]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
blk-mq: Export freeze/unfreeze functions
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 unsigned int i;
43
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
47
48 return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53 {
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65 {
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82 while (true) {
83 int ret;
84
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
87
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
95 }
96
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99 percpu_ref_put(&q->mq_usage_counter);
100 }
101
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
108 }
109
110 void blk_mq_freeze_queue_start(struct request_queue *q)
111 {
112 bool freeze;
113
114 spin_lock_irq(q->queue_lock);
115 freeze = !q->mq_freeze_depth++;
116 spin_unlock_irq(q->queue_lock);
117
118 if (freeze) {
119 percpu_ref_kill(&q->mq_usage_counter);
120 blk_mq_run_queues(q, false);
121 }
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
124
125 static void blk_mq_freeze_queue_wait(struct request_queue *q)
126 {
127 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
128 }
129
130 /*
131 * Guarantee no request is in use, so we can change any data structure of
132 * the queue afterward.
133 */
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136 blk_mq_freeze_queue_start(q);
137 blk_mq_freeze_queue_wait(q);
138 }
139
140 void blk_mq_unfreeze_queue(struct request_queue *q)
141 {
142 bool wake;
143
144 spin_lock_irq(q->queue_lock);
145 wake = !--q->mq_freeze_depth;
146 WARN_ON_ONCE(q->mq_freeze_depth < 0);
147 spin_unlock_irq(q->queue_lock);
148 if (wake) {
149 percpu_ref_reinit(&q->mq_usage_counter);
150 wake_up_all(&q->mq_freeze_wq);
151 }
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156 {
157 return blk_mq_has_free_tags(hctx->tags);
158 }
159 EXPORT_SYMBOL(blk_mq_can_queue);
160
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, unsigned int rw_flags)
163 {
164 if (blk_queue_io_stat(q))
165 rw_flags |= REQ_IO_STAT;
166
167 INIT_LIST_HEAD(&rq->queuelist);
168 /* csd/requeue_work/fifo_time is initialized before use */
169 rq->q = q;
170 rq->mq_ctx = ctx;
171 rq->cmd_flags |= rw_flags;
172 /* do not touch atomic flags, it needs atomic ops against the timer */
173 rq->cpu = -1;
174 INIT_HLIST_NODE(&rq->hash);
175 RB_CLEAR_NODE(&rq->rb_node);
176 rq->rq_disk = NULL;
177 rq->part = NULL;
178 rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
180 rq->rl = NULL;
181 set_start_time_ns(rq);
182 rq->io_start_time_ns = 0;
183 #endif
184 rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq->nr_integrity_segments = 0;
187 #endif
188 rq->special = NULL;
189 /* tag was already set */
190 rq->errors = 0;
191
192 rq->cmd = rq->__cmd;
193
194 rq->extra_len = 0;
195 rq->sense_len = 0;
196 rq->resid_len = 0;
197 rq->sense = NULL;
198
199 INIT_LIST_HEAD(&rq->timeout_list);
200 rq->timeout = 0;
201
202 rq->end_io = NULL;
203 rq->end_io_data = NULL;
204 rq->next_rq = NULL;
205
206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207 }
208
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 {
212 struct request *rq;
213 unsigned int tag;
214
215 tag = blk_mq_get_tag(data);
216 if (tag != BLK_MQ_TAG_FAIL) {
217 rq = data->hctx->tags->rqs[tag];
218
219 if (blk_mq_tag_busy(data->hctx)) {
220 rq->cmd_flags = REQ_MQ_INFLIGHT;
221 atomic_inc(&data->hctx->nr_active);
222 }
223
224 rq->tag = tag;
225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 return rq;
227 }
228
229 return NULL;
230 }
231
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
233 bool reserved)
234 {
235 struct blk_mq_ctx *ctx;
236 struct blk_mq_hw_ctx *hctx;
237 struct request *rq;
238 struct blk_mq_alloc_data alloc_data;
239 int ret;
240
241 ret = blk_mq_queue_enter(q);
242 if (ret)
243 return ERR_PTR(ret);
244
245 ctx = blk_mq_get_ctx(q);
246 hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
248 reserved, ctx, hctx);
249
250 rq = __blk_mq_alloc_request(&alloc_data, rw);
251 if (!rq && (gfp & __GFP_WAIT)) {
252 __blk_mq_run_hw_queue(hctx);
253 blk_mq_put_ctx(ctx);
254
255 ctx = blk_mq_get_ctx(q);
256 hctx = q->mq_ops->map_queue(q, ctx->cpu);
257 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
258 hctx);
259 rq = __blk_mq_alloc_request(&alloc_data, rw);
260 ctx = alloc_data.ctx;
261 }
262 blk_mq_put_ctx(ctx);
263 if (!rq) {
264 blk_mq_queue_exit(q);
265 return ERR_PTR(-EWOULDBLOCK);
266 }
267 return rq;
268 }
269 EXPORT_SYMBOL(blk_mq_alloc_request);
270
271 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
272 struct blk_mq_ctx *ctx, struct request *rq)
273 {
274 const int tag = rq->tag;
275 struct request_queue *q = rq->q;
276
277 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
278 atomic_dec(&hctx->nr_active);
279 rq->cmd_flags = 0;
280
281 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
282 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
283 blk_mq_queue_exit(q);
284 }
285
286 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
287 {
288 struct blk_mq_ctx *ctx = rq->mq_ctx;
289
290 ctx->rq_completed[rq_is_sync(rq)]++;
291 __blk_mq_free_request(hctx, ctx, rq);
292
293 }
294 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
295
296 void blk_mq_free_request(struct request *rq)
297 {
298 struct blk_mq_hw_ctx *hctx;
299 struct request_queue *q = rq->q;
300
301 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
302 blk_mq_free_hctx_request(hctx, rq);
303 }
304 EXPORT_SYMBOL_GPL(blk_mq_free_request);
305
306 inline void __blk_mq_end_request(struct request *rq, int error)
307 {
308 blk_account_io_done(rq);
309
310 if (rq->end_io) {
311 rq->end_io(rq, error);
312 } else {
313 if (unlikely(blk_bidi_rq(rq)))
314 blk_mq_free_request(rq->next_rq);
315 blk_mq_free_request(rq);
316 }
317 }
318 EXPORT_SYMBOL(__blk_mq_end_request);
319
320 void blk_mq_end_request(struct request *rq, int error)
321 {
322 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
323 BUG();
324 __blk_mq_end_request(rq, error);
325 }
326 EXPORT_SYMBOL(blk_mq_end_request);
327
328 static void __blk_mq_complete_request_remote(void *data)
329 {
330 struct request *rq = data;
331
332 rq->q->softirq_done_fn(rq);
333 }
334
335 static void blk_mq_ipi_complete_request(struct request *rq)
336 {
337 struct blk_mq_ctx *ctx = rq->mq_ctx;
338 bool shared = false;
339 int cpu;
340
341 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
342 rq->q->softirq_done_fn(rq);
343 return;
344 }
345
346 cpu = get_cpu();
347 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
348 shared = cpus_share_cache(cpu, ctx->cpu);
349
350 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
351 rq->csd.func = __blk_mq_complete_request_remote;
352 rq->csd.info = rq;
353 rq->csd.flags = 0;
354 smp_call_function_single_async(ctx->cpu, &rq->csd);
355 } else {
356 rq->q->softirq_done_fn(rq);
357 }
358 put_cpu();
359 }
360
361 void __blk_mq_complete_request(struct request *rq)
362 {
363 struct request_queue *q = rq->q;
364
365 if (!q->softirq_done_fn)
366 blk_mq_end_request(rq, rq->errors);
367 else
368 blk_mq_ipi_complete_request(rq);
369 }
370
371 /**
372 * blk_mq_complete_request - end I/O on a request
373 * @rq: the request being processed
374 *
375 * Description:
376 * Ends all I/O on a request. It does not handle partial completions.
