active);
520
521 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
522 laptop_io_completion(q->backing_dev_info);
523
524 rq_qos_done(q, rq);
525
526 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
527 if (refcount_dec_and_test(&rq->ref))
528 __blk_mq_free_request(rq);
529 }
530 EXPORT_SYMBOL_GPL(blk_mq_free_request);
531
532 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
533 {
534 u64 now = 0;
535
536 if (blk_mq_need_time_stamp(rq))
537 now = ktime_get_ns();
538
539 if (rq->rq_flags & RQF_STATS) {
540 blk_mq_poll_stats_start(rq->q);
541 blk_stat_add(rq, now);
542 }
543
544 if (rq->internal_tag != -1)
545 blk_mq_sched_completed_request(rq, now);
546
547 blk_account_io_done(rq, now);
548
549 if (rq->end_io) {
550 rq_qos_done(rq->q, rq);
551 rq->end_io(rq, error);
552 } else {
553 if (unlikely(blk_bidi_rq(rq)))
554 blk_mq_free_request(rq->next_rq);
555 blk_mq_free_request(rq);
556 }
557 }
558 EXPORT_SYMBOL(__blk_mq_end_request);
559
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
561 {
562 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 BUG();
564 __blk_mq_end_request(rq, error);
565 }
566 EXPORT_SYMBOL(blk_mq_end_request);
567
568 static void __blk_mq_complete_request_remote(void *data)
569 {
570 struct request *rq = data;
571 struct request_queue *q = rq->q;
572
573 q->mq_ops->complete(rq);
574 }
575
576 static void __blk_mq_complete_request(struct request *rq)
577 {
578 struct blk_mq_ctx *ctx = rq->mq_ctx;
579 struct request_queue *q = rq->q;
580 bool shared = false;
581 int cpu;
582
583 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
584 /*
585 * Most of single queue controllers, there is only one irq vector
586 * for handling IO completion, and the only irq's affinity is set
587 * as all possible CPUs. On most of ARCHs, this affinity means the
588 * irq is handled on one specific CPU.
589 *
590 * So complete IO reqeust in softirq context in case of single queue
591 * for not degrading IO performance by irqsoff latency.
592 */
593 if (q->nr_hw_queues == 1) {
594 __blk_complete_request(rq);
595 return;
596 }
597
598 /*
599 * For a polled request, always complete locallly, it's pointless
600 * to redirect the completion.
601 */
602 if ((rq->cmd_flags & REQ_HIPRI) ||
603 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
604 q->mq_ops->complete(rq);
605 return;
606 }
607
608 cpu = get_cpu();
609 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
610 shared = cpus_share_cache(cpu, ctx->cpu);
611
612 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
613 rq->csd.func = __blk_mq_complete_request_remote;
614 rq->csd.info = rq;
615 rq->csd.flags = 0;
616 smp_call_function_single_async(ctx->cpu, &rq->csd);
617 } else {
618 q->mq_ops->complete(rq);
619 }
620 put_cpu();
621 }
622
623 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
624 __releases(hctx->srcu)
625 {
626 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
627 rcu_read_unlock();
628 else
629 srcu_read_unlock(hctx->srcu, srcu_idx);
630 }
631
632 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
633 __acquires(hctx->srcu)
634 {
635 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
636 /* shut up gcc false positive */
637 *srcu_idx = 0;
638 rcu_read_lock();
639 } else
640 *srcu_idx = srcu_read_lock(hctx->srcu);
641 }
642
643 /**
644 * blk_mq_complete_request - end I/O on a request
645 * @rq: the request being processed
646 *
647 * Description:
648 * Ends all I/O on a request. It does not handle partial completions.
649 * The actual completion happens out-of-order, through a IPI handler.
650 **/
651 bool blk_mq_complete_request(struct request *rq)
652 {
653 if (unlikely(blk_should_fake_timeout(rq->q)))
654 return false;
655 __blk_mq_complete_request(rq);
656 return true;
657 }
658 EXPORT_SYMBOL(blk_mq_complete_request);
659
660 int blk_mq_request_started(struct request *rq)
661 {
662 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
663 }
664 EXPORT_SYMBOL_GPL(blk_mq_request_started);
665
666 void blk_mq_start_request(struct request *rq)
667 {
668 struct request_queue *q = rq->q;
669
670 blk_mq_sched_started_request(rq);
671
672 trace_block_rq_issue(q, rq);
673
674 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
675 rq->io_start_time_ns = ktime_get_ns();
676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677 rq->throtl_size = blk_rq_sectors(rq);
678 #endif
679 rq->rq_flags |= RQF_STATS;
680 rq_qos_issue(q, rq);
681 }
682
683 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
684
685 blk_add_timer(rq);
686 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
687
688 if (q->dma_drain_size && blk_rq_bytes(rq)) {
689 /*
690 * Make sure space for the drain appears. We know we can do
691 * this because max_hw_segments has been adjusted to be one
692 * fewer than the device can handle.
693 */
694 rq->nr_phys_segments++;
695 }
696 }
697 EXPORT_SYMBOL(blk_mq_start_request);
698
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701 struct request_queue *q = rq->q;
702
703 blk_mq_put_driver_tag(rq);
704
705 trace_block_rq_requeue(q, rq);
706 rq_qos_requeue(q, rq);
707
708 if (blk_mq_request_started(rq)) {
709 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710 rq->rq_flags &= ~RQF_TIMED_OUT;
711 if (q->dma_drain_size && blk_rq_bytes(rq))
712 rq->nr_phys_segments--;
713 }
714 }
715
716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
717 {
718 __blk_mq_requeue_request(rq);
719
720 /* this request will be re-inserted to io scheduler queue */
721 blk_mq_sched_requeue_request(rq);
722
723 BUG_ON(!list_empty(&rq->queuelist));
724 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
725 }
726 EXPORT_SYMBOL(blk_mq_requeue_request);
727
728 static void blk_mq_requeue_work(struct work_struct *work)
729 {
730 struct request_queue *q =
731 container_of(work, struct request_queue, requeue_work.work);
732 LIST_HEAD(rq_list);
733 struct request *rq, *next;
734
735 spin_lock_irq(&q->requeue_lock);
736 list_splice_init(&q->requeue_list, &rq_list);
737 spin_unlock_irq(&q->requeue_lock);
738
739 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740 if (!(rq->rq_flags & RQF_SOFTBARRIER))
741 continue;
742
743 rq->rq_flags &= ~RQF_SOFTBARRIER;
744 list_del_init(&rq->queuelist);
745 blk_mq_sched_insert_request(rq, true, false, false);
746 }
747
748 while (!list_empty(&rq_list)) {
749 rq = list_entry(rq_list.next, struct request, queuelist);
750 list_del_init(&rq->queuelist);
751 blk_mq_sched_insert_request(rq, false, false, false);
752 }
753
754 blk_mq_run_hw_queues(q, false);
755 }
756
757 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
758 bool kick_requeue_list)
759 {
760 struct request_queue *q = rq->q;
761 unsigned long flags;
762
763 /*
764 * We abuse this flag that is otherwise used by the I/O scheduler to
765 * request head insertion from the workqueue.
766 */
767 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
768
769 spin_lock_irqsave(&q->requeue_lock, flags);
770 if (at_head) {
771 rq->rq_flags |= RQF_SOFTBARRIER;
772 list_add(&rq->queuelist, &q->requeue_list);
773 } else {
774 list_add_tail(&rq->queuelist, &q->requeue_list);
775 }
776 spin_unlock_irqrestore(&q->requeue_lock, flags);
777
778 if (kick_requeue_list)
779 blk_mq_kick_requeue_list(q);
780 }
781 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
782
783 void blk_mq_kick_requeue_list(struct request_queue *q)
784 {
785 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
786 }
787 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
788
789 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
790 unsigned long msecs)
791 {
792 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
793 msecs_to_jiffies(msecs));
794 }
795 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
796
797 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
798 {
799 if (tag < tags->nr_tags) {
800 prefetch(tags->rqs[tag]);
801 return tags->rqs[tag];
802 }
803
804 return NULL;
805 }
806 EXPORT_SYMBOL(blk_mq_tag_to_rq);
807
808 static bool blk_mq_check_busy(struct blk_mq_hw_ctx *hctx, struct request *rq,
809 void *priv, bool reserved)
810 {
811 /*
812 * If we find a request, we know the queue is busy. Return false
813 * to stop the iteration.
814 */
815 if (rq->q == hctx->queue) {
816 bool *busy = priv;
817
818 *busy = true;
819 return false;
820 }
821
822 return true;
823 }
824
825 bool blk_mq_queue_busy(struct request_queue *q)
826 {
827 bool busy = false;
828
829 blk_mq_queue_tag_busy_iter(q, blk_mq_check_busy, &busy);
830 return busy;
831 }
832 EXPORT_SYMBOL_GPL(blk_mq_queue_busy);
833
834 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
835 {
836 req->rq_flags |= RQF_TIMED_OUT;
837 if (req->q->mq_ops->timeout) {
838 enum blk_eh_timer_return ret;
839
840 ret = req->q->mq_ops->timeout(req, reserved);
841 if (ret == BLK_EH_DONE)
842 return;
843 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
844 }
845
846 blk_add_timer(req);
847 }
848
849 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
850 {
851 unsigned long deadline;
852
853 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
854 return false;
855 if (rq->rq_flags & RQF_TIMED_OUT)
856 return false;
857
858 deadline = READ_ONCE(rq->deadline);
859 if (time_after_eq(jiffies, deadline))
860 return true;
861
862 if (*next == 0)
863 *next = deadline;
864 else if (time_after(*next, deadline))
865 *next = deadline;
866 return false;
867 }
868
869 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
870 struct request *rq, void *priv, bool reserved)
871 {
872 unsigned long *next = priv;
873
874 /*
875 * Just do a quick check if it is expired before locking the request in
876 * so we're not unnecessarilly synchronizing across CPUs.
877 */
878 if (!blk_mq_req_expired(rq, next))
879 return true;
880
881 /*
882 * We have reason to believe the request may be expired. Take a
883 * reference on the request to lock this request lifetime into its
884 * currently allocated context to prevent it from being reallocated in
885 * the event the completion by-passes this timeout handler.
886 *
887 * If the reference was already released, then the driver beat the
888 * timeout handler to posting a natural completion.
889 */
890 if (!refcount_inc_not_zero(&rq->ref))
891 return true;
892
893 /*
894 * The request is now locked and cannot be reallocated underneath the
895 * timeout handler's processing. Re-verify this exact request is truly
896 * expired; if it is not expired, then the request was completed and
897 * reallocated as a new request.
