]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
block: Revert v5.0 blk_mq_request_issue_directly() changes
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx, dispatch list or elevator
63 * have pending work in this hardware queue.
64 */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67 return !list_empty_careful(&hctx->dispatch) ||
68 sbitmap_any_bit_set(&hctx->ctx_map) ||
69 blk_mq_sched_has_work(hctx);
70 }
71
72 /*
73 * Mark this ctx as having pending work in this hardware queue
74 */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 struct blk_mq_ctx *ctx)
77 {
78 const int bit = ctx->index_hw[hctx->type];
79
80 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
81 sbitmap_set_bit(&hctx->ctx_map, bit);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86 {
87 const int bit = ctx->index_hw[hctx->type];
88
89 sbitmap_clear_bit(&hctx->ctx_map, bit);
90 }
91
92 struct mq_inflight {
93 struct hd_struct *part;
94 unsigned int *inflight;
95 };
96
97 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
98 struct request *rq, void *priv,
99 bool reserved)
100 {
101 struct mq_inflight *mi = priv;
102
103 /*
104 * index[0] counts the specific partition that was asked for.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108
109 return true;
110 }
111
112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 {
114 unsigned inflight[2];
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119
120 return inflight[0];
121 }
122
123 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
124 struct request *rq, void *priv,
125 bool reserved)
126 {
127 struct mq_inflight *mi = priv;
128
129 if (rq->part == mi->part)
130 mi->inflight[rq_data_dir(rq)]++;
131
132 return true;
133 }
134
135 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
136 unsigned int inflight[2])
137 {
138 struct mq_inflight mi = { .part = part, .inflight = inflight, };
139
140 inflight[0] = inflight[1] = 0;
141 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
142 }
143
144 void blk_freeze_queue_start(struct request_queue *q)
145 {
146 int freeze_depth;
147
148 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
149 if (freeze_depth == 1) {
150 percpu_ref_kill(&q->q_usage_counter);
151 if (queue_is_mq(q))
152 blk_mq_run_hw_queues(q, false);
153 }
154 }
155 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
156
157 void blk_mq_freeze_queue_wait(struct request_queue *q)
158 {
159 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
162
163 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
164 unsigned long timeout)
165 {
166 return wait_event_timeout(q->mq_freeze_wq,
167 percpu_ref_is_zero(&q->q_usage_counter),
168 timeout);
169 }
170 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
171
172 /*
173 * Guarantee no request is in use, so we can change any data structure of
174 * the queue afterward.
175 */
176 void blk_freeze_queue(struct request_queue *q)
177 {
178 /*
179 * In the !blk_mq case we are only calling this to kill the
180 * q_usage_counter, otherwise this increases the freeze depth
181 * and waits for it to return to zero. For this reason there is
182 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
183 * exported to drivers as the only user for unfreeze is blk_mq.
184 */
185 blk_freeze_queue_start(q);
186 blk_mq_freeze_queue_wait(q);
187 }
188
189 void blk_mq_freeze_queue(struct request_queue *q)
190 {
191 /*
192 * ...just an alias to keep freeze and unfreeze actions balanced
193 * in the blk_mq_* namespace
194 */
195 blk_freeze_queue(q);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
198
199 void blk_mq_unfreeze_queue(struct request_queue *q)
200 {
201 int freeze_depth;
202
203 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
204 WARN_ON_ONCE(freeze_depth < 0);
205 if (!freeze_depth) {
206 percpu_ref_resurrect(&q->q_usage_counter);
207 wake_up_all(&q->mq_freeze_wq);
208 }
209 }
210 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
211
212 /*
213 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
214 * mpt3sas driver such that this function can be removed.
215 */
216 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
217 {
218 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
219 }
220 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
221
222 /**
223 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
224 * @q: request queue.
225 *
226 * Note: this function does not prevent that the struct request end_io()
227 * callback function is invoked. Once this function is returned, we make
228 * sure no dispatch can happen until the queue is unquiesced via
229 * blk_mq_unquiesce_queue().
230 */
231 void blk_mq_quiesce_queue(struct request_queue *q)
232 {
233 struct blk_mq_hw_ctx *hctx;
234 unsigned int i;
235 bool rcu = false;
236
237 blk_mq_quiesce_queue_nowait(q);
238
239 queue_for_each_hw_ctx(q, hctx, i) {
240 if (hctx->flags & BLK_MQ_F_BLOCKING)
241 synchronize_srcu(hctx->srcu);
242 else
243 rcu = true;
244 }
245 if (rcu)
246 synchronize_rcu();
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
250 /*
251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252 * @q: request queue.
253 *
254 * This function recovers queue into the state before quiescing
255 * which is done by blk_mq_quiesce_queue.
256 */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
260
261 /* dispatch requests which are inserted during quiescing */
262 blk_mq_run_hw_queues(q, true);
263 }
264 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
265
266 void blk_mq_wake_waiters(struct request_queue *q)
267 {
268 struct blk_mq_hw_ctx *hctx;
269 unsigned int i;
270
271 queue_for_each_hw_ctx(q, hctx, i)
272 if (blk_mq_hw_queue_mapped(hctx))
273 blk_mq_tag_wakeup_all(hctx->tags, true);
274 }
275
276 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
277 {
278 return blk_mq_has_free_tags(hctx->tags);
279 }
280 EXPORT_SYMBOL(blk_mq_can_queue);
281
282 /*
283 * Only need start/end time stamping if we have stats enabled, or using
284 * an IO scheduler.
285 */
286 static inline bool blk_mq_need_time_stamp(struct request *rq)
287 {
288 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
289 }
290
291 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
292 unsigned int tag, unsigned int op)
293 {
294 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
295 struct request *rq = tags->static_rqs[tag];
296 req_flags_t rq_flags = 0;
297
298 if (data->flags & BLK_MQ_REQ_INTERNAL) {
299 rq->tag = -1;
300 rq->internal_tag = tag;
301 } else {
302 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
303 rq_flags = RQF_MQ_INFLIGHT;
304 atomic_inc(&data->hctx->nr_active);
305 }
306 rq->tag = tag;
307 rq->internal_tag = -1;
308 data->hctx->tags->rqs[rq->tag] = rq;
309 }
310
311 /* csd/requeue_work/fifo_time is initialized before use */
312 rq->q = data->q;
313 rq->mq_ctx = data->ctx;
314 rq->mq_hctx = data->hctx;
315 rq->rq_flags = rq_flags;
316 rq->cmd_flags = op;
317 if (data->flags & BLK_MQ_REQ_PREEMPT)
318 rq->rq_flags |= RQF_PREEMPT;
319 if (blk_queue_io_stat(data->q))
320 rq->rq_flags |= RQF_IO_STAT;
321 INIT_LIST_HEAD(&rq->queuelist);
322 INIT_HLIST_NODE(&rq->hash);
323 RB_CLEAR_NODE(&rq->rb_node);
324 rq->rq_disk = NULL;
325 rq->part = NULL;
326 if (blk_mq_need_time_stamp(rq))
327 rq->start_time_ns = ktime_get_ns();
328 else
329 rq->start_time_ns = 0;
330 rq->io_start_time_ns = 0;
331 rq->nr_phys_segments = 0;
332 #if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq->nr_integrity_segments = 0;
334 #endif
335 /* tag was already set */
336 rq->extra_len = 0;
337 WRITE_ONCE(rq->deadline, 0);
338
339 rq->timeout = 0;
340
341 rq->end_io = NULL;
342 rq->end_io_data = NULL;
343
344 data->ctx->rq_dispatched[op_is_sync(op)]++;
345 refcount_set(&rq->ref, 1);
346 return rq;
347 }
348
349 static struct request *blk_mq_get_request(struct request_queue *q,
350 struct bio *bio,
351 struct blk_mq_alloc_data *data)
352 {
353 struct elevator_queue *e = q->elevator;
354 struct request *rq;
355 unsigned int tag;
356 bool put_ctx_on_error = false;
357
358 blk_queue_enter_live(q);
359 data->q = q;
360 if (likely(!data->ctx)) {
361 data->ctx = blk_mq_get_ctx(q);
362 put_ctx_on_error = true;
363 }
364 if (likely(!data->hctx))
365 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
366 data->ctx);
367 if (data->cmd_flags & REQ_NOWAIT)
368 data->flags |= BLK_MQ_REQ_NOWAIT;
369
370 if (e) {
371 data->flags |= BLK_MQ_REQ_INTERNAL;
372
373 /*
374 * Flush requests are special and go directly to the
375 * dispatch list. Don't include reserved tags in the
376 * limiting, as it isn't useful.
377 */
378 if (!op_is_flush(data->cmd_flags) &&
379 e->type->ops.limit_depth &&
380 !(data->flags & BLK_MQ_REQ_RESERVED))
381 e->type->ops.limit_depth(data->cmd_flags, data);
382 } else {
383 blk_mq_tag_busy(data->hctx);
384 }
385
386 tag = blk_mq_get_tag(data);
387 if (tag == BLK_MQ_TAG_FAIL) {
388 if (put_ctx_on_error) {
389 blk_mq_put_ctx(data->ctx);
390 data->ctx = NULL;
391 }
392 blk_queue_exit(q);
393 return NULL;
394 }
395
396 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
397 if (!op_is_flush(data->cmd_flags)) {
398 rq->elv.icq = NULL;
399 if (e && e->type->ops.prepare_request) {
400 if (e->type->icq_cache)
401 blk_mq_sched_assign_ioc(rq);
402
403 e->type->ops.prepare_request(rq, bio);
404 rq->rq_flags |= RQF_ELVPRIV;
405 }
406 }
407 data->hctx->queued++;
408 return rq;
409 }
410
411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412 blk_mq_req_flags_t flags)
413 {
414 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
415 struct request *rq;
416 int ret;
417
418 ret = blk_queue_enter(q, flags);
419 if (ret)
420 return ERR_PTR(ret);
421
422 rq = blk_mq_get_request(q, NULL, &alloc_data);
423 blk_queue_exit(q);
424
425 if (!rq)
426 return ERR_PTR(-EWOULDBLOCK);
427
428 blk_mq_put_ctx(alloc_data.ctx);
429
430 rq->__data_len = 0;
431 rq->__sector = (sector_t) -1;
432 rq->bio = rq->biotail = NULL;
433 return rq;
434 }
435 EXPORT_SYMBOL(blk_mq_alloc_request);
436
437 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
438 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
439 {
440 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
441 struct request *rq;
442 unsigned int cpu;
443 int ret;
444
445 /*
446 * If the tag allocator sleeps we could get an allocation for a
447 * different hardware context. No need to complicate the low level
448 * allocator for this for the rare use case of a command tied to
449 * a specific queue.
450 */
451 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
452 return ERR_PTR(-EINVAL);
453
454 if (hctx_idx >= q->nr_hw_queues)
455 return ERR_PTR(-EIO);
456
457 ret = blk_queue_enter(q, flags);
458 if (ret)
459 return ERR_PTR(ret);
460
461 /*
462 * Check if the hardware context is actually mapped to anything.
463 * If not tell the caller that it should skip this queue.