377 * The actual completion happens out-of-order, through a IPI handler.
378 **/
379 void blk_mq_complete_request(struct request *rq)
380 {
381 struct request_queue *q = rq->q;
382
383 if (unlikely(blk_should_fake_timeout(q)))
384 return;
385 if (!blk_mark_rq_complete(rq))
386 __blk_mq_complete_request(rq);
387 }
388 EXPORT_SYMBOL(blk_mq_complete_request);
389
390 void blk_mq_start_request(struct request *rq)
391 {
392 struct request_queue *q = rq->q;
393
394 trace_block_rq_issue(q, rq);
395
396 rq->resid_len = blk_rq_bytes(rq);
397 if (unlikely(blk_bidi_rq(rq)))
398 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
399
400 blk_add_timer(rq);
401
402 /*
403 * Ensure that ->deadline is visible before set the started
404 * flag and clear the completed flag.
405 */
406 smp_mb__before_atomic();
407
408 /*
409 * Mark us as started and clear complete. Complete might have been
410 * set if requeue raced with timeout, which then marked it as
411 * complete. So be sure to clear complete again when we start
412 * the request, otherwise we'll ignore the completion event.
413 */
414 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
415 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
416 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
417 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
418
419 if (q->dma_drain_size && blk_rq_bytes(rq)) {
420 /*
421 * Make sure space for the drain appears. We know we can do
422 * this because max_hw_segments has been adjusted to be one
423 * fewer than the device can handle.
424 */
425 rq->nr_phys_segments++;
426 }
427 }
428 EXPORT_SYMBOL(blk_mq_start_request);
429
430 static void __blk_mq_requeue_request(struct request *rq)
431 {
432 struct request_queue *q = rq->q;
433
434 trace_block_rq_requeue(q, rq);
435
436 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
437 if (q->dma_drain_size && blk_rq_bytes(rq))
438 rq->nr_phys_segments--;
439 }
440 }
441
442 void blk_mq_requeue_request(struct request *rq)
443 {
444 __blk_mq_requeue_request(rq);
445
446 BUG_ON(blk_queued_rq(rq));
447 blk_mq_add_to_requeue_list(rq, true);
448 }
449 EXPORT_SYMBOL(blk_mq_requeue_request);
450
451 static void blk_mq_requeue_work(struct work_struct *work)
452 {
453 struct request_queue *q =
454 container_of(work, struct request_queue, requeue_work);
455 LIST_HEAD(rq_list);
456 struct request *rq, *next;
457 unsigned long flags;
458
459 spin_lock_irqsave(&q->requeue_lock, flags);
460 list_splice_init(&q->requeue_list, &rq_list);
461 spin_unlock_irqrestore(&q->requeue_lock, flags);
462
463 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
464 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
465 continue;
466
467 rq->cmd_flags &= ~REQ_SOFTBARRIER;
468 list_del_init(&rq->queuelist);
469 blk_mq_insert_request(rq, true, false, false);
470 }
471
472 while (!list_empty(&rq_list)) {
473 rq = list_entry(rq_list.next, struct request, queuelist);
474 list_del_init(&rq->queuelist);
475 blk_mq_insert_request(rq, false, false, false);
476 }
477
478 /*
479 * Use the start variant of queue running here, so that running
480 * the requeue work will kick stopped queues.
481 */
482 blk_mq_start_hw_queues(q);
483 }
484
485 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
486 {
487 struct request_queue *q = rq->q;
488 unsigned long flags;
489
490 /*
491 * We abuse this flag that is otherwise used by the I/O scheduler to
492 * request head insertation from the workqueue.
493 */
494 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
495
496 spin_lock_irqsave(&q->requeue_lock, flags);
497 if (at_head) {
498 rq->cmd_flags |= REQ_SOFTBARRIER;
499 list_add(&rq->queuelist, &q->requeue_list);
500 } else {
501 list_add_tail(&rq->queuelist, &q->requeue_list);
502 }
503 spin_unlock_irqrestore(&q->requeue_lock, flags);
504 }
505 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
506
507 void blk_mq_kick_requeue_list(struct request_queue *q)
508 {
509 kblockd_schedule_work(&q->requeue_work);
510 }
511 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
512
513 static inline bool is_flush_request(struct request *rq,
514 struct blk_flush_queue *fq, unsigned int tag)
515 {
516 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
517 fq->flush_rq->tag == tag);
518 }
519
520 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
521 {
522 struct request *rq = tags->rqs[tag];
523 /* mq_ctx of flush rq is always cloned from the corresponding req */
524 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
525
526 if (!is_flush_request(rq, fq, tag))
527 return rq;
528
529 return fq->flush_rq;
530 }
531 EXPORT_SYMBOL(blk_mq_tag_to_rq);
532
533 struct blk_mq_timeout_data {
534 unsigned long next;
535 unsigned int next_set;
536 };
537
538 void blk_mq_rq_timed_out(struct request *req, bool reserved)
539 {
540 struct blk_mq_ops *ops = req->q->mq_ops;
541 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
542
543 /*
544 * We know that complete is set at this point. If STARTED isn't set
545 * anymore, then the request isn't active and the "timeout" should
546 * just be ignored. This can happen due to the bitflag ordering.
547 * Timeout first checks if STARTED is set, and if it is, assumes
548 * the request is active. But if we race with completion, then
549 * we both flags will get cleared. So check here again, and ignore
550 * a timeout event with a request that isn't active.
551 */
552 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
553 return;
554
555 if (ops->timeout)
556 ret = ops->timeout(req, reserved);
557
558 switch (ret) {
559 case BLK_EH_HANDLED:
560 __blk_mq_complete_request(req);
561 break;
562 case BLK_EH_RESET_TIMER:
563 blk_add_timer(req);
564 blk_clear_rq_complete(req);
565 break;
566 case BLK_EH_NOT_HANDLED:
567 break;
568 default:
569 printk(KERN_ERR "block: bad eh return: %d\n", ret);
570 break;
571 }
572 }
573
574 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
575 struct request *rq, void *priv, bool reserved)
576 {
577 struct blk_mq_timeout_data *data = priv;
578
579 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
580 return;
581
582 if (time_after_eq(jiffies, rq->deadline)) {
583 if (!blk_mark_rq_complete(rq))
584 blk_mq_rq_timed_out(rq, reserved);
585 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
586 data->next = rq->deadline;
587 data->next_set = 1;
588 }
589 }
590
591 static void blk_mq_rq_timer(unsigned long priv)
592 {
593 struct request_queue *q = (struct request_queue *)priv;
594 struct blk_mq_timeout_data data = {
595 .next = 0,
596 .next_set = 0,
597 };
598 struct blk_mq_hw_ctx *hctx;
599 int i;
600
601 queue_for_each_hw_ctx(q, hctx, i) {
602 /*
603 * If not software queues are currently mapped to this
604 * hardware queue, there's nothing to check
605 */
606 if (!blk_mq_hw_queue_mapped(hctx))
607 continue;
608
609 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
610 }
611
612 if (data.next_set) {
613 data.next = blk_rq_timeout(round_jiffies_up(data.next));
614 mod_timer(&q->timeout, data.next);
615 } else {
616 queue_for_each_hw_ctx(q, hctx, i)
617 blk_mq_tag_idle(hctx);
618 }
619 }
620
621 /*
622 * Reverse check our software queue for entries that we could potentially
623 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
624 * too much time checking for merges.