898 */
899 if (blk_mq_req_expired(rq, next))
900 blk_mq_rq_timed_out(rq, reserved);
901 if (refcount_dec_and_test(&rq->ref))
902 __blk_mq_free_request(rq);
903
904 return true;
905 }
906
907 static void blk_mq_timeout_work(struct work_struct *work)
908 {
909 struct request_queue *q =
910 container_of(work, struct request_queue, timeout_work);
911 unsigned long next = 0;
912 struct blk_mq_hw_ctx *hctx;
913 int i;
914
915 /* A deadlock might occur if a request is stuck requiring a
916 * timeout at the same time a queue freeze is waiting
917 * completion, since the timeout code would not be able to
918 * acquire the queue reference here.
919 *
920 * That's why we don't use blk_queue_enter here; instead, we use
921 * percpu_ref_tryget directly, because we need to be able to
922 * obtain a reference even in the short window between the queue
923 * starting to freeze, by dropping the first reference in
924 * blk_freeze_queue_start, and the moment the last request is
925 * consumed, marked by the instant q_usage_counter reaches
926 * zero.
927 */
928 if (!percpu_ref_tryget(&q->q_usage_counter))
929 return;
930
931 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
932
933 if (next != 0) {
934 mod_timer(&q->timeout, next);
935 } else {
936 /*
937 * Request timeouts are handled as a forward rolling timer. If
938 * we end up here it means that no requests are pending and
939 * also that no request has been pending for a while. Mark
940 * each hctx as idle.
941 */
942 queue_for_each_hw_ctx(q, hctx, i) {
943 /* the hctx may be unmapped, so check it here */
944 if (blk_mq_hw_queue_mapped(hctx))
945 blk_mq_tag_idle(hctx);
946 }
947 }
948 blk_queue_exit(q);
949 }
950
951 struct flush_busy_ctx_data {
952 struct blk_mq_hw_ctx *hctx;
953 struct list_head *list;
954 };
955
956 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
957 {
958 struct flush_busy_ctx_data *flush_data = data;
959 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
960 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
961
962 spin_lock(&ctx->lock);
963 list_splice_tail_init(&ctx->rq_list, flush_data->list);
964 sbitmap_clear_bit(sb, bitnr);
965 spin_unlock(&ctx->lock);
966 return true;
967 }
968
969 /*
970 * Process software queues that have been marked busy, splicing them
971 * to the for-dispatch
972 */
973 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
974 {
975 struct flush_busy_ctx_data data = {
976 .hctx = hctx,
977 .list = list,
978 };
979
980 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
981 }
982 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
983
984 struct dispatch_rq_data {
985 struct blk_mq_hw_ctx *hctx;
986 struct request *rq;
987 };
988
989 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
990 void *data)
991 {
992 struct dispatch_rq_data *dispatch_data = data;
993 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
994 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
995
996 spin_lock(&ctx->lock);
997 if (!list_empty(&ctx->rq_list)) {
998 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
999 list_del_init(&dispatch_data->rq->queuelist);
1000 if (list_empty(&ctx->rq_list))
1001 sbitmap_clear_bit(sb, bitnr);
1002 }
1003 spin_unlock(&ctx->lock);
1004
1005 return !dispatch_data->rq;
1006 }
1007
1008 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1009 struct blk_mq_ctx *start)
1010 {
1011 unsigned off = start ? start->index_hw[hctx->type] : 0;
1012 struct dispatch_rq_data data = {
1013 .hctx = hctx,
1014 .rq = NULL,
1015 };
1016
1017 __sbitmap_for_each_set(&hctx->ctx_map, off,
1018 dispatch_rq_from_ctx, &data);
1019
1020 return data.rq;
1021 }
1022
1023 static inline unsigned int queued_to_index(unsigned int queued)
1024 {
1025 if (!queued)
1026 return 0;
1027
1028 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1029 }
1030
1031 bool blk_mq_get_driver_tag(struct request *rq)
1032 {
1033 struct blk_mq_alloc_data data = {
1034 .q = rq->q,
1035 .hctx = rq->mq_hctx,
1036 .flags = BLK_MQ_REQ_NOWAIT,
1037 .cmd_flags = rq->cmd_flags,
1038 };
1039 bool shared;
1040
1041 if (rq->tag != -1)
1042 goto done;
1043
1044 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1045 data.flags |= BLK_MQ_REQ_RESERVED;
1046
1047 shared = blk_mq_tag_busy(data.hctx);
1048 rq->tag = blk_mq_get_tag(&data);
1049 if (rq->tag >= 0) {
1050 if (shared) {
1051 rq->rq_flags |= RQF_MQ_INFLIGHT;
1052 atomic_inc(&data.hctx->nr_active);
1053 }
1054 data.hctx->tags->rqs[rq->tag] = rq;
1055 }
1056
1057 done:
1058 return rq->tag != -1;
1059 }
1060
1061 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1062 int flags, void *key)
1063 {
1064 struct blk_mq_hw_ctx *hctx;
1065
1066 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1067
1068 spin_lock(&hctx->dispatch_wait_lock);
1069 list_del_init(&wait->entry);
1070 spin_unlock(&hctx->dispatch_wait_lock);
1071
1072 blk_mq_run_hw_queue(hctx, true);
1073 return 1;
1074 }
1075
1076 /*
1077 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1078 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1079 * restart. For both cases, take care to check the condition again after
1080 * marking us as waiting.
1081 */
1082 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1083 struct request *rq)
1084 {
1085 struct wait_queue_head *wq;
1086 wait_queue_entry_t *wait;
1087 bool ret;
1088
1089 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1090 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1091 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1092
1093 /*
1094 * It's possible that a tag was freed in the window between the
1095 * allocation failure and adding the hardware queue to the wait
1096 * queue.
1097 *
1098 * Don't clear RESTART here, someone else could have set it.
1099 * At most this will cost an extra queue run.
1100 */
1101 return blk_mq_get_driver_tag(rq);
1102 }
1103
1104 wait = &hctx->dispatch_wait;
1105 if (!list_empty_careful(&wait->entry))
1106 return false;
1107
1108 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1109
1110 spin_lock_irq(&wq->lock);
1111 spin_lock(&hctx->dispatch_wait_lock);
1112 if (!list_empty(&wait->entry)) {
1113 spin_unlock(&hctx->dispatch_wait_lock);
1114 spin_unlock_irq(&wq->lock);
1115 return false;
1116 }
1117
1118 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1119 __add_wait_queue(wq, wait);
1120
1121 /*
1122 * It's possible that a tag was freed in the window between the
1123 * allocation failure and adding the hardware queue to the wait
1124 * queue.
1125 */
1126 ret = blk_mq_get_driver_tag(rq);
1127 if (!ret) {
1128 spin_unlock(&hctx->dispatch_wait_lock);
1129 spin_unlock_irq(&wq->lock);
1130 return false;
1131 }
1132
1133 /*
1134 * We got a tag, remove ourselves from the wait queue to ensure
1135 * someone else gets the wakeup.
1136 */
1137 list_del_init(&wait->entry);
1138 spin_unlock(&hctx->dispatch_wait_lock);
1139 spin_unlock_irq(&wq->lock);
1140
1141 return true;
1142 }
1143
1144 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1145 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1146 /*
1147 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1148 * - EWMA is one simple way to compute running average value
1149 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1150 * - take 4 as factor for avoiding to get too small(0) result, and this
1151 * factor doesn't matter because EWMA decreases exponentially
1152 */
1153 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1154 {
1155 unsigned int ewma;
1156
1157 if (hctx->queue->elevator)
1158 return;
1159
1160 ewma = hctx->dispatch_busy;
1161
1162 if (!ewma && !busy)
1163 return;
1164
1165 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1166 if (busy)
1167 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1168 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1169
1170 hctx->dispatch_busy = ewma;
1171 }
1172
1173 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1174
1175 /*
1176 * Returns true if we did some work AND can potentially do more.
1177 */
1178 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1179 bool got_budget)
1180 {
1181 struct blk_mq_hw_ctx *hctx;
1182 struct request *rq, *nxt;
1183 bool no_tag = false;
1184 int errors, queued;
1185 blk_status_t ret = BLK_STS_OK;
1186
1187 if (list_empty(list))
1188 return false;
1189
1190 WARN_ON(!list_is_singular(list) && got_budget);
1191
1192 /*
1193 * Now process all the entries, sending them to the driver.
1194 */
1195 errors = queued = 0;
1196 do {
1197 struct blk_mq_queue_data bd;
1198
1199 rq = list_first_entry(list, struct request, queuelist);
1200
1201 hctx = rq->mq_hctx;
1202 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1203 break;
1204
1205 if (!blk_mq_get_driver_tag(rq)) {
1206 /*
1207 * The initial allocation attempt failed, so we need to
1208 * rerun the hardware queue when a tag is freed. The
1209 * waitqueue takes care of that. If the queue is run
1210 * before we add this entry back on the dispatch list,
1211 * we'll re-run it below.
1212 */
1213 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1214 blk_mq_put_dispatch_budget(hctx);
1215 /*
1216 * For non-shared tags, the RESTART check
1217 * will suffice.
1218 */
1219 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1220 no_tag = true;
1221 break;
1222 }
1223 }
1224
1225 list_del_init(&rq->queuelist);
1226
1227 bd.rq = rq;
1228
1229 /*
1230 * Flag last if we have no more requests, or if we have more
1231 * but can't assign a driver tag to it.
1232 */
1233 if (list_empty(list))
1234 bd.last = true;
1235 else {
1236 nxt = list_first_entry(list, struct request, queuelist);
1237 bd.last = !blk_mq_get_driver_tag(nxt);
1238 }
1239
1240 ret = q->mq_ops->queue_rq(hctx, &bd);
1241 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1242 /*
1243 * If an I/O scheduler has been configured and we got a
1244 * driver tag for the next request already, free it
1245 * again.
1246 */
1247 if (!list_empty(list)) {
1248 nxt = list_first_entry(list, struct request, queuelist);
1249 blk_mq_put_driver_tag(nxt);
1250 }
1251 list_add(&rq->queuelist, list);
1252 __blk_mq_requeue_request(rq);
1253 break;
1254 }
1255
1256 if (unlikely(ret != BLK_STS_OK)) {
1257 errors++;
1258 blk_mq_end_request(rq, BLK_STS_IOERR);
1259 continue;
1260 }
1261
1262 queued++;
1263 } while (!list_empty(list));
1264
1265 hctx->dispatched[queued_to_index(queued)]++;
1266
1267 /*
1268 * Any items that need requeuing? Stuff them into hctx->dispatch,
1269 * that is where we will continue on next queue run.
1270 */
1271 if (!list_empty(list)) {
1272 bool needs_restart;
1273
1274 /*
1275 * If we didn't flush the entire list, we could have told
1276 * the driver there was more coming, but that turned out to
1277 * be a lie.
