]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-mq.c
aa9a05fdd023776d30f98485063b2c291100853d
[thirdparty/linux.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57 * Check if any of the ctx, dispatch list or elevator
58 * have pending work in this hardware queue.
59 */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 return !list_empty_careful(&hctx->dispatch) ||
63 sbitmap_any_bit_set(&hctx->ctx_map) ||
64 blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68 * Mark this ctx as having pending work in this hardware queue
69 */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 struct blk_mq_ctx *ctx)
72 {
73 const int bit = ctx->index_hw[hctx->type];
74
75 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 struct blk_mq_ctx *ctx)
81 {
82 const int bit = ctx->index_hw[hctx->type];
83
84 sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88 struct block_device *part;
89 unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 struct mq_inflight *mi = priv;
95
96 if (rq->part && blk_do_io_stat(rq) &&
97 (!mi->part->bd_partno || rq->part == mi->part) &&
98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 mi->inflight[rq_data_dir(rq)]++;
100
101 return true;
102 }
103
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 struct block_device *part)
106 {
107 struct mq_inflight mi = { .part = part };
108
109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111 return mi.inflight[0] + mi.inflight[1];
112 }
113
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 unsigned int inflight[2])
116 {
117 struct mq_inflight mi = { .part = part };
118
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 inflight[0] = mi.inflight[0];
121 inflight[1] = mi.inflight[1];
122 }
123
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126 mutex_lock(&q->mq_freeze_lock);
127 if (++q->mq_freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 mutex_unlock(&q->mq_freeze_lock);
130 if (queue_is_mq(q))
131 blk_mq_run_hw_queues(q, false);
132 } else {
133 mutex_unlock(&q->mq_freeze_lock);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145 unsigned long timeout)
146 {
147 return wait_event_timeout(q->mq_freeze_wq,
148 percpu_ref_is_zero(&q->q_usage_counter),
149 timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152
153 /*
154 * Guarantee no request is in use, so we can change any data structure of
155 * the queue afterward.
156 */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159 /*
160 * In the !blk_mq case we are only calling this to kill the
161 * q_usage_counter, otherwise this increases the freeze depth
162 * and waits for it to return to zero. For this reason there is
163 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164 * exported to drivers as the only user for unfreeze is blk_mq.
165 */
166 blk_freeze_queue_start(q);
167 blk_mq_freeze_queue_wait(q);
168 }
169
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 /*
173 * ...just an alias to keep freeze and unfreeze actions balanced
174 * in the blk_mq_* namespace
175 */
176 blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182 mutex_lock(&q->mq_freeze_lock);
183 if (force_atomic)
184 q->q_usage_counter.data->force_atomic = true;
185 q->mq_freeze_depth--;
186 WARN_ON_ONCE(q->mq_freeze_depth < 0);
187 if (!q->mq_freeze_depth) {
188 percpu_ref_resurrect(&q->q_usage_counter);
189 wake_up_all(&q->mq_freeze_wq);
190 }
191 mutex_unlock(&q->mq_freeze_lock);
192 }
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 __blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202 * mpt3sas driver such that this function can be removed.
203 */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 unsigned long flags;
207
208 spin_lock_irqsave(&q->queue_lock, flags);
209 if (!q->quiesce_depth++)
210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214
215 /**
216 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217 * @set: tag_set to wait on
218 *
219 * Note: it is driver's responsibility for making sure that quiesce has
220 * been started on or more of the request_queues of the tag_set. This
221 * function only waits for the quiesce on those request_queues that had
222 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223 */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226 if (set->flags & BLK_MQ_F_BLOCKING)
227 synchronize_srcu(set->srcu);
228 else
229 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232
233 /**
234 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235 * @q: request queue.
236 *
237 * Note: this function does not prevent that the struct request end_io()
238 * callback function is invoked. Once this function is returned, we make
239 * sure no dispatch can happen until the queue is unquiesced via
240 * blk_mq_unquiesce_queue().
241 */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244 blk_mq_quiesce_queue_nowait(q);
245 /* nothing to wait for non-mq queues */
246 if (queue_is_mq(q))
247 blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253 * @q: request queue.
254 *
255 * This function recovers queue into the state before quiescing
256 * which is done by blk_mq_quiesce_queue.
257 */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 unsigned long flags;
261 bool run_queue = false;
262
263 spin_lock_irqsave(&q->queue_lock, flags);
264 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 ;
266 } else if (!--q->quiesce_depth) {
267 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268 run_queue = true;
269 }
270 spin_unlock_irqrestore(&q->queue_lock, flags);
271
272 /* dispatch requests which are inserted during quiescing */
273 if (run_queue)
274 blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280 struct request_queue *q;
281
282 mutex_lock(&set->tag_list_lock);
283 list_for_each_entry(q, &set->tag_list, tag_set_list) {
284 if (!blk_queue_skip_tagset_quiesce(q))
285 blk_mq_quiesce_queue_nowait(q);
286 }
287 blk_mq_wait_quiesce_done(set);
288 mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 struct request_queue *q;
295
296 mutex_lock(&set->tag_list_lock);
297 list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 if (!blk_queue_skip_tagset_quiesce(q))
299 blk_mq_unquiesce_queue(q);
300 }
301 mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 struct blk_mq_hw_ctx *hctx;
308 unsigned long i;
309
310 queue_for_each_hw_ctx(q, hctx, i)
311 if (blk_mq_hw_queue_mapped(hctx))
312 blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 memset(rq, 0, sizeof(*rq));
318
319 INIT_LIST_HEAD(&rq->queuelist);
320 rq->q = q;
321 rq->__sector = (sector_t) -1;
322 INIT_HLIST_NODE(&rq->hash);
323 RB_CLEAR_NODE(&rq->rb_node);
324 rq->tag = BLK_MQ_NO_TAG;
325 rq->internal_tag = BLK_MQ_NO_TAG;
326 rq->start_time_ns = ktime_get_ns();
327 rq->part = NULL;
328 blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 if (blk_mq_need_time_stamp(rq))
336 rq->start_time_ns = ktime_get_ns();
337 else
338 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 if (blk_queue_rq_alloc_time(rq->q))
342 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 else
344 rq->alloc_time_ns = 0;
345 #endif
346 }
347
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 struct blk_mq_tags *tags, unsigned int tag)
350 {
351 struct blk_mq_ctx *ctx = data->ctx;
352 struct blk_mq_hw_ctx *hctx = data->hctx;
353 struct request_queue *q = data->q;
354 struct request *rq = tags->static_rqs[tag];
355
356 rq->q = q;
357 rq->mq_ctx = ctx;
358 rq->mq_hctx = hctx;
359 rq->cmd_flags = data->cmd_flags;
360
361 if (data->flags & BLK_MQ_REQ_PM)
362 data->rq_flags |= RQF_PM;
363 if (blk_queue_io_stat(q))
364 data->rq_flags |= RQF_IO_STAT;
365 rq->rq_flags = data->rq_flags;
366
367 if (data->rq_flags & RQF_SCHED_TAGS) {
368 rq->tag = BLK_MQ_NO_TAG;
369 rq->internal_tag = tag;
370 } else {
371 rq->tag = tag;
372 rq->internal_tag = BLK_MQ_NO_TAG;
373 }
374 rq->timeout = 0;
375
376 rq->part = NULL;
377 rq->io_start_time_ns = 0;
378 rq->stats_sectors = 0;
379 rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 rq->nr_integrity_segments = 0;
382 #endif
383 rq->end_io = NULL;
384 rq->end_io_data = NULL;
385
386 blk_crypto_rq_set_defaults(rq);
387 INIT_LIST_HEAD(&rq->queuelist);
388 /* tag was already set */
389 WRITE_ONCE(rq->deadline, 0);
390 req_ref_set(rq, 1);
391
392 if (rq->rq_flags & RQF_USE_SCHED) {
393 struct elevator_queue *e = data->q->elevator;
394
395 INIT_HLIST_NODE(&rq->hash);
396 RB_CLEAR_NODE(&rq->rb_node);
397
398 if (e->type->ops.prepare_request)
399 e->type->ops.prepare_request(rq);
400 }
401
402 return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 unsigned int tag, tag_offset;
409 struct blk_mq_tags *tags;
410 struct request *rq;
411 unsigned long tag_mask;
412 int i, nr = 0;
413
414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 if (unlikely(!tag_mask))
416 return NULL;
417
418 tags = blk_mq_tags_from_data(data);
419 for (i = 0; tag_mask; i++) {
420 if (!(tag_mask & (1UL << i)))
421 continue;
422 tag = tag_offset + i;
423 prefetch(tags->static_rqs[tag]);
424 tag_mask &= ~(1UL << i);
425 rq = blk_mq_rq_ctx_init(data, tags, tag);
426 rq_list_add(data->cached_rq, rq);
427 nr++;
428 }
429 if (!(data->rq_flags & RQF_SCHED_TAGS))
430 blk_mq_add_active_requests(data->hctx, nr);
431 /* caller already holds a reference, add for remainder */
432 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
433 data->nr_tags -= nr;
434
435 return rq_list_pop(data->cached_rq);
436 }
437
438 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 {
440 struct request_queue *q = data->q;
441 u64 alloc_time_ns = 0;
442 struct request *rq;
443 unsigned int tag;
444
445 /* alloc_time includes depth and tag waits */
446 if (blk_queue_rq_alloc_time(q))
447 alloc_time_ns = ktime_get_ns();
448
449 if (data->cmd_flags & REQ_NOWAIT)
450 data->flags |= BLK_MQ_REQ_NOWAIT;
451
452 if (q->elevator) {
453 /*
454 * All requests use scheduler tags when an I/O scheduler is
455 * enabled for the queue.
456 */
457 data->rq_flags |= RQF_SCHED_TAGS;
458
459 /*
460 * Flush/passthrough requests are special and go directly to the
461 * dispatch list.
462 */
463 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
464 !blk_op_is_passthrough(data->cmd_flags)) {
465 struct elevator_mq_ops *ops = &q->elevator->type->ops;
466
467 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468
469 data->rq_flags |= RQF_USE_SCHED;
470 if (ops->limit_depth)
471 ops->limit_depth(data->cmd_flags, data);
472 }
473 }
474
475 retry:
476 data->ctx = blk_mq_get_ctx(q);
477 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
478 if (!(data->rq_flags & RQF_SCHED_TAGS))
479 blk_mq_tag_busy(data->hctx);
480
481 if (data->flags & BLK_MQ_REQ_RESERVED)
482 data->rq_flags |= RQF_RESV;
483
484 /*
485 * Try batched alloc if we want more than 1 tag.
486 */
487 if (data->nr_tags > 1) {
488 rq = __blk_mq_alloc_requests_batch(data);
489 if (rq) {
490 blk_mq_rq_time_init(rq, alloc_time_ns);
491 return rq;
492 }
493 data->nr_tags = 1;
494 }
495
496 /*
497 * Waiting allocations only fail because of an inactive hctx. In that
498 * case just retry the hctx assignment and tag allocation as CPU hotplug
499 * should have migrated us to an online CPU by now.
500 */
501 tag = blk_mq_get_tag(data);
502 if (tag == BLK_MQ_NO_TAG) {
503 if (data->flags & BLK_MQ_REQ_NOWAIT)
504 return NULL;
505 /*
506 * Give up the CPU and sleep for a random short time to
507 * ensure that thread using a realtime scheduling class
508 * are migrated off the CPU, and thus off the hctx that
509 * is going away.