625 */
626 static bool blk_mq_attempt_merge(struct request_queue *q,
627 struct blk_mq_ctx *ctx, struct bio *bio)
628 {
629 struct request *rq;
630 int checked = 8;
631
632 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
633 int el_ret;
634
635 if (!checked--)
636 break;
637
638 if (!blk_rq_merge_ok(rq, bio))
639 continue;
640
641 el_ret = blk_try_merge(rq, bio);
642 if (el_ret == ELEVATOR_BACK_MERGE) {
643 if (bio_attempt_back_merge(q, rq, bio)) {
644 ctx->rq_merged++;
645 return true;
646 }
647 break;
648 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
649 if (bio_attempt_front_merge(q, rq, bio)) {
650 ctx->rq_merged++;
651 return true;
652 }
653 break;
654 }
655 }
656
657 return false;
658 }
659
660 /*
661 * Process software queues that have been marked busy, splicing them
662 * to the for-dispatch
663 */
664 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
665 {
666 struct blk_mq_ctx *ctx;
667 int i;
668
669 for (i = 0; i < hctx->ctx_map.map_size; i++) {
670 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
671 unsigned int off, bit;
672
673 if (!bm->word)
674 continue;
675
676 bit = 0;
677 off = i * hctx->ctx_map.bits_per_word;
678 do {
679 bit = find_next_bit(&bm->word, bm->depth, bit);
680 if (bit >= bm->depth)
681 break;
682
683 ctx = hctx->ctxs[bit + off];
684 clear_bit(bit, &bm->word);
685 spin_lock(&ctx->lock);
686 list_splice_tail_init(&ctx->rq_list, list);
687 spin_unlock(&ctx->lock);
688
689 bit++;
690 } while (1);
691 }
692 }
693
694 /*
695 * Run this hardware queue, pulling any software queues mapped to it in.
696 * Note that this function currently has various problems around ordering
697 * of IO. In particular, we'd like FIFO behaviour on handling existing
698 * items on the hctx->dispatch list. Ignore that for now.
699 */
700 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
701 {
702 struct request_queue *q = hctx->queue;
703 struct request *rq;
704 LIST_HEAD(rq_list);
705 LIST_HEAD(driver_list);
706 struct list_head *dptr;
707 int queued;
708
709 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
710
711 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
712 return;
713
714 hctx->run++;
715
716 /*
717 * Touch any software queue that has pending entries.
718 */
719 flush_busy_ctxs(hctx, &rq_list);
720
721 /*
722 * If we have previous entries on our dispatch list, grab them
723 * and stuff them at the front for more fair dispatch.
724 */
725 if (!list_empty_careful(&hctx->dispatch)) {
726 spin_lock(&hctx->lock);
727 if (!list_empty(&hctx->dispatch))
728 list_splice_init(&hctx->dispatch, &rq_list);
729 spin_unlock(&hctx->lock);
730 }
731
732 /*
733 * Start off with dptr being NULL, so we start the first request
734 * immediately, even if we have more pending.
735 */
736 dptr = NULL;
737
738 /*
739 * Now process all the entries, sending them to the driver.
740 */
741 queued = 0;
742 while (!list_empty(&rq_list)) {
743 struct blk_mq_queue_data bd;
744 int ret;
745
746 rq = list_first_entry(&rq_list, struct request, queuelist);
747 list_del_init(&rq->queuelist);
748
749 bd.rq = rq;
750 bd.list = dptr;
751 bd.last = list_empty(&rq_list);
752
753 ret = q->mq_ops->queue_rq(hctx, &bd);
754 switch (ret) {
755 case BLK_MQ_RQ_QUEUE_OK:
756 queued++;
757 continue;
758 case BLK_MQ_RQ_QUEUE_BUSY:
759 list_add(&rq->queuelist, &rq_list);
760 __blk_mq_requeue_request(rq);
761 break;
762 default:
763 pr_err("blk-mq: bad return on queue: %d\n", ret);
764 case BLK_MQ_RQ_QUEUE_ERROR:
765 rq->errors = -EIO;
766 blk_mq_end_request(rq, rq->errors);
767 break;
768 }
769
770 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
771 break;
772
773 /*
774 * We've done the first request. If we have more than 1
775 * left in the list, set dptr to defer issue.
776 */
777 if (!dptr && rq_list.next != rq_list.prev)
778 dptr = &driver_list;
779 }
780
781 if (!queued)
782 hctx->dispatched[0]++;
783 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
784 hctx->dispatched[ilog2(queued) + 1]++;
785
786 /*
787 * Any items that need requeuing? Stuff them into hctx->dispatch,
788 * that is where we will continue on next queue run.
789 */
790 if (!list_empty(&rq_list)) {
791 spin_lock(&hctx->lock);
792 list_splice(&rq_list, &hctx->dispatch);
793 spin_unlock(&hctx->lock);
794 }
795 }
796
797 /*
798 * It'd be great if the workqueue API had a way to pass
799 * in a mask and had some smarts for more clever placement.
800 * For now we just round-robin here, switching for every
801 * BLK_MQ_CPU_WORK_BATCH queued items.
802 */
803 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
804 {
805 if (hctx->queue->nr_hw_queues == 1)
806 return WORK_CPU_UNBOUND;
807
808 if (--hctx->next_cpu_batch <= 0) {
809 int cpu = hctx->next_cpu, next_cpu;
810
811 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
812 if (next_cpu >= nr_cpu_ids)
813 next_cpu = cpumask_first(hctx->cpumask);
814
815 hctx->next_cpu = next_cpu;
816 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
817
818 return cpu;
819 }
820
821 return hctx->next_cpu;
822 }
823
824 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
825 {
826 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
827 !blk_mq_hw_queue_mapped(hctx)))
828 return;
829
830 if (!async) {
831 int cpu = get_cpu();
832 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
833 __blk_mq_run_hw_queue(hctx);
834 put_cpu();
835 return;
836 }
837
838 put_cpu();
839 }
840
841 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
842 &hctx->run_work, 0);
843 }
844
845 void blk_mq_run_queues(struct request_queue *q, bool async)
846 {
847 struct blk_mq_hw_ctx *hctx;
848 int i;
849
850 queue_for_each_hw_ctx(q, hctx, i) {
851 if ((!blk_mq_hctx_has_pending(hctx) &&
852 list_empty_careful(&hctx->dispatch)) ||
853 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
854 continue;
855
856 blk_mq_run_hw_queue(hctx, async);
857 }
858 }
859 EXPORT_SYMBOL(blk_mq_run_queues);
860
861 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
862 {
863 cancel_delayed_work(&hctx->run_work);
864 cancel_delayed_work(&hctx->delay_work);
865 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
866 }
867 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
868
869 void blk_mq_stop_hw_queues(struct request_queue *q)
870 {
871 struct blk_mq_hw_ctx *hctx;
872 int i;
873
874 queue_for_each_hw_ctx(q, hctx, i)
875 blk_mq_stop_hw_queue(hctx);
876 }
877 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
878
879 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
880 {
881 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
882
883 blk_mq_run_hw_queue(hctx, false);
884 }
885 EXPORT_SYMBOL(blk_mq_start_hw_queue);
886
887 void blk_mq_start_hw_queues(struct request_queue *q)
888 {
889 struct blk_mq_hw_ctx *hctx;
890 int i;
891
892 queue_for_each_hw_ctx(q, hctx, i)
893 blk_mq_start_hw_queue(hctx);
894 }
895 EXPORT_SYMBOL(blk_mq_start_hw_queues);
896
897
898 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
899 {