1278 */
1279 if (q->mq_ops->commit_rqs)
1280 q->mq_ops->commit_rqs(hctx);
1281
1282 spin_lock(&hctx->lock);
1283 list_splice_init(list, &hctx->dispatch);
1284 spin_unlock(&hctx->lock);
1285
1286 /*
1287 * If SCHED_RESTART was set by the caller of this function and
1288 * it is no longer set that means that it was cleared by another
1289 * thread and hence that a queue rerun is needed.
1290 *
1291 * If 'no_tag' is set, that means that we failed getting
1292 * a driver tag with an I/O scheduler attached. If our dispatch
1293 * waitqueue is no longer active, ensure that we run the queue
1294 * AFTER adding our entries back to the list.
1295 *
1296 * If no I/O scheduler has been configured it is possible that
1297 * the hardware queue got stopped and restarted before requests
1298 * were pushed back onto the dispatch list. Rerun the queue to
1299 * avoid starvation. Notes:
1300 * - blk_mq_run_hw_queue() checks whether or not a queue has
1301 * been stopped before rerunning a queue.
1302 * - Some but not all block drivers stop a queue before
1303 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1304 * and dm-rq.
1305 *
1306 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1307 * bit is set, run queue after a delay to avoid IO stalls
1308 * that could otherwise occur if the queue is idle.
1309 */
1310 needs_restart = blk_mq_sched_needs_restart(hctx);
1311 if (!needs_restart ||
1312 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1313 blk_mq_run_hw_queue(hctx, true);
1314 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1315 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1316
1317 blk_mq_update_dispatch_busy(hctx, true);
1318 return false;
1319 } else
1320 blk_mq_update_dispatch_busy(hctx, false);
1321
1322 /*
1323 * If the host/device is unable to accept more work, inform the
1324 * caller of that.
1325 */
1326 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1327 return false;
1328
1329 return (queued + errors) != 0;
1330 }
1331
1332 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1333 {
1334 int srcu_idx;
1335
1336 /*
1337 * We should be running this queue from one of the CPUs that
1338 * are mapped to it.
1339 *
1340 * There are at least two related races now between setting
1341 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1342 * __blk_mq_run_hw_queue():
1343 *
1344 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1345 * but later it becomes online, then this warning is harmless
1346 * at all
1347 *
1348 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1349 * but later it becomes offline, then the warning can't be
1350 * triggered, and we depend on blk-mq timeout handler to
1351 * handle dispatched requests to this hctx
1352 */
1353 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1354 cpu_online(hctx->next_cpu)) {
1355 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1356 raw_smp_processor_id(),
1357 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1358 dump_stack();
1359 }
1360
1361 /*
1362 * We can't run the queue inline with ints disabled. Ensure that
1363 * we catch bad users of this early.
1364 */
1365 WARN_ON_ONCE(in_interrupt());
1366
1367 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1368
1369 hctx_lock(hctx, &srcu_idx);
1370 blk_mq_sched_dispatch_requests(hctx);
1371 hctx_unlock(hctx, srcu_idx);
1372 }
1373
1374 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1375 {
1376 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1377
1378 if (cpu >= nr_cpu_ids)
1379 cpu = cpumask_first(hctx->cpumask);
1380 return cpu;
1381 }
1382
1383 /*
1384 * It'd be great if the workqueue API had a way to pass
1385 * in a mask and had some smarts for more clever placement.
1386 * For now we just round-robin here, switching for every
1387 * BLK_MQ_CPU_WORK_BATCH queued items.
1388 */
1389 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1390 {
1391 bool tried = false;
1392 int next_cpu = hctx->next_cpu;
1393
1394 if (hctx->queue->nr_hw_queues == 1)
1395 return WORK_CPU_UNBOUND;
1396
1397 if (--hctx->next_cpu_batch <= 0) {
1398 select_cpu:
1399 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1400 cpu_online_mask);
1401 if (next_cpu >= nr_cpu_ids)
1402 next_cpu = blk_mq_first_mapped_cpu(hctx);
1403 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1404 }
1405
1406 /*
1407 * Do unbound schedule if we can't find a online CPU for this hctx,
1408 * and it should only happen in the path of handling CPU DEAD.
1409 */
1410 if (!cpu_online(next_cpu)) {
1411 if (!tried) {
1412 tried = true;
1413 goto select_cpu;
1414 }
1415
1416 /*
1417 * Make sure to re-select CPU next time once after CPUs
1418 * in hctx->cpumask become online again.
1419 */
1420 hctx->next_cpu = next_cpu;
1421 hctx->next_cpu_batch = 1;
1422 return WORK_CPU_UNBOUND;
1423 }
1424
1425 hctx->next_cpu = next_cpu;
1426 return next_cpu;
1427 }
1428
1429 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1430 unsigned long msecs)
1431 {
1432 if (unlikely(blk_mq_hctx_stopped(hctx)))
1433 return;
1434
1435 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1436 int cpu = get_cpu();
1437 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1438 __blk_mq_run_hw_queue(hctx);
1439 put_cpu();
1440 return;
1441 }
1442
1443 put_cpu();
1444 }
1445
1446 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1447 msecs_to_jiffies(msecs));
1448 }
1449
1450 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1451 {
1452 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1453 }
1454 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1455
1456 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1457 {
1458 int srcu_idx;
1459 bool need_run;
1460
1461 /*
1462 * When queue is quiesced, we may be switching io scheduler, or
1463 * updating nr_hw_queues, or other things, and we can't run queue
1464 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1465 *
1466 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1467 * quiesced.
1468 */
1469 hctx_lock(hctx, &srcu_idx);
1470 need_run = !blk_queue_quiesced(hctx->queue) &&
1471 blk_mq_hctx_has_pending(hctx);
1472 hctx_unlock(hctx, srcu_idx);
1473
1474 if (need_run) {
1475 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1476 return true;
1477 }
1478
1479 return false;
1480 }
1481 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1482
1483 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1484 {
1485 struct blk_mq_hw_ctx *hctx;
1486 int i;
1487
1488 queue_for_each_hw_ctx(q, hctx, i) {
1489 if (blk_mq_hctx_stopped(hctx))
1490 continue;
1491
1492 blk_mq_run_hw_queue(hctx, async);
1493 }
1494 }
1495 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1496
1497 /**
1498 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1499 * @q: request queue.
1500 *
1501 * The caller is responsible for serializing this function against
1502 * blk_mq_{start,stop}_hw_queue().
1503 */
1504 bool blk_mq_queue_stopped(struct request_queue *q)
1505 {
1506 struct blk_mq_hw_ctx *hctx;
1507 int i;
1508
1509 queue_for_each_hw_ctx(q, hctx, i)
1510 if (blk_mq_hctx_stopped(hctx))
1511 return true;
1512
1513 return false;
1514 }
1515 EXPORT_SYMBOL(blk_mq_queue_stopped);
1516
1517 /*
1518 * This function is often used for pausing .queue_rq() by driver when
1519 * there isn't enough resource or some conditions aren't satisfied, and
1520 * BLK_STS_RESOURCE is usually returned.
1521 *
1522 * We do not guarantee that dispatch can be drained or blocked
1523 * after blk_mq_stop_hw_queue() returns. Please use
1524 * blk_mq_quiesce_queue() for that requirement.
1525 */
1526 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1527 {
1528 cancel_delayed_work(&hctx->run_work);
1529
1530 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1531 }
1532 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1533
1534 /*
1535 * This function is often used for pausing .queue_rq() by driver when
1536 * there isn't enough resource or some conditions aren't satisfied, and
1537 * BLK_STS_RESOURCE is usually returned.
1538 *
1539 * We do not guarantee that dispatch can be drained or blocked
1540 * after blk_mq_stop_hw_queues() returns. Please use
1541 * blk_mq_quiesce_queue() for that requirement.
1542 */
1543 void blk_mq_stop_hw_queues(struct request_queue *q)
1544 {
1545 struct blk_mq_hw_ctx *hctx;
1546 int i;
1547
1548 queue_for_each_hw_ctx(q, hctx, i)
1549 blk_mq_stop_hw_queue(hctx);
1550 }
1551 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1552
1553 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1554 {
1555 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1556
1557 blk_mq_run_hw_queue(hctx, false);
1558 }
1559 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1560
1561 void blk_mq_start_hw_queues(struct request_queue *q)
1562 {
1563 struct blk_mq_hw_ctx *hctx;
1564 int i;
1565
1566 queue_for_each_hw_ctx(q, hctx, i)
1567 blk_mq_start_hw_queue(hctx);
1568 }
1569 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1570
1571 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1572 {
1573 if (!blk_mq_hctx_stopped(hctx))
1574 return;
1575
1576 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1577 blk_mq_run_hw_queue(hctx, async);
1578 }
1579 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1580
1581 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1582 {
1583 struct blk_mq_hw_ctx *hctx;
1584 int i;
1585
1586 queue_for_each_hw_ctx(q, hctx, i)
1587 blk_mq_start_stopped_hw_queue(hctx, async);
1588 }
1589 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1590
1591 static void blk_mq_run_work_fn(struct work_struct *work)
1592 {
1593 struct blk_mq_hw_ctx *hctx;
1594
1595 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1596
1597 /*
1598 * If we are stopped, don't run the queue.
1599 */
1600 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1601 return;
1602
1603 __blk_mq_run_hw_queue(hctx);
1604 }
1605
1606 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1607 struct request *rq,
1608 bool at_head)
1609 {
1610 struct blk_mq_ctx *ctx = rq->mq_ctx;
1611
1612 lockdep_assert_held(&ctx->lock);
1613
1614 trace_block_rq_insert(hctx->queue, rq);
1615
1616 if (at_head)
1617 list_add(&rq->queuelist, &ctx->rq_list);
1618 else
1619 list_add_tail(&rq->queuelist, &ctx->rq_list);
1620 }
1621
1622 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1623 bool at_head)
1624 {
1625 struct blk_mq_ctx *ctx = rq->mq_ctx;
1626
1627 lockdep_assert_held(&ctx->lock);
1628
1629 __blk_mq_insert_req_list(hctx, rq, at_head);
1630 blk_mq_hctx_mark_pending(hctx, ctx);
1631 }
1632
1633 /*
1634 * Should only be used carefully, when the caller knows we want to
1635 * bypass a potential IO scheduler on the target device.