510 */
511 msleep(3);
512 goto retry;
513 }
514
515 if (!(data->rq_flags & RQF_SCHED_TAGS))
516 blk_mq_inc_active_requests(data->hctx);
517 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
518 blk_mq_rq_time_init(rq, alloc_time_ns);
519 return rq;
520 }
521
522 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
523 struct blk_plug *plug,
524 blk_opf_t opf,
525 blk_mq_req_flags_t flags)
526 {
527 struct blk_mq_alloc_data data = {
528 .q = q,
529 .flags = flags,
530 .cmd_flags = opf,
531 .nr_tags = plug->nr_ios,
532 .cached_rq = &plug->cached_rq,
533 };
534 struct request *rq;
535
536 if (blk_queue_enter(q, flags))
537 return NULL;
538
539 plug->nr_ios = 1;
540
541 rq = __blk_mq_alloc_requests(&data);
542 if (unlikely(!rq))
543 blk_queue_exit(q);
544 return rq;
545 }
546
547 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548 blk_opf_t opf,
549 blk_mq_req_flags_t flags)
550 {
551 struct blk_plug *plug = current->plug;
552 struct request *rq;
553
554 if (!plug)
555 return NULL;
556
557 if (rq_list_empty(plug->cached_rq)) {
558 if (plug->nr_ios == 1)
559 return NULL;
560 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
561 if (!rq)
562 return NULL;
563 } else {
564 rq = rq_list_peek(&plug->cached_rq);
565 if (!rq || rq->q != q)
566 return NULL;
567
568 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569 return NULL;
570 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
571 return NULL;
572
573 plug->cached_rq = rq_list_next(rq);
574 blk_mq_rq_time_init(rq, 0);
575 }
576
577 rq->cmd_flags = opf;
578 INIT_LIST_HEAD(&rq->queuelist);
579 return rq;
580 }
581
582 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
583 blk_mq_req_flags_t flags)
584 {
585 struct request *rq;
586
587 rq = blk_mq_alloc_cached_request(q, opf, flags);
588 if (!rq) {
589 struct blk_mq_alloc_data data = {
590 .q = q,
591 .flags = flags,
592 .cmd_flags = opf,
593 .nr_tags = 1,
594 };
595 int ret;
596
597 ret = blk_queue_enter(q, flags);
598 if (ret)
599 return ERR_PTR(ret);
600
601 rq = __blk_mq_alloc_requests(&data);
602 if (!rq)
603 goto out_queue_exit;
604 }
605 rq->__data_len = 0;
606 rq->__sector = (sector_t) -1;
607 rq->bio = rq->biotail = NULL;
608 return rq;
609 out_queue_exit:
610 blk_queue_exit(q);
611 return ERR_PTR(-EWOULDBLOCK);
612 }
613 EXPORT_SYMBOL(blk_mq_alloc_request);
614
615 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
616 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 {
618 struct blk_mq_alloc_data data = {
619 .q = q,
620 .flags = flags,
621 .cmd_flags = opf,
622 .nr_tags = 1,
623 };
624 u64 alloc_time_ns = 0;
625 struct request *rq;
626 unsigned int cpu;
627 unsigned int tag;
628 int ret;
629
630 /* alloc_time includes depth and tag waits */
631 if (blk_queue_rq_alloc_time(q))
632 alloc_time_ns = ktime_get_ns();
633
634 /*
635 * If the tag allocator sleeps we could get an allocation for a
636 * different hardware context. No need to complicate the low level
637 * allocator for this for the rare use case of a command tied to
638 * a specific queue.
639 */
640 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
641 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
642 return ERR_PTR(-EINVAL);
643
644 if (hctx_idx >= q->nr_hw_queues)
645 return ERR_PTR(-EIO);
646
647 ret = blk_queue_enter(q, flags);
648 if (ret)
649 return ERR_PTR(ret);
650
651 /*
652 * Check if the hardware context is actually mapped to anything.
653 * If not tell the caller that it should skip this queue.
654 */
655 ret = -EXDEV;
656 data.hctx = xa_load(&q->hctx_table, hctx_idx);
657 if (!blk_mq_hw_queue_mapped(data.hctx))
658 goto out_queue_exit;
659 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
660 if (cpu >= nr_cpu_ids)
661 goto out_queue_exit;
662 data.ctx = __blk_mq_get_ctx(q, cpu);
663
664 if (q->elevator)
665 data.rq_flags |= RQF_SCHED_TAGS;
666 else
667 blk_mq_tag_busy(data.hctx);
668
669 if (flags & BLK_MQ_REQ_RESERVED)
670 data.rq_flags |= RQF_RESV;
671
672 ret = -EWOULDBLOCK;
673 tag = blk_mq_get_tag(&data);
674 if (tag == BLK_MQ_NO_TAG)
675 goto out_queue_exit;
676 if (!(data.rq_flags & RQF_SCHED_TAGS))
677 blk_mq_inc_active_requests(data.hctx);
678 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
679 blk_mq_rq_time_init(rq, alloc_time_ns);
680 rq->__data_len = 0;
681 rq->__sector = (sector_t) -1;
682 rq->bio = rq->biotail = NULL;
683 return rq;
684
685 out_queue_exit:
686 blk_queue_exit(q);
687 return ERR_PTR(ret);
688 }
689 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690
691 static void blk_mq_finish_request(struct request *rq)
692 {
693 struct request_queue *q = rq->q;
694
695 if (rq->rq_flags & RQF_USE_SCHED) {
696 q->elevator->type->ops.finish_request(rq);
697 /*
698 * For postflush request that may need to be
699 * completed twice, we should clear this flag
700 * to avoid double finish_request() on the rq.
701 */
702 rq->rq_flags &= ~RQF_USE_SCHED;
703 }
704 }
705
706 static void __blk_mq_free_request(struct request *rq)
707 {
708 struct request_queue *q = rq->q;
709 struct blk_mq_ctx *ctx = rq->mq_ctx;
710 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
711 const int sched_tag = rq->internal_tag;
712
713 blk_crypto_free_request(rq);
714 blk_pm_mark_last_busy(rq);
715 rq->mq_hctx = NULL;
716
717 if (rq->tag != BLK_MQ_NO_TAG) {
718 blk_mq_dec_active_requests(hctx);
719 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720 }
721 if (sched_tag != BLK_MQ_NO_TAG)
722 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723 blk_mq_sched_restart(hctx);
724 blk_queue_exit(q);
725 }
726
727 void blk_mq_free_request(struct request *rq)
728 {
729 struct request_queue *q = rq->q;
730
731 blk_mq_finish_request(rq);
732
733 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
734 laptop_io_completion(q->disk->bdi);
735
736 rq_qos_done(q, rq);
737
738 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
739 if (req_ref_put_and_test(rq))
740 __blk_mq_free_request(rq);
741 }
742 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743
744 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 {
746 struct request *rq;
747
748 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
749 blk_mq_free_request(rq);
750 }
751
752 void blk_dump_rq_flags(struct request *rq, char *msg)
753 {
754 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
755 rq->q->disk ? rq->q->disk->disk_name : "?",
756 (__force unsigned long long) rq->cmd_flags);
757
758 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
759 (unsigned long long)blk_rq_pos(rq),
760 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
761 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
762 rq->bio, rq->biotail, blk_rq_bytes(rq));
763 }
764 EXPORT_SYMBOL(blk_dump_rq_flags);
765
766 static void req_bio_endio(struct request *rq, struct bio *bio,
767 unsigned int nbytes, blk_status_t error)
768 {
769 if (unlikely(error)) {
770 bio->bi_status = error;
771 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772 /*
773 * Partial zone append completions cannot be supported as the
774 * BIO fragments may end up not being written sequentially.
775 * For such case, force the completed nbytes to be equal to
776 * the BIO size so that bio_advance() sets the BIO remaining
777 * size to 0 and we end up calling bio_endio() before returning.
778 */
779 if (bio->bi_iter.bi_size != nbytes) {
780 bio->bi_status = BLK_STS_IOERR;
781 nbytes = bio->bi_iter.bi_size;
782 } else {
783 bio->bi_iter.bi_sector = rq->__sector;
784 }
785 }
786
787 bio_advance(bio, nbytes);
788
789 if (unlikely(rq->rq_flags & RQF_QUIET))
790 bio_set_flag(bio, BIO_QUIET);
791 /* don't actually finish bio if it's part of flush sequence */
792 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
793 bio_endio(bio);
794 }
795
796 static void blk_account_io_completion(struct request *req, unsigned int bytes)
797 {
798 if (req->part && blk_do_io_stat(req)) {
799 const int sgrp = op_stat_group(req_op(req));
800
801 part_stat_lock();
802 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
803 part_stat_unlock();
804 }
805 }
806
807 static void blk_print_req_error(struct request *req, blk_status_t status)
808 {
809 printk_ratelimited(KERN_ERR
810 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
811 "phys_seg %u prio class %u\n",
812 blk_status_to_str(status),
813 req->q->disk ? req->q->disk->disk_name : "?",
814 blk_rq_pos(req), (__force u32)req_op(req),
815 blk_op_str(req_op(req)),
816 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
817 req->nr_phys_segments,
818 IOPRIO_PRIO_CLASS(req->ioprio));
819 }
820
821 /*
822 * Fully end IO on a request. Does not support partial completions, or
823 * errors.
824 */
825 static void blk_complete_request(struct request *req)
826 {
827 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
828 int total_bytes = blk_rq_bytes(req);
829 struct bio *bio = req->bio;
830
831 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
832
833 if (!bio)
834 return;
835
836 #ifdef CONFIG_BLK_DEV_INTEGRITY
837 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
838 req->q->integrity.profile->complete_fn(req, total_bytes);
839 #endif
840
841 /*
842 * Upper layers may call blk_crypto_evict_key() anytime after the last
843 * bio_endio(). Therefore, the keyslot must be released before that.
844 */
845 blk_crypto_rq_put_keyslot(req);
846
847 blk_account_io_completion(req, total_bytes);
848
849 do {
850 struct bio *next = bio->bi_next;
851
852 /* Completion has already been traced */
853 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
854
855 if (req_op(req) == REQ_OP_ZONE_APPEND)
856 bio->bi_iter.bi_sector = req->__sector;
857
858 if (!is_flush)
859 bio_endio(bio);
860 bio = next;
861 } while (bio);
862
863 /*
864 * Reset counters so that the request stacking driver
865 * can find how many bytes remain in the request
866 * later.
867 */
868 if (!req->end_io) {
869 req->bio = NULL;
870 req->__data_len = 0;
871 }
872 }
873
874 /**
875 * blk_update_request - Complete multiple bytes without completing the request
876 * @req: the request being processed
877 * @error: block status code
878 * @nr_bytes: number of bytes to complete for @req
879 *
880 * Description:
881 * Ends I/O on a number of bytes attached to @req, but doesn't complete
882 * the request structure even if @req doesn't have leftover.
883 * If @req has leftover, sets it up for the next range of segments.
884 *
885 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
886 * %false return from this function.
887 *
888 * Note:
889 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
890 * except in the consistency check at the end of this function.
891 *
892 * Return:
893 * %false - this request doesn't have any more data
894 * %true - this request has more data
895 **/
896 bool blk_update_request(struct request *req, blk_status_t error,
897 unsigned int nr_bytes)
898 {
899 int total_bytes;
900
901 trace_block_rq_complete(req, error, nr_bytes);
902
903 if (!req->bio)
904 return false;
905
906 #ifdef CONFIG_BLK_DEV_INTEGRITY
907 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
908 error == BLK_STS_OK)
909 req->q->integrity.profile->complete_fn(req, nr_bytes);
910 #endif
911
912 /*
913 * Upper layers may call blk_crypto_evict_key() anytime after the last
914 * bio_endio(). Therefore, the keyslot must be released before that.
915 */
916 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
917 __blk_crypto_rq_put_keyslot(req);
918
919 if (unlikely(error && !blk_rq_is_passthrough(req) &&
920 !(req->rq_flags & RQF_QUIET)) &&
921 !test_bit(GD_DEAD, &req->q->disk->state)) {
922 blk_print_req_error(req, error);
923 trace_block_rq_error(req, error, nr_bytes);
924 }
925
926 blk_account_io_completion(req, nr_bytes);
927
928 total_bytes = 0;
929 while (req->bio) {
930 struct bio *bio = req->bio;
931 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
932
933 if (bio_bytes == bio->bi_iter.bi_size)
934 req->bio = bio->bi_next;
935
936 /* Completion has already been traced */
937 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
938 req_bio_endio(req, bio, bio_bytes, error);
939
940 total_bytes += bio_bytes;
941 nr_bytes -= bio_bytes;
942
943 if (!nr_bytes)
944 break;
945 }
946
947 /*
948 * completely done
949 */
950 if (!req->bio) {
951 /*
952 * Reset counters so that the request stacking driver
953 * can find how many bytes remain in the request
954 * later.