900 struct blk_mq_hw_ctx *hctx;
901 int i;
902
903 queue_for_each_hw_ctx(q, hctx, i) {
904 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
905 continue;
906
907 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
908 blk_mq_run_hw_queue(hctx, async);
909 }
910 }
911 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
912
913 static void blk_mq_run_work_fn(struct work_struct *work)
914 {
915 struct blk_mq_hw_ctx *hctx;
916
917 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
918
919 __blk_mq_run_hw_queue(hctx);
920 }
921
922 static void blk_mq_delay_work_fn(struct work_struct *work)
923 {
924 struct blk_mq_hw_ctx *hctx;
925
926 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
927
928 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
929 __blk_mq_run_hw_queue(hctx);
930 }
931
932 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
933 {
934 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
935 return;
936
937 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
938 &hctx->delay_work, msecs_to_jiffies(msecs));
939 }
940 EXPORT_SYMBOL(blk_mq_delay_queue);
941
942 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
943 struct request *rq, bool at_head)
944 {
945 struct blk_mq_ctx *ctx = rq->mq_ctx;
946
947 trace_block_rq_insert(hctx->queue, rq);
948
949 if (at_head)
950 list_add(&rq->queuelist, &ctx->rq_list);
951 else
952 list_add_tail(&rq->queuelist, &ctx->rq_list);
953
954 blk_mq_hctx_mark_pending(hctx, ctx);
955 }
956
957 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
958 bool async)
959 {
960 struct request_queue *q = rq->q;
961 struct blk_mq_hw_ctx *hctx;
962 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
963
964 current_ctx = blk_mq_get_ctx(q);
965 if (!cpu_online(ctx->cpu))
966 rq->mq_ctx = ctx = current_ctx;
967
968 hctx = q->mq_ops->map_queue(q, ctx->cpu);
969
970 spin_lock(&ctx->lock);
971 __blk_mq_insert_request(hctx, rq, at_head);
972 spin_unlock(&ctx->lock);
973
974 if (run_queue)
975 blk_mq_run_hw_queue(hctx, async);
976
977 blk_mq_put_ctx(current_ctx);
978 }
979
980 static void blk_mq_insert_requests(struct request_queue *q,
981 struct blk_mq_ctx *ctx,
982 struct list_head *list,
983 int depth,
984 bool from_schedule)
985
986 {
987 struct blk_mq_hw_ctx *hctx;
988 struct blk_mq_ctx *current_ctx;
989
990 trace_block_unplug(q, depth, !from_schedule);
991
992 current_ctx = blk_mq_get_ctx(q);
993
994 if (!cpu_online(ctx->cpu))
995 ctx = current_ctx;
996 hctx = q->mq_ops->map_queue(q, ctx->cpu);
997
998 /*
999 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1000 * offline now
1001 */
1002 spin_lock(&ctx->lock);
1003 while (!list_empty(list)) {
1004 struct request *rq;
1005
1006 rq = list_first_entry(list, struct request, queuelist);
1007 list_del_init(&rq->queuelist);
1008 rq->mq_ctx = ctx;
1009 __blk_mq_insert_request(hctx, rq, false);
1010 }
1011 spin_unlock(&ctx->lock);
1012
1013 blk_mq_run_hw_queue(hctx, from_schedule);
1014 blk_mq_put_ctx(current_ctx);
1015 }
1016
1017 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1018 {
1019 struct request *rqa = container_of(a, struct request, queuelist);
1020 struct request *rqb = container_of(b, struct request, queuelist);
1021
1022 return !(rqa->mq_ctx < rqb->mq_ctx ||
1023 (rqa->mq_ctx == rqb->mq_ctx &&
1024 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1025 }
1026
1027 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1028 {
1029 struct blk_mq_ctx *this_ctx;
1030 struct request_queue *this_q;
1031 struct request *rq;
1032 LIST_HEAD(list);
1033 LIST_HEAD(ctx_list);
1034 unsigned int depth;
1035
1036 list_splice_init(&plug->mq_list, &list);
1037
1038 list_sort(NULL, &list, plug_ctx_cmp);
1039
1040 this_q = NULL;
1041 this_ctx = NULL;
1042 depth = 0;
1043
1044 while (!list_empty(&list)) {
1045 rq = list_entry_rq(list.next);
1046 list_del_init(&rq->queuelist);
1047 BUG_ON(!rq->q);
1048 if (rq->mq_ctx != this_ctx) {
1049 if (this_ctx) {
1050 blk_mq_insert_requests(this_q, this_ctx,
1051 &ctx_list, depth,
1052 from_schedule);
1053 }
1054
1055 this_ctx = rq->mq_ctx;
1056 this_q = rq->q;
1057 depth = 0;
1058 }
1059
1060 depth++;
1061 list_add_tail(&rq->queuelist, &ctx_list);
1062 }
1063
1064 /*
1065 * If 'this_ctx' is set, we know we have entries to complete
1066 * on 'ctx_list'. Do those.
1067 */
1068 if (this_ctx) {
1069 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1070 from_schedule);
1071 }
1072 }
1073
1074 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1075 {
1076 init_request_from_bio(rq, bio);
1077
1078 if (blk_do_io_stat(rq))
1079 blk_account_io_start(rq, 1);
1080 }
1081
1082 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1083 {
1084 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1085 !blk_queue_nomerges(hctx->queue);
1086 }
1087
1088 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1089 struct blk_mq_ctx *ctx,
1090 struct request *rq, struct bio *bio)
1091 {
1092 if (!hctx_allow_merges(hctx)) {
1093 blk_mq_bio_to_request(rq, bio);
1094 spin_lock(&ctx->lock);
1095 insert_rq:
1096 __blk_mq_insert_request(hctx, rq, false);
1097 spin_unlock(&ctx->lock);
1098 return false;
1099 } else {
1100 struct request_queue *q = hctx->queue;
1101
1102 spin_lock(&ctx->lock);
1103 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1104 blk_mq_bio_to_request(rq, bio);
1105 goto insert_rq;
1106 }
1107
1108 spin_unlock(&ctx->lock);
1109 __blk_mq_free_request(hctx, ctx, rq);
1110 return true;
1111 }
1112 }
1113
1114 struct blk_map_ctx {
1115 struct blk_mq_hw_ctx *hctx;
1116 struct blk_mq_ctx *ctx;
1117 };
1118
1119 static struct request *blk_mq_map_request(struct request_queue *q,
1120 struct bio *bio,
1121 struct blk_map_ctx *data)
1122 {
1123 struct blk_mq_hw_ctx *hctx;
1124 struct blk_mq_ctx *ctx;
1125 struct request *rq;
1126 int rw = bio_data_dir(bio);
1127 struct blk_mq_alloc_data alloc_data;
1128
1129 if (unlikely(blk_mq_queue_enter(q))) {
1130 bio_endio(bio, -EIO);
1131 return NULL;
1132 }
1133
1134 ctx = blk_mq_get_ctx(q);
1135 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1136
1137 if (rw_is_sync(bio->bi_rw))
1138 rw |= REQ_SYNC;
1139
1140 trace_block_getrq(q, bio, rw);
1141 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1142 hctx);
1143 rq = __blk_mq_alloc_request(&alloc_data, rw);
1144 if (unlikely(!rq)) {
1145 __blk_mq_run_hw_queue(hctx);
1146 blk_mq_put_ctx(ctx);
1147 trace_block_sleeprq(q, bio, rw);
1148
1149 ctx = blk_mq_get_ctx(q);
1150 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1151 blk_mq_set_alloc_data(&alloc_data, q,
1152 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1153 rq = __blk_mq_alloc_request(&alloc_data, rw);
1154 ctx = alloc_data.ctx;
1155 hctx = alloc_data.hctx;
1156 }
1157
1158 hctx->queued++;
1159 data->hctx = hctx;
1160 data->ctx = ctx;
1161 return rq;
1162 }
1163
1164 /*
1165 * Multiple hardware queue variant. This will not use per-process plugs,
1166 * but will attempt to bypass the hctx queueing if we can go straight to
1167 * hardware for SYNC IO.