1636 */
1637 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1638 {
1639 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1640
1641 spin_lock(&hctx->lock);
1642 list_add_tail(&rq->queuelist, &hctx->dispatch);
1643 spin_unlock(&hctx->lock);
1644
1645 if (run_queue)
1646 blk_mq_run_hw_queue(hctx, false);
1647 }
1648
1649 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1650 struct list_head *list)
1651
1652 {
1653 struct request *rq;
1654
1655 /*
1656 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1657 * offline now
1658 */
1659 list_for_each_entry(rq, list, queuelist) {
1660 BUG_ON(rq->mq_ctx != ctx);
1661 trace_block_rq_insert(hctx->queue, rq);
1662 }
1663
1664 spin_lock(&ctx->lock);
1665 list_splice_tail_init(list, &ctx->rq_list);
1666 blk_mq_hctx_mark_pending(hctx, ctx);
1667 spin_unlock(&ctx->lock);
1668 }
1669
1670 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1671 {
1672 struct request *rqa = container_of(a, struct request, queuelist);
1673 struct request *rqb = container_of(b, struct request, queuelist);
1674
1675 if (rqa->mq_ctx < rqb->mq_ctx)
1676 return -1;
1677 else if (rqa->mq_ctx > rqb->mq_ctx)
1678 return 1;
1679 else if (rqa->mq_hctx < rqb->mq_hctx)
1680 return -1;
1681 else if (rqa->mq_hctx > rqb->mq_hctx)
1682 return 1;
1683
1684 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1685 }
1686
1687 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1688 {
1689 struct blk_mq_hw_ctx *this_hctx;
1690 struct blk_mq_ctx *this_ctx;
1691 struct request_queue *this_q;
1692 struct request *rq;
1693 LIST_HEAD(list);
1694 LIST_HEAD(rq_list);
1695 unsigned int depth;
1696
1697 list_splice_init(&plug->mq_list, &list);
1698 plug->rq_count = 0;
1699
1700 if (plug->rq_count > 2 && plug->multiple_queues)
1701 list_sort(NULL, &list, plug_rq_cmp);
1702
1703 this_q = NULL;
1704 this_hctx = NULL;
1705 this_ctx = NULL;
1706 depth = 0;
1707
1708 while (!list_empty(&list)) {
1709 rq = list_entry_rq(list.next);
1710 list_del_init(&rq->queuelist);
1711 BUG_ON(!rq->q);
1712 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1713 if (this_hctx) {
1714 trace_block_unplug(this_q, depth, !from_schedule);
1715 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1716 &rq_list,
1717 from_schedule);
1718 }
1719
1720 this_q = rq->q;
1721 this_ctx = rq->mq_ctx;
1722 this_hctx = rq->mq_hctx;
1723 depth = 0;
1724 }
1725
1726 depth++;
1727 list_add_tail(&rq->queuelist, &rq_list);
1728 }
1729
1730 /*
1731 * If 'this_hctx' is set, we know we have entries to complete
1732 * on 'rq_list'. Do those.
1733 */
1734 if (this_hctx) {
1735 trace_block_unplug(this_q, depth, !from_schedule);
1736 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1737 from_schedule);
1738 }
1739 }
1740
1741 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1742 {
1743 blk_init_request_from_bio(rq, bio);
1744
1745 blk_account_io_start(rq, true);
1746 }
1747
1748 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1749 {
1750 if (rq->tag != -1)
1751 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1752
1753 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1754 }
1755
1756 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1757 struct request *rq,
1758 blk_qc_t *cookie, bool last)
1759 {
1760 struct request_queue *q = rq->q;
1761 struct blk_mq_queue_data bd = {
1762 .rq = rq,
1763 .last = last,
1764 };
1765 blk_qc_t new_cookie;
1766 blk_status_t ret;
1767
1768 new_cookie = request_to_qc_t(hctx, rq);
1769
1770 /*
1771 * For OK queue, we are done. For error, caller may kill it.
1772 * Any other error (busy), just add it to our list as we
1773 * previously would have done.
1774 */
1775 ret = q->mq_ops->queue_rq(hctx, &bd);
1776 switch (ret) {
1777 case BLK_STS_OK:
1778 blk_mq_update_dispatch_busy(hctx, false);
1779 *cookie = new_cookie;
1780 break;
1781 case BLK_STS_RESOURCE:
1782 case BLK_STS_DEV_RESOURCE:
1783 blk_mq_update_dispatch_busy(hctx, true);
1784 __blk_mq_requeue_request(rq);
1785 break;
1786 default:
1787 blk_mq_update_dispatch_busy(hctx, false);
1788 *cookie = BLK_QC_T_NONE;
1789 break;
1790 }
1791
1792 return ret;
1793 }
1794
1795 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1796 struct request *rq,
1797 blk_qc_t *cookie,
1798 bool bypass_insert, bool last)
1799 {
1800 struct request_queue *q = rq->q;
1801 bool run_queue = true;
1802
1803 /*
1804 * RCU or SRCU read lock is needed before checking quiesced flag.
1805 *
1806 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1807 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1808 * and avoid driver to try to dispatch again.
1809 */
1810 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1811 run_queue = false;
1812 bypass_insert = false;
1813 goto insert;
1814 }
1815
1816 if (q->elevator && !bypass_insert)
1817 goto insert;
1818
1819 if (!blk_mq_get_dispatch_budget(hctx))
1820 goto insert;
1821
1822 if (!blk_mq_get_driver_tag(rq)) {
1823 blk_mq_put_dispatch_budget(hctx);
1824 goto insert;
1825 }
1826
1827 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1828 insert:
1829 if (bypass_insert)
1830 return BLK_STS_RESOURCE;
1831
1832 blk_mq_request_bypass_insert(rq, run_queue);
1833 return BLK_STS_OK;
1834 }
1835
1836 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1837 struct request *rq, blk_qc_t *cookie)
1838 {
1839 blk_status_t ret;
1840 int srcu_idx;
1841
1842 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1843
1844 hctx_lock(hctx, &srcu_idx);
1845
1846 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1847 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1848 blk_mq_request_bypass_insert(rq, true);
1849 else if (ret != BLK_STS_OK)
1850 blk_mq_end_request(rq, ret);
1851
1852 hctx_unlock(hctx, srcu_idx);
1853 }
1854
1855 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1856 {
1857 blk_status_t ret;
1858 int srcu_idx;
1859 blk_qc_t unused_cookie;
1860 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1861
1862 hctx_lock(hctx, &srcu_idx);
1863 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1864 hctx_unlock(hctx, srcu_idx);
1865
1866 return ret;
1867 }
1868
1869 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1870 struct list_head *list)
1871 {
1872 while (!list_empty(list)) {
1873 blk_status_t ret;
1874 struct request *rq = list_first_entry(list, struct request,
1875 queuelist);
1876
1877 list_del_init(&rq->queuelist);
1878 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1879 if (ret != BLK_STS_OK) {
1880 if (ret == BLK_STS_RESOURCE ||
1881 ret == BLK_STS_DEV_RESOURCE) {
1882 blk_mq_request_bypass_insert(rq,
1883 list_empty(list));
1884 break;
1885 }
1886 blk_mq_end_request(rq, ret);
1887 }
1888 }
1889
1890 /*
1891 * If we didn't flush the entire list, we could have told
1892 * the driver there was more coming, but that turned out to
1893 * be a lie.
1894 */
1895 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1896 hctx->queue->mq_ops->commit_rqs(hctx);
1897 }
1898
1899 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1900 {
1901 list_add_tail(&rq->queuelist, &plug->mq_list);
1902 plug->rq_count++;
1903 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1904 struct request *tmp;
1905
1906 tmp = list_first_entry(&plug->mq_list, struct request,
1907 queuelist);
1908 if (tmp->q != rq->q)
1909 plug->multiple_queues = true;
1910 }
1911 }
1912
1913 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1914 {
1915 const int is_sync = op_is_sync(bio->bi_opf);
1916 const int is_flush_fua = op_is_flush(bio->bi_opf);
1917 struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
1918 struct request *rq;
1919 struct blk_plug *plug;
1920 struct request *same_queue_rq = NULL;
1921 blk_qc_t cookie;
1922
1923 blk_queue_bounce(q, &bio);
1924
1925 blk_queue_split(q, &bio);
1926
1927 if (!bio_integrity_prep(bio))
1928 return BLK_QC_T_NONE;
1929
1930 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1931 blk_attempt_plug_merge(q, bio, &same_queue_rq))
1932 return BLK_QC_T_NONE;
1933
1934 if (blk_mq_sched_bio_merge(q, bio))
1935 return BLK_QC_T_NONE;
1936
1937 rq_qos_throttle(q, bio);
1938
1939 rq = blk_mq_get_request(q, bio, &data);
1940 if (unlikely(!rq)) {
1941 rq_qos_cleanup(q, bio);
1942 if (bio->bi_opf & REQ_NOWAIT)
1943 bio_wouldblock_error(bio);
1944 return BLK_QC_T_NONE;
1945 }
1946
1947 trace_block_getrq(q, bio, bio->bi_opf);
1948
1949 rq_qos_track(q, rq, bio);
1950
1951 cookie = request_to_qc_t(data.hctx, rq);
1952
1953 plug = current->plug;
1954 if (unlikely(is_flush_fua)) {
1955 blk_mq_put_ctx(data.ctx);
1956 blk_mq_bio_to_request(rq, bio);
1957
1958 /* bypass scheduler for flush rq */
1959 blk_insert_flush(rq);
1960 blk_mq_run_hw_queue(data.hctx, true);
1961 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1962 /*
1963 * Use plugging if we have a ->commit_rqs() hook as well, as
1964 * we know the driver uses bd->last in a smart fashion.
1965 */
1966 unsigned int request_count = plug->rq_count;
1967 struct request *last = NULL;
1968
1969 blk_mq_put_ctx(data.ctx);
1970 blk_mq_bio_to_request(rq, bio);
1971
1972 if (!request_count)
1973 trace_block_plug(q);
1974 else
1975 last = list_entry_rq(plug->mq_list.prev);
1976
1977 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1978 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1979 blk_flush_plug_list(plug, false);
1980 trace_block_plug(q);
1981 }
1982
1983 blk_add_rq_to_plug(plug, rq);
1984 } else if (plug && !blk_queue_nomerges(q)) {
1985 blk_mq_bio_to_request(rq, bio);
1986
1987 /*
1988 * We do limited plugging. If the bio can be merged, do that.
1989 * Otherwise the existing request in the plug list will be
1990 * issued. So the plug list will have one request at most
1991 * The plug list might get flushed before this. If that happens,
1992 * the plug list is empty, and same_queue_rq is invalid.