464 */
465 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
466 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
467 blk_queue_exit(q);
468 return ERR_PTR(-EXDEV);
469 }
470 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
471 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
472
473 rq = blk_mq_get_request(q, NULL, &alloc_data);
474 blk_queue_exit(q);
475
476 if (!rq)
477 return ERR_PTR(-EWOULDBLOCK);
478
479 return rq;
480 }
481 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
482
483 static void __blk_mq_free_request(struct request *rq)
484 {
485 struct request_queue *q = rq->q;
486 struct blk_mq_ctx *ctx = rq->mq_ctx;
487 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
488 const int sched_tag = rq->internal_tag;
489
490 blk_pm_mark_last_busy(rq);
491 rq->mq_hctx = NULL;
492 if (rq->tag != -1)
493 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
494 if (sched_tag != -1)
495 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
496 blk_mq_sched_restart(hctx);
497 blk_queue_exit(q);
498 }
499
500 void blk_mq_free_request(struct request *rq)
501 {
502 struct request_queue *q = rq->q;
503 struct elevator_queue *e = q->elevator;
504 struct blk_mq_ctx *ctx = rq->mq_ctx;
505 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
506
507 if (rq->rq_flags & RQF_ELVPRIV) {
508 if (e && e->type->ops.finish_request)
509 e->type->ops.finish_request(rq);
510 if (rq->elv.icq) {
511 put_io_context(rq->elv.icq->ioc);
512 rq->elv.icq = NULL;
513 }
514 }
515
516 ctx->rq_completed[rq_is_sync(rq)]++;
517 if (rq->rq_flags & RQF_MQ_INFLIGHT)
518 atomic_dec(&hctx->nr_active);
519
520 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
521 laptop_io_completion(q->backing_dev_info);
522
523 rq_qos_done(q, rq);
524
525 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
526 if (refcount_dec_and_test(&rq->ref))
527 __blk_mq_free_request(rq);
528 }
529 EXPORT_SYMBOL_GPL(blk_mq_free_request);
530
531 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
532 {
533 u64 now = 0;
534
535 if (blk_mq_need_time_stamp(rq))
536 now = ktime_get_ns();
537
538 if (rq->rq_flags & RQF_STATS) {
539 blk_mq_poll_stats_start(rq->q);
540 blk_stat_add(rq, now);
541 }
542
543 if (rq->internal_tag != -1)
544 blk_mq_sched_completed_request(rq, now);
545
546 blk_account_io_done(rq, now);
547
548 if (rq->end_io) {
549 rq_qos_done(rq->q, rq);
550 rq->end_io(rq, error);
551 } else {
552 blk_mq_free_request(rq);
553 }
554 }
555 EXPORT_SYMBOL(__blk_mq_end_request);
556
557 void blk_mq_end_request(struct request *rq, blk_status_t error)
558 {
559 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
560 BUG();
561 __blk_mq_end_request(rq, error);
562 }
563 EXPORT_SYMBOL(blk_mq_end_request);
564
565 static void __blk_mq_complete_request_remote(void *data)
566 {
567 struct request *rq = data;
568 struct request_queue *q = rq->q;
569
570 q->mq_ops->complete(rq);
571 }
572
573 static void __blk_mq_complete_request(struct request *rq)
574 {
575 struct blk_mq_ctx *ctx = rq->mq_ctx;
576 struct request_queue *q = rq->q;
577 bool shared = false;
578 int cpu;
579
580 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
581 /*
582 * Most of single queue controllers, there is only one irq vector
583 * for handling IO completion, and the only irq's affinity is set
584 * as all possible CPUs. On most of ARCHs, this affinity means the
585 * irq is handled on one specific CPU.
586 *
587 * So complete IO reqeust in softirq context in case of single queue
588 * for not degrading IO performance by irqsoff latency.
589 */
590 if (q->nr_hw_queues == 1) {
591 __blk_complete_request(rq);
592 return;
593 }
594
595 /*
596 * For a polled request, always complete locallly, it's pointless
597 * to redirect the completion.
598 */
599 if ((rq->cmd_flags & REQ_HIPRI) ||
600 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
601 q->mq_ops->complete(rq);
602 return;
603 }
604
605 cpu = get_cpu();
606 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
607 shared = cpus_share_cache(cpu, ctx->cpu);
608
609 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
610 rq->csd.func = __blk_mq_complete_request_remote;
611 rq->csd.info = rq;
612 rq->csd.flags = 0;
613 smp_call_function_single_async(ctx->cpu, &rq->csd);
614 } else {
615 q->mq_ops->complete(rq);
616 }
617 put_cpu();
618 }
619
620 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
621 __releases(hctx->srcu)
622 {
623 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
624 rcu_read_unlock();
625 else
626 srcu_read_unlock(hctx->srcu, srcu_idx);
627 }
628
629 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
630 __acquires(hctx->srcu)
631 {
632 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
633 /* shut up gcc false positive */
634 *srcu_idx = 0;
635 rcu_read_lock();
636 } else
637 *srcu_idx = srcu_read_lock(hctx->srcu);
638 }
639
640 /**
641 * blk_mq_complete_request - end I/O on a request
642 * @rq: the request being processed
643 *
644 * Description:
645 * Ends all I/O on a request. It does not handle partial completions.
646 * The actual completion happens out-of-order, through a IPI handler.
647 **/
648 bool blk_mq_complete_request(struct request *rq)
649 {
650 if (unlikely(blk_should_fake_timeout(rq->q)))
651 return false;
652 __blk_mq_complete_request(rq);
653 return true;
654 }
655 EXPORT_SYMBOL(blk_mq_complete_request);
656
657 int blk_mq_request_started(struct request *rq)
658 {
659 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
660 }
661 EXPORT_SYMBOL_GPL(blk_mq_request_started);
662
663 void blk_mq_start_request(struct request *rq)
664 {
665 struct request_queue *q = rq->q;
666
667 blk_mq_sched_started_request(rq);
668
669 trace_block_rq_issue(q, rq);
670
671 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
672 rq->io_start_time_ns = ktime_get_ns();
673 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
674 rq->throtl_size = blk_rq_sectors(rq);
675 #endif
676 rq->rq_flags |= RQF_STATS;
677 rq_qos_issue(q, rq);
678 }
679
680 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
681
682 blk_add_timer(rq);
683 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
684
685 if (q->dma_drain_size && blk_rq_bytes(rq)) {
686 /*
687 * Make sure space for the drain appears. We know we can do
688 * this because max_hw_segments has been adjusted to be one
689 * fewer than the device can handle.
690 */
691 rq->nr_phys_segments++;
692 }
693 }
694 EXPORT_SYMBOL(blk_mq_start_request);
695
696 static void __blk_mq_requeue_request(struct request *rq)
697 {
698 struct request_queue *q = rq->q;
699
700 blk_mq_put_driver_tag(rq);
701
702 trace_block_rq_requeue(q, rq);
703 rq_qos_requeue(q, rq);
704
705 if (blk_mq_request_started(rq)) {
706 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
707 rq->rq_flags &= ~RQF_TIMED_OUT;
708 if (q->dma_drain_size && blk_rq_bytes(rq))
709 rq->nr_phys_segments--;
710 }
711 }
712
713 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
714 {
715 __blk_mq_requeue_request(rq);
716
717 /* this request will be re-inserted to io scheduler queue */
718 blk_mq_sched_requeue_request(rq);
719
720 BUG_ON(!list_empty(&rq->queuelist));
721 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
722 }
723 EXPORT_SYMBOL(blk_mq_requeue_request);
724
725 static void blk_mq_requeue_work(struct work_struct *work)
726 {
727 struct request_queue *q =
728 container_of(work, struct request_queue, requeue_work.work);
729 LIST_HEAD(rq_list);
730 struct request *rq, *next;
731
732 spin_lock_irq(&q->requeue_lock);
733 list_splice_init(&q->requeue_list, &rq_list);
734 spin_unlock_irq(&q->requeue_lock);
735
736 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
737 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
738 continue;
739
740 rq->rq_flags &= ~RQF_SOFTBARRIER;
741 list_del_init(&rq->queuelist);
742 /*
743 * If RQF_DONTPREP, rq has contained some driver specific
744 * data, so insert it to hctx dispatch list to avoid any
745 * merge.
746 */
747 if (rq->rq_flags & RQF_DONTPREP)
748 blk_mq_request_bypass_insert(rq, false);
749 else
750 blk_mq_sched_insert_request(rq, true, false, false);
751 }
752
753 while (!list_empty(&rq_list)) {
754 rq = list_entry(rq_list.next, struct request, queuelist);
755 list_del_init(&rq->queuelist);
756 blk_mq_sched_insert_request(rq, false, false, false);
757 }
758
759 blk_mq_run_hw_queues(q, false);
760 }
761
762 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
763 bool kick_requeue_list)
764 {
765 struct request_queue *q = rq->q;
766 unsigned long flags;
767
768 /*
769 * We abuse this flag that is otherwise used by the I/O scheduler to
770 * request head insertion from the workqueue.
771 */
772 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
773
774 spin_lock_irqsave(&q->requeue_lock, flags);
775 if (at_head) {
776 rq->rq_flags |= RQF_SOFTBARRIER;
777 list_add(&rq->queuelist, &q->requeue_list);
778 } else {
779 list_add_tail(&rq->queuelist, &q->requeue_list);
780 }
781 spin_unlock_irqrestore(&q->requeue_lock, flags);
782
783 if (kick_requeue_list)
784 blk_mq_kick_requeue_list(q);
785 }
786
787 void blk_mq_kick_requeue_list(struct request_queue *q)
788 {
789 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
790 }
791 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
792
793 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
794 unsigned long msecs)
795 {
796 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
797 msecs_to_jiffies(msecs));
798 }
799 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
800
801 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
802 {
803 if (tag < tags->nr_tags) {
804 prefetch(tags->rqs[tag]);
805 return tags->rqs[tag];
806 }
807
808 return NULL;
809 }
810 EXPORT_SYMBOL(blk_mq_tag_to_rq);
811
812 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
813 void *priv, bool reserved)
814 {
815 /*
816 * If we find a request that is inflight and the queue matches,
817 * we know the queue is busy. Return false to stop the iteration.
818 */
819 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
820 bool *busy = priv;
821
822 *busy = true;
823 return false;
824 }
825
826 return true;
827 }
828
829 bool blk_mq_queue_inflight(struct request_queue *q)
830 {
831 bool busy = false;
832
833 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
834 return busy;
835 }
836 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
837
838 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
839 {
840 req->rq_flags |= RQF_TIMED_OUT;
841 if (req->q->mq_ops->timeout) {
842 enum blk_eh_timer_return ret;
843
844 ret = req->q->mq_ops->timeout(req, reserved);
845 if (ret == BLK_EH_DONE)
846 return;
847 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
848 }
849
850 blk_add_timer(req);
851 }
852
853 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
854 {
855 unsigned long deadline;
856
857 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
858 return false;
859 if (rq->rq_flags & RQF_TIMED_OUT)
860 return false;
861
862 deadline = READ_ONCE(rq->deadline);
863 if (time_after_eq(jiffies, deadline))
864 return true;
865
866 if (*next == 0)
867 *next = deadline;
868 else if (time_after(*next, deadline))
869 *next = deadline;
870 return false;
871 }
872
873 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
874 struct request *rq, void *priv, bool reserved)
875 {
876 unsigned long *next = priv;
877
878 /*
879 * Just do a quick check if it is expired before locking the request in
880 * so we're not unnecessarilly synchronizing across CPUs.
881 */
882 if (!blk_mq_req_expired(rq, next))
883 return true;
884
885 /*
886 * We have reason to believe the request may be expired. Take a
887 * reference on the request to lock this request lifetime into its
888 * currently allocated context to prevent it from being reallocated in
889 * the event the completion by-passes this timeout handler.
890 *
891 * If the reference was already released, then the driver beat the
892 * timeout handler to posting a natural completion.
893 */
894 if (!refcount_inc_not_zero(&rq->ref))
895 return true;
896
897 /*
898 * The request is now locked and cannot be reallocated underneath the
899 * timeout handler's processing. Re-verify this exact request is truly
900 * expired; if it is not expired, then the request was completed and
901 * reallocated as a new request.
902 */
903 if (blk_mq_req_expired(rq, next))
904 blk_mq_rq_timed_out(rq, reserved);
905 if (refcount_dec_and_test(&rq->ref))
906 __blk_mq_free_request(rq);
907
908 return true;
909 }
910
911 static void blk_mq_timeout_work(struct work_struct *work)
912 {
913 struct request_queue *q =
914 container_of(work, struct request_queue, timeout_work);
915 unsigned long next = 0;
916 struct blk_mq_hw_ctx *hctx;
917 int i;
918
919 /* A deadlock might occur if a request is stuck requiring a
920 * timeout at the same time a queue freeze is waiting
921 * completion, since the timeout code would not be able to
922 * acquire the queue reference here.
923 *
924 * That's why we don't use blk_queue_enter here; instead, we use
925 * percpu_ref_tryget directly, because we need to be able to
926 * obtain a reference even in the short window between the queue
927 * starting to freeze, by dropping the first reference in
928 * blk_freeze_queue_start, and the moment the last request is
929 * consumed, marked by the instant q_usage_counter reaches
930 * zero.
931 */
932 if (!percpu_ref_tryget(&q->q_usage_counter))
933 return;
934
935 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
936
937 if (next != 0) {
938 mod_timer(&q->timeout, next);
939 } else {
940 /*
941 * Request timeouts are handled as a forward rolling timer. If
942 * we end up here it means that no requests are pending and
943 * also that no request has been pending for a while. Mark
944 * each hctx as idle.