955 */
956 req->__data_len = 0;
957 return false;
958 }
959
960 req->__data_len -= total_bytes;
961
962 /* update sector only for requests with clear definition of sector */
963 if (!blk_rq_is_passthrough(req))
964 req->__sector += total_bytes >> 9;
965
966 /* mixed attributes always follow the first bio */
967 if (req->rq_flags & RQF_MIXED_MERGE) {
968 req->cmd_flags &= ~REQ_FAILFAST_MASK;
969 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
970 }
971
972 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
973 /*
974 * If total number of sectors is less than the first segment
975 * size, something has gone terribly wrong.
976 */
977 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
978 blk_dump_rq_flags(req, "request botched");
979 req->__data_len = blk_rq_cur_bytes(req);
980 }
981
982 /* recalculate the number of segments */
983 req->nr_phys_segments = blk_recalc_rq_segments(req);
984 }
985
986 return true;
987 }
988 EXPORT_SYMBOL_GPL(blk_update_request);
989
990 static inline void blk_account_io_done(struct request *req, u64 now)
991 {
992 trace_block_io_done(req);
993
994 /*
995 * Account IO completion. flush_rq isn't accounted as a
996 * normal IO on queueing nor completion. Accounting the
997 * containing request is enough.
998 */
999 if (blk_do_io_stat(req) && req->part &&
1000 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1001 const int sgrp = op_stat_group(req_op(req));
1002
1003 part_stat_lock();
1004 update_io_ticks(req->part, jiffies, true);
1005 part_stat_inc(req->part, ios[sgrp]);
1006 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1007 part_stat_unlock();
1008 }
1009 }
1010
1011 static inline void blk_account_io_start(struct request *req)
1012 {
1013 trace_block_io_start(req);
1014
1015 if (blk_do_io_stat(req)) {
1016 /*
1017 * All non-passthrough requests are created from a bio with one
1018 * exception: when a flush command that is part of a flush sequence
1019 * generated by the state machine in blk-flush.c is cloned onto the
1020 * lower device by dm-multipath we can get here without a bio.
1021 */
1022 if (req->bio)
1023 req->part = req->bio->bi_bdev;
1024 else
1025 req->part = req->q->disk->part0;
1026
1027 part_stat_lock();
1028 update_io_ticks(req->part, jiffies, false);
1029 part_stat_unlock();
1030 }
1031 }
1032
1033 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1034 {
1035 if (rq->rq_flags & RQF_STATS)
1036 blk_stat_add(rq, now);
1037
1038 blk_mq_sched_completed_request(rq, now);
1039 blk_account_io_done(rq, now);
1040 }
1041
1042 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1043 {
1044 if (blk_mq_need_time_stamp(rq))
1045 __blk_mq_end_request_acct(rq, ktime_get_ns());
1046
1047 blk_mq_finish_request(rq);
1048
1049 if (rq->end_io) {
1050 rq_qos_done(rq->q, rq);
1051 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1052 blk_mq_free_request(rq);
1053 } else {
1054 blk_mq_free_request(rq);
1055 }
1056 }
1057 EXPORT_SYMBOL(__blk_mq_end_request);
1058
1059 void blk_mq_end_request(struct request *rq, blk_status_t error)
1060 {
1061 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1062 BUG();
1063 __blk_mq_end_request(rq, error);
1064 }
1065 EXPORT_SYMBOL(blk_mq_end_request);
1066
1067 #define TAG_COMP_BATCH 32
1068
1069 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1070 int *tag_array, int nr_tags)
1071 {
1072 struct request_queue *q = hctx->queue;
1073
1074 blk_mq_sub_active_requests(hctx, nr_tags);
1075
1076 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1077 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1078 }
1079
1080 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1081 {
1082 int tags[TAG_COMP_BATCH], nr_tags = 0;
1083 struct blk_mq_hw_ctx *cur_hctx = NULL;
1084 struct request *rq;
1085 u64 now = 0;
1086
1087 if (iob->need_ts)
1088 now = ktime_get_ns();
1089
1090 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1091 prefetch(rq->bio);
1092 prefetch(rq->rq_next);
1093
1094 blk_complete_request(rq);
1095 if (iob->need_ts)
1096 __blk_mq_end_request_acct(rq, now);
1097
1098 blk_mq_finish_request(rq);
1099
1100 rq_qos_done(rq->q, rq);
1101
1102 /*
1103 * If end_io handler returns NONE, then it still has
1104 * ownership of the request.
1105 */
1106 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1107 continue;
1108
1109 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1110 if (!req_ref_put_and_test(rq))
1111 continue;
1112
1113 blk_crypto_free_request(rq);
1114 blk_pm_mark_last_busy(rq);
1115
1116 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1117 if (cur_hctx)
1118 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1119 nr_tags = 0;
1120 cur_hctx = rq->mq_hctx;
1121 }
1122 tags[nr_tags++] = rq->tag;
1123 }
1124
1125 if (nr_tags)
1126 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1127 }
1128 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1129
1130 static void blk_complete_reqs(struct llist_head *list)
1131 {
1132 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1133 struct request *rq, *next;
1134
1135 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1136 rq->q->mq_ops->complete(rq);
1137 }
1138
1139 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1140 {
1141 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1142 }
1143
1144 static int blk_softirq_cpu_dead(unsigned int cpu)
1145 {
1146 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1147 return 0;
1148 }
1149
1150 static void __blk_mq_complete_request_remote(void *data)
1151 {
1152 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1153 }
1154
1155 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1156 {
1157 int cpu = raw_smp_processor_id();
1158
1159 if (!IS_ENABLED(CONFIG_SMP) ||
1160 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1161 return false;
1162 /*
1163 * With force threaded interrupts enabled, raising softirq from an SMP
1164 * function call will always result in waking the ksoftirqd thread.
1165 * This is probably worse than completing the request on a different
1166 * cache domain.
1167 */
1168 if (force_irqthreads())
1169 return false;
1170
1171 /* same CPU or cache domain? Complete locally */
1172 if (cpu == rq->mq_ctx->cpu ||
1173 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1174 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1175 return false;
1176
1177 /* don't try to IPI to an offline CPU */
1178 return cpu_online(rq->mq_ctx->cpu);
1179 }
1180
1181 static void blk_mq_complete_send_ipi(struct request *rq)
1182 {
1183 unsigned int cpu;
1184
1185 cpu = rq->mq_ctx->cpu;
1186 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1187 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1188 }
1189
1190 static void blk_mq_raise_softirq(struct request *rq)
1191 {
1192 struct llist_head *list;
1193
1194 preempt_disable();
1195 list = this_cpu_ptr(&blk_cpu_done);
1196 if (llist_add(&rq->ipi_list, list))
1197 raise_softirq(BLOCK_SOFTIRQ);
1198 preempt_enable();
1199 }
1200
1201 bool blk_mq_complete_request_remote(struct request *rq)
1202 {
1203 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1204
1205 /*
1206 * For request which hctx has only one ctx mapping,
1207 * or a polled request, always complete locally,
1208 * it's pointless to redirect the completion.
1209 */
1210 if ((rq->mq_hctx->nr_ctx == 1 &&
1211 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1212 rq->cmd_flags & REQ_POLLED)
1213 return false;
1214
1215 if (blk_mq_complete_need_ipi(rq)) {
1216 blk_mq_complete_send_ipi(rq);
1217 return true;
1218 }
1219
1220 if (rq->q->nr_hw_queues == 1) {
1221 blk_mq_raise_softirq(rq);
1222 return true;
1223 }
1224 return false;
1225 }
1226 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1227
1228 /**
1229 * blk_mq_complete_request - end I/O on a request
1230 * @rq: the request being processed
1231 *
1232 * Description:
1233 * Complete a request by scheduling the ->complete_rq operation.
1234 **/
1235 void blk_mq_complete_request(struct request *rq)
1236 {
1237 if (!blk_mq_complete_request_remote(rq))
1238 rq->q->mq_ops->complete(rq);
1239 }
1240 EXPORT_SYMBOL(blk_mq_complete_request);
1241
1242 /**
1243 * blk_mq_start_request - Start processing a request
1244 * @rq: Pointer to request to be started
1245 *
1246 * Function used by device drivers to notify the block layer that a request
1247 * is going to be processed now, so blk layer can do proper initializations
1248 * such as starting the timeout timer.
1249 */
1250 void blk_mq_start_request(struct request *rq)
1251 {
1252 struct request_queue *q = rq->q;
1253
1254 trace_block_rq_issue(rq);
1255
1256 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1257 !blk_rq_is_passthrough(rq)) {
1258 rq->io_start_time_ns = ktime_get_ns();
1259 rq->stats_sectors = blk_rq_sectors(rq);
1260 rq->rq_flags |= RQF_STATS;
1261 rq_qos_issue(q, rq);
1262 }
1263
1264 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1265
1266 blk_add_timer(rq);
1267 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1268 rq->mq_hctx->tags->rqs[rq->tag] = rq;
1269
1270 #ifdef CONFIG_BLK_DEV_INTEGRITY
1271 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1272 q->integrity.profile->prepare_fn(rq);
1273 #endif
1274 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1275 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1276 }
1277 EXPORT_SYMBOL(blk_mq_start_request);
1278
1279 /*
1280 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1281 * queues. This is important for md arrays to benefit from merging
1282 * requests.
1283 */
1284 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1285 {
1286 if (plug->multiple_queues)
1287 return BLK_MAX_REQUEST_COUNT * 2;
1288 return BLK_MAX_REQUEST_COUNT;
1289 }
1290
1291 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1292 {
1293 struct request *last = rq_list_peek(&plug->mq_list);
1294
1295 if (!plug->rq_count) {
1296 trace_block_plug(rq->q);
1297 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1298 (!blk_queue_nomerges(rq->q) &&
1299 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1300 blk_mq_flush_plug_list(plug, false);
1301 last = NULL;
1302 trace_block_plug(rq->q);
1303 }
1304
1305 if (!plug->multiple_queues && last && last->q != rq->q)
1306 plug->multiple_queues = true;
1307 /*
1308 * Any request allocated from sched tags can't be issued to
1309 * ->queue_rqs() directly
1310 */
1311 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1312 plug->has_elevator = true;
1313 rq->rq_next = NULL;
1314 rq_list_add(&plug->mq_list, rq);
1315 plug->rq_count++;
1316 }
1317
1318 /**
1319 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1320 * @rq: request to insert
1321 * @at_head: insert request at head or tail of queue
1322 *
1323 * Description:
1324 * Insert a fully prepared request at the back of the I/O scheduler queue
1325 * for execution. Don't wait for completion.
1326 *
1327 * Note:
1328 * This function will invoke @done directly if the queue is dead.
1329 */
1330 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1331 {
1332 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1333
1334 WARN_ON(irqs_disabled());
1335 WARN_ON(!blk_rq_is_passthrough(rq));
1336
1337 blk_account_io_start(rq);
1338
1339 /*
1340 * As plugging can be enabled for passthrough requests on a zoned
1341 * device, directly accessing the plug instead of using blk_mq_plug()
1342 * should not have any consequences.
1343 */
1344 if (current->plug && !at_head) {
1345 blk_add_rq_to_plug(current->plug, rq);
1346 return;
1347 }
1348
1349 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1350 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1351 }
1352 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1353
1354 struct blk_rq_wait {
1355 struct completion done;
1356 blk_status_t ret;
1357 };
1358
1359 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1360 {
1361 struct blk_rq_wait *wait = rq->end_io_data;
1362
1363 wait->ret = ret;
1364 complete(&wait->done);
1365 return RQ_END_IO_NONE;
1366 }
1367
1368 bool blk_rq_is_poll(struct request *rq)
1369 {
1370 if (!rq->mq_hctx)
1371 return false;
1372 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1373 return false;
1374 return true;
1375 }
1376 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1377
1378 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1379 {
1380 do {
1381 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1382 cond_resched();
1383 } while (!completion_done(wait));
1384 }
1385
1386 /**
1387 * blk_execute_rq - insert a request into queue for execution
1388 * @rq: request to insert
1389 * @at_head: insert request at head or tail of queue
1390 *
1391 * Description:
1392 * Insert a fully prepared request at the back of the I/O scheduler queue
1393 * for execution and wait for completion.