1993 */
1994 if (list_empty(&plug->mq_list))
1995 same_queue_rq = NULL;
1996 if (same_queue_rq) {
1997 list_del_init(&same_queue_rq->queuelist);
1998 plug->rq_count--;
1999 }
2000 blk_add_rq_to_plug(plug, rq);
2001
2002 blk_mq_put_ctx(data.ctx);
2003
2004 if (same_queue_rq) {
2005 data.hctx = same_queue_rq->mq_hctx;
2006 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2007 &cookie);
2008 }
2009 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2010 !data.hctx->dispatch_busy)) {
2011 blk_mq_put_ctx(data.ctx);
2012 blk_mq_bio_to_request(rq, bio);
2013 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2014 } else {
2015 blk_mq_put_ctx(data.ctx);
2016 blk_mq_bio_to_request(rq, bio);
2017 blk_mq_sched_insert_request(rq, false, true, true);
2018 }
2019
2020 return cookie;
2021 }
2022
2023 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2024 unsigned int hctx_idx)
2025 {
2026 struct page *page;
2027
2028 if (tags->rqs && set->ops->exit_request) {
2029 int i;
2030
2031 for (i = 0; i < tags->nr_tags; i++) {
2032 struct request *rq = tags->static_rqs[i];
2033
2034 if (!rq)
2035 continue;
2036 set->ops->exit_request(set, rq, hctx_idx);
2037 tags->static_rqs[i] = NULL;
2038 }
2039 }
2040
2041 while (!list_empty(&tags->page_list)) {
2042 page = list_first_entry(&tags->page_list, struct page, lru);
2043 list_del_init(&page->lru);
2044 /*
2045 * Remove kmemleak object previously allocated in
2046 * blk_mq_init_rq_map().
2047 */
2048 kmemleak_free(page_address(page));
2049 __free_pages(page, page->private);
2050 }
2051 }
2052
2053 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2054 {
2055 kfree(tags->rqs);
2056 tags->rqs = NULL;
2057 kfree(tags->static_rqs);
2058 tags->static_rqs = NULL;
2059
2060 blk_mq_free_tags(tags);
2061 }
2062
2063 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2064 unsigned int hctx_idx,
2065 unsigned int nr_tags,
2066 unsigned int reserved_tags)
2067 {
2068 struct blk_mq_tags *tags;
2069 int node;
2070
2071 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2072 if (node == NUMA_NO_NODE)
2073 node = set->numa_node;
2074
2075 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2076 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2077 if (!tags)
2078 return NULL;
2079
2080 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2081 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2082 node);
2083 if (!tags->rqs) {
2084 blk_mq_free_tags(tags);
2085 return NULL;
2086 }
2087
2088 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2089 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2090 node);
2091 if (!tags->static_rqs) {
2092 kfree(tags->rqs);
2093 blk_mq_free_tags(tags);
2094 return NULL;
2095 }
2096
2097 return tags;
2098 }
2099
2100 static size_t order_to_size(unsigned int order)
2101 {
2102 return (size_t)PAGE_SIZE << order;
2103 }
2104
2105 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2106 unsigned int hctx_idx, int node)
2107 {
2108 int ret;
2109
2110 if (set->ops->init_request) {
2111 ret = set->ops->init_request(set, rq, hctx_idx, node);
2112 if (ret)
2113 return ret;
2114 }
2115
2116 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2117 return 0;
2118 }
2119
2120 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2121 unsigned int hctx_idx, unsigned int depth)
2122 {
2123 unsigned int i, j, entries_per_page, max_order = 4;
2124 size_t rq_size, left;
2125 int node;
2126
2127 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2128 if (node == NUMA_NO_NODE)
2129 node = set->numa_node;
2130
2131 INIT_LIST_HEAD(&tags->page_list);
2132
2133 /*
2134 * rq_size is the size of the request plus driver payload, rounded
2135 * to the cacheline size
2136 */
2137 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2138 cache_line_size());
2139 left = rq_size * depth;
2140
2141 for (i = 0; i < depth; ) {
2142 int this_order = max_order;
2143 struct page *page;
2144 int to_do;
2145 void *p;
2146
2147 while (this_order && left < order_to_size(this_order - 1))
2148 this_order--;
2149
2150 do {
2151 page = alloc_pages_node(node,
2152 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2153 this_order);
2154 if (page)
2155 break;
2156 if (!this_order--)
2157 break;
2158 if (order_to_size(this_order) < rq_size)
2159 break;
2160 } while (1);
2161
2162 if (!page)
2163 goto fail;
2164
2165 page->private = this_order;
2166 list_add_tail(&page->lru, &tags->page_list);
2167
2168 p = page_address(page);
2169 /*
2170 * Allow kmemleak to scan these pages as they contain pointers
2171 * to additional allocations like via ops->init_request().
2172 */
2173 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2174 entries_per_page = order_to_size(this_order) / rq_size;
2175 to_do = min(entries_per_page, depth - i);
2176 left -= to_do * rq_size;
2177 for (j = 0; j < to_do; j++) {
2178 struct request *rq = p;
2179
2180 tags->static_rqs[i] = rq;
2181 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2182 tags->static_rqs[i] = NULL;
2183 goto fail;
2184 }
2185
2186 p += rq_size;
2187 i++;
2188 }
2189 }
2190 return 0;
2191
2192 fail:
2193 blk_mq_free_rqs(set, tags, hctx_idx);
2194 return -ENOMEM;
2195 }
2196
2197 /*
2198 * 'cpu' is going away. splice any existing rq_list entries from this
2199 * software queue to the hw queue dispatch list, and ensure that it
2200 * gets run.
2201 */
2202 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2203 {
2204 struct blk_mq_hw_ctx *hctx;
2205 struct blk_mq_ctx *ctx;
2206 LIST_HEAD(tmp);
2207
2208 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2209 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2210
2211 spin_lock(&ctx->lock);
2212 if (!list_empty(&ctx->rq_list)) {
2213 list_splice_init(&ctx->rq_list, &tmp);
2214 blk_mq_hctx_clear_pending(hctx, ctx);
2215 }
2216 spin_unlock(&ctx->lock);
2217
2218 if (list_empty(&tmp))
2219 return 0;
2220
2221 spin_lock(&hctx->lock);
2222 list_splice_tail_init(&tmp, &hctx->dispatch);
2223 spin_unlock(&hctx->lock);
2224
2225 blk_mq_run_hw_queue(hctx, true);
2226 return 0;
2227 }
2228
2229 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2230 {
2231 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2232 &hctx->cpuhp_dead);
2233 }
2234
2235 /* hctx->ctxs will be freed in queue's release handler */
2236 static void blk_mq_exit_hctx(struct request_queue *q,
2237 struct blk_mq_tag_set *set,
2238 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2239 {
2240 if (blk_mq_hw_queue_mapped(hctx))
2241 blk_mq_tag_idle(hctx);
2242
2243 if (set->ops->exit_request)
2244 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2245
2246 if (set->ops->exit_hctx)
2247 set->ops->exit_hctx(hctx, hctx_idx);
2248
2249 if (hctx->flags & BLK_MQ_F_BLOCKING)
2250 cleanup_srcu_struct(hctx->srcu);
2251
2252 blk_mq_remove_cpuhp(hctx);
2253 blk_free_flush_queue(hctx->fq);
2254 sbitmap_free(&hctx->ctx_map);
2255 }
2256
2257 static void blk_mq_exit_hw_queues(struct request_queue *q,
2258 struct blk_mq_tag_set *set, int nr_queue)
2259 {
2260 struct blk_mq_hw_ctx *hctx;
2261 unsigned int i;
2262
2263 queue_for_each_hw_ctx(q, hctx, i) {
2264 if (i == nr_queue)
2265 break;
2266 blk_mq_debugfs_unregister_hctx(hctx);
2267 blk_mq_exit_hctx(q, set, hctx, i);
2268 }
2269 }
2270
2271 static int blk_mq_init_hctx(struct request_queue *q,
2272 struct blk_mq_tag_set *set,
2273 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2274 {
2275 int node;
2276
2277 node = hctx->numa_node;
2278 if (node == NUMA_NO_NODE)
2279 node = hctx->numa_node = set->numa_node;
2280
2281 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2282 spin_lock_init(&hctx->lock);
2283 INIT_LIST_HEAD(&hctx->dispatch);
2284 hctx->queue = q;
2285 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2286
2287 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2288
2289 hctx->tags = set->tags[hctx_idx];
2290
2291 /*
2292 * Allocate space for all possible cpus to avoid allocation at
2293 * runtime
2294 */
2295 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2296 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2297 if (!hctx->ctxs)
2298 goto unregister_cpu_notifier;
2299
2300 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2301 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2302 goto free_ctxs;
2303
2304 hctx->nr_ctx = 0;
2305
2306 spin_lock_init(&hctx->dispatch_wait_lock);
2307 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2308 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2309
2310 if (set->ops->init_hctx &&
2311 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2312 goto free_bitmap;
2313
2314 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2315 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2316 if (!hctx->fq)
2317 goto exit_hctx;
2318
2319 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2320 goto free_fq;
2321
2322 if (hctx->flags & BLK_MQ_F_BLOCKING)
2323 init_srcu_struct(hctx->srcu);
2324
2325 return 0;
2326
2327 free_fq:
2328 kfree(hctx->fq);
2329 exit_hctx:
2330 if (set->ops->exit_hctx)
2331 set->ops->exit_hctx(hctx, hctx_idx);
2332 free_bitmap:
2333 sbitmap_free(&hctx->ctx_map);
2334 free_ctxs:
2335 kfree(hctx->ctxs);
2336 unregister_cpu_notifier:
2337 blk_mq_remove_cpuhp(hctx);
2338 return -1;
2339 }
2340
2341 static void blk_mq_init_cpu_queues(struct request_queue *q,
2342 unsigned int nr_hw_queues)
2343 {
2344 struct blk_mq_tag_set *set = q->tag_set;
2345 unsigned int i, j;
2346
2347 for_each_possible_cpu(i) {
2348 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2349 struct blk_mq_hw_ctx *hctx;
2350
2351 __ctx->cpu = i;
2352 spin_lock_init(&__ctx->lock);
2353 INIT_LIST_HEAD(&__ctx->rq_list);
2354 __ctx->queue = q;
2355
2356 /*
2357 * Set local node, IFF we have more than one hw queue. If
2358 * not, we remain on the home node of the device
2359 */
2360 for (j = 0; j < set->nr_maps; j++) {
2361 hctx = blk_mq_map_queue_type(q, j, i);
2362 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2363 hctx->numa_node = local_memory_node(cpu_to_node(i));
2364 }
2365 }
2366 }
2367
2368 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2369 {
2370 int ret = 0;
2371
2372 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2373 set->queue_depth, set->reserved_tags);
2374 if (!set->tags[hctx_idx])
2375 return false;
2376
2377 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2378 set->queue_depth);
2379 if (!ret)
2380 return true;
2381
2382 blk_mq_free_rq_map(set->tags[hctx_idx]);
2383 set->tags[hctx_idx] = NULL;
2384 return false;
2385 }
2386
2387 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2388 unsigned int hctx_idx)
2389 {
2390 if (set->tags && set->tags[hctx_idx]) {
2391 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2392 blk_mq_free_rq_map(set->tags[hctx_idx]);
2393 set->tags[hctx_idx] = NULL;
2394 }
2395 }
2396
2397 static void blk_mq_map_swqueue(struct request_queue *q)
2398 {
2399 unsigned int i, j, hctx_idx;
2400 struct blk_mq_hw_ctx *hctx;
2401 struct blk_mq_ctx *ctx;
2402 struct blk_mq_tag_set *set = q->tag_set;
2403
2404 /*
2405 * Avoid others reading imcomplete hctx->cpumask through sysfs
2406 */
2407 mutex_lock(&q->sysfs_lock);
2408
2409 queue_for_each_hw_ctx(q, hctx, i) {
2410 cpumask_clear(hctx->cpumask);
2411 hctx->nr_ctx = 0;
2412 hctx->dispatch_from = NULL;
2413 }
2414
2415 /*
2416 * Map software to hardware queues.