945 */
946 queue_for_each_hw_ctx(q, hctx, i) {
947 /* the hctx may be unmapped, so check it here */
948 if (blk_mq_hw_queue_mapped(hctx))
949 blk_mq_tag_idle(hctx);
950 }
951 }
952 blk_queue_exit(q);
953 }
954
955 struct flush_busy_ctx_data {
956 struct blk_mq_hw_ctx *hctx;
957 struct list_head *list;
958 };
959
960 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
961 {
962 struct flush_busy_ctx_data *flush_data = data;
963 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
964 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
965 enum hctx_type type = hctx->type;
966
967 spin_lock(&ctx->lock);
968 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
969 sbitmap_clear_bit(sb, bitnr);
970 spin_unlock(&ctx->lock);
971 return true;
972 }
973
974 /*
975 * Process software queues that have been marked busy, splicing them
976 * to the for-dispatch
977 */
978 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
979 {
980 struct flush_busy_ctx_data data = {
981 .hctx = hctx,
982 .list = list,
983 };
984
985 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
986 }
987 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
988
989 struct dispatch_rq_data {
990 struct blk_mq_hw_ctx *hctx;
991 struct request *rq;
992 };
993
994 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
995 void *data)
996 {
997 struct dispatch_rq_data *dispatch_data = data;
998 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
999 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1000 enum hctx_type type = hctx->type;
1001
1002 spin_lock(&ctx->lock);
1003 if (!list_empty(&ctx->rq_lists[type])) {
1004 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1005 list_del_init(&dispatch_data->rq->queuelist);
1006 if (list_empty(&ctx->rq_lists[type]))
1007 sbitmap_clear_bit(sb, bitnr);
1008 }
1009 spin_unlock(&ctx->lock);
1010
1011 return !dispatch_data->rq;
1012 }
1013
1014 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1015 struct blk_mq_ctx *start)
1016 {
1017 unsigned off = start ? start->index_hw[hctx->type] : 0;
1018 struct dispatch_rq_data data = {
1019 .hctx = hctx,
1020 .rq = NULL,
1021 };
1022
1023 __sbitmap_for_each_set(&hctx->ctx_map, off,
1024 dispatch_rq_from_ctx, &data);
1025
1026 return data.rq;
1027 }
1028
1029 static inline unsigned int queued_to_index(unsigned int queued)
1030 {
1031 if (!queued)
1032 return 0;
1033
1034 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1035 }
1036
1037 bool blk_mq_get_driver_tag(struct request *rq)
1038 {
1039 struct blk_mq_alloc_data data = {
1040 .q = rq->q,
1041 .hctx = rq->mq_hctx,
1042 .flags = BLK_MQ_REQ_NOWAIT,
1043 .cmd_flags = rq->cmd_flags,
1044 };
1045 bool shared;
1046
1047 if (rq->tag != -1)
1048 goto done;
1049
1050 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1051 data.flags |= BLK_MQ_REQ_RESERVED;
1052
1053 shared = blk_mq_tag_busy(data.hctx);
1054 rq->tag = blk_mq_get_tag(&data);
1055 if (rq->tag >= 0) {
1056 if (shared) {
1057 rq->rq_flags |= RQF_MQ_INFLIGHT;
1058 atomic_inc(&data.hctx->nr_active);
1059 }
1060 data.hctx->tags->rqs[rq->tag] = rq;
1061 }
1062
1063 done:
1064 return rq->tag != -1;
1065 }
1066
1067 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1068 int flags, void *key)
1069 {
1070 struct blk_mq_hw_ctx *hctx;
1071
1072 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1073
1074 spin_lock(&hctx->dispatch_wait_lock);
1075 if (!list_empty(&wait->entry)) {
1076 struct sbitmap_queue *sbq;
1077
1078 list_del_init(&wait->entry);
1079 sbq = &hctx->tags->bitmap_tags;
1080 atomic_dec(&sbq->ws_active);
1081 }
1082 spin_unlock(&hctx->dispatch_wait_lock);
1083
1084 blk_mq_run_hw_queue(hctx, true);
1085 return 1;
1086 }
1087
1088 /*
1089 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1090 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1091 * restart. For both cases, take care to check the condition again after
1092 * marking us as waiting.
1093 */
1094 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1095 struct request *rq)
1096 {
1097 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1098 struct wait_queue_head *wq;
1099 wait_queue_entry_t *wait;
1100 bool ret;
1101
1102 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1103 blk_mq_sched_mark_restart_hctx(hctx);
1104
1105 /*
1106 * It's possible that a tag was freed in the window between the
1107 * allocation failure and adding the hardware queue to the wait
1108 * queue.
1109 *
1110 * Don't clear RESTART here, someone else could have set it.
1111 * At most this will cost an extra queue run.
1112 */
1113 return blk_mq_get_driver_tag(rq);
1114 }
1115
1116 wait = &hctx->dispatch_wait;
1117 if (!list_empty_careful(&wait->entry))
1118 return false;
1119
1120 wq = &bt_wait_ptr(sbq, hctx)->wait;
1121
1122 spin_lock_irq(&wq->lock);
1123 spin_lock(&hctx->dispatch_wait_lock);
1124 if (!list_empty(&wait->entry)) {
1125 spin_unlock(&hctx->dispatch_wait_lock);
1126 spin_unlock_irq(&wq->lock);
1127 return false;
1128 }
1129
1130 atomic_inc(&sbq->ws_active);
1131 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1132 __add_wait_queue(wq, wait);
1133
1134 /*
1135 * It's possible that a tag was freed in the window between the
1136 * allocation failure and adding the hardware queue to the wait
1137 * queue.
1138 */
1139 ret = blk_mq_get_driver_tag(rq);
1140 if (!ret) {
1141 spin_unlock(&hctx->dispatch_wait_lock);
1142 spin_unlock_irq(&wq->lock);
1143 return false;
1144 }
1145
1146 /*
1147 * We got a tag, remove ourselves from the wait queue to ensure
1148 * someone else gets the wakeup.
1149 */
1150 list_del_init(&wait->entry);
1151 atomic_dec(&sbq->ws_active);
1152 spin_unlock(&hctx->dispatch_wait_lock);
1153 spin_unlock_irq(&wq->lock);
1154
1155 return true;
1156 }
1157
1158 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1159 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1160 /*
1161 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1162 * - EWMA is one simple way to compute running average value
1163 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1164 * - take 4 as factor for avoiding to get too small(0) result, and this
1165 * factor doesn't matter because EWMA decreases exponentially
1166 */
1167 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1168 {
1169 unsigned int ewma;
1170
1171 if (hctx->queue->elevator)
1172 return;
1173
1174 ewma = hctx->dispatch_busy;
1175
1176 if (!ewma && !busy)
1177 return;
1178
1179 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1180 if (busy)
1181 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1182 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1183
1184 hctx->dispatch_busy = ewma;
1185 }
1186
1187 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1188
1189 /*
1190 * Returns true if we did some work AND can potentially do more.
1191 */
1192 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1193 bool got_budget)
1194 {
1195 struct blk_mq_hw_ctx *hctx;
1196 struct request *rq, *nxt;
1197 bool no_tag = false;
1198 int errors, queued;
1199 blk_status_t ret = BLK_STS_OK;
1200
1201 if (list_empty(list))
1202 return false;
1203
1204 WARN_ON(!list_is_singular(list) && got_budget);
1205
1206 /*
1207 * Now process all the entries, sending them to the driver.
1208 */
1209 errors = queued = 0;
1210 do {
1211 struct blk_mq_queue_data bd;
1212
1213 rq = list_first_entry(list, struct request, queuelist);
1214
1215 hctx = rq->mq_hctx;
1216 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1217 break;
1218
1219 if (!blk_mq_get_driver_tag(rq)) {
1220 /*
1221 * The initial allocation attempt failed, so we need to
1222 * rerun the hardware queue when a tag is freed. The
1223 * waitqueue takes care of that. If the queue is run
1224 * before we add this entry back on the dispatch list,
1225 * we'll re-run it below.
1226 */
1227 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1228 blk_mq_put_dispatch_budget(hctx);
1229 /*
1230 * For non-shared tags, the RESTART check
1231 * will suffice.
1232 */
1233 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1234 no_tag = true;
1235 break;
1236 }
1237 }
1238
1239 list_del_init(&rq->queuelist);
1240
1241 bd.rq = rq;
1242
1243 /*
1244 * Flag last if we have no more requests, or if we have more
1245 * but can't assign a driver tag to it.
1246 */
1247 if (list_empty(list))
1248 bd.last = true;
1249 else {
1250 nxt = list_first_entry(list, struct request, queuelist);
1251 bd.last = !blk_mq_get_driver_tag(nxt);
1252 }
1253
1254 ret = q->mq_ops->queue_rq(hctx, &bd);
1255 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1256 /*
1257 * If an I/O scheduler has been configured and we got a
1258 * driver tag for the next request already, free it
1259 * again.
1260 */
1261 if (!list_empty(list)) {
1262 nxt = list_first_entry(list, struct request, queuelist);
1263 blk_mq_put_driver_tag(nxt);
1264 }
1265 list_add(&rq->queuelist, list);
1266 __blk_mq_requeue_request(rq);
1267 break;
1268 }
1269
1270 if (unlikely(ret != BLK_STS_OK)) {
1271 errors++;
1272 blk_mq_end_request(rq, BLK_STS_IOERR);
1273 continue;
1274 }
1275
1276 queued++;
1277 } while (!list_empty(list));
1278
1279 hctx->dispatched[queued_to_index(queued)]++;
1280
1281 /*
1282 * Any items that need requeuing? Stuff them into hctx->dispatch,
1283 * that is where we will continue on next queue run.
1284 */
1285 if (!list_empty(list)) {
1286 bool needs_restart;
1287
1288 /*
1289 * If we didn't flush the entire list, we could have told
1290 * the driver there was more coming, but that turned out to
1291 * be a lie.
1292 */
1293 if (q->mq_ops->commit_rqs)
1294 q->mq_ops->commit_rqs(hctx);
1295
1296 spin_lock(&hctx->lock);
1297 list_splice_init(list, &hctx->dispatch);
1298 spin_unlock(&hctx->lock);
1299
1300 /*
1301 * If SCHED_RESTART was set by the caller of this function and
1302 * it is no longer set that means that it was cleared by another
1303 * thread and hence that a queue rerun is needed.
1304 *
1305 * If 'no_tag' is set, that means that we failed getting
1306 * a driver tag with an I/O scheduler attached. If our dispatch
1307 * waitqueue is no longer active, ensure that we run the queue
1308 * AFTER adding our entries back to the list.
1309 *
1310 * If no I/O scheduler has been configured it is possible that
1311 * the hardware queue got stopped and restarted before requests
1312 * were pushed back onto the dispatch list. Rerun the queue to
1313 * avoid starvation. Notes:
1314 * - blk_mq_run_hw_queue() checks whether or not a queue has
1315 * been stopped before rerunning a queue.
1316 * - Some but not all block drivers stop a queue before
1317 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1318 * and dm-rq.
1319 *
1320 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1321 * bit is set, run queue after a delay to avoid IO stalls
1322 * that could otherwise occur if the queue is idle.
1323 */
1324 needs_restart = blk_mq_sched_needs_restart(hctx);
1325 if (!needs_restart ||
1326 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1327 blk_mq_run_hw_queue(hctx, true);
1328 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1329 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1330
1331 blk_mq_update_dispatch_busy(hctx, true);
1332 return false;
1333 } else
1334 blk_mq_update_dispatch_busy(hctx, false);
1335
1336 /*
1337 * If the host/device is unable to accept more work, inform the
1338 * caller of that.
1339 */
1340 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1341 return false;
1342
1343 return (queued + errors) != 0;
1344 }
1345
1346 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1347 {
1348 int srcu_idx;
1349
1350 /*
1351 * We should be running this queue from one of the CPUs that
1352 * are mapped to it.
1353 *
1354 * There are at least two related races now between setting
1355 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1356 * __blk_mq_run_hw_queue():
1357 *
1358 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1359 * but later it becomes online, then this warning is harmless
1360 * at all
1361 *
1362 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1363 * but later it becomes offline, then the warning can't be
1364 * triggered, and we depend on blk-mq timeout handler to
1365 * handle dispatched requests to this hctx
1366 */
1367 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1368 cpu_online(hctx->next_cpu)) {
1369 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1370 raw_smp_processor_id(),
1371 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1372 dump_stack();
1373 }
1374
1375 /*
1376 * We can't run the queue inline with ints disabled. Ensure that
1377 * we catch bad users of this early.