1168 */
1169 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1170 {
1171 const int is_sync = rw_is_sync(bio->bi_rw);
1172 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1173 struct blk_map_ctx data;
1174 struct request *rq;
1175
1176 blk_queue_bounce(q, &bio);
1177
1178 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1179 bio_endio(bio, -EIO);
1180 return;
1181 }
1182
1183 rq = blk_mq_map_request(q, bio, &data);
1184 if (unlikely(!rq))
1185 return;
1186
1187 if (unlikely(is_flush_fua)) {
1188 blk_mq_bio_to_request(rq, bio);
1189 blk_insert_flush(rq);
1190 goto run_queue;
1191 }
1192
1193 /*
1194 * If the driver supports defer issued based on 'last', then
1195 * queue it up like normal since we can potentially save some
1196 * CPU this way.
1197 */
1198 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1199 struct blk_mq_queue_data bd = {
1200 .rq = rq,
1201 .list = NULL,
1202 .last = 1
1203 };
1204 int ret;
1205
1206 blk_mq_bio_to_request(rq, bio);
1207
1208 /*
1209 * For OK queue, we are done. For error, kill it. Any other
1210 * error (busy), just add it to our list as we previously
1211 * would have done
1212 */
1213 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1214 if (ret == BLK_MQ_RQ_QUEUE_OK)
1215 goto done;
1216 else {
1217 __blk_mq_requeue_request(rq);
1218
1219 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1220 rq->errors = -EIO;
1221 blk_mq_end_request(rq, rq->errors);
1222 goto done;
1223 }
1224 }
1225 }
1226
1227 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1228 /*
1229 * For a SYNC request, send it to the hardware immediately. For
1230 * an ASYNC request, just ensure that we run it later on. The
1231 * latter allows for merging opportunities and more efficient
1232 * dispatching.
1233 */
1234 run_queue:
1235 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1236 }
1237 done:
1238 blk_mq_put_ctx(data.ctx);
1239 }
1240
1241 /*
1242 * Single hardware queue variant. This will attempt to use any per-process
1243 * plug for merging and IO deferral.
1244 */
1245 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1246 {
1247 const int is_sync = rw_is_sync(bio->bi_rw);
1248 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1249 unsigned int use_plug, request_count = 0;
1250 struct blk_map_ctx data;
1251 struct request *rq;
1252
1253 /*
1254 * If we have multiple hardware queues, just go directly to
1255 * one of those for sync IO.
1256 */
1257 use_plug = !is_flush_fua && !is_sync;
1258
1259 blk_queue_bounce(q, &bio);
1260
1261 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1262 bio_endio(bio, -EIO);
1263 return;
1264 }
1265
1266 if (use_plug && !blk_queue_nomerges(q) &&
1267 blk_attempt_plug_merge(q, bio, &request_count))
1268 return;
1269
1270 rq = blk_mq_map_request(q, bio, &data);
1271 if (unlikely(!rq))
1272 return;
1273
1274 if (unlikely(is_flush_fua)) {
1275 blk_mq_bio_to_request(rq, bio);
1276 blk_insert_flush(rq);
1277 goto run_queue;
1278 }
1279
1280 /*
1281 * A task plug currently exists. Since this is completely lockless,
1282 * utilize that to temporarily store requests until the task is
1283 * either done or scheduled away.
1284 */
1285 if (use_plug) {
1286 struct blk_plug *plug = current->plug;
1287
1288 if (plug) {
1289 blk_mq_bio_to_request(rq, bio);
1290 if (list_empty(&plug->mq_list))
1291 trace_block_plug(q);
1292 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1293 blk_flush_plug_list(plug, false);
1294 trace_block_plug(q);
1295 }
1296 list_add_tail(&rq->queuelist, &plug->mq_list);
1297 blk_mq_put_ctx(data.ctx);
1298 return;
1299 }
1300 }
1301
1302 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1303 /*
1304 * For a SYNC request, send it to the hardware immediately. For
1305 * an ASYNC request, just ensure that we run it later on. The
1306 * latter allows for merging opportunities and more efficient
1307 * dispatching.
1308 */
1309 run_queue:
1310 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1311 }
1312
1313 blk_mq_put_ctx(data.ctx);
1314 }
1315
1316 /*
1317 * Default mapping to a software queue, since we use one per CPU.
1318 */
1319 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1320 {
1321 return q->queue_hw_ctx[q->mq_map[cpu]];
1322 }
1323 EXPORT_SYMBOL(blk_mq_map_queue);
1324
1325 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1326 struct blk_mq_tags *tags, unsigned int hctx_idx)
1327 {
1328 struct page *page;
1329
1330 if (tags->rqs && set->ops->exit_request) {
1331 int i;
1332
1333 for (i = 0; i < tags->nr_tags; i++) {
1334 if (!tags->rqs[i])
1335 continue;
1336 set->ops->exit_request(set->driver_data, tags->rqs[i],
1337 hctx_idx, i);
1338 tags->rqs[i] = NULL;
1339 }
1340 }
1341
1342 while (!list_empty(&tags->page_list)) {
1343 page = list_first_entry(&tags->page_list, struct page, lru);
1344 list_del_init(&page->lru);
1345 __free_pages(page, page->private);
1346 }
1347
1348 kfree(tags->rqs);
1349
1350 blk_mq_free_tags(tags);
1351 }
1352
1353 static size_t order_to_size(unsigned int order)
1354 {
1355 return (size_t)PAGE_SIZE << order;
1356 }
1357
1358 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1359 unsigned int hctx_idx)
1360 {
1361 struct blk_mq_tags *tags;
1362 unsigned int i, j, entries_per_page, max_order = 4;
1363 size_t rq_size, left;
1364
1365 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1366 set->numa_node);
1367 if (!tags)
1368 return NULL;
1369
1370 INIT_LIST_HEAD(&tags->page_list);
1371
1372 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1373 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1374 set->numa_node);
1375 if (!tags->rqs) {
1376 blk_mq_free_tags(tags);
1377 return NULL;
1378 }
1379
1380 /*
1381 * rq_size is the size of the request plus driver payload, rounded
1382 * to the cacheline size
1383 */
1384 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1385 cache_line_size());
1386 left = rq_size * set->queue_depth;
1387
1388 for (i = 0; i < set->queue_depth; ) {
1389 int this_order = max_order;
1390 struct page *page;
1391 int to_do;
1392 void *p;
1393
1394 while (left < order_to_size(this_order - 1) && this_order)
1395 this_order--;
1396
1397 do {
1398 page = alloc_pages_node(set->numa_node,
1399 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1400 this_order);
1401 if (page)
1402 break;
1403 if (!this_order--)
1404 break;
1405 if (order_to_size(this_order) < rq_size)
1406 break;
1407 } while (1);
1408
1409 if (!page)
1410 goto fail;
1411
1412 page->private = this_order;
1413 list_add_tail(&page->lru, &tags->page_list);
1414
1415 p = page_address(page);
1416 entries_per_page = order_to_size(this_order) / rq_size;
1417 to_do = min(entries_per_page, set->queue_depth - i);
1418 left -= to_do * rq_size;
1419 for (j = 0; j < to_do; j++) {
1420 tags->rqs[i] = p;
1421 tags->rqs[i]->atomic_flags = 0;
1422 tags->rqs[i]->cmd_flags = 0;
1423 if (set->ops->init_request) {
1424 if (set->ops->init_request(set->driver_data,
1425 tags->rqs[i], hctx_idx, i,
1426 set->numa_node)) {
1427 tags->rqs[i] = NULL;
1428 goto fail;
1429 }
1430 }
1431
1432 p += rq_size;
1433 i++;
1434 }
1435 }
1436
1437 return tags;
1438
1439 fail:
1440 blk_mq_free_rq_map(set, tags, hctx_idx);
1441 return NULL;
1442 }
1443
1444 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1445 {
1446 kfree(bitmap->map);
1447 }
1448
1449 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1450 {
1451 unsigned int bpw = 8, total, num_maps, i;
1452
1453 bitmap->bits_per_word = bpw;
1454
1455 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1456 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1457 GFP_KERNEL, node);
1458 if (!bitmap->map)
1459 return -ENOMEM;
1460
1461 bitmap->map_size = num_maps;
1462
1463 total = nr_cpu_ids;
1464 for (i = 0; i < num_maps; i++) {
1465 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1466 total -= bitmap->map[i].depth;
1467 }
1468
1469 return 0;
1470 }
1471
1472 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1473 {
1474 struct request_queue *q = hctx->queue;
1475 struct blk_mq_ctx *ctx;
1476 LIST_HEAD(tmp);
1477
1478 /*
1479 * Move ctx entries to new CPU, if this one is going away.