2417 *
2418 * If the cpu isn't present, the cpu is mapped to first hctx.
2419 */
2420 for_each_possible_cpu(i) {
2421 hctx_idx = set->map[0].mq_map[i];
2422 /* unmapped hw queue can be remapped after CPU topo changed */
2423 if (!set->tags[hctx_idx] &&
2424 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2425 /*
2426 * If tags initialization fail for some hctx,
2427 * that hctx won't be brought online. In this
2428 * case, remap the current ctx to hctx[0] which
2429 * is guaranteed to always have tags allocated
2430 */
2431 set->map[0].mq_map[i] = 0;
2432 }
2433
2434 ctx = per_cpu_ptr(q->queue_ctx, i);
2435 for (j = 0; j < set->nr_maps; j++) {
2436 hctx = blk_mq_map_queue_type(q, j, i);
2437
2438 /*
2439 * If the CPU is already set in the mask, then we've
2440 * mapped this one already. This can happen if
2441 * devices share queues across queue maps.
2442 */
2443 if (cpumask_test_cpu(i, hctx->cpumask))
2444 continue;
2445
2446 cpumask_set_cpu(i, hctx->cpumask);
2447 hctx->type = j;
2448 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2449 hctx->ctxs[hctx->nr_ctx++] = ctx;
2450
2451 /*
2452 * If the nr_ctx type overflows, we have exceeded the
2453 * amount of sw queues we can support.
2454 */
2455 BUG_ON(!hctx->nr_ctx);
2456 }
2457 }
2458
2459 mutex_unlock(&q->sysfs_lock);
2460
2461 queue_for_each_hw_ctx(q, hctx, i) {
2462 /*
2463 * If no software queues are mapped to this hardware queue,
2464 * disable it and free the request entries.
2465 */
2466 if (!hctx->nr_ctx) {
2467 /* Never unmap queue 0. We need it as a
2468 * fallback in case of a new remap fails
2469 * allocation
2470 */
2471 if (i && set->tags[i])
2472 blk_mq_free_map_and_requests(set, i);
2473
2474 hctx->tags = NULL;
2475 continue;
2476 }
2477
2478 hctx->tags = set->tags[i];
2479 WARN_ON(!hctx->tags);
2480
2481 /*
2482 * Set the map size to the number of mapped software queues.
2483 * This is more accurate and more efficient than looping
2484 * over all possibly mapped software queues.
2485 */
2486 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2487
2488 /*
2489 * Initialize batch roundrobin counts
2490 */
2491 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2492 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2493 }
2494 }
2495
2496 /*
2497 * Caller needs to ensure that we're either frozen/quiesced, or that
2498 * the queue isn't live yet.
2499 */
2500 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2501 {
2502 struct blk_mq_hw_ctx *hctx;
2503 int i;
2504
2505 queue_for_each_hw_ctx(q, hctx, i) {
2506 if (shared)
2507 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2508 else
2509 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2510 }
2511 }
2512
2513 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2514 bool shared)
2515 {
2516 struct request_queue *q;
2517
2518 lockdep_assert_held(&set->tag_list_lock);
2519
2520 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2521 blk_mq_freeze_queue(q);
2522 queue_set_hctx_shared(q, shared);
2523 blk_mq_unfreeze_queue(q);
2524 }
2525 }
2526
2527 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2528 {
2529 struct blk_mq_tag_set *set = q->tag_set;
2530
2531 mutex_lock(&set->tag_list_lock);
2532 list_del_rcu(&q->tag_set_list);
2533 if (list_is_singular(&set->tag_list)) {
2534 /* just transitioned to unshared */
2535 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2536 /* update existing queue */
2537 blk_mq_update_tag_set_depth(set, false);
2538 }
2539 mutex_unlock(&set->tag_list_lock);
2540 INIT_LIST_HEAD(&q->tag_set_list);
2541 }
2542
2543 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2544 struct request_queue *q)
2545 {
2546 mutex_lock(&set->tag_list_lock);
2547
2548 /*
2549 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2550 */
2551 if (!list_empty(&set->tag_list) &&
2552 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2553 set->flags |= BLK_MQ_F_TAG_SHARED;
2554 /* update existing queue */
2555 blk_mq_update_tag_set_depth(set, true);
2556 }
2557 if (set->flags & BLK_MQ_F_TAG_SHARED)
2558 queue_set_hctx_shared(q, true);
2559 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2560
2561 mutex_unlock(&set->tag_list_lock);
2562 }
2563
2564 /* All allocations will be freed in release handler of q->mq_kobj */
2565 static int blk_mq_alloc_ctxs(struct request_queue *q)
2566 {
2567 struct blk_mq_ctxs *ctxs;
2568 int cpu;
2569
2570 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2571 if (!ctxs)
2572 return -ENOMEM;
2573
2574 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2575 if (!ctxs->queue_ctx)
2576 goto fail;
2577
2578 for_each_possible_cpu(cpu) {
2579 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2580 ctx->ctxs = ctxs;
2581 }
2582
2583 q->mq_kobj = &ctxs->kobj;
2584 q->queue_ctx = ctxs->queue_ctx;
2585
2586 return 0;
2587 fail:
2588 kfree(ctxs);
2589 return -ENOMEM;
2590 }
2591
2592 /*
2593 * It is the actual release handler for mq, but we do it from
2594 * request queue's release handler for avoiding use-after-free
2595 * and headache because q->mq_kobj shouldn't have been introduced,
2596 * but we can't group ctx/kctx kobj without it.
2597 */
2598 void blk_mq_release(struct request_queue *q)
2599 {
2600 struct blk_mq_hw_ctx *hctx;
2601 unsigned int i;
2602
2603 /* hctx kobj stays in hctx */
2604 queue_for_each_hw_ctx(q, hctx, i) {
2605 if (!hctx)
2606 continue;
2607 kobject_put(&hctx->kobj);
2608 }
2609
2610 kfree(q->queue_hw_ctx);
2611
2612 /*
2613 * release .mq_kobj and sw queue's kobject now because
2614 * both share lifetime with request queue.
2615 */
2616 blk_mq_sysfs_deinit(q);
2617 }
2618
2619 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2620 {
2621 struct request_queue *uninit_q, *q;
2622
2623 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2624 if (!uninit_q)
2625 return ERR_PTR(-ENOMEM);
2626
2627 q = blk_mq_init_allocated_queue(set, uninit_q);
2628 if (IS_ERR(q))
2629 blk_cleanup_queue(uninit_q);
2630
2631 return q;
2632 }
2633 EXPORT_SYMBOL(blk_mq_init_queue);
2634
2635 /*
2636 * Helper for setting up a queue with mq ops, given queue depth, and
2637 * the passed in mq ops flags.
2638 */
2639 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2640 const struct blk_mq_ops *ops,
2641 unsigned int queue_depth,
2642 unsigned int set_flags)
2643 {
2644 struct request_queue *q;
2645 int ret;
2646
2647 memset(set, 0, sizeof(*set));
2648 set->ops = ops;
2649 set->nr_hw_queues = 1;
2650 set->nr_maps = 1;
2651 set->queue_depth = queue_depth;
2652 set->numa_node = NUMA_NO_NODE;
2653 set->flags = set_flags;
2654
2655 ret = blk_mq_alloc_tag_set(set);
2656 if (ret)
2657 return ERR_PTR(ret);
2658
2659 q = blk_mq_init_queue(set);
2660 if (IS_ERR(q)) {
2661 blk_mq_free_tag_set(set);
2662 return q;
2663 }
2664
2665 return q;
2666 }
2667 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2668
2669 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2670 {
2671 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2672
2673 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2674 __alignof__(struct blk_mq_hw_ctx)) !=
2675 sizeof(struct blk_mq_hw_ctx));
2676
2677 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2678 hw_ctx_size += sizeof(struct srcu_struct);
2679
2680 return hw_ctx_size;
2681 }
2682
2683 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2684 struct blk_mq_tag_set *set, struct request_queue *q,
2685 int hctx_idx, int node)
2686 {
2687 struct blk_mq_hw_ctx *hctx;
2688
2689 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2690 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2691 node);
2692 if (!hctx)
2693 return NULL;
2694
2695 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2696 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2697 node)) {
2698 kfree(hctx);
2699 return NULL;
2700 }
2701
2702 atomic_set(&hctx->nr_active, 0);
2703 hctx->numa_node = node;
2704 hctx->queue_num = hctx_idx;
2705
2706 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2707 free_cpumask_var(hctx->cpumask);
2708 kfree(hctx);
2709 return NULL;
2710 }
2711 blk_mq_hctx_kobj_init(hctx);
2712
2713 return hctx;
2714 }
2715
2716 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2717 struct request_queue *q)
2718 {
2719 int i, j, end;
2720 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2721
2722 /* protect against switching io scheduler */
2723 mutex_lock(&q->sysfs_lock);
2724 for (i = 0; i < set->nr_hw_queues; i++) {
2725 int node;
2726 struct blk_mq_hw_ctx *hctx;
2727
2728 node = blk_mq_hw_queue_to_node(&set->map[0], i);
2729 /*
2730 * If the hw queue has been mapped to another numa node,
2731 * we need to realloc the hctx. If allocation fails, fallback
2732 * to use the previous one.
2733 */
2734 if (hctxs[i] && (hctxs[i]->numa_node == node))
2735 continue;
2736
2737 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2738 if (hctx) {
2739 if (hctxs[i]) {
2740 blk_mq_exit_hctx(q, set, hctxs[i], i);
2741 kobject_put(&hctxs[i]->kobj);
2742 }
2743 hctxs[i] = hctx;
2744 } else {
2745 if (hctxs[i])
2746 pr_warn("Allocate new hctx on node %d fails,\
2747 fallback to previous one on node %d\n",
2748 node, hctxs[i]->numa_node);
2749 else
2750 break;
2751 }
2752 }
2753 /*
2754 * Increasing nr_hw_queues fails. Free the newly allocated
2755 * hctxs and keep the previous q->nr_hw_queues.