1378 */
1379 WARN_ON_ONCE(in_interrupt());
1380
1381 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1382
1383 hctx_lock(hctx, &srcu_idx);
1384 blk_mq_sched_dispatch_requests(hctx);
1385 hctx_unlock(hctx, srcu_idx);
1386 }
1387
1388 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1389 {
1390 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1391
1392 if (cpu >= nr_cpu_ids)
1393 cpu = cpumask_first(hctx->cpumask);
1394 return cpu;
1395 }
1396
1397 /*
1398 * It'd be great if the workqueue API had a way to pass
1399 * in a mask and had some smarts for more clever placement.
1400 * For now we just round-robin here, switching for every
1401 * BLK_MQ_CPU_WORK_BATCH queued items.
1402 */
1403 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1404 {
1405 bool tried = false;
1406 int next_cpu = hctx->next_cpu;
1407
1408 if (hctx->queue->nr_hw_queues == 1)
1409 return WORK_CPU_UNBOUND;
1410
1411 if (--hctx->next_cpu_batch <= 0) {
1412 select_cpu:
1413 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1414 cpu_online_mask);
1415 if (next_cpu >= nr_cpu_ids)
1416 next_cpu = blk_mq_first_mapped_cpu(hctx);
1417 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1418 }
1419
1420 /*
1421 * Do unbound schedule if we can't find a online CPU for this hctx,
1422 * and it should only happen in the path of handling CPU DEAD.
1423 */
1424 if (!cpu_online(next_cpu)) {
1425 if (!tried) {
1426 tried = true;
1427 goto select_cpu;
1428 }
1429
1430 /*
1431 * Make sure to re-select CPU next time once after CPUs
1432 * in hctx->cpumask become online again.
1433 */
1434 hctx->next_cpu = next_cpu;
1435 hctx->next_cpu_batch = 1;
1436 return WORK_CPU_UNBOUND;
1437 }
1438
1439 hctx->next_cpu = next_cpu;
1440 return next_cpu;
1441 }
1442
1443 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1444 unsigned long msecs)
1445 {
1446 if (unlikely(blk_mq_hctx_stopped(hctx)))
1447 return;
1448
1449 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1450 int cpu = get_cpu();
1451 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1452 __blk_mq_run_hw_queue(hctx);
1453 put_cpu();
1454 return;
1455 }
1456
1457 put_cpu();
1458 }
1459
1460 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1461 msecs_to_jiffies(msecs));
1462 }
1463
1464 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1465 {
1466 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1467 }
1468 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1469
1470 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1471 {
1472 int srcu_idx;
1473 bool need_run;
1474
1475 /*
1476 * When queue is quiesced, we may be switching io scheduler, or
1477 * updating nr_hw_queues, or other things, and we can't run queue
1478 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1479 *
1480 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1481 * quiesced.
1482 */
1483 hctx_lock(hctx, &srcu_idx);
1484 need_run = !blk_queue_quiesced(hctx->queue) &&
1485 blk_mq_hctx_has_pending(hctx);
1486 hctx_unlock(hctx, srcu_idx);
1487
1488 if (need_run) {
1489 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1490 return true;
1491 }
1492
1493 return false;
1494 }
1495 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1496
1497 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1498 {
1499 struct blk_mq_hw_ctx *hctx;
1500 int i;
1501
1502 queue_for_each_hw_ctx(q, hctx, i) {
1503 if (blk_mq_hctx_stopped(hctx))
1504 continue;
1505
1506 blk_mq_run_hw_queue(hctx, async);
1507 }
1508 }
1509 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1510
1511 /**
1512 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1513 * @q: request queue.
1514 *
1515 * The caller is responsible for serializing this function against
1516 * blk_mq_{start,stop}_hw_queue().
1517 */
1518 bool blk_mq_queue_stopped(struct request_queue *q)
1519 {
1520 struct blk_mq_hw_ctx *hctx;
1521 int i;
1522
1523 queue_for_each_hw_ctx(q, hctx, i)
1524 if (blk_mq_hctx_stopped(hctx))
1525 return true;
1526
1527 return false;
1528 }
1529 EXPORT_SYMBOL(blk_mq_queue_stopped);
1530
1531 /*
1532 * This function is often used for pausing .queue_rq() by driver when
1533 * there isn't enough resource or some conditions aren't satisfied, and
1534 * BLK_STS_RESOURCE is usually returned.
1535 *
1536 * We do not guarantee that dispatch can be drained or blocked
1537 * after blk_mq_stop_hw_queue() returns. Please use
1538 * blk_mq_quiesce_queue() for that requirement.
1539 */
1540 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1541 {
1542 cancel_delayed_work(&hctx->run_work);
1543
1544 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1545 }
1546 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1547
1548 /*
1549 * This function is often used for pausing .queue_rq() by driver when
1550 * there isn't enough resource or some conditions aren't satisfied, and
1551 * BLK_STS_RESOURCE is usually returned.
1552 *
1553 * We do not guarantee that dispatch can be drained or blocked
1554 * after blk_mq_stop_hw_queues() returns. Please use
1555 * blk_mq_quiesce_queue() for that requirement.
1556 */
1557 void blk_mq_stop_hw_queues(struct request_queue *q)
1558 {
1559 struct blk_mq_hw_ctx *hctx;
1560 int i;
1561
1562 queue_for_each_hw_ctx(q, hctx, i)
1563 blk_mq_stop_hw_queue(hctx);
1564 }
1565 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1566
1567 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1568 {
1569 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1570
1571 blk_mq_run_hw_queue(hctx, false);
1572 }
1573 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1574
1575 void blk_mq_start_hw_queues(struct request_queue *q)
1576 {
1577 struct blk_mq_hw_ctx *hctx;
1578 int i;
1579
1580 queue_for_each_hw_ctx(q, hctx, i)
1581 blk_mq_start_hw_queue(hctx);
1582 }
1583 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1584
1585 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1586 {
1587 if (!blk_mq_hctx_stopped(hctx))
1588 return;
1589
1590 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1591 blk_mq_run_hw_queue(hctx, async);
1592 }
1593 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1594
1595 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1596 {
1597 struct blk_mq_hw_ctx *hctx;
1598 int i;
1599
1600 queue_for_each_hw_ctx(q, hctx, i)
1601 blk_mq_start_stopped_hw_queue(hctx, async);
1602 }
1603 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1604
1605 static void blk_mq_run_work_fn(struct work_struct *work)
1606 {
1607 struct blk_mq_hw_ctx *hctx;
1608
1609 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1610
1611 /*
1612 * If we are stopped, don't run the queue.
1613 */
1614 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1615 return;
1616
1617 __blk_mq_run_hw_queue(hctx);
1618 }
1619
1620 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1621 struct request *rq,
1622 bool at_head)
1623 {
1624 struct blk_mq_ctx *ctx = rq->mq_ctx;
1625 enum hctx_type type = hctx->type;
1626
1627 lockdep_assert_held(&ctx->lock);
1628
1629 trace_block_rq_insert(hctx->queue, rq);
1630
1631 if (at_head)
1632 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1633 else
1634 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1635 }
1636
1637 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1638 bool at_head)
1639 {
1640 struct blk_mq_ctx *ctx = rq->mq_ctx;
1641
1642 lockdep_assert_held(&ctx->lock);
1643
1644 __blk_mq_insert_req_list(hctx, rq, at_head);
1645 blk_mq_hctx_mark_pending(hctx, ctx);
1646 }
1647
1648 /*
1649 * Should only be used carefully, when the caller knows we want to
1650 * bypass a potential IO scheduler on the target device.
1651 */
1652 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1653 {
1654 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1655
1656 spin_lock(&hctx->lock);
1657 list_add_tail(&rq->queuelist, &hctx->dispatch);
1658 spin_unlock(&hctx->lock);
1659
1660 if (run_queue)
1661 blk_mq_run_hw_queue(hctx, false);
1662 }
1663
1664 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1665 struct list_head *list)
1666
1667 {
1668 struct request *rq;
1669 enum hctx_type type = hctx->type;
1670
1671 /*
1672 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1673 * offline now
1674 */
1675 list_for_each_entry(rq, list, queuelist) {
1676 BUG_ON(rq->mq_ctx != ctx);
1677 trace_block_rq_insert(hctx->queue, rq);
1678 }
1679
1680 spin_lock(&ctx->lock);
1681 list_splice_tail_init(list, &ctx->rq_lists[type]);
1682 blk_mq_hctx_mark_pending(hctx, ctx);
1683 spin_unlock(&ctx->lock);
1684 }
1685
1686 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1687 {
1688 struct request *rqa = container_of(a, struct request, queuelist);
1689 struct request *rqb = container_of(b, struct request, queuelist);
1690
1691 if (rqa->mq_ctx < rqb->mq_ctx)
1692 return -1;
1693 else if (rqa->mq_ctx > rqb->mq_ctx)
1694 return 1;
1695 else if (rqa->mq_hctx < rqb->mq_hctx)
1696 return -1;
1697 else if (rqa->mq_hctx > rqb->mq_hctx)
1698 return 1;
1699
1700 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1701 }
1702
1703 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1704 {
1705 struct blk_mq_hw_ctx *this_hctx;
1706 struct blk_mq_ctx *this_ctx;
1707 struct request_queue *this_q;
1708 struct request *rq;
1709 LIST_HEAD(list);
1710 LIST_HEAD(rq_list);
1711 unsigned int depth;
1712
1713 list_splice_init(&plug->mq_list, &list);
1714
1715 if (plug->rq_count > 2 && plug->multiple_queues)
1716 list_sort(NULL, &list, plug_rq_cmp);
1717
1718 plug->rq_count = 0;
1719
1720 this_q = NULL;
1721 this_hctx = NULL;
1722 this_ctx = NULL;
1723 depth = 0;
1724
1725 while (!list_empty(&list)) {
1726 rq = list_entry_rq(list.next);
1727 list_del_init(&rq->queuelist);
1728 BUG_ON(!rq->q);
1729 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1730 if (this_hctx) {
1731 trace_block_unplug(this_q, depth, !from_schedule);
1732 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1733 &rq_list,
1734 from_schedule);
1735 }
1736
1737 this_q = rq->q;
1738 this_ctx = rq->mq_ctx;
1739 this_hctx = rq->mq_hctx;
1740 depth = 0;
1741 }
1742
1743 depth++;
1744 list_add_tail(&rq->queuelist, &rq_list);
1745 }
1746
1747 /*
1748 * If 'this_hctx' is set, we know we have entries to complete
1749 * on 'rq_list'. Do those.
1750 */
1751 if (this_hctx) {
1752 trace_block_unplug(this_q, depth, !from_schedule);
1753 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1754 from_schedule);
1755 }
1756 }
1757
1758 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1759 {
1760 blk_init_request_from_bio(rq, bio);
1761
1762 blk_account_io_start(rq, true);
1763 }
1764
1765 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1766 struct request *rq,
1767 blk_qc_t *cookie, bool last)
1768 {
1769 struct request_queue *q = rq->q;
1770 struct blk_mq_queue_data bd = {
1771 .rq = rq,
1772 .last = last,
1773 };
1774 blk_qc_t new_cookie;
1775 blk_status_t ret;
1776
1777 new_cookie = request_to_qc_t(hctx, rq);
1778
1779 /*
1780 * For OK queue, we are done. For error, caller may kill it.
1781 * Any other error (busy), just add it to our list as we
1782 * previously would have done.
1783 */
1784 ret = q->mq_ops->queue_rq(hctx, &bd);
1785 switch (ret) {
1786 case BLK_STS_OK:
1787 blk_mq_update_dispatch_busy(hctx, false);
1788 *cookie = new_cookie;
1789 break;
1790 case BLK_STS_RESOURCE:
1791 case BLK_STS_DEV_RESOURCE:
1792 blk_mq_update_dispatch_busy(hctx, true);
1793 __blk_mq_requeue_request(rq);
1794 break;
1795 default:
1796 blk_mq_update_dispatch_busy(hctx, false);
1797 *cookie = BLK_QC_T_NONE;
1798 break;
1799 }
1800
1801 return ret;
1802 }
1803
1804 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1805 struct request *rq,
1806 blk_qc_t *cookie,
1807 bool bypass_insert, bool last)
1808 {
1809 struct request_queue *q = rq->q;
1810 bool run_queue = true;
1811
1812 /*
1813 * RCU or SRCU read lock is needed before checking quiesced flag.