1480 */
1481 ctx = __blk_mq_get_ctx(q, cpu);
1482
1483 spin_lock(&ctx->lock);
1484 if (!list_empty(&ctx->rq_list)) {
1485 list_splice_init(&ctx->rq_list, &tmp);
1486 blk_mq_hctx_clear_pending(hctx, ctx);
1487 }
1488 spin_unlock(&ctx->lock);
1489
1490 if (list_empty(&tmp))
1491 return NOTIFY_OK;
1492
1493 ctx = blk_mq_get_ctx(q);
1494 spin_lock(&ctx->lock);
1495
1496 while (!list_empty(&tmp)) {
1497 struct request *rq;
1498
1499 rq = list_first_entry(&tmp, struct request, queuelist);
1500 rq->mq_ctx = ctx;
1501 list_move_tail(&rq->queuelist, &ctx->rq_list);
1502 }
1503
1504 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1505 blk_mq_hctx_mark_pending(hctx, ctx);
1506
1507 spin_unlock(&ctx->lock);
1508
1509 blk_mq_run_hw_queue(hctx, true);
1510 blk_mq_put_ctx(ctx);
1511 return NOTIFY_OK;
1512 }
1513
1514 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1515 {
1516 struct request_queue *q = hctx->queue;
1517 struct blk_mq_tag_set *set = q->tag_set;
1518
1519 if (set->tags[hctx->queue_num])
1520 return NOTIFY_OK;
1521
1522 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1523 if (!set->tags[hctx->queue_num])
1524 return NOTIFY_STOP;
1525
1526 hctx->tags = set->tags[hctx->queue_num];
1527 return NOTIFY_OK;
1528 }
1529
1530 static int blk_mq_hctx_notify(void *data, unsigned long action,
1531 unsigned int cpu)
1532 {
1533 struct blk_mq_hw_ctx *hctx = data;
1534
1535 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1536 return blk_mq_hctx_cpu_offline(hctx, cpu);
1537 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1538 return blk_mq_hctx_cpu_online(hctx, cpu);
1539
1540 return NOTIFY_OK;
1541 }
1542
1543 static void blk_mq_exit_hctx(struct request_queue *q,
1544 struct blk_mq_tag_set *set,
1545 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1546 {
1547 unsigned flush_start_tag = set->queue_depth;
1548
1549 blk_mq_tag_idle(hctx);
1550
1551 if (set->ops->exit_request)
1552 set->ops->exit_request(set->driver_data,
1553 hctx->fq->flush_rq, hctx_idx,
1554 flush_start_tag + hctx_idx);
1555
1556 if (set->ops->exit_hctx)
1557 set->ops->exit_hctx(hctx, hctx_idx);
1558
1559 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1560 blk_free_flush_queue(hctx->fq);
1561 kfree(hctx->ctxs);
1562 blk_mq_free_bitmap(&hctx->ctx_map);
1563 }
1564
1565 static void blk_mq_exit_hw_queues(struct request_queue *q,
1566 struct blk_mq_tag_set *set, int nr_queue)
1567 {
1568 struct blk_mq_hw_ctx *hctx;
1569 unsigned int i;
1570
1571 queue_for_each_hw_ctx(q, hctx, i) {
1572 if (i == nr_queue)
1573 break;
1574 blk_mq_exit_hctx(q, set, hctx, i);
1575 }
1576 }
1577
1578 static void blk_mq_free_hw_queues(struct request_queue *q,
1579 struct blk_mq_tag_set *set)
1580 {
1581 struct blk_mq_hw_ctx *hctx;
1582 unsigned int i;
1583
1584 queue_for_each_hw_ctx(q, hctx, i) {
1585 free_cpumask_var(hctx->cpumask);
1586 kfree(hctx);
1587 }
1588 }
1589
1590 static int blk_mq_init_hctx(struct request_queue *q,
1591 struct blk_mq_tag_set *set,
1592 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1593 {
1594 int node;
1595 unsigned flush_start_tag = set->queue_depth;
1596
1597 node = hctx->numa_node;
1598 if (node == NUMA_NO_NODE)
1599 node = hctx->numa_node = set->numa_node;
1600
1601 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1602 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1603 spin_lock_init(&hctx->lock);
1604 INIT_LIST_HEAD(&hctx->dispatch);
1605 hctx->queue = q;
1606 hctx->queue_num = hctx_idx;
1607 hctx->flags = set->flags;
1608 hctx->cmd_size = set->cmd_size;
1609
1610 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1611 blk_mq_hctx_notify, hctx);
1612 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1613
1614 hctx->tags = set->tags[hctx_idx];
1615
1616 /*
1617 * Allocate space for all possible cpus to avoid allocation at
1618 * runtime
1619 */
1620 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1621 GFP_KERNEL, node);
1622 if (!hctx->ctxs)
1623 goto unregister_cpu_notifier;
1624
1625 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1626 goto free_ctxs;
1627
1628 hctx->nr_ctx = 0;
1629
1630 if (set->ops->init_hctx &&
1631 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1632 goto free_bitmap;
1633
1634 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1635 if (!hctx->fq)
1636 goto exit_hctx;
1637
1638 if (set->ops->init_request &&
1639 set->ops->init_request(set->driver_data,
1640 hctx->fq->flush_rq, hctx_idx,
1641 flush_start_tag + hctx_idx, node))
1642 goto free_fq;
1643
1644 return 0;
1645
1646 free_fq:
1647 kfree(hctx->fq);
1648 exit_hctx:
1649 if (set->ops->exit_hctx)
1650 set->ops->exit_hctx(hctx, hctx_idx);
1651 free_bitmap:
1652 blk_mq_free_bitmap(&hctx->ctx_map);
1653 free_ctxs:
1654 kfree(hctx->ctxs);
1655 unregister_cpu_notifier:
1656 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1657
1658 return -1;
1659 }
1660
1661 static int blk_mq_init_hw_queues(struct request_queue *q,
1662 struct blk_mq_tag_set *set)
1663 {
1664 struct blk_mq_hw_ctx *hctx;
1665 unsigned int i;
1666
1667 /*
1668 * Initialize hardware queues
1669 */
1670 queue_for_each_hw_ctx(q, hctx, i) {
1671 if (blk_mq_init_hctx(q, set, hctx, i))
1672 break;
1673 }
1674
1675 if (i == q->nr_hw_queues)
1676 return 0;
1677
1678 /*
1679 * Init failed
1680 */
1681 blk_mq_exit_hw_queues(q, set, i);
1682
1683 return 1;
1684 }
1685
1686 static void blk_mq_init_cpu_queues(struct request_queue *q,
1687 unsigned int nr_hw_queues)
1688 {
1689 unsigned int i;