2756 */
2757 if (i != set->nr_hw_queues) {
2758 j = q->nr_hw_queues;
2759 end = i;
2760 } else {
2761 j = i;
2762 end = q->nr_hw_queues;
2763 q->nr_hw_queues = set->nr_hw_queues;
2764 }
2765
2766 for (; j < end; j++) {
2767 struct blk_mq_hw_ctx *hctx = hctxs[j];
2768
2769 if (hctx) {
2770 if (hctx->tags)
2771 blk_mq_free_map_and_requests(set, j);
2772 blk_mq_exit_hctx(q, set, hctx, j);
2773 kobject_put(&hctx->kobj);
2774 hctxs[j] = NULL;
2775
2776 }
2777 }
2778 mutex_unlock(&q->sysfs_lock);
2779 }
2780
2781 /*
2782 * Maximum number of hardware queues we support. For single sets, we'll never
2783 * have more than the CPUs (software queues). For multiple sets, the tag_set
2784 * user may have set ->nr_hw_queues larger.
2785 */
2786 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2787 {
2788 if (set->nr_maps == 1)
2789 return nr_cpu_ids;
2790
2791 return max(set->nr_hw_queues, nr_cpu_ids);
2792 }
2793
2794 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2795 struct request_queue *q)
2796 {
2797 /* mark the queue as mq asap */
2798 q->mq_ops = set->ops;
2799
2800 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2801 blk_mq_poll_stats_bkt,
2802 BLK_MQ_POLL_STATS_BKTS, q);
2803 if (!q->poll_cb)
2804 goto err_exit;
2805
2806 if (blk_mq_alloc_ctxs(q))
2807 goto err_exit;
2808
2809 /* init q->mq_kobj and sw queues' kobjects */
2810 blk_mq_sysfs_init(q);
2811
2812 q->nr_queues = nr_hw_queues(set);
2813 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2814 GFP_KERNEL, set->numa_node);
2815 if (!q->queue_hw_ctx)
2816 goto err_sys_init;
2817
2818 blk_mq_realloc_hw_ctxs(set, q);
2819 if (!q->nr_hw_queues)
2820 goto err_hctxs;
2821
2822 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2823 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2824
2825 q->tag_set = set;
2826
2827 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2828 if (set->nr_maps > HCTX_TYPE_POLL)
2829 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2830
2831 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2832 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2833
2834 q->sg_reserved_size = INT_MAX;
2835
2836 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2837 INIT_LIST_HEAD(&q->requeue_list);
2838 spin_lock_init(&q->requeue_lock);
2839
2840 blk_queue_make_request(q, blk_mq_make_request);
2841
2842 /*
2843 * Do this after blk_queue_make_request() overrides it...
2844 */
2845 q->nr_requests = set->queue_depth;
2846
2847 /*
2848 * Default to classic polling
2849 */
2850 q->poll_nsec = -1;
2851
2852 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2853 blk_mq_add_queue_tag_set(set, q);
2854 blk_mq_map_swqueue(q);
2855
2856 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2857 int ret;
2858
2859 ret = elevator_init_mq(q);
2860 if (ret)
2861 return ERR_PTR(ret);
2862 }
2863
2864 return q;
2865
2866 err_hctxs:
2867 kfree(q->queue_hw_ctx);
2868 err_sys_init:
2869 blk_mq_sysfs_deinit(q);
2870 err_exit:
2871 q->mq_ops = NULL;
2872 return ERR_PTR(-ENOMEM);
2873 }
2874 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2875
2876 void blk_mq_free_queue(struct request_queue *q)
2877 {
2878 struct blk_mq_tag_set *set = q->tag_set;
2879
2880 blk_mq_del_queue_tag_set(q);
2881 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2882 }
2883
2884 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2885 {
2886 int i;
2887
2888 for (i = 0; i < set->nr_hw_queues; i++)
2889 if (!__blk_mq_alloc_rq_map(set, i))
2890 goto out_unwind;
2891
2892 return 0;
2893
2894 out_unwind:
2895 while (--i >= 0)
2896 blk_mq_free_rq_map(set->tags[i]);
2897
2898 return -ENOMEM;
2899 }
2900
2901 /*
2902 * Allocate the request maps associated with this tag_set. Note that this
2903 * may reduce the depth asked for, if memory is tight. set->queue_depth
2904 * will be updated to reflect the allocated depth.
2905 */
2906 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2907 {
2908 unsigned int depth;
2909 int err;
2910
2911 depth = set->queue_depth;
2912 do {
2913 err = __blk_mq_alloc_rq_maps(set);
2914 if (!err)
2915 break;
2916
2917 set->queue_depth >>= 1;
2918 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2919 err = -ENOMEM;
2920 break;
2921 }
2922 } while (set->queue_depth);
2923
2924 if (!set->queue_depth || err) {
2925 pr_err("blk-mq: failed to allocate request map\n");
2926 return -ENOMEM;
2927 }
2928
2929 if (depth != set->queue_depth)
2930 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2931 depth, set->queue_depth);
2932
2933 return 0;
2934 }
2935
2936 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2937 {
2938 if (set->ops->map_queues && !is_kdump_kernel()) {
2939 int i;
2940
2941 /*
2942 * transport .map_queues is usually done in the following
2943 * way:
2944 *
2945 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2946 * mask = get_cpu_mask(queue)
2947 * for_each_cpu(cpu, mask)
2948 * set->map[x].mq_map[cpu] = queue;
2949 * }
2950 *
2951 * When we need to remap, the table has to be cleared for
2952 * killing stale mapping since one CPU may not be mapped
2953 * to any hw queue.
2954 */
2955 for (i = 0; i < set->nr_maps; i++)
2956 blk_mq_clear_mq_map(&set->map[i]);
2957
2958 return set->ops->map_queues(set);
2959 } else {
2960 BUG_ON(set->nr_maps > 1);
2961 return blk_mq_map_queues(&set->map[0]);
2962 }
2963 }
2964
2965 /*
2966 * Alloc a tag set to be associated with one or more request queues.
2967 * May fail with EINVAL for various error conditions. May adjust the
2968 * requested depth down, if it's too large. In that case, the set
2969 * value will be stored in set->queue_depth.
2970 */
2971 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2972 {
2973 int i, ret;
2974
2975 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2976
2977 if (!set->nr_hw_queues)
2978 return -EINVAL;
2979 if (!set->queue_depth)
2980 return -EINVAL;
2981 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2982 return -EINVAL;
2983
2984 if (!set->ops->queue_rq)
2985 return -EINVAL;
2986
2987 if (!set->ops->get_budget ^ !set->ops->put_budget)
2988 return -EINVAL;
2989
2990 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2991 pr_info("blk-mq: reduced tag depth to %u\n",
2992 BLK_MQ_MAX_DEPTH);
2993 set->queue_depth = BLK_MQ_MAX_DEPTH;
2994 }
2995
2996 if (!set->nr_maps)
2997 set->nr_maps = 1;
2998 else if (set->nr_maps > HCTX_MAX_TYPES)
2999 return -EINVAL;
3000
3001 /*
3002 * If a crashdump is active, then we are potentially in a very
3003 * memory constrained environment. Limit us to 1 queue and
3004 * 64 tags to prevent using too much memory.
3005 */
3006 if (is_kdump_kernel()) {
3007 set->nr_hw_queues = 1;
3008 set->nr_maps = 1;
3009 set->queue_depth = min(64U, set->queue_depth);
3010 }
3011 /*
3012 * There is no use for more h/w queues than cpus if we just have
3013 * a single map
3014 */
3015 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3016 set->nr_hw_queues = nr_cpu_ids;
3017
3018 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3019 GFP_KERNEL, set->numa_node);
3020 if (!set->tags)
3021 return -ENOMEM;
3022
3023 ret = -ENOMEM;
3024 for (i = 0; i < set->nr_maps; i++) {
3025 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3026 sizeof(struct blk_mq_queue_map),
3027 GFP_KERNEL, set->numa_node);
3028 if (!set->map[i].mq_map)
3029 goto out_free_mq_map;
3030 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3031 }
3032
3033 ret = blk_mq_update_queue_map(set);
3034 if (ret)
3035 goto out_free_mq_map;
3036
3037 ret = blk_mq_alloc_rq_maps(set);
3038 if (ret)
3039 goto out_free_mq_map;
3040
3041 mutex_init(&set->tag_list_lock);
3042 INIT_LIST_HEAD(&set->tag_list);
3043
3044 return 0;
3045
3046 out_free_mq_map:
3047 for (i = 0; i < set->nr_maps; i++) {
3048 kfree(set->map[i].mq_map);
3049 set->map[i].mq_map = NULL;
3050 }
3051 kfree(set->tags);
3052 set->tags = NULL;
3053 return ret;
3054 }
3055 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3056
3057 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3058 {
3059 int i, j;
3060
3061 for (i = 0; i < nr_hw_queues(set); i++)
3062 blk_mq_free_map_and_requests(set, i);
3063
3064 for (j = 0; j < set->nr_maps; j++) {
3065 kfree(set->map[j].mq_map);
3066 set->map[j].mq_map = NULL;
3067 }
3068
3069 kfree(set->tags);
3070 set->tags = NULL;
3071 }
3072 EXPORT_SYMBOL(blk_mq_free_tag_set);
3073
3074 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3075 {
3076 struct blk_mq_tag_set *set = q->tag_set;
3077 struct blk_mq_hw_ctx *hctx;
3078 int i, ret;
3079
3080 if (!set)
3081 return -EINVAL;
3082
3083 blk_mq_freeze_queue(q);
3084 blk_mq_quiesce_queue(q);
3085
3086 ret = 0;
3087 queue_for_each_hw_ctx(q, hctx, i) {
3088 if (!hctx->tags)
3089 continue;
3090 /*
3091 * If we're using an MQ scheduler, just update the scheduler
3092 * queue depth. This is similar to what the old code would do.
3093 */
3094 if (!hctx->sched_tags) {
3095 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3096 false);
3097 } else {
3098 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3099 nr, true);
3100 }
3101 if (ret)
3102 break;
3103 }
3104
3105 if (!ret)
3106 q->nr_requests = nr;
3107
3108 blk_mq_unquiesce_queue(q);
3109 blk_mq_unfreeze_queue(q);
3110
3111 return ret;
3112 }
3113
3114 /*
3115 * request_queue and elevator_type pair.
3116 * It is just used by __blk_mq_update_nr_hw_queues to cache
3117 * the elevator_type associated with a request_queue.