1814 *
1815 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1816 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1817 * and avoid driver to try to dispatch again.
1818 */
1819 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1820 run_queue = false;
1821 bypass_insert = false;
1822 goto insert;
1823 }
1824
1825 if (q->elevator && !bypass_insert)
1826 goto insert;
1827
1828 if (!blk_mq_get_dispatch_budget(hctx))
1829 goto insert;
1830
1831 if (!blk_mq_get_driver_tag(rq)) {
1832 blk_mq_put_dispatch_budget(hctx);
1833 goto insert;
1834 }
1835
1836 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1837 insert:
1838 if (bypass_insert)
1839 return BLK_STS_RESOURCE;
1840
1841 blk_mq_request_bypass_insert(rq, run_queue);
1842 return BLK_STS_OK;
1843 }
1844
1845 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1846 struct request *rq, blk_qc_t *cookie)
1847 {
1848 blk_status_t ret;
1849 int srcu_idx;
1850
1851 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1852
1853 hctx_lock(hctx, &srcu_idx);
1854
1855 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1856 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1857 blk_mq_request_bypass_insert(rq, true);
1858 else if (ret != BLK_STS_OK)
1859 blk_mq_end_request(rq, ret);
1860
1861 hctx_unlock(hctx, srcu_idx);
1862 }
1863
1864 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1865 {
1866 blk_status_t ret;
1867 int srcu_idx;
1868 blk_qc_t unused_cookie;
1869 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1870
1871 hctx_lock(hctx, &srcu_idx);
1872 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1873 hctx_unlock(hctx, srcu_idx);
1874
1875 return ret;
1876 }
1877
1878 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1879 struct list_head *list)
1880 {
1881 while (!list_empty(list)) {
1882 blk_status_t ret;
1883 struct request *rq = list_first_entry(list, struct request,
1884 queuelist);
1885
1886 list_del_init(&rq->queuelist);
1887 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1888 if (ret != BLK_STS_OK) {
1889 if (ret == BLK_STS_RESOURCE ||
1890 ret == BLK_STS_DEV_RESOURCE) {
1891 blk_mq_request_bypass_insert(rq,
1892 list_empty(list));
1893 break;
1894 }
1895 blk_mq_end_request(rq, ret);
1896 }
1897 }
1898
1899 /*
1900 * If we didn't flush the entire list, we could have told
1901 * the driver there was more coming, but that turned out to
1902 * be a lie.
1903 */
1904 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1905 hctx->queue->mq_ops->commit_rqs(hctx);
1906 }
1907
1908 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1909 {
1910 list_add_tail(&rq->queuelist, &plug->mq_list);
1911 plug->rq_count++;
1912 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1913 struct request *tmp;
1914
1915 tmp = list_first_entry(&plug->mq_list, struct request,
1916 queuelist);
1917 if (tmp->q != rq->q)
1918 plug->multiple_queues = true;
1919 }
1920 }
1921
1922 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1923 {
1924 const int is_sync = op_is_sync(bio->bi_opf);
1925 const int is_flush_fua = op_is_flush(bio->bi_opf);
1926 struct blk_mq_alloc_data data = { .flags = 0};
1927 struct request *rq;
1928 struct blk_plug *plug;
1929 struct request *same_queue_rq = NULL;
1930 blk_qc_t cookie;
1931
1932 blk_queue_bounce(q, &bio);
1933
1934 blk_queue_split(q, &bio);
1935
1936 if (!bio_integrity_prep(bio))
1937 return BLK_QC_T_NONE;
1938
1939 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1940 blk_attempt_plug_merge(q, bio, &same_queue_rq))
1941 return BLK_QC_T_NONE;
1942
1943 if (blk_mq_sched_bio_merge(q, bio))
1944 return BLK_QC_T_NONE;
1945
1946 rq_qos_throttle(q, bio);
1947
1948 data.cmd_flags = bio->bi_opf;
1949 rq = blk_mq_get_request(q, bio, &data);
1950 if (unlikely(!rq)) {
1951 rq_qos_cleanup(q, bio);
1952 if (bio->bi_opf & REQ_NOWAIT)
1953 bio_wouldblock_error(bio);
1954 return BLK_QC_T_NONE;
1955 }
1956
1957 trace_block_getrq(q, bio, bio->bi_opf);
1958
1959 rq_qos_track(q, rq, bio);
1960
1961 cookie = request_to_qc_t(data.hctx, rq);
1962
1963 plug = current->plug;
1964 if (unlikely(is_flush_fua)) {
1965 blk_mq_put_ctx(data.ctx);
1966 blk_mq_bio_to_request(rq, bio);
1967
1968 /* bypass scheduler for flush rq */
1969 blk_insert_flush(rq);
1970 blk_mq_run_hw_queue(data.hctx, true);
1971 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1972 /*
1973 * Use plugging if we have a ->commit_rqs() hook as well, as
1974 * we know the driver uses bd->last in a smart fashion.
1975 */
1976 unsigned int request_count = plug->rq_count;
1977 struct request *last = NULL;
1978
1979 blk_mq_put_ctx(data.ctx);
1980 blk_mq_bio_to_request(rq, bio);
1981
1982 if (!request_count)
1983 trace_block_plug(q);
1984 else
1985 last = list_entry_rq(plug->mq_list.prev);
1986
1987 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1988 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1989 blk_flush_plug_list(plug, false);
1990 trace_block_plug(q);
1991 }
1992
1993 blk_add_rq_to_plug(plug, rq);
1994 } else if (plug && !blk_queue_nomerges(q)) {
1995 blk_mq_bio_to_request(rq, bio);
1996
1997 /*
1998 * We do limited plugging. If the bio can be merged, do that.
1999 * Otherwise the existing request in the plug list will be
2000 * issued. So the plug list will have one request at most
2001 * The plug list might get flushed before this. If that happens,
2002 * the plug list is empty, and same_queue_rq is invalid.
2003 */
2004 if (list_empty(&plug->mq_list))
2005 same_queue_rq = NULL;
2006 if (same_queue_rq) {
2007 list_del_init(&same_queue_rq->queuelist);
2008 plug->rq_count--;
2009 }
2010 blk_add_rq_to_plug(plug, rq);
2011 trace_block_plug(q);
2012
2013 blk_mq_put_ctx(data.ctx);
2014
2015 if (same_queue_rq) {
2016 data.hctx = same_queue_rq->mq_hctx;
2017 trace_block_unplug(q, 1, true);
2018 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2019 &cookie);
2020 }
2021 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2022 !data.hctx->dispatch_busy)) {
2023 blk_mq_put_ctx(data.ctx);
2024 blk_mq_bio_to_request(rq, bio);
2025 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2026 } else {
2027 blk_mq_put_ctx(data.ctx);
2028 blk_mq_bio_to_request(rq, bio);
2029 blk_mq_sched_insert_request(rq, false, true, true);
2030 }
2031
2032 return cookie;
2033 }
2034
2035 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2036 unsigned int hctx_idx)
2037 {
2038 struct page *page;
2039
2040 if (tags->rqs && set->ops->exit_request) {
2041 int i;
2042
2043 for (i = 0; i < tags->nr_tags; i++) {
2044 struct request *rq = tags->static_rqs[i];
2045
2046 if (!rq)
2047 continue;
2048 set->ops->exit_request(set, rq, hctx_idx);
2049 tags->static_rqs[i] = NULL;
2050 }
2051 }
2052
2053 while (!list_empty(&tags->page_list)) {
2054 page = list_first_entry(&tags->page_list, struct page, lru);
2055 list_del_init(&page->lru);
2056 /*
2057 * Remove kmemleak object previously allocated in
2058 * blk_mq_init_rq_map().
2059 */
2060 kmemleak_free(page_address(page));
2061 __free_pages(page, page->private);
2062 }
2063 }
2064
2065 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2066 {
2067 kfree(tags->rqs);
2068 tags->rqs = NULL;
2069 kfree(tags->static_rqs);
2070 tags->static_rqs = NULL;
2071
2072 blk_mq_free_tags(tags);
2073 }
2074
2075 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2076 unsigned int hctx_idx,
2077 unsigned int nr_tags,
2078 unsigned int reserved_tags)
2079 {
2080 struct blk_mq_tags *tags;
2081 int node;
2082
2083 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2084 if (node == NUMA_NO_NODE)
2085 node = set->numa_node;
2086
2087 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2088 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2089 if (!tags)
2090 return NULL;
2091
2092 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2093 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2094 node);
2095 if (!tags->rqs) {
2096 blk_mq_free_tags(tags);
2097 return NULL;
2098 }
2099
2100 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2101 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2102 node);
2103 if (!tags->static_rqs) {
2104 kfree(tags->rqs);
2105 blk_mq_free_tags(tags);
2106 return NULL;
2107 }
2108
2109 return tags;
2110 }
2111
2112 static size_t order_to_size(unsigned int order)
2113 {
2114 return (size_t)PAGE_SIZE << order;
2115 }
2116
2117 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2118 unsigned int hctx_idx, int node)
2119 {
2120 int ret;
2121
2122 if (set->ops->init_request) {
2123 ret = set->ops->init_request(set, rq, hctx_idx, node);
2124 if (ret)
2125 return ret;
2126 }
2127
2128 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2129 return 0;
2130 }
2131
2132 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2133 unsigned int hctx_idx, unsigned int depth)
2134 {
2135 unsigned int i, j, entries_per_page, max_order = 4;
2136 size_t rq_size, left;
2137 int node;
2138
2139 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2140 if (node == NUMA_NO_NODE)
2141 node = set->numa_node;
2142
2143 INIT_LIST_HEAD(&tags->page_list);
2144
2145 /*
2146 * rq_size is the size of the request plus driver payload, rounded
2147 * to the cacheline size
2148 */
2149 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2150 cache_line_size());
2151 left = rq_size * depth;
2152
2153 for (i = 0; i < depth; ) {
2154 int this_order = max_order;
2155 struct page *page;
2156 int to_do;
2157 void *p;
2158
2159 while (this_order && left < order_to_size(this_order - 1))
2160 this_order--;
2161
2162 do {
2163 page = alloc_pages_node(node,
2164 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2165 this_order);
2166 if (page)
2167 break;
2168 if (!this_order--)
2169 break;
2170 if (order_to_size(this_order) < rq_size)
2171 break;
2172 } while (1);
2173
2174 if (!page)
2175 goto fail;
2176
2177 page->private = this_order;
2178 list_add_tail(&page->lru, &tags->page_list);
2179
2180 p = page_address(page);
2181 /*
2182 * Allow kmemleak to scan these pages as they contain pointers
2183 * to additional allocations like via ops->init_request().
2184 */
2185 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2186 entries_per_page = order_to_size(this_order) / rq_size;
2187 to_do = min(entries_per_page, depth - i);
2188 left -= to_do * rq_size;
2189 for (j = 0; j < to_do; j++) {
2190 struct request *rq = p;
2191
2192 tags->static_rqs[i] = rq;
2193 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2194 tags->static_rqs[i] = NULL;
2195 goto fail;
2196 }
2197
2198 p += rq_size;
2199 i++;
2200 }
2201 }
2202 return 0;
2203
2204 fail:
2205 blk_mq_free_rqs(set, tags, hctx_idx);
2206 return -ENOMEM;
2207 }
2208
2209 /*
2210 * 'cpu' is going away. splice any existing rq_list entries from this
2211 * software queue to the hw queue dispatch list, and ensure that it
2212 * gets run.