1394 * Return: The blk_status_t result provided to blk_mq_end_request().
1395 */
1396 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1397 {
1398 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1399 struct blk_rq_wait wait = {
1400 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1401 };
1402
1403 WARN_ON(irqs_disabled());
1404 WARN_ON(!blk_rq_is_passthrough(rq));
1405
1406 rq->end_io_data = &wait;
1407 rq->end_io = blk_end_sync_rq;
1408
1409 blk_account_io_start(rq);
1410 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1411 blk_mq_run_hw_queue(hctx, false);
1412
1413 if (blk_rq_is_poll(rq)) {
1414 blk_rq_poll_completion(rq, &wait.done);
1415 } else {
1416 /*
1417 * Prevent hang_check timer from firing at us during very long
1418 * I/O
1419 */
1420 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1421
1422 if (hang_check)
1423 while (!wait_for_completion_io_timeout(&wait.done,
1424 hang_check * (HZ/2)))
1425 ;
1426 else
1427 wait_for_completion_io(&wait.done);
1428 }
1429
1430 return wait.ret;
1431 }
1432 EXPORT_SYMBOL(blk_execute_rq);
1433
1434 static void __blk_mq_requeue_request(struct request *rq)
1435 {
1436 struct request_queue *q = rq->q;
1437
1438 blk_mq_put_driver_tag(rq);
1439
1440 trace_block_rq_requeue(rq);
1441 rq_qos_requeue(q, rq);
1442
1443 if (blk_mq_request_started(rq)) {
1444 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1445 rq->rq_flags &= ~RQF_TIMED_OUT;
1446 }
1447 }
1448
1449 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1450 {
1451 struct request_queue *q = rq->q;
1452 unsigned long flags;
1453
1454 __blk_mq_requeue_request(rq);
1455
1456 /* this request will be re-inserted to io scheduler queue */
1457 blk_mq_sched_requeue_request(rq);
1458
1459 spin_lock_irqsave(&q->requeue_lock, flags);
1460 list_add_tail(&rq->queuelist, &q->requeue_list);
1461 spin_unlock_irqrestore(&q->requeue_lock, flags);
1462
1463 if (kick_requeue_list)
1464 blk_mq_kick_requeue_list(q);
1465 }
1466 EXPORT_SYMBOL(blk_mq_requeue_request);
1467
1468 static void blk_mq_requeue_work(struct work_struct *work)
1469 {
1470 struct request_queue *q =
1471 container_of(work, struct request_queue, requeue_work.work);
1472 LIST_HEAD(rq_list);
1473 LIST_HEAD(flush_list);
1474 struct request *rq;
1475
1476 spin_lock_irq(&q->requeue_lock);
1477 list_splice_init(&q->requeue_list, &rq_list);
1478 list_splice_init(&q->flush_list, &flush_list);
1479 spin_unlock_irq(&q->requeue_lock);
1480
1481 while (!list_empty(&rq_list)) {
1482 rq = list_entry(rq_list.next, struct request, queuelist);
1483 /*
1484 * If RQF_DONTPREP ist set, the request has been started by the
1485 * driver already and might have driver-specific data allocated
1486 * already. Insert it into the hctx dispatch list to avoid
1487 * block layer merges for the request.
1488 */
1489 if (rq->rq_flags & RQF_DONTPREP) {
1490 list_del_init(&rq->queuelist);
1491 blk_mq_request_bypass_insert(rq, 0);
1492 } else {
1493 list_del_init(&rq->queuelist);
1494 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1495 }
1496 }
1497
1498 while (!list_empty(&flush_list)) {
1499 rq = list_entry(flush_list.next, struct request, queuelist);
1500 list_del_init(&rq->queuelist);
1501 blk_mq_insert_request(rq, 0);
1502 }
1503
1504 blk_mq_run_hw_queues(q, false);
1505 }
1506
1507 void blk_mq_kick_requeue_list(struct request_queue *q)
1508 {
1509 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1510 }
1511 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1512
1513 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1514 unsigned long msecs)
1515 {
1516 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1517 msecs_to_jiffies(msecs));
1518 }
1519 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1520
1521 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1522 {
1523 /*
1524 * If we find a request that isn't idle we know the queue is busy
1525 * as it's checked in the iter.
1526 * Return false to stop the iteration.
1527 */
1528 if (blk_mq_request_started(rq)) {
1529 bool *busy = priv;
1530
1531 *busy = true;
1532 return false;
1533 }
1534
1535 return true;
1536 }
1537
1538 bool blk_mq_queue_inflight(struct request_queue *q)
1539 {
1540 bool busy = false;
1541
1542 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1543 return busy;
1544 }
1545 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1546
1547 static void blk_mq_rq_timed_out(struct request *req)
1548 {
1549 req->rq_flags |= RQF_TIMED_OUT;
1550 if (req->q->mq_ops->timeout) {
1551 enum blk_eh_timer_return ret;
1552
1553 ret = req->q->mq_ops->timeout(req);
1554 if (ret == BLK_EH_DONE)
1555 return;
1556 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1557 }
1558
1559 blk_add_timer(req);
1560 }
1561
1562 struct blk_expired_data {
1563 bool has_timedout_rq;
1564 unsigned long next;
1565 unsigned long timeout_start;
1566 };
1567
1568 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1569 {
1570 unsigned long deadline;
1571
1572 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1573 return false;
1574 if (rq->rq_flags & RQF_TIMED_OUT)
1575 return false;
1576
1577 deadline = READ_ONCE(rq->deadline);
1578 if (time_after_eq(expired->timeout_start, deadline))
1579 return true;
1580
1581 if (expired->next == 0)
1582 expired->next = deadline;
1583 else if (time_after(expired->next, deadline))
1584 expired->next = deadline;
1585 return false;
1586 }
1587
1588 void blk_mq_put_rq_ref(struct request *rq)
1589 {
1590 if (is_flush_rq(rq)) {
1591 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1592 blk_mq_free_request(rq);
1593 } else if (req_ref_put_and_test(rq)) {
1594 __blk_mq_free_request(rq);
1595 }
1596 }
1597
1598 static bool blk_mq_check_expired(struct request *rq, void *priv)
1599 {
1600 struct blk_expired_data *expired = priv;
1601
1602 /*
1603 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1604 * be reallocated underneath the timeout handler's processing, then
1605 * the expire check is reliable. If the request is not expired, then
1606 * it was completed and reallocated as a new request after returning
1607 * from blk_mq_check_expired().
1608 */
1609 if (blk_mq_req_expired(rq, expired)) {
1610 expired->has_timedout_rq = true;
1611 return false;
1612 }
1613 return true;
1614 }
1615
1616 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1617 {
1618 struct blk_expired_data *expired = priv;
1619
1620 if (blk_mq_req_expired(rq, expired))
1621 blk_mq_rq_timed_out(rq);
1622 return true;
1623 }
1624
1625 static void blk_mq_timeout_work(struct work_struct *work)
1626 {
1627 struct request_queue *q =
1628 container_of(work, struct request_queue, timeout_work);
1629 struct blk_expired_data expired = {
1630 .timeout_start = jiffies,
1631 };
1632 struct blk_mq_hw_ctx *hctx;
1633 unsigned long i;
1634
1635 /* A deadlock might occur if a request is stuck requiring a
1636 * timeout at the same time a queue freeze is waiting
1637 * completion, since the timeout code would not be able to
1638 * acquire the queue reference here.
1639 *
1640 * That's why we don't use blk_queue_enter here; instead, we use
1641 * percpu_ref_tryget directly, because we need to be able to
1642 * obtain a reference even in the short window between the queue
1643 * starting to freeze, by dropping the first reference in
1644 * blk_freeze_queue_start, and the moment the last request is
1645 * consumed, marked by the instant q_usage_counter reaches
1646 * zero.
1647 */
1648 if (!percpu_ref_tryget(&q->q_usage_counter))
1649 return;
1650
1651 /* check if there is any timed-out request */
1652 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1653 if (expired.has_timedout_rq) {
1654 /*
1655 * Before walking tags, we must ensure any submit started
1656 * before the current time has finished. Since the submit
1657 * uses srcu or rcu, wait for a synchronization point to
1658 * ensure all running submits have finished
1659 */
1660 blk_mq_wait_quiesce_done(q->tag_set);
1661
1662 expired.next = 0;
1663 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1664 }
1665
1666 if (expired.next != 0) {
1667 mod_timer(&q->timeout, expired.next);
1668 } else {
1669 /*
1670 * Request timeouts are handled as a forward rolling timer. If
1671 * we end up here it means that no requests are pending and
1672 * also that no request has been pending for a while. Mark
1673 * each hctx as idle.
1674 */
1675 queue_for_each_hw_ctx(q, hctx, i) {
1676 /* the hctx may be unmapped, so check it here */
1677 if (blk_mq_hw_queue_mapped(hctx))
1678 blk_mq_tag_idle(hctx);
1679 }
1680 }
1681 blk_queue_exit(q);
1682 }
1683
1684 struct flush_busy_ctx_data {
1685 struct blk_mq_hw_ctx *hctx;
1686 struct list_head *list;
1687 };
1688
1689 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1690 {
1691 struct flush_busy_ctx_data *flush_data = data;
1692 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1693 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1694 enum hctx_type type = hctx->type;
1695
1696 spin_lock(&ctx->lock);
1697 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1698 sbitmap_clear_bit(sb, bitnr);
1699 spin_unlock(&ctx->lock);
1700 return true;
1701 }
1702
1703 /*
1704 * Process software queues that have been marked busy, splicing them
1705 * to the for-dispatch
1706 */
1707 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1708 {
1709 struct flush_busy_ctx_data data = {
1710 .hctx = hctx,
1711 .list = list,
1712 };
1713
1714 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1715 }
1716 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1717
1718 struct dispatch_rq_data {
1719 struct blk_mq_hw_ctx *hctx;
1720 struct request *rq;
1721 };
1722
1723 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1724 void *data)
1725 {
1726 struct dispatch_rq_data *dispatch_data = data;
1727 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1728 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1729 enum hctx_type type = hctx->type;
1730
1731 spin_lock(&ctx->lock);
1732 if (!list_empty(&ctx->rq_lists[type])) {
1733 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1734 list_del_init(&dispatch_data->rq->queuelist);
1735 if (list_empty(&ctx->rq_lists[type]))
1736 sbitmap_clear_bit(sb, bitnr);
1737 }
1738 spin_unlock(&ctx->lock);
1739
1740 return !dispatch_data->rq;
1741 }
1742
1743 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1744 struct blk_mq_ctx *start)
1745 {
1746 unsigned off = start ? start->index_hw[hctx->type] : 0;
1747 struct dispatch_rq_data data = {
1748 .hctx = hctx,
1749 .rq = NULL,
1750 };
1751
1752 __sbitmap_for_each_set(&hctx->ctx_map, off,
1753 dispatch_rq_from_ctx, &data);
1754
1755 return data.rq;
1756 }
1757
1758 bool __blk_mq_alloc_driver_tag(struct request *rq)
1759 {
1760 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1761 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1762 int tag;
1763
1764 blk_mq_tag_busy(rq->mq_hctx);
1765
1766 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1767 bt = &rq->mq_hctx->tags->breserved_tags;
1768 tag_offset = 0;
1769 } else {
1770 if (!hctx_may_queue(rq->mq_hctx, bt))
1771 return false;
1772 }
1773
1774 tag = __sbitmap_queue_get(bt);
1775 if (tag == BLK_MQ_NO_TAG)
1776 return false;
1777
1778 rq->tag = tag + tag_offset;
1779 blk_mq_inc_active_requests(rq->mq_hctx);
1780 return true;
1781 }
1782
1783 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1784 int flags, void *key)
1785 {
1786 struct blk_mq_hw_ctx *hctx;
1787
1788 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1789
1790 spin_lock(&hctx->dispatch_wait_lock);
1791 if (!list_empty(&wait->entry)) {
1792 struct sbitmap_queue *sbq;
1793
1794 list_del_init(&wait->entry);
1795 sbq = &hctx->tags->bitmap_tags;
1796 atomic_dec(&sbq->ws_active);
1797 }
1798 spin_unlock(&hctx->dispatch_wait_lock);
1799
1800 blk_mq_run_hw_queue(hctx, true);
1801 return 1;
1802 }
1803
1804 /*
1805 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1806 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1807 * restart. For both cases, take care to check the condition again after
1808 * marking us as waiting.