3118 */
3119 struct blk_mq_qe_pair {
3120 struct list_head node;
3121 struct request_queue *q;
3122 struct elevator_type *type;
3123 };
3124
3125 /*
3126 * Cache the elevator_type in qe pair list and switch the
3127 * io scheduler to 'none'
3128 */
3129 static bool blk_mq_elv_switch_none(struct list_head *head,
3130 struct request_queue *q)
3131 {
3132 struct blk_mq_qe_pair *qe;
3133
3134 if (!q->elevator)
3135 return true;
3136
3137 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3138 if (!qe)
3139 return false;
3140
3141 INIT_LIST_HEAD(&qe->node);
3142 qe->q = q;
3143 qe->type = q->elevator->type;
3144 list_add(&qe->node, head);
3145
3146 mutex_lock(&q->sysfs_lock);
3147 /*
3148 * After elevator_switch_mq, the previous elevator_queue will be
3149 * released by elevator_release. The reference of the io scheduler
3150 * module get by elevator_get will also be put. So we need to get
3151 * a reference of the io scheduler module here to prevent it to be
3152 * removed.
3153 */
3154 __module_get(qe->type->elevator_owner);
3155 elevator_switch_mq(q, NULL);
3156 mutex_unlock(&q->sysfs_lock);
3157
3158 return true;
3159 }
3160
3161 static void blk_mq_elv_switch_back(struct list_head *head,
3162 struct request_queue *q)
3163 {
3164 struct blk_mq_qe_pair *qe;
3165 struct elevator_type *t = NULL;
3166
3167 list_for_each_entry(qe, head, node)
3168 if (qe->q == q) {
3169 t = qe->type;
3170 break;
3171 }
3172
3173 if (!t)
3174 return;
3175
3176 list_del(&qe->node);
3177 kfree(qe);
3178
3179 mutex_lock(&q->sysfs_lock);
3180 elevator_switch_mq(q, t);
3181 mutex_unlock(&q->sysfs_lock);
3182 }
3183
3184 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3185 int nr_hw_queues)
3186 {
3187 struct request_queue *q;
3188 LIST_HEAD(head);
3189 int prev_nr_hw_queues;
3190
3191 lockdep_assert_held(&set->tag_list_lock);
3192
3193 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3194 nr_hw_queues = nr_cpu_ids;
3195 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3196 return;
3197
3198 list_for_each_entry(q, &set->tag_list, tag_set_list)
3199 blk_mq_freeze_queue(q);
3200 /*
3201 * Sync with blk_mq_queue_tag_busy_iter.
3202 */
3203 synchronize_rcu();
3204 /*
3205 * Switch IO scheduler to 'none', cleaning up the data associated
3206 * with the previous scheduler. We will switch back once we are done
3207 * updating the new sw to hw queue mappings.
3208 */
3209 list_for_each_entry(q, &set->tag_list, tag_set_list)
3210 if (!blk_mq_elv_switch_none(&head, q))
3211 goto switch_back;
3212
3213 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3214 blk_mq_debugfs_unregister_hctxs(q);
3215 blk_mq_sysfs_unregister(q);
3216 }
3217
3218 prev_nr_hw_queues = set->nr_hw_queues;
3219 set->nr_hw_queues = nr_hw_queues;
3220 blk_mq_update_queue_map(set);
3221 fallback:
3222 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3223 blk_mq_realloc_hw_ctxs(set, q);
3224 if (q->nr_hw_queues != set->nr_hw_queues) {
3225 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3226 nr_hw_queues, prev_nr_hw_queues);
3227 set->nr_hw_queues = prev_nr_hw_queues;
3228 blk_mq_map_queues(&set->map[0]);
3229 goto fallback;
3230 }
3231 blk_mq_map_swqueue(q);
3232 }
3233
3234 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3235 blk_mq_sysfs_register(q);
3236 blk_mq_debugfs_register_hctxs(q);
3237 }
3238
3239 switch_back:
3240 list_for_each_entry(q, &set->tag_list, tag_set_list)
3241 blk_mq_elv_switch_back(&head, q);
3242
3243 list_for_each_entry(q, &set->tag_list, tag_set_list)
3244 blk_mq_unfreeze_queue(q);
3245 }
3246
3247 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3248 {
3249 mutex_lock(&set->tag_list_lock);
3250 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3251 mutex_unlock(&set->tag_list_lock);
3252 }
3253 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3254
3255 /* Enable polling stats and return whether they were already enabled. */
3256 static bool blk_poll_stats_enable(struct request_queue *q)
3257 {
3258 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3259 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3260 return true;
3261 blk_stat_add_callback(q, q->poll_cb);
3262 return false;
3263 }
3264
3265 static void blk_mq_poll_stats_start(struct request_queue *q)
3266 {
3267 /*
3268 * We don't arm the callback if polling stats are not enabled or the
3269 * callback is already active.
3270 */
3271 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3272 blk_stat_is_active(q->poll_cb))
3273 return;
3274
3275 blk_stat_activate_msecs(q->poll_cb, 100);
3276 }
3277
3278 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3279 {
3280 struct request_queue *q = cb->data;
3281 int bucket;
3282
3283 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3284 if (cb->stat[bucket].nr_samples)
3285 q->poll_stat[bucket] = cb->stat[bucket];
3286 }
3287 }
3288
3289 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3290 struct blk_mq_hw_ctx *hctx,
3291 struct request *rq)
3292 {
3293 unsigned long ret = 0;
3294 int bucket;
3295
3296 /*
3297 * If stats collection isn't on, don't sleep but turn it on for
3298 * future users
3299 */
3300 if (!blk_poll_stats_enable(q))
3301 return 0;
3302
3303 /*
3304 * As an optimistic guess, use half of the mean service time
3305 * for this type of request. We can (and should) make this smarter.
3306 * For instance, if the completion latencies are tight, we can
3307 * get closer than just half the mean. This is especially
3308 * important on devices where the completion latencies are longer
3309 * than ~10 usec. We do use the stats for the relevant IO size
3310 * if available which does lead to better estimates.
3311 */
3312 bucket = blk_mq_poll_stats_bkt(rq);
3313 if (bucket < 0)
3314 return ret;
3315
3316 if (q->poll_stat[bucket].nr_samples)
3317 ret = (q->poll_stat[bucket].mean + 1) / 2;
3318
3319 return ret;
3320 }
3321
3322 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3323 struct blk_mq_hw_ctx *hctx,
3324 struct request *rq)
3325 {
3326 struct hrtimer_sleeper hs;
3327 enum hrtimer_mode mode;
3328 unsigned int nsecs;
3329 ktime_t kt;
3330
3331 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3332 return false;
3333
3334 /*
3335 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3336 *
3337 * 0: use half of prev avg
3338 * >0: use this specific value
3339 */
3340 if (q->poll_nsec > 0)
3341 nsecs = q->poll_nsec;
3342 else
3343 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3344
3345 if (!nsecs)
3346 return false;
3347
3348 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3349
3350 /*
3351 * This will be replaced with the stats tracking code, using
3352 * 'avg_completion_time / 2' as the pre-sleep target.
3353 */
3354 kt = nsecs;
3355
3356 mode = HRTIMER_MODE_REL;
3357 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3358 hrtimer_set_expires(&hs.timer, kt);
3359
3360 hrtimer_init_sleeper(&hs, current);
3361 do {
3362 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3363 break;
3364 set_current_state(TASK_UNINTERRUPTIBLE);
3365 hrtimer_start_expires(&hs.timer, mode);
3366 if (hs.task)
3367 io_schedule();
3368 hrtimer_cancel(&hs.timer);
3369 mode = HRTIMER_MODE_ABS;
3370 } while (hs.task && !signal_pending(current));
3371
3372 __set_current_state(TASK_RUNNING);
3373 destroy_hrtimer_on_stack(&hs.timer);
3374 return true;
3375 }
3376
3377 static bool blk_mq_poll_hybrid(struct request_queue *q,
3378 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3379 {
3380 struct request *rq;
3381
3382 if (q->poll_nsec == -1)
3383 return false;
3384
3385 if (!blk_qc_t_is_internal(cookie))
3386 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3387 else {
3388 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3389 /*
3390 * With scheduling, if the request has completed, we'll
3391 * get a NULL return here, as we clear the sched tag when
3392 * that happens. The request still remains valid, like always,
3393 * so we should be safe with just the NULL check.
3394 */
3395 if (!rq)
3396 return false;
3397 }
3398
3399 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3400 }
3401
3402 /**
3403 * blk_poll - poll for IO completions
3404 * @q: the queue
3405 * @cookie: cookie passed back at IO submission time
3406 * @spin: whether to spin for completions
3407 *
3408 * Description:
3409 * Poll for completions on the passed in queue. Returns number of
3410 * completed entries found. If @spin is true, then blk_poll will continue
3411 * looping until at least one completion is found, unless the task is
3412 * otherwise marked running (or we need to reschedule).
3413 */
3414 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3415 {
3416 struct blk_mq_hw_ctx *hctx;
3417 long state;
3418
3419 if (!blk_qc_t_valid(cookie) ||
3420 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3421 return 0;
3422
3423 if (current->plug)
3424 blk_flush_plug_list(current->plug, false);
3425
3426 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3427
3428 /*
3429 * If we sleep, have the caller restart the poll loop to reset
3430 * the state. Like for the other success return cases, the
3431 * caller is responsible for checking if the IO completed. If
3432 * the IO isn't complete, we'll get called again and will go
3433 * straight to the busy poll loop.
3434 */
3435 if (blk_mq_poll_hybrid(q, hctx, cookie))
3436 return 1;
3437
3438 hctx->poll_considered++;
3439
3440 state = current->state;
3441 do {
3442 int ret;
3443
3444 hctx->poll_invoked++;
3445
3446 ret = q->mq_ops->poll(hctx);
3447 if (ret > 0) {
3448 hctx->poll_success++;
3449 __set_current_state(TASK_RUNNING);
3450 return ret;
3451 }
3452
3453 if (signal_pending_state(state, current))
3454 __set_current_state(TASK_RUNNING);
3455
3456 if (current->state == TASK_RUNNING)
3457 return 1;
3458 if (ret < 0 || !spin)
3459 break;
3460 cpu_relax();
3461 } while (!need_resched());
3462
3463 __set_current_state(TASK_RUNNING);
3464 return 0;
3465 }
3466 EXPORT_SYMBOL_GPL(blk_poll);
3467
3468 unsigned int blk_mq_rq_cpu(struct request *rq)
3469 {
3470 return rq->mq_ctx->cpu;
3471 }
3472 EXPORT_SYMBOL(blk_mq_rq_cpu);
3473
3474 static int __init blk_mq_init(void)
3475 {
3476 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3477 blk_mq_hctx_notify_dead);
3478 return 0;
3479 }
3480 subsys_initcall(blk_mq_init);