2213 */
2214 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2215 {
2216 struct blk_mq_hw_ctx *hctx;
2217 struct blk_mq_ctx *ctx;
2218 LIST_HEAD(tmp);
2219 enum hctx_type type;
2220
2221 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2222 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2223 type = hctx->type;
2224
2225 spin_lock(&ctx->lock);
2226 if (!list_empty(&ctx->rq_lists[type])) {
2227 list_splice_init(&ctx->rq_lists[type], &tmp);
2228 blk_mq_hctx_clear_pending(hctx, ctx);
2229 }
2230 spin_unlock(&ctx->lock);
2231
2232 if (list_empty(&tmp))
2233 return 0;
2234
2235 spin_lock(&hctx->lock);
2236 list_splice_tail_init(&tmp, &hctx->dispatch);
2237 spin_unlock(&hctx->lock);
2238
2239 blk_mq_run_hw_queue(hctx, true);
2240 return 0;
2241 }
2242
2243 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2244 {
2245 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2246 &hctx->cpuhp_dead);
2247 }
2248
2249 /* hctx->ctxs will be freed in queue's release handler */
2250 static void blk_mq_exit_hctx(struct request_queue *q,
2251 struct blk_mq_tag_set *set,
2252 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2253 {
2254 if (blk_mq_hw_queue_mapped(hctx))
2255 blk_mq_tag_idle(hctx);
2256
2257 if (set->ops->exit_request)
2258 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2259
2260 if (set->ops->exit_hctx)
2261 set->ops->exit_hctx(hctx, hctx_idx);
2262
2263 if (hctx->flags & BLK_MQ_F_BLOCKING)
2264 cleanup_srcu_struct(hctx->srcu);
2265
2266 blk_mq_remove_cpuhp(hctx);
2267 blk_free_flush_queue(hctx->fq);
2268 sbitmap_free(&hctx->ctx_map);
2269 }
2270
2271 static void blk_mq_exit_hw_queues(struct request_queue *q,
2272 struct blk_mq_tag_set *set, int nr_queue)
2273 {
2274 struct blk_mq_hw_ctx *hctx;
2275 unsigned int i;
2276
2277 queue_for_each_hw_ctx(q, hctx, i) {
2278 if (i == nr_queue)
2279 break;
2280 blk_mq_debugfs_unregister_hctx(hctx);
2281 blk_mq_exit_hctx(q, set, hctx, i);
2282 }
2283 }
2284
2285 static int blk_mq_init_hctx(struct request_queue *q,
2286 struct blk_mq_tag_set *set,
2287 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2288 {
2289 int node;
2290
2291 node = hctx->numa_node;
2292 if (node == NUMA_NO_NODE)
2293 node = hctx->numa_node = set->numa_node;
2294
2295 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2296 spin_lock_init(&hctx->lock);
2297 INIT_LIST_HEAD(&hctx->dispatch);
2298 hctx->queue = q;
2299 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2300
2301 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2302
2303 hctx->tags = set->tags[hctx_idx];
2304
2305 /*
2306 * Allocate space for all possible cpus to avoid allocation at
2307 * runtime
2308 */
2309 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2310 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2311 if (!hctx->ctxs)
2312 goto unregister_cpu_notifier;
2313
2314 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2315 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2316 goto free_ctxs;
2317
2318 hctx->nr_ctx = 0;
2319
2320 spin_lock_init(&hctx->dispatch_wait_lock);
2321 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2322 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2323
2324 if (set->ops->init_hctx &&
2325 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2326 goto free_bitmap;
2327
2328 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2329 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2330 if (!hctx->fq)
2331 goto exit_hctx;
2332
2333 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2334 goto free_fq;
2335
2336 if (hctx->flags & BLK_MQ_F_BLOCKING)
2337 init_srcu_struct(hctx->srcu);
2338
2339 return 0;
2340
2341 free_fq:
2342 blk_free_flush_queue(hctx->fq);
2343 exit_hctx:
2344 if (set->ops->exit_hctx)
2345 set->ops->exit_hctx(hctx, hctx_idx);
2346 free_bitmap:
2347 sbitmap_free(&hctx->ctx_map);
2348 free_ctxs:
2349 kfree(hctx->ctxs);
2350 unregister_cpu_notifier:
2351 blk_mq_remove_cpuhp(hctx);
2352 return -1;
2353 }
2354
2355 static void blk_mq_init_cpu_queues(struct request_queue *q,
2356 unsigned int nr_hw_queues)
2357 {
2358 struct blk_mq_tag_set *set = q->tag_set;
2359 unsigned int i, j;
2360
2361 for_each_possible_cpu(i) {
2362 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2363 struct blk_mq_hw_ctx *hctx;
2364 int k;
2365
2366 __ctx->cpu = i;
2367 spin_lock_init(&__ctx->lock);
2368 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2369 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2370
2371 __ctx->queue = q;
2372
2373 /*
2374 * Set local node, IFF we have more than one hw queue. If
2375 * not, we remain on the home node of the device
2376 */
2377 for (j = 0; j < set->nr_maps; j++) {
2378 hctx = blk_mq_map_queue_type(q, j, i);
2379 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2380 hctx->numa_node = local_memory_node(cpu_to_node(i));
2381 }
2382 }
2383 }
2384
2385 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2386 {
2387 int ret = 0;
2388
2389 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2390 set->queue_depth, set->reserved_tags);
2391 if (!set->tags[hctx_idx])
2392 return false;
2393
2394 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2395 set->queue_depth);
2396 if (!ret)
2397 return true;
2398
2399 blk_mq_free_rq_map(set->tags[hctx_idx]);
2400 set->tags[hctx_idx] = NULL;
2401 return false;
2402 }
2403
2404 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2405 unsigned int hctx_idx)
2406 {
2407 if (set->tags && set->tags[hctx_idx]) {
2408 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2409 blk_mq_free_rq_map(set->tags[hctx_idx]);
2410 set->tags[hctx_idx] = NULL;
2411 }
2412 }
2413
2414 static void blk_mq_map_swqueue(struct request_queue *q)
2415 {
2416 unsigned int i, j, hctx_idx;
2417 struct blk_mq_hw_ctx *hctx;
2418 struct blk_mq_ctx *ctx;
2419 struct blk_mq_tag_set *set = q->tag_set;
2420
2421 /*
2422 * Avoid others reading imcomplete hctx->cpumask through sysfs
2423 */
2424 mutex_lock(&q->sysfs_lock);
2425
2426 queue_for_each_hw_ctx(q, hctx, i) {
2427 cpumask_clear(hctx->cpumask);
2428 hctx->nr_ctx = 0;
2429 hctx->dispatch_from = NULL;
2430 }
2431
2432 /*
2433 * Map software to hardware queues.
2434 *
2435 * If the cpu isn't present, the cpu is mapped to first hctx.
2436 */
2437 for_each_possible_cpu(i) {
2438 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2439 /* unmapped hw queue can be remapped after CPU topo changed */
2440 if (!set->tags[hctx_idx] &&
2441 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2442 /*
2443 * If tags initialization fail for some hctx,
2444 * that hctx won't be brought online. In this
2445 * case, remap the current ctx to hctx[0] which
2446 * is guaranteed to always have tags allocated
2447 */
2448 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2449 }
2450
2451 ctx = per_cpu_ptr(q->queue_ctx, i);
2452 for (j = 0; j < set->nr_maps; j++) {
2453 if (!set->map[j].nr_queues) {
2454 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2455 HCTX_TYPE_DEFAULT, i);
2456 continue;
2457 }
2458
2459 hctx = blk_mq_map_queue_type(q, j, i);
2460 ctx->hctxs[j] = hctx;
2461 /*
2462 * If the CPU is already set in the mask, then we've
2463 * mapped this one already. This can happen if
2464 * devices share queues across queue maps.
2465 */
2466 if (cpumask_test_cpu(i, hctx->cpumask))
2467 continue;
2468
2469 cpumask_set_cpu(i, hctx->cpumask);
2470 hctx->type = j;
2471 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2472 hctx->ctxs[hctx->nr_ctx++] = ctx;
2473
2474 /*
2475 * If the nr_ctx type overflows, we have exceeded the
2476 * amount of sw queues we can support.
2477 */
2478 BUG_ON(!hctx->nr_ctx);
2479 }
2480
2481 for (; j < HCTX_MAX_TYPES; j++)
2482 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2483 HCTX_TYPE_DEFAULT, i);
2484 }
2485
2486 mutex_unlock(&q->sysfs_lock);
2487
2488 queue_for_each_hw_ctx(q, hctx, i) {
2489 /*
2490 * If no software queues are mapped to this hardware queue,
2491 * disable it and free the request entries.
2492 */
2493 if (!hctx->nr_ctx) {
2494 /* Never unmap queue 0. We need it as a
2495 * fallback in case of a new remap fails
2496 * allocation
2497 */
2498 if (i && set->tags[i])
2499 blk_mq_free_map_and_requests(set, i);
2500
2501 hctx->tags = NULL;
2502 continue;
2503 }
2504
2505 hctx->tags = set->tags[i];
2506 WARN_ON(!hctx->tags);
2507
2508 /*
2509 * Set the map size to the number of mapped software queues.
2510 * This is more accurate and more efficient than looping
2511 * over all possibly mapped software queues.
2512 */
2513 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2514
2515 /*
2516 * Initialize batch roundrobin counts
2517 */
2518 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2519 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2520 }
2521 }
2522
2523 /*
2524 * Caller needs to ensure that we're either frozen/quiesced, or that
2525 * the queue isn't live yet.
2526 */
2527 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2528 {
2529 struct blk_mq_hw_ctx *hctx;
2530 int i;
2531
2532 queue_for_each_hw_ctx(q, hctx, i) {
2533 if (shared)
2534 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2535 else
2536 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2537 }
2538 }
2539
2540 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2541 bool shared)
2542 {
2543 struct request_queue *q;
2544
2545 lockdep_assert_held(&set->tag_list_lock);
2546
2547 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2548 blk_mq_freeze_queue(q);
2549 queue_set_hctx_shared(q, shared);
2550 blk_mq_unfreeze_queue(q);
2551 }
2552 }
2553
2554 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2555 {
2556 struct blk_mq_tag_set *set = q->tag_set;
2557
2558 mutex_lock(&set->tag_list_lock);
2559 list_del_rcu(&q->tag_set_list);
2560 if (list_is_singular(&set->tag_list)) {
2561 /* just transitioned to unshared */
2562 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2563 /* update existing queue */
2564 blk_mq_update_tag_set_depth(set, false);
2565 }
2566 mutex_unlock(&set->tag_list_lock);
2567 INIT_LIST_HEAD(&q->tag_set_list);
2568 }
2569
2570 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2571 struct request_queue *q)
2572 {
2573 mutex_lock(&set->tag_list_lock);
2574
2575 /*
2576 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2577 */
2578 if (!list_empty(&set->tag_list) &&
2579 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2580 set->flags |= BLK_MQ_F_TAG_SHARED;
2581 /* update existing queue */
2582 blk_mq_update_tag_set_depth(set, true);
2583 }
2584 if (set->flags & BLK_MQ_F_TAG_SHARED)
2585 queue_set_hctx_shared(q, true);
2586 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2587
2588 mutex_unlock(&set->tag_list_lock);
2589 }
2590
2591 /* All allocations will be freed in release handler of q->mq_kobj */
2592 static int blk_mq_alloc_ctxs(struct request_queue *q)
2593 {
2594 struct blk_mq_ctxs *ctxs;
2595 int cpu;
2596
2597 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2598 if (!ctxs)
2599 return -ENOMEM;
2600
2601 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2602 if (!ctxs->queue_ctx)
2603 goto fail;
2604
2605 for_each_possible_cpu(cpu) {
2606 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2607 ctx->ctxs = ctxs;
2608 }
2609
2610 q->mq_kobj = &ctxs->kobj;
2611 q->queue_ctx = ctxs->queue_ctx;
2612
2613 return 0;
2614 fail:
2615 kfree(ctxs);
2616 return -ENOMEM;
2617 }
2618
2619 /*
2620 * It is the actual release handler for mq, but we do it from
2621 * request queue's release handler for avoiding use-after-free
2622 * and headache because q->mq_kobj shouldn't have been introduced,
2623 * but we can't group ctx/kctx kobj without it.
2624 */
2625 void blk_mq_release(struct request_queue *q)
2626 {
2627 struct blk_mq_hw_ctx *hctx;
2628 unsigned int i;
2629
2630 /* hctx kobj stays in hctx */
2631 queue_for_each_hw_ctx(q, hctx, i) {
2632 if (!hctx)
2633 continue;
2634 kobject_put(&hctx->kobj);
2635 }
2636
2637 kfree(q->queue_hw_ctx);
2638
2639 /*
2640 * release .mq_kobj and sw queue's kobject now because
2641 * both share lifetime with request queue.
2642 */
2643 blk_mq_sysfs_deinit(q);
2644 }
2645
2646 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2647 {
2648 struct request_queue *uninit_q, *q;
2649
2650 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2651 if (!uninit_q)
2652 return ERR_PTR(-ENOMEM);
2653
2654 q = blk_mq_init_allocated_queue(set, uninit_q);
2655 if (IS_ERR(q))
2656 blk_cleanup_queue(uninit_q);
2657
2658 return q;
2659 }
2660 EXPORT_SYMBOL(blk_mq_init_queue);
2661
2662 /*
2663 * Helper for setting up a queue with mq ops, given queue depth, and
2664 * the passed in mq ops flags.