1809 */
1810 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1811 struct request *rq)
1812 {
1813 struct sbitmap_queue *sbq;
1814 struct wait_queue_head *wq;
1815 wait_queue_entry_t *wait;
1816 bool ret;
1817
1818 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1819 !(blk_mq_is_shared_tags(hctx->flags))) {
1820 blk_mq_sched_mark_restart_hctx(hctx);
1821
1822 /*
1823 * It's possible that a tag was freed in the window between the
1824 * allocation failure and adding the hardware queue to the wait
1825 * queue.
1826 *
1827 * Don't clear RESTART here, someone else could have set it.
1828 * At most this will cost an extra queue run.
1829 */
1830 return blk_mq_get_driver_tag(rq);
1831 }
1832
1833 wait = &hctx->dispatch_wait;
1834 if (!list_empty_careful(&wait->entry))
1835 return false;
1836
1837 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1838 sbq = &hctx->tags->breserved_tags;
1839 else
1840 sbq = &hctx->tags->bitmap_tags;
1841 wq = &bt_wait_ptr(sbq, hctx)->wait;
1842
1843 spin_lock_irq(&wq->lock);
1844 spin_lock(&hctx->dispatch_wait_lock);
1845 if (!list_empty(&wait->entry)) {
1846 spin_unlock(&hctx->dispatch_wait_lock);
1847 spin_unlock_irq(&wq->lock);
1848 return false;
1849 }
1850
1851 atomic_inc(&sbq->ws_active);
1852 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1853 __add_wait_queue(wq, wait);
1854
1855 /*
1856 * It's possible that a tag was freed in the window between the
1857 * allocation failure and adding the hardware queue to the wait
1858 * queue.
1859 */
1860 ret = blk_mq_get_driver_tag(rq);
1861 if (!ret) {
1862 spin_unlock(&hctx->dispatch_wait_lock);
1863 spin_unlock_irq(&wq->lock);
1864 return false;
1865 }
1866
1867 /*
1868 * We got a tag, remove ourselves from the wait queue to ensure
1869 * someone else gets the wakeup.
1870 */
1871 list_del_init(&wait->entry);
1872 atomic_dec(&sbq->ws_active);
1873 spin_unlock(&hctx->dispatch_wait_lock);
1874 spin_unlock_irq(&wq->lock);
1875
1876 return true;
1877 }
1878
1879 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1880 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1881 /*
1882 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1883 * - EWMA is one simple way to compute running average value
1884 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1885 * - take 4 as factor for avoiding to get too small(0) result, and this
1886 * factor doesn't matter because EWMA decreases exponentially
1887 */
1888 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1889 {
1890 unsigned int ewma;
1891
1892 ewma = hctx->dispatch_busy;
1893
1894 if (!ewma && !busy)
1895 return;
1896
1897 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1898 if (busy)
1899 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1900 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1901
1902 hctx->dispatch_busy = ewma;
1903 }
1904
1905 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1906
1907 static void blk_mq_handle_dev_resource(struct request *rq,
1908 struct list_head *list)
1909 {
1910 list_add(&rq->queuelist, list);
1911 __blk_mq_requeue_request(rq);
1912 }
1913
1914 static void blk_mq_handle_zone_resource(struct request *rq,
1915 struct list_head *zone_list)
1916 {
1917 /*
1918 * If we end up here it is because we cannot dispatch a request to a
1919 * specific zone due to LLD level zone-write locking or other zone
1920 * related resource not being available. In this case, set the request
1921 * aside in zone_list for retrying it later.
1922 */
1923 list_add(&rq->queuelist, zone_list);
1924 __blk_mq_requeue_request(rq);
1925 }
1926
1927 enum prep_dispatch {
1928 PREP_DISPATCH_OK,
1929 PREP_DISPATCH_NO_TAG,
1930 PREP_DISPATCH_NO_BUDGET,
1931 };
1932
1933 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1934 bool need_budget)
1935 {
1936 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1937 int budget_token = -1;
1938
1939 if (need_budget) {
1940 budget_token = blk_mq_get_dispatch_budget(rq->q);
1941 if (budget_token < 0) {
1942 blk_mq_put_driver_tag(rq);
1943 return PREP_DISPATCH_NO_BUDGET;
1944 }
1945 blk_mq_set_rq_budget_token(rq, budget_token);
1946 }
1947
1948 if (!blk_mq_get_driver_tag(rq)) {
1949 /*
1950 * The initial allocation attempt failed, so we need to
1951 * rerun the hardware queue when a tag is freed. The
1952 * waitqueue takes care of that. If the queue is run
1953 * before we add this entry back on the dispatch list,
1954 * we'll re-run it below.
1955 */
1956 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1957 /*
1958 * All budgets not got from this function will be put
1959 * together during handling partial dispatch
1960 */
1961 if (need_budget)
1962 blk_mq_put_dispatch_budget(rq->q, budget_token);
1963 return PREP_DISPATCH_NO_TAG;
1964 }
1965 }
1966
1967 return PREP_DISPATCH_OK;
1968 }
1969
1970 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1971 static void blk_mq_release_budgets(struct request_queue *q,
1972 struct list_head *list)
1973 {
1974 struct request *rq;
1975
1976 list_for_each_entry(rq, list, queuelist) {
1977 int budget_token = blk_mq_get_rq_budget_token(rq);
1978
1979 if (budget_token >= 0)
1980 blk_mq_put_dispatch_budget(q, budget_token);
1981 }
1982 }
1983
1984 /*
1985 * blk_mq_commit_rqs will notify driver using bd->last that there is no
1986 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1987 * details)
1988 * Attention, we should explicitly call this in unusual cases:
1989 * 1) did not queue everything initially scheduled to queue
1990 * 2) the last attempt to queue a request failed
1991 */
1992 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1993 bool from_schedule)
1994 {
1995 if (hctx->queue->mq_ops->commit_rqs && queued) {
1996 trace_block_unplug(hctx->queue, queued, !from_schedule);
1997 hctx->queue->mq_ops->commit_rqs(hctx);
1998 }
1999 }
2000
2001 /*
2002 * Returns true if we did some work AND can potentially do more.
2003 */
2004 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2005 unsigned int nr_budgets)
2006 {
2007 enum prep_dispatch prep;
2008 struct request_queue *q = hctx->queue;
2009 struct request *rq;
2010 int queued;
2011 blk_status_t ret = BLK_STS_OK;
2012 LIST_HEAD(zone_list);
2013 bool needs_resource = false;
2014
2015 if (list_empty(list))
2016 return false;
2017
2018 /*
2019 * Now process all the entries, sending them to the driver.
2020 */
2021 queued = 0;
2022 do {
2023 struct blk_mq_queue_data bd;
2024
2025 rq = list_first_entry(list, struct request, queuelist);
2026
2027 WARN_ON_ONCE(hctx != rq->mq_hctx);
2028 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2029 if (prep != PREP_DISPATCH_OK)
2030 break;
2031
2032 list_del_init(&rq->queuelist);
2033
2034 bd.rq = rq;
2035 bd.last = list_empty(list);
2036
2037 /*
2038 * once the request is queued to lld, no need to cover the
2039 * budget any more
2040 */
2041 if (nr_budgets)
2042 nr_budgets--;
2043 ret = q->mq_ops->queue_rq(hctx, &bd);
2044 switch (ret) {
2045 case BLK_STS_OK:
2046 queued++;
2047 break;
2048 case BLK_STS_RESOURCE:
2049 needs_resource = true;
2050 fallthrough;
2051 case BLK_STS_DEV_RESOURCE:
2052 blk_mq_handle_dev_resource(rq, list);
2053 goto out;
2054 case BLK_STS_ZONE_RESOURCE:
2055 /*
2056 * Move the request to zone_list and keep going through
2057 * the dispatch list to find more requests the drive can
2058 * accept.
2059 */
2060 blk_mq_handle_zone_resource(rq, &zone_list);
2061 needs_resource = true;
2062 break;
2063 default:
2064 blk_mq_end_request(rq, ret);
2065 }
2066 } while (!list_empty(list));
2067 out:
2068 if (!list_empty(&zone_list))
2069 list_splice_tail_init(&zone_list, list);
2070
2071 /* If we didn't flush the entire list, we could have told the driver
2072 * there was more coming, but that turned out to be a lie.
2073 */
2074 if (!list_empty(list) || ret != BLK_STS_OK)
2075 blk_mq_commit_rqs(hctx, queued, false);
2076
2077 /*
2078 * Any items that need requeuing? Stuff them into hctx->dispatch,
2079 * that is where we will continue on next queue run.
2080 */
2081 if (!list_empty(list)) {
2082 bool needs_restart;
2083 /* For non-shared tags, the RESTART check will suffice */
2084 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2085 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2086 blk_mq_is_shared_tags(hctx->flags));
2087
2088 if (nr_budgets)
2089 blk_mq_release_budgets(q, list);
2090
2091 spin_lock(&hctx->lock);
2092 list_splice_tail_init(list, &hctx->dispatch);
2093 spin_unlock(&hctx->lock);
2094
2095 /*
2096 * Order adding requests to hctx->dispatch and checking
2097 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2098 * in blk_mq_sched_restart(). Avoid restart code path to
2099 * miss the new added requests to hctx->dispatch, meantime
2100 * SCHED_RESTART is observed here.
2101 */
2102 smp_mb();
2103
2104 /*
2105 * If SCHED_RESTART was set by the caller of this function and
2106 * it is no longer set that means that it was cleared by another
2107 * thread and hence that a queue rerun is needed.
2108 *
2109 * If 'no_tag' is set, that means that we failed getting
2110 * a driver tag with an I/O scheduler attached. If our dispatch
2111 * waitqueue is no longer active, ensure that we run the queue
2112 * AFTER adding our entries back to the list.
2113 *
2114 * If no I/O scheduler has been configured it is possible that
2115 * the hardware queue got stopped and restarted before requests
2116 * were pushed back onto the dispatch list. Rerun the queue to
2117 * avoid starvation. Notes:
2118 * - blk_mq_run_hw_queue() checks whether or not a queue has
2119 * been stopped before rerunning a queue.
2120 * - Some but not all block drivers stop a queue before
2121 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2122 * and dm-rq.
2123 *
2124 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2125 * bit is set, run queue after a delay to avoid IO stalls
2126 * that could otherwise occur if the queue is idle. We'll do
2127 * similar if we couldn't get budget or couldn't lock a zone
2128 * and SCHED_RESTART is set.
2129 */
2130 needs_restart = blk_mq_sched_needs_restart(hctx);
2131 if (prep == PREP_DISPATCH_NO_BUDGET)
2132 needs_resource = true;
2133 if (!needs_restart ||
2134 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2135 blk_mq_run_hw_queue(hctx, true);
2136 else if (needs_resource)
2137 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2138
2139 blk_mq_update_dispatch_busy(hctx, true);
2140 return false;
2141 }
2142
2143 blk_mq_update_dispatch_busy(hctx, false);
2144 return true;
2145 }
2146
2147 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2148 {
2149 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2150
2151 if (cpu >= nr_cpu_ids)
2152 cpu = cpumask_first(hctx->cpumask);
2153 return cpu;
2154 }
2155
2156 /*
2157 * It'd be great if the workqueue API had a way to pass
2158 * in a mask and had some smarts for more clever placement.
2159 * For now we just round-robin here, switching for every
2160 * BLK_MQ_CPU_WORK_BATCH queued items.
2161 */
2162 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2163 {
2164 bool tried = false;
2165 int next_cpu = hctx->next_cpu;
2166
2167 if (hctx->queue->nr_hw_queues == 1)
2168 return WORK_CPU_UNBOUND;
2169
2170 if (--hctx->next_cpu_batch <= 0) {
2171 select_cpu:
2172 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2173 cpu_online_mask);
2174 if (next_cpu >= nr_cpu_ids)
2175 next_cpu = blk_mq_first_mapped_cpu(hctx);
2176 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2177 }
2178
2179 /*
2180 * Do unbound schedule if we can't find a online CPU for this hctx,
2181 * and it should only happen in the path of handling CPU DEAD.