1690
1691 for_each_possible_cpu(i) {
1692 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1693 struct blk_mq_hw_ctx *hctx;
1694
1695 memset(__ctx, 0, sizeof(*__ctx));
1696 __ctx->cpu = i;
1697 spin_lock_init(&__ctx->lock);
1698 INIT_LIST_HEAD(&__ctx->rq_list);
1699 __ctx->queue = q;
1700
1701 /* If the cpu isn't online, the cpu is mapped to first hctx */
1702 if (!cpu_online(i))
1703 continue;
1704
1705 hctx = q->mq_ops->map_queue(q, i);
1706 cpumask_set_cpu(i, hctx->cpumask);
1707 hctx->nr_ctx++;
1708
1709 /*
1710 * Set local node, IFF we have more than one hw queue. If
1711 * not, we remain on the home node of the device
1712 */
1713 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1714 hctx->numa_node = cpu_to_node(i);
1715 }
1716 }
1717
1718 static void blk_mq_map_swqueue(struct request_queue *q)
1719 {
1720 unsigned int i;
1721 struct blk_mq_hw_ctx *hctx;
1722 struct blk_mq_ctx *ctx;
1723
1724 queue_for_each_hw_ctx(q, hctx, i) {
1725 cpumask_clear(hctx->cpumask);
1726 hctx->nr_ctx = 0;
1727 }
1728
1729 /*
1730 * Map software to hardware queues
1731 */
1732 queue_for_each_ctx(q, ctx, i) {
1733 /* If the cpu isn't online, the cpu is mapped to first hctx */
1734 if (!cpu_online(i))
1735 continue;
1736
1737 hctx = q->mq_ops->map_queue(q, i);
1738 cpumask_set_cpu(i, hctx->cpumask);
1739 ctx->index_hw = hctx->nr_ctx;
1740 hctx->ctxs[hctx->nr_ctx++] = ctx;
1741 }
1742
1743 queue_for_each_hw_ctx(q, hctx, i) {
1744 /*
1745 * If no software queues are mapped to this hardware queue,
1746 * disable it and free the request entries.
1747 */
1748 if (!hctx->nr_ctx) {
1749 struct blk_mq_tag_set *set = q->tag_set;
1750
1751 if (set->tags[i]) {
1752 blk_mq_free_rq_map(set, set->tags[i], i);
1753 set->tags[i] = NULL;
1754 hctx->tags = NULL;
1755 }
1756 continue;
1757 }
1758
1759 /*
1760 * Initialize batch roundrobin counts
1761 */
1762 hctx->next_cpu = cpumask_first(hctx->cpumask);
1763 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1764 }
1765 }
1766
1767 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1768 {
1769 struct blk_mq_hw_ctx *hctx;
1770 struct request_queue *q;
1771 bool shared;
1772 int i;
1773
1774 if (set->tag_list.next == set->tag_list.prev)
1775 shared = false;
1776 else
1777 shared = true;
1778
1779 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1780 blk_mq_freeze_queue(q);
1781
1782 queue_for_each_hw_ctx(q, hctx, i) {
1783 if (shared)
1784 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1785 else
1786 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1787 }
1788 blk_mq_unfreeze_queue(q);
1789 }
1790 }
1791
1792 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1793 {
1794 struct blk_mq_tag_set *set = q->tag_set;
1795
1796 mutex_lock(&set->tag_list_lock);
1797 list_del_init(&q->tag_set_list);
1798 blk_mq_update_tag_set_depth(set);
1799 mutex_unlock(&set->tag_list_lock);
1800 }
1801
1802 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1803 struct request_queue *q)
1804 {
1805 q->tag_set = set;
1806
1807 mutex_lock(&set->tag_list_lock);
1808 list_add_tail(&q->tag_set_list, &set->tag_list);
1809 blk_mq_update_tag_set_depth(set);
1810 mutex_unlock(&set->tag_list_lock);
1811 }
1812
1813 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1814 {
1815 struct blk_mq_hw_ctx **hctxs;
1816 struct blk_mq_ctx __percpu *ctx;
1817 struct request_queue *q;
1818 unsigned int *map;
1819 int i;
1820
1821 ctx = alloc_percpu(struct blk_mq_ctx);
1822 if (!ctx)
1823 return ERR_PTR(-ENOMEM);
1824
1825 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1826 set->numa_node);
1827
1828 if (!hctxs)
1829 goto err_percpu;
1830
1831 map = blk_mq_make_queue_map(set);
1832 if (!map)
1833 goto err_map;
1834
1835 for (i = 0; i < set->nr_hw_queues; i++) {
1836 int node = blk_mq_hw_queue_to_node(map, i);
1837
1838 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1839 GFP_KERNEL, node);
1840 if (!hctxs[i])
1841 goto err_hctxs;
1842
1843 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1844 node))
1845 goto err_hctxs;
1846
1847 atomic_set(&hctxs[i]->nr_active, 0);
1848 hctxs[i]->numa_node = node;
1849 hctxs[i]->queue_num = i;
1850 }
1851
1852 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1853 if (!q)
1854 goto err_hctxs;
1855
1856 /*
1857 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1858 * See blk_register_queue() for details.
1859 */
1860 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1861 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1862 goto err_map;
1863
1864 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1865 blk_queue_rq_timeout(q, 30000);
1866
1867 q->nr_queues = nr_cpu_ids;
1868 q->nr_hw_queues = set->nr_hw_queues;
1869 q->mq_map = map;
1870
1871 q->queue_ctx = ctx;
1872 q->queue_hw_ctx = hctxs;
1873
1874 q->mq_ops = set->ops;
1875 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1876
1877 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1878 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1879
1880 q->sg_reserved_size = INT_MAX;
1881
1882 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1883 INIT_LIST_HEAD(&q->requeue_list);
1884 spin_lock_init(&q->requeue_lock);
1885
1886 if (q->nr_hw_queues > 1)
1887 blk_queue_make_request(q, blk_mq_make_request);
1888 else
1889 blk_queue_make_request(q, blk_sq_make_request);
1890
1891 if (set->timeout)
1892 blk_queue_rq_timeout(q, set->timeout);
1893
1894 /*
1895 * Do this after blk_queue_make_request() overrides it...