2665 */
2666 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2667 const struct blk_mq_ops *ops,
2668 unsigned int queue_depth,
2669 unsigned int set_flags)
2670 {
2671 struct request_queue *q;
2672 int ret;
2673
2674 memset(set, 0, sizeof(*set));
2675 set->ops = ops;
2676 set->nr_hw_queues = 1;
2677 set->nr_maps = 1;
2678 set->queue_depth = queue_depth;
2679 set->numa_node = NUMA_NO_NODE;
2680 set->flags = set_flags;
2681
2682 ret = blk_mq_alloc_tag_set(set);
2683 if (ret)
2684 return ERR_PTR(ret);
2685
2686 q = blk_mq_init_queue(set);
2687 if (IS_ERR(q)) {
2688 blk_mq_free_tag_set(set);
2689 return q;
2690 }
2691
2692 return q;
2693 }
2694 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2695
2696 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2697 {
2698 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2699
2700 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2701 __alignof__(struct blk_mq_hw_ctx)) !=
2702 sizeof(struct blk_mq_hw_ctx));
2703
2704 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2705 hw_ctx_size += sizeof(struct srcu_struct);
2706
2707 return hw_ctx_size;
2708 }
2709
2710 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2711 struct blk_mq_tag_set *set, struct request_queue *q,
2712 int hctx_idx, int node)
2713 {
2714 struct blk_mq_hw_ctx *hctx;
2715
2716 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2717 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2718 node);
2719 if (!hctx)
2720 return NULL;
2721
2722 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2723 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2724 node)) {
2725 kfree(hctx);
2726 return NULL;
2727 }
2728
2729 atomic_set(&hctx->nr_active, 0);
2730 hctx->numa_node = node;
2731 hctx->queue_num = hctx_idx;
2732
2733 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2734 free_cpumask_var(hctx->cpumask);
2735 kfree(hctx);
2736 return NULL;
2737 }
2738 blk_mq_hctx_kobj_init(hctx);
2739
2740 return hctx;
2741 }
2742
2743 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2744 struct request_queue *q)
2745 {
2746 int i, j, end;
2747 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2748
2749 /* protect against switching io scheduler */
2750 mutex_lock(&q->sysfs_lock);
2751 for (i = 0; i < set->nr_hw_queues; i++) {
2752 int node;
2753 struct blk_mq_hw_ctx *hctx;
2754
2755 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2756 /*
2757 * If the hw queue has been mapped to another numa node,
2758 * we need to realloc the hctx. If allocation fails, fallback
2759 * to use the previous one.
2760 */
2761 if (hctxs[i] && (hctxs[i]->numa_node == node))
2762 continue;
2763
2764 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2765 if (hctx) {
2766 if (hctxs[i]) {
2767 blk_mq_exit_hctx(q, set, hctxs[i], i);
2768 kobject_put(&hctxs[i]->kobj);
2769 }
2770 hctxs[i] = hctx;
2771 } else {
2772 if (hctxs[i])
2773 pr_warn("Allocate new hctx on node %d fails,\
2774 fallback to previous one on node %d\n",
2775 node, hctxs[i]->numa_node);
2776 else
2777 break;
2778 }
2779 }
2780 /*
2781 * Increasing nr_hw_queues fails. Free the newly allocated
2782 * hctxs and keep the previous q->nr_hw_queues.
2783 */
2784 if (i != set->nr_hw_queues) {
2785 j = q->nr_hw_queues;
2786 end = i;
2787 } else {
2788 j = i;
2789 end = q->nr_hw_queues;
2790 q->nr_hw_queues = set->nr_hw_queues;
2791 }
2792
2793 for (; j < end; j++) {
2794 struct blk_mq_hw_ctx *hctx = hctxs[j];
2795
2796 if (hctx) {
2797 if (hctx->tags)
2798 blk_mq_free_map_and_requests(set, j);
2799 blk_mq_exit_hctx(q, set, hctx, j);
2800 kobject_put(&hctx->kobj);
2801 hctxs[j] = NULL;
2802
2803 }
2804 }
2805 mutex_unlock(&q->sysfs_lock);
2806 }
2807
2808 /*
2809 * Maximum number of hardware queues we support. For single sets, we'll never
2810 * have more than the CPUs (software queues). For multiple sets, the tag_set
2811 * user may have set ->nr_hw_queues larger.
2812 */
2813 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2814 {
2815 if (set->nr_maps == 1)
2816 return nr_cpu_ids;
2817
2818 return max(set->nr_hw_queues, nr_cpu_ids);
2819 }
2820
2821 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2822 struct request_queue *q)
2823 {
2824 /* mark the queue as mq asap */
2825 q->mq_ops = set->ops;
2826
2827 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2828 blk_mq_poll_stats_bkt,
2829 BLK_MQ_POLL_STATS_BKTS, q);
2830 if (!q->poll_cb)
2831 goto err_exit;
2832
2833 if (blk_mq_alloc_ctxs(q))
2834 goto err_exit;
2835
2836 /* init q->mq_kobj and sw queues' kobjects */
2837 blk_mq_sysfs_init(q);
2838
2839 q->nr_queues = nr_hw_queues(set);
2840 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2841 GFP_KERNEL, set->numa_node);
2842 if (!q->queue_hw_ctx)
2843 goto err_sys_init;
2844
2845 blk_mq_realloc_hw_ctxs(set, q);
2846 if (!q->nr_hw_queues)
2847 goto err_hctxs;
2848
2849 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2850 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2851
2852 q->tag_set = set;
2853
2854 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2855 if (set->nr_maps > HCTX_TYPE_POLL &&
2856 set->map[HCTX_TYPE_POLL].nr_queues)
2857 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2858
2859 q->sg_reserved_size = INT_MAX;
2860
2861 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2862 INIT_LIST_HEAD(&q->requeue_list);
2863 spin_lock_init(&q->requeue_lock);
2864
2865 blk_queue_make_request(q, blk_mq_make_request);
2866
2867 /*
2868 * Do this after blk_queue_make_request() overrides it...
2869 */
2870 q->nr_requests = set->queue_depth;
2871
2872 /*
2873 * Default to classic polling
2874 */
2875 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2876
2877 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2878 blk_mq_add_queue_tag_set(set, q);
2879 blk_mq_map_swqueue(q);
2880
2881 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2882 int ret;
2883
2884 ret = elevator_init_mq(q);
2885 if (ret)
2886 return ERR_PTR(ret);
2887 }
2888
2889 return q;
2890
2891 err_hctxs:
2892 kfree(q->queue_hw_ctx);
2893 err_sys_init:
2894 blk_mq_sysfs_deinit(q);
2895 err_exit:
2896 q->mq_ops = NULL;
2897 return ERR_PTR(-ENOMEM);
2898 }
2899 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2900
2901 void blk_mq_free_queue(struct request_queue *q)
2902 {
2903 struct blk_mq_tag_set *set = q->tag_set;
2904
2905 blk_mq_del_queue_tag_set(q);
2906 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2907 }
2908
2909 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2910 {
2911 int i;
2912
2913 for (i = 0; i < set->nr_hw_queues; i++)
2914 if (!__blk_mq_alloc_rq_map(set, i))
2915 goto out_unwind;
2916
2917 return 0;
2918
2919 out_unwind:
2920 while (--i >= 0)
2921 blk_mq_free_rq_map(set->tags[i]);
2922
2923 return -ENOMEM;
2924 }
2925
2926 /*
2927 * Allocate the request maps associated with this tag_set. Note that this
2928 * may reduce the depth asked for, if memory is tight. set->queue_depth
2929 * will be updated to reflect the allocated depth.
2930 */
2931 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2932 {
2933 unsigned int depth;
2934 int err;
2935
2936 depth = set->queue_depth;
2937 do {
2938 err = __blk_mq_alloc_rq_maps(set);
2939 if (!err)
2940 break;
2941
2942 set->queue_depth >>= 1;
2943 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2944 err = -ENOMEM;
2945 break;
2946 }
2947 } while (set->queue_depth);
2948
2949 if (!set->queue_depth || err) {
2950 pr_err("blk-mq: failed to allocate request map\n");
2951 return -ENOMEM;
2952 }
2953
2954 if (depth != set->queue_depth)
2955 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2956 depth, set->queue_depth);
2957
2958 return 0;
2959 }
2960
2961 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2962 {
2963 if (set->ops->map_queues && !is_kdump_kernel()) {
2964 int i;
2965
2966 /*
2967 * transport .map_queues is usually done in the following
2968 * way:
2969 *
2970 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2971 * mask = get_cpu_mask(queue)
2972 * for_each_cpu(cpu, mask)
2973 * set->map[x].mq_map[cpu] = queue;
2974 * }
2975 *
2976 * When we need to remap, the table has to be cleared for
2977 * killing stale mapping since one CPU may not be mapped
2978 * to any hw queue.
2979 */
2980 for (i = 0; i < set->nr_maps; i++)
2981 blk_mq_clear_mq_map(&set->map[i]);
2982
2983 return set->ops->map_queues(set);
2984 } else {
2985 BUG_ON(set->nr_maps > 1);
2986 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2987 }
2988 }
2989
2990 /*
2991 * Alloc a tag set to be associated with one or more request queues.
2992 * May fail with EINVAL for various error conditions. May adjust the
2993 * requested depth down, if it's too large. In that case, the set
2994 * value will be stored in set->queue_depth.
2995 */
2996 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2997 {
2998 int i, ret;
2999
3000 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3001
3002 if (!set->nr_hw_queues)
3003 return -EINVAL;
3004 if (!set->queue_depth)
3005 return -EINVAL;
3006 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3007 return -EINVAL;
3008
3009 if (!set->ops->queue_rq)
3010 return -EINVAL;
3011
3012 if (!set->ops->get_budget ^ !set->ops->put_budget)
3013 return -EINVAL;
3014
3015 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3016 pr_info("blk-mq: reduced tag depth to %u\n",
3017 BLK_MQ_MAX_DEPTH);
3018 set->queue_depth = BLK_MQ_MAX_DEPTH;
3019 }
3020
3021 if (!set->nr_maps)
3022 set->nr_maps = 1;
3023 else if (set->nr_maps > HCTX_MAX_TYPES)
3024 return -EINVAL;
3025
3026 /*
3027 * If a crashdump is active, then we are potentially in a very
3028 * memory constrained environment. Limit us to 1 queue and
3029 * 64 tags to prevent using too much memory.
3030 */
3031 if (is_kdump_kernel()) {
3032 set->nr_hw_queues = 1;
3033 set->nr_maps = 1;
3034 set->queue_depth = min(64U, set->queue_depth);
3035 }
3036 /*
3037 * There is no use for more h/w queues than cpus if we just have
3038 * a single map
3039 */
3040 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3041 set->nr_hw_queues = nr_cpu_ids;
3042
3043 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3044 GFP_KERNEL, set->numa_node);
3045 if (!set->tags)
3046 return -ENOMEM;
3047
3048 ret = -ENOMEM;
3049 for (i = 0; i < set->nr_maps; i++) {
3050 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3051 sizeof(set->map[i].mq_map[0]),
3052 GFP_KERNEL, set->numa_node);
3053 if (!set->map[i].mq_map)
3054 goto out_free_mq_map;
3055 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3056 }
3057
3058 ret = blk_mq_update_queue_map(set);
3059 if (ret)
3060 goto out_free_mq_map;
3061
3062 ret = blk_mq_alloc_rq_maps(set);
3063 if (ret)
3064 goto out_free_mq_map;
3065
3066 mutex_init(&set->tag_list_lock);
3067 INIT_LIST_HEAD(&set->tag_list);
3068
3069 return 0;
3070
3071 out_free_mq_map:
3072 for (i = 0; i < set->nr_maps; i++) {
3073 kfree(set->map[i].mq_map);
3074 set->map[i].mq_map = NULL;
3075 }
3076 kfree(set->tags);
3077 set->tags = NULL;
3078 return ret;
3079 }
3080 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3081
3082 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3083 {
3084 int i, j;
3085
3086 for (i = 0; i < nr_hw_queues(set); i++)
3087 blk_mq_free_map_and_requests(set, i);
3088
3089 for (j = 0; j < set->nr_maps; j++) {
3090 kfree(set->map[j].mq_map);
3091 set->map[j].mq_map = NULL;
3092 }
3093
3094 kfree(set->tags);
3095 set->tags = NULL;
3096 }
3097 EXPORT_SYMBOL(blk_mq_free_tag_set);
3098
3099 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3100 {
3101 struct blk_mq_tag_set *set = q->tag_set;
3102 struct blk_mq_hw_ctx *hctx;
3103 int i, ret;
3104
3105 if (!set)
3106 return -EINVAL;
3107
3108 if (q->nr_requests == nr)
3109 return 0;
3110
3111 blk_mq_freeze_queue(q);
3112 blk_mq_quiesce_queue(q);
3113
3114 ret = 0;
3115 queue_for_each_hw_ctx(q, hctx, i) {
3116 if (!hctx->tags)
3117 continue;
3118 /*
3119 * If we're using an MQ scheduler, just update the scheduler
3120 * queue depth. This is similar to what the old code would do.