2182 */
2183 if (!cpu_online(next_cpu)) {
2184 if (!tried) {
2185 tried = true;
2186 goto select_cpu;
2187 }
2188
2189 /*
2190 * Make sure to re-select CPU next time once after CPUs
2191 * in hctx->cpumask become online again.
2192 */
2193 hctx->next_cpu = next_cpu;
2194 hctx->next_cpu_batch = 1;
2195 return WORK_CPU_UNBOUND;
2196 }
2197
2198 hctx->next_cpu = next_cpu;
2199 return next_cpu;
2200 }
2201
2202 /**
2203 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2204 * @hctx: Pointer to the hardware queue to run.
2205 * @msecs: Milliseconds of delay to wait before running the queue.
2206 *
2207 * Run a hardware queue asynchronously with a delay of @msecs.
2208 */
2209 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2210 {
2211 if (unlikely(blk_mq_hctx_stopped(hctx)))
2212 return;
2213 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2214 msecs_to_jiffies(msecs));
2215 }
2216 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2217
2218 /**
2219 * blk_mq_run_hw_queue - Start to run a hardware queue.
2220 * @hctx: Pointer to the hardware queue to run.
2221 * @async: If we want to run the queue asynchronously.
2222 *
2223 * Check if the request queue is not in a quiesced state and if there are
2224 * pending requests to be sent. If this is true, run the queue to send requests
2225 * to hardware.
2226 */
2227 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2228 {
2229 bool need_run;
2230
2231 /*
2232 * We can't run the queue inline with interrupts disabled.
2233 */
2234 WARN_ON_ONCE(!async && in_interrupt());
2235
2236 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2237
2238 /*
2239 * When queue is quiesced, we may be switching io scheduler, or
2240 * updating nr_hw_queues, or other things, and we can't run queue
2241 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2242 *
2243 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2244 * quiesced.
2245 */
2246 __blk_mq_run_dispatch_ops(hctx->queue, false,
2247 need_run = !blk_queue_quiesced(hctx->queue) &&
2248 blk_mq_hctx_has_pending(hctx));
2249
2250 if (!need_run)
2251 return;
2252
2253 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2254 blk_mq_delay_run_hw_queue(hctx, 0);
2255 return;
2256 }
2257
2258 blk_mq_run_dispatch_ops(hctx->queue,
2259 blk_mq_sched_dispatch_requests(hctx));
2260 }
2261 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2262
2263 /*
2264 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2265 * scheduler.
2266 */
2267 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2268 {
2269 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2270 /*
2271 * If the IO scheduler does not respect hardware queues when
2272 * dispatching, we just don't bother with multiple HW queues and
2273 * dispatch from hctx for the current CPU since running multiple queues
2274 * just causes lock contention inside the scheduler and pointless cache
2275 * bouncing.
2276 */
2277 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2278
2279 if (!blk_mq_hctx_stopped(hctx))
2280 return hctx;
2281 return NULL;
2282 }
2283
2284 /**
2285 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2286 * @q: Pointer to the request queue to run.
2287 * @async: If we want to run the queue asynchronously.
2288 */
2289 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2290 {
2291 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2292 unsigned long i;
2293
2294 sq_hctx = NULL;
2295 if (blk_queue_sq_sched(q))
2296 sq_hctx = blk_mq_get_sq_hctx(q);
2297 queue_for_each_hw_ctx(q, hctx, i) {
2298 if (blk_mq_hctx_stopped(hctx))
2299 continue;
2300 /*
2301 * Dispatch from this hctx either if there's no hctx preferred
2302 * by IO scheduler or if it has requests that bypass the
2303 * scheduler.
2304 */
2305 if (!sq_hctx || sq_hctx == hctx ||
2306 !list_empty_careful(&hctx->dispatch))
2307 blk_mq_run_hw_queue(hctx, async);
2308 }
2309 }
2310 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2311
2312 /**
2313 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2314 * @q: Pointer to the request queue to run.
2315 * @msecs: Milliseconds of delay to wait before running the queues.
2316 */
2317 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2318 {
2319 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2320 unsigned long i;
2321
2322 sq_hctx = NULL;
2323 if (blk_queue_sq_sched(q))
2324 sq_hctx = blk_mq_get_sq_hctx(q);
2325 queue_for_each_hw_ctx(q, hctx, i) {
2326 if (blk_mq_hctx_stopped(hctx))
2327 continue;
2328 /*
2329 * If there is already a run_work pending, leave the
2330 * pending delay untouched. Otherwise, a hctx can stall
2331 * if another hctx is re-delaying the other's work
2332 * before the work executes.
2333 */
2334 if (delayed_work_pending(&hctx->run_work))
2335 continue;
2336 /*
2337 * Dispatch from this hctx either if there's no hctx preferred
2338 * by IO scheduler or if it has requests that bypass the
2339 * scheduler.
2340 */
2341 if (!sq_hctx || sq_hctx == hctx ||
2342 !list_empty_careful(&hctx->dispatch))
2343 blk_mq_delay_run_hw_queue(hctx, msecs);
2344 }
2345 }
2346 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2347
2348 /*
2349 * This function is often used for pausing .queue_rq() by driver when
2350 * there isn't enough resource or some conditions aren't satisfied, and
2351 * BLK_STS_RESOURCE is usually returned.
2352 *
2353 * We do not guarantee that dispatch can be drained or blocked
2354 * after blk_mq_stop_hw_queue() returns. Please use
2355 * blk_mq_quiesce_queue() for that requirement.
2356 */
2357 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2358 {
2359 cancel_delayed_work(&hctx->run_work);
2360
2361 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2362 }
2363 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2364
2365 /*
2366 * This function is often used for pausing .queue_rq() by driver when
2367 * there isn't enough resource or some conditions aren't satisfied, and
2368 * BLK_STS_RESOURCE is usually returned.
2369 *
2370 * We do not guarantee that dispatch can be drained or blocked
2371 * after blk_mq_stop_hw_queues() returns. Please use
2372 * blk_mq_quiesce_queue() for that requirement.
2373 */
2374 void blk_mq_stop_hw_queues(struct request_queue *q)
2375 {
2376 struct blk_mq_hw_ctx *hctx;
2377 unsigned long i;
2378
2379 queue_for_each_hw_ctx(q, hctx, i)
2380 blk_mq_stop_hw_queue(hctx);
2381 }
2382 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2383
2384 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2385 {
2386 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2387
2388 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2389 }
2390 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2391
2392 void blk_mq_start_hw_queues(struct request_queue *q)
2393 {
2394 struct blk_mq_hw_ctx *hctx;
2395 unsigned long i;
2396
2397 queue_for_each_hw_ctx(q, hctx, i)
2398 blk_mq_start_hw_queue(hctx);
2399 }
2400 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2401
2402 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2403 {
2404 if (!blk_mq_hctx_stopped(hctx))
2405 return;
2406
2407 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2408 blk_mq_run_hw_queue(hctx, async);
2409 }
2410 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2411
2412 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2413 {
2414 struct blk_mq_hw_ctx *hctx;
2415 unsigned long i;
2416
2417 queue_for_each_hw_ctx(q, hctx, i)
2418 blk_mq_start_stopped_hw_queue(hctx, async ||
2419 (hctx->flags & BLK_MQ_F_BLOCKING));
2420 }
2421 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2422
2423 static void blk_mq_run_work_fn(struct work_struct *work)
2424 {
2425 struct blk_mq_hw_ctx *hctx =
2426 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2427
2428 blk_mq_run_dispatch_ops(hctx->queue,
2429 blk_mq_sched_dispatch_requests(hctx));
2430 }
2431
2432 /**
2433 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2434 * @rq: Pointer to request to be inserted.
2435 * @flags: BLK_MQ_INSERT_*
2436 *
2437 * Should only be used carefully, when the caller knows we want to
2438 * bypass a potential IO scheduler on the target device.
2439 */
2440 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2441 {
2442 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2443
2444 spin_lock(&hctx->lock);
2445 if (flags & BLK_MQ_INSERT_AT_HEAD)
2446 list_add(&rq->queuelist, &hctx->dispatch);
2447 else
2448 list_add_tail(&rq->queuelist, &hctx->dispatch);
2449 spin_unlock(&hctx->lock);
2450 }
2451
2452 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2453 struct blk_mq_ctx *ctx, struct list_head *list,
2454 bool run_queue_async)
2455 {
2456 struct request *rq;
2457 enum hctx_type type = hctx->type;
2458
2459 /*
2460 * Try to issue requests directly if the hw queue isn't busy to save an
2461 * extra enqueue & dequeue to the sw queue.
2462 */
2463 if (!hctx->dispatch_busy && !run_queue_async) {
2464 blk_mq_run_dispatch_ops(hctx->queue,
2465 blk_mq_try_issue_list_directly(hctx, list));
2466 if (list_empty(list))
2467 goto out;
2468 }
2469
2470 /*
2471 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2472 * offline now
2473 */
2474 list_for_each_entry(rq, list, queuelist) {
2475 BUG_ON(rq->mq_ctx != ctx);
2476 trace_block_rq_insert(rq);
2477 if (rq->cmd_flags & REQ_NOWAIT)
2478 run_queue_async = true;
2479 }
2480
2481 spin_lock(&ctx->lock);
2482 list_splice_tail_init(list, &ctx->rq_lists[type]);
2483 blk_mq_hctx_mark_pending(hctx, ctx);
2484 spin_unlock(&ctx->lock);
2485 out:
2486 blk_mq_run_hw_queue(hctx, run_queue_async);
2487 }
2488
2489 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2490 {
2491 struct request_queue *q = rq->q;
2492 struct blk_mq_ctx *ctx = rq->mq_ctx;
2493 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2494
2495 if (blk_rq_is_passthrough(rq)) {
2496 /*
2497 * Passthrough request have to be added to hctx->dispatch
2498 * directly. The device may be in a situation where it can't
2499 * handle FS request, and always returns BLK_STS_RESOURCE for
2500 * them, which gets them added to hctx->dispatch.
2501 *
2502 * If a passthrough request is required to unblock the queues,
2503 * and it is added to the scheduler queue, there is no chance to
2504 * dispatch it given we prioritize requests in hctx->dispatch.
2505 */
2506 blk_mq_request_bypass_insert(rq, flags);
2507 } else if (req_op(rq) == REQ_OP_FLUSH) {
2508 /*
2509 * Firstly normal IO request is inserted to scheduler queue or
2510 * sw queue, meantime we add flush request to dispatch queue(
2511 * hctx->dispatch) directly and there is at most one in-flight
2512 * flush request for each hw queue, so it doesn't matter to add
2513 * flush request to tail or front of the dispatch queue.
2514 *
2515 * Secondly in case of NCQ, flush request belongs to non-NCQ
2516 * command, and queueing it will fail when there is any
2517 * in-flight normal IO request(NCQ command). When adding flush
2518 * rq to the front of hctx->dispatch, it is easier to introduce
2519 * extra time to flush rq's latency because of S_SCHED_RESTART
2520 * compared with adding to the tail of dispatch queue, then
2521 * chance of flush merge is increased, and less flush requests
2522 * will be issued to controller. It is observed that ~10% time
2523 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2524 * drive when adding flush rq to the front of hctx->dispatch.
2525 *
2526 * Simply queue flush rq to the front of hctx->dispatch so that
2527 * intensive flush workloads can benefit in case of NCQ HW.