1896 */
1897 q->nr_requests = set->queue_depth;
1898
1899 if (set->ops->complete)
1900 blk_queue_softirq_done(q, set->ops->complete);
1901
1902 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1903
1904 if (blk_mq_init_hw_queues(q, set))
1905 goto err_hw;
1906
1907 mutex_lock(&all_q_mutex);
1908 list_add_tail(&q->all_q_node, &all_q_list);
1909 mutex_unlock(&all_q_mutex);
1910
1911 blk_mq_add_queue_tag_set(set, q);
1912
1913 blk_mq_map_swqueue(q);
1914
1915 return q;
1916
1917 err_hw:
1918 blk_cleanup_queue(q);
1919 err_hctxs:
1920 kfree(map);
1921 for (i = 0; i < set->nr_hw_queues; i++) {
1922 if (!hctxs[i])
1923 break;
1924 free_cpumask_var(hctxs[i]->cpumask);
1925 kfree(hctxs[i]);
1926 }
1927 err_map:
1928 kfree(hctxs);
1929 err_percpu:
1930 free_percpu(ctx);
1931 return ERR_PTR(-ENOMEM);
1932 }
1933 EXPORT_SYMBOL(blk_mq_init_queue);
1934
1935 void blk_mq_free_queue(struct request_queue *q)
1936 {
1937 struct blk_mq_tag_set *set = q->tag_set;
1938
1939 blk_mq_del_queue_tag_set(q);
1940
1941 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1942 blk_mq_free_hw_queues(q, set);
1943
1944 percpu_ref_exit(&q->mq_usage_counter);
1945
1946 free_percpu(q->queue_ctx);
1947 kfree(q->queue_hw_ctx);
1948 kfree(q->mq_map);
1949
1950 q->queue_ctx = NULL;
1951 q->queue_hw_ctx = NULL;
1952 q->mq_map = NULL;
1953
1954 mutex_lock(&all_q_mutex);
1955 list_del_init(&q->all_q_node);
1956 mutex_unlock(&all_q_mutex);
1957 }
1958
1959 /* Basically redo blk_mq_init_queue with queue frozen */
1960 static void blk_mq_queue_reinit(struct request_queue *q)
1961 {
1962 WARN_ON_ONCE(!q->mq_freeze_depth);
1963
1964 blk_mq_sysfs_unregister(q);
1965
1966 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1967
1968 /*
1969 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1970 * we should change hctx numa_node according to new topology (this
1971 * involves free and re-allocate memory, worthy doing?)
1972 */
1973
1974 blk_mq_map_swqueue(q);
1975
1976 blk_mq_sysfs_register(q);
1977 }
1978
1979 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1980 unsigned long action, void *hcpu)
1981 {
1982 struct request_queue *q;
1983
1984 /*
1985 * Before new mappings are established, hotadded cpu might already
1986 * start handling requests. This doesn't break anything as we map
1987 * offline CPUs to first hardware queue. We will re-init the queue
1988 * below to get optimal settings.
1989 */
1990 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1991 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1992 return NOTIFY_OK;
1993
1994 mutex_lock(&all_q_mutex);
1995
1996 /*
1997 * We need to freeze and reinit all existing queues. Freezing
1998 * involves synchronous wait for an RCU grace period and doing it
1999 * one by one may take a long time. Start freezing all queues in
2000 * one swoop and then wait for the completions so that freezing can
2001 * take place in parallel.
2002 */
2003 list_for_each_entry(q, &all_q_list, all_q_node)
2004 blk_mq_freeze_queue_start(q);
2005 list_for_each_entry(q, &all_q_list, all_q_node)
2006 blk_mq_freeze_queue_wait(q);
2007
2008 list_for_each_entry(q, &all_q_list, all_q_node)
2009 blk_mq_queue_reinit(q);
2010
2011 list_for_each_entry(q, &all_q_list, all_q_node)
2012 blk_mq_unfreeze_queue(q);
2013
2014 mutex_unlock(&all_q_mutex);
2015 return NOTIFY_OK;
2016 }
2017
2018 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2019 {
2020 int i;
2021
2022 for (i = 0; i < set->nr_hw_queues; i++) {
2023 set->tags[i] = blk_mq_init_rq_map(set, i);
2024 if (!set->tags[i])
2025 goto out_unwind;
2026 }
2027
2028 return 0;
2029
2030 out_unwind:
2031 while (--i >= 0)
2032 blk_mq_free_rq_map(set, set->tags[i], i);
2033
2034 return -ENOMEM;
2035 }
2036
2037 /*
2038 * Allocate the request maps associated with this tag_set. Note that this
2039 * may reduce the depth asked for, if memory is tight. set->queue_depth
2040 * will be updated to reflect the allocated depth.
2041 */
2042 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2043 {
2044 unsigned int depth;
2045 int err;
2046
2047 depth = set->queue_depth;
2048 do {
2049 err = __blk_mq_alloc_rq_maps(set);
2050 if (!err)
2051 break;
2052
2053 set->queue_depth >>= 1;
2054 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2055 err = -ENOMEM;
2056 break;
2057 }
2058 } while (set->queue_depth);
2059
2060 if (!set->queue_depth || err) {
2061 pr_err("blk-mq: failed to allocate request map\n");
2062 return -ENOMEM;
2063 }
2064
2065 if (depth != set->queue_depth)
2066 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2067 depth, set->queue_depth);
2068
2069 return 0;
2070 }
2071
2072 /*
2073 * Alloc a tag set to be associated with one or more request queues.
2074 * May fail with EINVAL for various error conditions. May adjust the
2075 * requested depth down, if if it too large. In that case, the set
2076 * value will be stored in set->queue_depth.
2077 */
2078 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2079 {
2080 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2081
2082 if (!set->nr_hw_queues)
2083 return -EINVAL;
2084 if (!set->queue_depth)
2085 return -EINVAL;
2086 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2087 return -EINVAL;
2088
2089 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2090 return -EINVAL;
2091
2092 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2093 pr_info("blk-mq: reduced tag depth to %u\n",
2094 BLK_MQ_MAX_DEPTH);
2095 set->queue_depth = BLK_MQ_MAX_DEPTH;
2096 }
2097
2098 /*
2099 * If a crashdump is active, then we are potentially in a very
2100 * memory constrained environment. Limit us to 1 queue and
2101 * 64 tags to prevent using too much memory.
2102 */
2103 if (is_kdump_kernel()) {
2104 set->nr_hw_queues = 1;
2105 set->queue_depth = min(64U, set->queue_depth);
2106 }
2107
2108 set->tags = kmalloc_node(set->nr_hw_queues *
2109 sizeof(struct blk_mq_tags *),
2110 GFP_KERNEL, set->numa_node);
2111 if (!set->tags)
2112 return -ENOMEM;
2113
2114 if (blk_mq_alloc_rq_maps(set))
2115 goto enomem;
2116
2117 mutex_init(&set->tag_list_lock);
2118 INIT_LIST_HEAD(&set->tag_list);
2119
2120 return 0;
2121 enomem:
2122 kfree(set->tags);
2123 set->tags = NULL;
2124 return -ENOMEM;
2125 }
2126 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2127
2128 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2129 {
2130 int i;
2131
2132 for (i = 0; i < set->nr_hw_queues; i++) {
2133 if (set->tags[i])
2134 blk_mq_free_rq_map(set, set->tags[i], i);
2135 }
2136
2137 kfree(set->tags);
2138 set->tags = NULL;
2139 }
2140 EXPORT_SYMBOL(blk_mq_free_tag_set);
2141
2142 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2143 {
2144 struct blk_mq_tag_set *set = q->tag_set;
2145 struct blk_mq_hw_ctx *hctx;
2146 int i, ret;
2147
2148 if (!set || nr > set->queue_depth)
2149 return -EINVAL;
2150
2151 ret = 0;
2152 queue_for_each_hw_ctx(q, hctx, i) {
2153 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2154 if (ret)
2155 break;
2156 }
2157
2158 if (!ret)
2159 q->nr_requests = nr;
2160
2161 return ret;
2162 }
2163
2164 void blk_mq_disable_hotplug(void)
2165 {
2166 mutex_lock(&all_q_mutex);
2167 }
2168
2169 void blk_mq_enable_hotplug(void)
2170 {
2171 mutex_unlock(&all_q_mutex);
2172 }
2173
2174 static int __init blk_mq_init(void)
2175 {
2176 blk_mq_cpu_init();
2177
2178 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2179
2180 return 0;
2181 }
2182 subsys_initcall(blk_mq_init);