3121 */
3122 if (!hctx->sched_tags) {
3123 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3124 false);
3125 } else {
3126 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3127 nr, true);
3128 }
3129 if (ret)
3130 break;
3131 }
3132
3133 if (!ret)
3134 q->nr_requests = nr;
3135
3136 blk_mq_unquiesce_queue(q);
3137 blk_mq_unfreeze_queue(q);
3138
3139 return ret;
3140 }
3141
3142 /*
3143 * request_queue and elevator_type pair.
3144 * It is just used by __blk_mq_update_nr_hw_queues to cache
3145 * the elevator_type associated with a request_queue.
3146 */
3147 struct blk_mq_qe_pair {
3148 struct list_head node;
3149 struct request_queue *q;
3150 struct elevator_type *type;
3151 };
3152
3153 /*
3154 * Cache the elevator_type in qe pair list and switch the
3155 * io scheduler to 'none'
3156 */
3157 static bool blk_mq_elv_switch_none(struct list_head *head,
3158 struct request_queue *q)
3159 {
3160 struct blk_mq_qe_pair *qe;
3161
3162 if (!q->elevator)
3163 return true;
3164
3165 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3166 if (!qe)
3167 return false;
3168
3169 INIT_LIST_HEAD(&qe->node);
3170 qe->q = q;
3171 qe->type = q->elevator->type;
3172 list_add(&qe->node, head);
3173
3174 mutex_lock(&q->sysfs_lock);
3175 /*
3176 * After elevator_switch_mq, the previous elevator_queue will be
3177 * released by elevator_release. The reference of the io scheduler
3178 * module get by elevator_get will also be put. So we need to get
3179 * a reference of the io scheduler module here to prevent it to be
3180 * removed.
3181 */
3182 __module_get(qe->type->elevator_owner);
3183 elevator_switch_mq(q, NULL);
3184 mutex_unlock(&q->sysfs_lock);
3185
3186 return true;
3187 }
3188
3189 static void blk_mq_elv_switch_back(struct list_head *head,
3190 struct request_queue *q)
3191 {
3192 struct blk_mq_qe_pair *qe;
3193 struct elevator_type *t = NULL;
3194
3195 list_for_each_entry(qe, head, node)
3196 if (qe->q == q) {
3197 t = qe->type;
3198 break;
3199 }
3200
3201 if (!t)
3202 return;
3203
3204 list_del(&qe->node);
3205 kfree(qe);
3206
3207 mutex_lock(&q->sysfs_lock);
3208 elevator_switch_mq(q, t);
3209 mutex_unlock(&q->sysfs_lock);
3210 }
3211
3212 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3213 int nr_hw_queues)
3214 {
3215 struct request_queue *q;
3216 LIST_HEAD(head);
3217 int prev_nr_hw_queues;
3218
3219 lockdep_assert_held(&set->tag_list_lock);
3220
3221 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3222 nr_hw_queues = nr_cpu_ids;
3223 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3224 return;
3225
3226 list_for_each_entry(q, &set->tag_list, tag_set_list)
3227 blk_mq_freeze_queue(q);
3228 /*
3229 * Sync with blk_mq_queue_tag_busy_iter.
3230 */
3231 synchronize_rcu();
3232 /*
3233 * Switch IO scheduler to 'none', cleaning up the data associated
3234 * with the previous scheduler. We will switch back once we are done
3235 * updating the new sw to hw queue mappings.
3236 */
3237 list_for_each_entry(q, &set->tag_list, tag_set_list)
3238 if (!blk_mq_elv_switch_none(&head, q))
3239 goto switch_back;
3240
3241 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3242 blk_mq_debugfs_unregister_hctxs(q);
3243 blk_mq_sysfs_unregister(q);
3244 }
3245
3246 prev_nr_hw_queues = set->nr_hw_queues;
3247 set->nr_hw_queues = nr_hw_queues;
3248 blk_mq_update_queue_map(set);
3249 fallback:
3250 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3251 blk_mq_realloc_hw_ctxs(set, q);
3252 if (q->nr_hw_queues != set->nr_hw_queues) {
3253 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3254 nr_hw_queues, prev_nr_hw_queues);
3255 set->nr_hw_queues = prev_nr_hw_queues;
3256 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3257 goto fallback;
3258 }
3259 blk_mq_map_swqueue(q);
3260 }
3261
3262 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3263 blk_mq_sysfs_register(q);
3264 blk_mq_debugfs_register_hctxs(q);
3265 }
3266
3267 switch_back:
3268 list_for_each_entry(q, &set->tag_list, tag_set_list)
3269 blk_mq_elv_switch_back(&head, q);
3270
3271 list_for_each_entry(q, &set->tag_list, tag_set_list)
3272 blk_mq_unfreeze_queue(q);
3273 }
3274
3275 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3276 {
3277 mutex_lock(&set->tag_list_lock);
3278 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3279 mutex_unlock(&set->tag_list_lock);
3280 }
3281 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3282
3283 /* Enable polling stats and return whether they were already enabled. */
3284 static bool blk_poll_stats_enable(struct request_queue *q)
3285 {
3286 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3287 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3288 return true;
3289 blk_stat_add_callback(q, q->poll_cb);
3290 return false;
3291 }
3292
3293 static void blk_mq_poll_stats_start(struct request_queue *q)
3294 {
3295 /*
3296 * We don't arm the callback if polling stats are not enabled or the
3297 * callback is already active.
3298 */
3299 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3300 blk_stat_is_active(q->poll_cb))
3301 return;
3302
3303 blk_stat_activate_msecs(q->poll_cb, 100);
3304 }
3305
3306 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3307 {
3308 struct request_queue *q = cb->data;
3309 int bucket;
3310
3311 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3312 if (cb->stat[bucket].nr_samples)
3313 q->poll_stat[bucket] = cb->stat[bucket];
3314 }
3315 }
3316
3317 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3318 struct blk_mq_hw_ctx *hctx,
3319 struct request *rq)
3320 {
3321 unsigned long ret = 0;
3322 int bucket;
3323
3324 /*
3325 * If stats collection isn't on, don't sleep but turn it on for
3326 * future users
3327 */
3328 if (!blk_poll_stats_enable(q))
3329 return 0;
3330
3331 /*
3332 * As an optimistic guess, use half of the mean service time
3333 * for this type of request. We can (and should) make this smarter.
3334 * For instance, if the completion latencies are tight, we can
3335 * get closer than just half the mean. This is especially
3336 * important on devices where the completion latencies are longer
3337 * than ~10 usec. We do use the stats for the relevant IO size
3338 * if available which does lead to better estimates.
3339 */
3340 bucket = blk_mq_poll_stats_bkt(rq);
3341 if (bucket < 0)
3342 return ret;
3343
3344 if (q->poll_stat[bucket].nr_samples)
3345 ret = (q->poll_stat[bucket].mean + 1) / 2;
3346
3347 return ret;
3348 }
3349
3350 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3351 struct blk_mq_hw_ctx *hctx,
3352 struct request *rq)
3353 {
3354 struct hrtimer_sleeper hs;
3355 enum hrtimer_mode mode;
3356 unsigned int nsecs;
3357 ktime_t kt;
3358
3359 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3360 return false;
3361
3362 /*
3363 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3364 *
3365 * 0: use half of prev avg
3366 * >0: use this specific value
3367 */
3368 if (q->poll_nsec > 0)
3369 nsecs = q->poll_nsec;
3370 else
3371 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3372
3373 if (!nsecs)
3374 return false;
3375
3376 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3377
3378 /*
3379 * This will be replaced with the stats tracking code, using
3380 * 'avg_completion_time / 2' as the pre-sleep target.
3381 */
3382 kt = nsecs;
3383
3384 mode = HRTIMER_MODE_REL;
3385 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3386 hrtimer_set_expires(&hs.timer, kt);
3387
3388 hrtimer_init_sleeper(&hs, current);
3389 do {
3390 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3391 break;
3392 set_current_state(TASK_UNINTERRUPTIBLE);
3393 hrtimer_start_expires(&hs.timer, mode);
3394 if (hs.task)
3395 io_schedule();
3396 hrtimer_cancel(&hs.timer);
3397 mode = HRTIMER_MODE_ABS;
3398 } while (hs.task && !signal_pending(current));
3399
3400 __set_current_state(TASK_RUNNING);
3401 destroy_hrtimer_on_stack(&hs.timer);
3402 return true;
3403 }
3404
3405 static bool blk_mq_poll_hybrid(struct request_queue *q,
3406 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3407 {
3408 struct request *rq;
3409
3410 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3411 return false;
3412
3413 if (!blk_qc_t_is_internal(cookie))
3414 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3415 else {
3416 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3417 /*
3418 * With scheduling, if the request has completed, we'll
3419 * get a NULL return here, as we clear the sched tag when
3420 * that happens. The request still remains valid, like always,
3421 * so we should be safe with just the NULL check.
3422 */
3423 if (!rq)
3424 return false;
3425 }
3426
3427 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3428 }
3429
3430 /**
3431 * blk_poll - poll for IO completions
3432 * @q: the queue
3433 * @cookie: cookie passed back at IO submission time
3434 * @spin: whether to spin for completions
3435 *
3436 * Description:
3437 * Poll for completions on the passed in queue. Returns number of
3438 * completed entries found. If @spin is true, then blk_poll will continue
3439 * looping until at least one completion is found, unless the task is
3440 * otherwise marked running (or we need to reschedule).
3441 */
3442 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3443 {
3444 struct blk_mq_hw_ctx *hctx;
3445 long state;
3446
3447 if (!blk_qc_t_valid(cookie) ||
3448 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3449 return 0;
3450
3451 if (current->plug)
3452 blk_flush_plug_list(current->plug, false);
3453
3454 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3455
3456 /*
3457 * If we sleep, have the caller restart the poll loop to reset
3458 * the state. Like for the other success return cases, the
3459 * caller is responsible for checking if the IO completed. If
3460 * the IO isn't complete, we'll get called again and will go
3461 * straight to the busy poll loop.
3462 */
3463 if (blk_mq_poll_hybrid(q, hctx, cookie))
3464 return 1;
3465
3466 hctx->poll_considered++;
3467
3468 state = current->state;
3469 do {
3470 int ret;
3471
3472 hctx->poll_invoked++;
3473
3474 ret = q->mq_ops->poll(hctx);
3475 if (ret > 0) {
3476 hctx->poll_success++;
3477 __set_current_state(TASK_RUNNING);
3478 return ret;
3479 }
3480
3481 if (signal_pending_state(state, current))
3482 __set_current_state(TASK_RUNNING);
3483
3484 if (current->state == TASK_RUNNING)
3485 return 1;
3486 if (ret < 0 || !spin)
3487 break;
3488 cpu_relax();
3489 } while (!need_resched());
3490
3491 __set_current_state(TASK_RUNNING);
3492 return 0;
3493 }
3494 EXPORT_SYMBOL_GPL(blk_poll);
3495
3496 unsigned int blk_mq_rq_cpu(struct request *rq)
3497 {
3498 return rq->mq_ctx->cpu;
3499 }
3500 EXPORT_SYMBOL(blk_mq_rq_cpu);
3501
3502 static int __init blk_mq_init(void)
3503 {
3504 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3505 blk_mq_hctx_notify_dead);
3506 return 0;
3507 }
3508 subsys_initcall(blk_mq_init);