2528 */
2529 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2530 } else if (q->elevator) {
2531 LIST_HEAD(list);
2532
2533 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2534
2535 list_add(&rq->queuelist, &list);
2536 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2537 } else {
2538 trace_block_rq_insert(rq);
2539
2540 spin_lock(&ctx->lock);
2541 if (flags & BLK_MQ_INSERT_AT_HEAD)
2542 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2543 else
2544 list_add_tail(&rq->queuelist,
2545 &ctx->rq_lists[hctx->type]);
2546 blk_mq_hctx_mark_pending(hctx, ctx);
2547 spin_unlock(&ctx->lock);
2548 }
2549 }
2550
2551 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2552 unsigned int nr_segs)
2553 {
2554 int err;
2555
2556 if (bio->bi_opf & REQ_RAHEAD)
2557 rq->cmd_flags |= REQ_FAILFAST_MASK;
2558
2559 rq->__sector = bio->bi_iter.bi_sector;
2560 blk_rq_bio_prep(rq, bio, nr_segs);
2561
2562 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2563 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2564 WARN_ON_ONCE(err);
2565
2566 blk_account_io_start(rq);
2567 }
2568
2569 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2570 struct request *rq, bool last)
2571 {
2572 struct request_queue *q = rq->q;
2573 struct blk_mq_queue_data bd = {
2574 .rq = rq,
2575 .last = last,
2576 };
2577 blk_status_t ret;
2578
2579 /*
2580 * For OK queue, we are done. For error, caller may kill it.
2581 * Any other error (busy), just add it to our list as we
2582 * previously would have done.
2583 */
2584 ret = q->mq_ops->queue_rq(hctx, &bd);
2585 switch (ret) {
2586 case BLK_STS_OK:
2587 blk_mq_update_dispatch_busy(hctx, false);
2588 break;
2589 case BLK_STS_RESOURCE:
2590 case BLK_STS_DEV_RESOURCE:
2591 blk_mq_update_dispatch_busy(hctx, true);
2592 __blk_mq_requeue_request(rq);
2593 break;
2594 default:
2595 blk_mq_update_dispatch_busy(hctx, false);
2596 break;
2597 }
2598
2599 return ret;
2600 }
2601
2602 static bool blk_mq_get_budget_and_tag(struct request *rq)
2603 {
2604 int budget_token;
2605
2606 budget_token = blk_mq_get_dispatch_budget(rq->q);
2607 if (budget_token < 0)
2608 return false;
2609 blk_mq_set_rq_budget_token(rq, budget_token);
2610 if (!blk_mq_get_driver_tag(rq)) {
2611 blk_mq_put_dispatch_budget(rq->q, budget_token);
2612 return false;
2613 }
2614 return true;
2615 }
2616
2617 /**
2618 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2619 * @hctx: Pointer of the associated hardware queue.
2620 * @rq: Pointer to request to be sent.
2621 *
2622 * If the device has enough resources to accept a new request now, send the
2623 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2624 * we can try send it another time in the future. Requests inserted at this
2625 * queue have higher priority.
2626 */
2627 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2628 struct request *rq)
2629 {
2630 blk_status_t ret;
2631
2632 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2633 blk_mq_insert_request(rq, 0);
2634 return;
2635 }
2636
2637 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2638 blk_mq_insert_request(rq, 0);
2639 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2640 return;
2641 }
2642
2643 ret = __blk_mq_issue_directly(hctx, rq, true);
2644 switch (ret) {
2645 case BLK_STS_OK:
2646 break;
2647 case BLK_STS_RESOURCE:
2648 case BLK_STS_DEV_RESOURCE:
2649 blk_mq_request_bypass_insert(rq, 0);
2650 blk_mq_run_hw_queue(hctx, false);
2651 break;
2652 default:
2653 blk_mq_end_request(rq, ret);
2654 break;
2655 }
2656 }
2657
2658 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2659 {
2660 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2661
2662 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2663 blk_mq_insert_request(rq, 0);
2664 return BLK_STS_OK;
2665 }
2666
2667 if (!blk_mq_get_budget_and_tag(rq))
2668 return BLK_STS_RESOURCE;
2669 return __blk_mq_issue_directly(hctx, rq, last);
2670 }
2671
2672 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2673 {
2674 struct blk_mq_hw_ctx *hctx = NULL;
2675 struct request *rq;
2676 int queued = 0;
2677 blk_status_t ret = BLK_STS_OK;
2678
2679 while ((rq = rq_list_pop(&plug->mq_list))) {
2680 bool last = rq_list_empty(plug->mq_list);
2681
2682 if (hctx != rq->mq_hctx) {
2683 if (hctx) {
2684 blk_mq_commit_rqs(hctx, queued, false);
2685 queued = 0;
2686 }
2687 hctx = rq->mq_hctx;
2688 }
2689
2690 ret = blk_mq_request_issue_directly(rq, last);
2691 switch (ret) {
2692 case BLK_STS_OK:
2693 queued++;
2694 break;
2695 case BLK_STS_RESOURCE:
2696 case BLK_STS_DEV_RESOURCE:
2697 blk_mq_request_bypass_insert(rq, 0);
2698 blk_mq_run_hw_queue(hctx, false);
2699 goto out;
2700 default:
2701 blk_mq_end_request(rq, ret);
2702 break;
2703 }
2704 }
2705
2706 out:
2707 if (ret != BLK_STS_OK)
2708 blk_mq_commit_rqs(hctx, queued, false);
2709 }
2710
2711 static void __blk_mq_flush_plug_list(struct request_queue *q,
2712 struct blk_plug *plug)
2713 {
2714 if (blk_queue_quiesced(q))
2715 return;
2716 q->mq_ops->queue_rqs(&plug->mq_list);
2717 }
2718
2719 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2720 {
2721 struct blk_mq_hw_ctx *this_hctx = NULL;
2722 struct blk_mq_ctx *this_ctx = NULL;
2723 struct request *requeue_list = NULL;
2724 struct request **requeue_lastp = &requeue_list;
2725 unsigned int depth = 0;
2726 bool is_passthrough = false;
2727 LIST_HEAD(list);
2728
2729 do {
2730 struct request *rq = rq_list_pop(&plug->mq_list);
2731
2732 if (!this_hctx) {
2733 this_hctx = rq->mq_hctx;
2734 this_ctx = rq->mq_ctx;
2735 is_passthrough = blk_rq_is_passthrough(rq);
2736 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2737 is_passthrough != blk_rq_is_passthrough(rq)) {
2738 rq_list_add_tail(&requeue_lastp, rq);
2739 continue;
2740 }
2741 list_add(&rq->queuelist, &list);
2742 depth++;
2743 } while (!rq_list_empty(plug->mq_list));
2744
2745 plug->mq_list = requeue_list;
2746 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2747
2748 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2749 /* passthrough requests should never be issued to the I/O scheduler */
2750 if (is_passthrough) {
2751 spin_lock(&this_hctx->lock);
2752 list_splice_tail_init(&list, &this_hctx->dispatch);
2753 spin_unlock(&this_hctx->lock);
2754 blk_mq_run_hw_queue(this_hctx, from_sched);
2755 } else if (this_hctx->queue->elevator) {
2756 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2757 &list, 0);
2758 blk_mq_run_hw_queue(this_hctx, from_sched);
2759 } else {
2760 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2761 }
2762 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2763 }
2764
2765 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2766 {
2767 struct request *rq;
2768
2769 /*
2770 * We may have been called recursively midway through handling
2771 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2772 * To avoid mq_list changing under our feet, clear rq_count early and
2773 * bail out specifically if rq_count is 0 rather than checking
2774 * whether the mq_list is empty.
2775 */
2776 if (plug->rq_count == 0)
2777 return;
2778 plug->rq_count = 0;
2779
2780 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2781 struct request_queue *q;
2782
2783 rq = rq_list_peek(&plug->mq_list);
2784 q = rq->q;
2785
2786 /*
2787 * Peek first request and see if we have a ->queue_rqs() hook.
2788 * If we do, we can dispatch the whole plug list in one go. We
2789 * already know at this point that all requests belong to the
2790 * same queue, caller must ensure that's the case.
2791 */
2792 if (q->mq_ops->queue_rqs) {
2793 blk_mq_run_dispatch_ops(q,
2794 __blk_mq_flush_plug_list(q, plug));
2795 if (rq_list_empty(plug->mq_list))
2796 return;
2797 }
2798
2799 blk_mq_run_dispatch_ops(q,
2800 blk_mq_plug_issue_direct(plug));
2801 if (rq_list_empty(plug->mq_list))
2802 return;
2803 }
2804
2805 do {
2806 blk_mq_dispatch_plug_list(plug, from_schedule);
2807 } while (!rq_list_empty(plug->mq_list));
2808 }
2809
2810 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2811 struct list_head *list)
2812 {
2813 int queued = 0;
2814 blk_status_t ret = BLK_STS_OK;
2815
2816 while (!list_empty(list)) {
2817 struct request *rq = list_first_entry(list, struct request,
2818 queuelist);
2819
2820 list_del_init(&rq->queuelist);
2821 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2822 switch (ret) {
2823 case BLK_STS_OK:
2824 queued++;
2825 break;
2826 case BLK_STS_RESOURCE:
2827 case BLK_STS_DEV_RESOURCE:
2828 blk_mq_request_bypass_insert(rq, 0);
2829 if (list_empty(list))
2830 blk_mq_run_hw_queue(hctx, false);
2831 goto out;
2832 default:
2833 blk_mq_end_request(rq, ret);
2834 break;
2835 }
2836 }
2837
2838 out:
2839 if (ret != BLK_STS_OK)
2840 blk_mq_commit_rqs(hctx, queued, false);
2841 }
2842
2843 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2844 struct bio *bio, unsigned int nr_segs)
2845 {
2846 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2847 if (blk_attempt_plug_merge(q, bio, nr_segs))
2848 return true;
2849 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2850 return true;
2851 }
2852 return false;
2853 }
2854
2855 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2856 struct blk_plug *plug,
2857 struct bio *bio,
2858 unsigned int nsegs)
2859 {
2860 struct blk_mq_alloc_data data = {
2861 .q = q,
2862 .nr_tags = 1,
2863 .cmd_flags = bio->bi_opf,
2864 };
2865 struct request *rq;
2866
2867 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2868 return NULL;
2869
2870 rq_qos_throttle(q, bio);
2871
2872 if (plug) {
2873 data.nr_tags = plug->nr_ios;
2874 plug->nr_ios = 1;
2875 data.cached_rq = &plug->cached_rq;
2876 }
2877
2878 rq = __blk_mq_alloc_requests(&data);
2879 if (rq)
2880 return rq;
2881 rq_qos_cleanup(q, bio);
2882 if (bio->bi_opf & REQ_NOWAIT)
2883 bio_wouldblock_error(bio);
2884 return NULL;
2885 }
2886
2887 /* return true if this @rq can be used for @bio */
2888 static bool blk_mq_can_use_cached_rq(struct request *rq, struct blk_plug *plug,
2889 struct bio *bio)
2890 {
2891 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2892 enum hctx_type hctx_type = rq->mq_hctx->type;
2893
2894 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2895
2896 if (type != hctx_type &&
2897 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2898 return false;
2899 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2900 return false;
2901
2902 /*
2903 * If any qos ->throttle() end up blocking, we will have flushed the
2904 * plug and hence killed the cached_rq list as well. Pop this entry
2905 * before we throttle.
2906 */
2907 plug->cached_rq = rq_list_next(rq);
2908 rq_qos_throttle(rq->q, bio);
2909
2910 blk_mq_rq_time_init(rq, 0);
2911 rq->cmd_flags = bio->bi_opf;
2912 INIT_LIST_HEAD(&rq->queuelist);
2913 return true;
2914 }
2915
2916 static void bio_set_ioprio(struct bio *bio)
2917 {
2918 /* Nobody set ioprio so far? Initialize it based on task's nice value */
2919 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2920 bio->bi_ioprio = get_current_ioprio();
2921 blkcg_set_ioprio(bio);
2922 }
2923
2924 /**
2925 * blk_mq_submit_bio - Create and send a request to block device.
2926 * @bio: Bio pointer.
2927 *
2928 * Builds up a request structure from @q and @bio and send to the device. The
2929 * request may not be queued directly to hardware if:
2930 * * This request can be merged with another one
2931 * * We want to place request at plug queue for possible future merging
2932 * * There is an IO scheduler active at this queue
2933 *
2934 * It will not queue the request if there is an error with the bio, or at the
2935 * request creation.
2936 */
2937 void blk_mq_submit_bio(struct bio *bio)
2938 {
2939 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2940 struct blk_plug *plug = blk_mq_plug(bio);
2941 const int is_sync = op_is_sync(bio->bi_opf);
2942 struct blk_mq_hw_ctx *hctx;
2943 struct request *rq = NULL;
2944 unsigned int nr_segs = 1;
2945 blk_status_t ret;
2946
2947 bio = blk_queue_bounce(bio, q);
2948 if (bio_may_exceed_limits(bio, &q->limits)) {
2949 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2950 if (!bio)
2951 return;
2952 }
2953
2954 bio_set_ioprio(bio);
2955
2956 if (plug) {
2957 rq = rq_list_peek(&plug->cached_rq);
2958 if (rq && rq->q != q)
2959 rq = NULL;
2960 }
2961 if (rq) {
2962 if (!bio_integrity_prep(bio))
2963 return;
2964 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2965 return;
2966 if (blk_mq_can_use_cached_rq(rq, plug, bio))
2967 goto done;
2968 percpu_ref_get(&q->q_usage_counter);
2969 } else {
2970 if (unlikely(bio_queue_enter(bio)))
2971 return;
2972 if (!bio_integrity_prep(bio))
2973 goto fail;
2974 }
2975
2976 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2977 if (unlikely(!rq)) {
2978 fail:
2979 blk_queue_exit(q);
2980 return;
2981 }
2982
2983 done:
2984 trace_block_getrq(bio);
2985
2986 rq_qos_track(q, rq, bio);
2987
2988 blk_mq_bio_to_request(rq, bio, nr_segs);
2989
2990 ret = blk_crypto_rq_get_keyslot(rq);
2991 if (ret != BLK_STS_OK) {
2992 bio->bi_status = ret;
2993 bio_endio(bio);
2994 blk_mq_free_request(rq);
2995 return;
2996 }
2997
2998 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2999 return;
3000
3001 if (plug) {
3002 blk_add_rq_to_plug(plug, rq);
3003 return;
3004 }
3005
3006 hctx = rq->mq_hctx;
3007 if ((rq->rq_flags & RQF_USE_SCHED) ||
3008 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3009 blk_mq_insert_request(rq, 0);
3010 blk_mq_run_hw_queue(hctx, true);
3011 } else {
3012 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3013 }
3014 }
3015
3016 #ifdef CONFIG_BLK_MQ_STACKING
3017 /**
3018 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3019 * @rq: the request being queued
3020 */
3021 blk_status_t blk_insert_cloned_request(struct request *rq)
3022 {
3023 struct request_queue *q = rq->q;
3024 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3025 unsigned int max_segments = blk_rq_get_max_segments(rq);
3026 blk_status_t ret;
3027
3028 if (blk_rq_sectors(rq) > max_sectors) {
3029 /*
3030 * SCSI device does not have a good way to return if
3031 * Write Same/Zero is actually supported. If a device rejects
3032 * a non-read/write command (discard, write same,etc.) the
3033 * low-level device driver will set the relevant queue limit to
3034 * 0 to prevent blk-lib from issuing more of the offending
3035 * operations. Commands queued prior to the queue limit being
3036 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3037 * errors being propagated to upper layers.
3038 */
3039 if (max_sectors == 0)
3040 return BLK_STS_NOTSUPP;
3041
3042 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3043 __func__, blk_rq_sectors(rq), max_sectors);
3044 return BLK_STS_IOERR;
3045 }
3046
3047 /*
3048 * The queue settings related to segment counting may differ from the
3049 * original queue.
3050 */
3051 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3052 if (rq->nr_phys_segments > max_segments) {
3053 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3054 __func__, rq->nr_phys_segments, max_segments);
3055 return BLK_STS_IOERR;
3056 }
3057
3058 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3059 return BLK_STS_IOERR;
3060
3061 ret = blk_crypto_rq_get_keyslot(rq);
3062 if (ret != BLK_STS_OK)
3063 return ret;
3064
3065 blk_account_io_start(rq);
3066
3067 /*
3068 * Since we have a scheduler attached on the top device,
3069 * bypass a potential scheduler on the bottom device for
3070 * insert.
3071 */
3072 blk_mq_run_dispatch_ops(q,
3073 ret = blk_mq_request_issue_directly(rq, true));
3074 if (ret)
3075 blk_account_io_done(rq, ktime_get_ns());
3076 return ret;
3077 }
3078 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3079
3080 /**
3081 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3082 * @rq: the clone request to be cleaned up
3083 *
3084 * Description:
3085 * Free all bios in @rq for a cloned request.
3086 */
3087 void blk_rq_unprep_clone(struct request *rq)
3088 {
3089 struct bio *bio;
3090
3091 while ((bio = rq->bio) != NULL) {
3092 rq->bio = bio->bi_next;
3093
3094 bio_put(bio);
3095 }
3096 }
3097 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3098
3099 /**
3100 * blk_rq_prep_clone - Helper function to setup clone request
3101 * @rq: the request to be setup
3102 * @rq_src: original request to be cloned
3103 * @bs: bio_set that bios for clone are allocated from
3104 * @gfp_mask: memory allocation mask for bio
3105 * @bio_ctr: setup function to be called for each clone bio.
3106 * Returns %0 for success, non %0 for failure.
3107 * @data: private data to be passed to @bio_ctr
3108 *
3109 * Description:
3110 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3111 * Also, pages which the original bios are pointing to are not copied
3112 * and the cloned bios just point same pages.
3113 * So cloned bios must be completed before original bios, which means
3114 * the caller must complete @rq before @rq_src.
3115 */
3116 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3117 struct bio_set *bs, gfp_t gfp_mask,
3118 int (*bio_ctr)(struct bio *, struct bio *, void *),
3119 void *data)
3120 {
3121 struct bio *bio, *bio_src;
3122
3123 if (!bs)
3124 bs = &fs_bio_set;
3125
3126 __rq_for_each_bio(bio_src, rq_src) {
3127 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3128 bs);
3129 if (!bio)
3130 goto free_and_out;
3131
3132 if (bio_ctr && bio_ctr(bio, bio_src, data))
3133 goto free_and_out;
3134
3135 if (rq->bio) {
3136 rq->biotail->bi_next = bio;
3137 rq->biotail = bio;
3138 } else {
3139 rq->bio = rq->biotail = bio;
3140 }
3141 bio = NULL;
3142 }
3143
3144 /* Copy attributes of the original request to the clone request. */
3145 rq->__sector = blk_rq_pos(rq_src);
3146 rq->__data_len = blk_rq_bytes(rq_src);
3147 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3148 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3149 rq->special_vec = rq_src->special_vec;
3150 }
3151 rq->nr_phys_segments = rq_src->nr_phys_segments;
3152 rq->ioprio = rq_src->ioprio;
3153
3154 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3155 goto free_and_out;
3156
3157 return 0;
3158
3159 free_and_out:
3160 if (bio)
3161 bio_put(bio);
3162 blk_rq_unprep_clone(rq);
3163
3164 return -ENOMEM;
3165 }
3166 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3167 #endif /* CONFIG_BLK_MQ_STACKING */
3168
3169 /*
3170 * Steal bios from a request and add them to a bio list.
3171 * The request must not have been partially completed before.
3172 */
3173 void blk_steal_bios(struct bio_list *list, struct request *rq)
3174 {
3175 if (rq->bio) {
3176 if (list->tail)
3177 list->tail->bi_next = rq->bio;
3178 else
3179 list->head = rq->bio;
3180 list->tail = rq->biotail;
3181
3182 rq->bio = NULL;
3183 rq->biotail = NULL;
3184 }
3185
3186 rq->__data_len = 0;
3187 }
3188 EXPORT_SYMBOL_GPL(blk_steal_bios);
3189
3190 static size_t order_to_size(unsigned int order)
3191 {
3192 return (size_t)PAGE_SIZE << order;
3193 }
3194
3195 /* called before freeing request pool in @tags */
3196 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3197 struct blk_mq_tags *tags)
3198 {
3199 struct page *page;
3200 unsigned long flags;
3201
3202 /*
3203 * There is no need to clear mapping if driver tags is not initialized
3204 * or the mapping belongs to the driver tags.
3205 */
3206 if (!drv_tags || drv_tags == tags)
3207 return;
3208
3209 list_for_each_entry(page, &tags->page_list, lru) {
3210 unsigned long start = (unsigned long)page_address(page);
3211 unsigned long end = start + order_to_size(page->private);
3212 int i;
3213
3214 for (i = 0; i < drv_tags->nr_tags; i++) {
3215 struct request *rq = drv_tags->rqs[i];
3216 unsigned long rq_addr = (unsigned long)rq;
3217
3218 if (rq_addr >= start && rq_addr < end) {
3219 WARN_ON_ONCE(req_ref_read(rq) != 0);
3220 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3221 }
3222 }
3223 }
3224
3225 /*
3226 * Wait until all pending iteration is done.
3227 *
3228 * Request reference is cleared and it is guaranteed to be observed
3229 * after the ->lock is released.
3230 */
3231 spin_lock_irqsave(&drv_tags->lock, flags);
3232 spin_unlock_irqrestore(&drv_tags->lock, flags);
3233 }
3234
3235 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3236 unsigned int hctx_idx)
3237 {
3238 struct blk_mq_tags *drv_tags;
3239 struct page *page;
3240
3241 if (list_empty(&tags->page_list))
3242 return;
3243
3244 if (blk_mq_is_shared_tags(set->flags))
3245 drv_tags = set->shared_tags;
3246 else
3247 drv_tags = set->tags[hctx_idx];
3248
3249 if (tags->static_rqs && set->ops->exit_request) {
3250 int i;
3251
3252 for (i = 0; i < tags->nr_tags; i++) {
3253 struct request *rq = tags->static_rqs[i];
3254
3255 if (!rq)
3256 continue;
3257 set->ops->exit_request(set, rq, hctx_idx);
3258 tags->static_rqs[i] = NULL;
3259 }
3260 }
3261
3262 blk_mq_clear_rq_mapping(drv_tags, tags);
3263
3264 while (!list_empty(&tags->page_list)) {
3265 page = list_first_entry(&tags->page_list, struct page, lru);
3266 list_del_init(&page->lru);
3267 /*
3268 * Remove kmemleak object previously allocated in
3269 * blk_mq_alloc_rqs().
3270 */
3271 kmemleak_free(page_address(page));
3272 __free_pages(page, page->private);
3273 }
3274 }
3275
3276 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3277 {
3278 kfree(tags->rqs);
3279 tags->rqs = NULL;
3280 kfree(tags->static_rqs);
3281 tags->static_rqs = NULL;
3282
3283 blk_mq_free_tags(tags);
3284 }
3285
3286 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3287 unsigned int hctx_idx)
3288 {
3289 int i;
3290
3291 for (i = 0; i < set->nr_maps; i++) {
3292 unsigned int start = set->map[i].queue_offset;
3293 unsigned int end = start + set->map[i].nr_queues;
3294
3295 if (hctx_idx >= start && hctx_idx < end)
3296 break;
3297 }
3298
3299 if (i >= set->nr_maps)
3300 i = HCTX_TYPE_DEFAULT;
3301
3302 return i;
3303 }
3304
3305 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3306 unsigned int hctx_idx)
3307 {
3308 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3309
3310 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3311 }
3312
3313 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3314 unsigned int hctx_idx,
3315 unsigned int nr_tags,
3316 unsigned int reserved_tags)
3317 {
3318 int node = blk_mq_get_hctx_node(set, hctx_idx);
3319 struct blk_mq_tags *tags;
3320
3321 if (node == NUMA_NO_NODE)
3322 node = set->numa_node;
3323
3324 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3325 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3326 if (!tags)
3327 return NULL;
3328
3329 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3330 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3331 node);
3332 if (!tags->rqs)
3333 goto err_free_tags;
3334
3335 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3336 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3337 node);
3338 if (!tags->static_rqs)
3339 goto err_free_rqs;
3340
3341 return tags;
3342
3343 err_free_rqs:
3344 kfree(tags->rqs);
3345 err_free_tags:
3346 blk_mq_free_tags(tags);
3347 return NULL;
3348 }
3349
3350 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3351 unsigned int hctx_idx, int node)
3352 {
3353 int ret;
3354
3355 if (set->ops->init_request) {
3356 ret = set->ops->init_request(set, rq, hctx_idx, node);
3357 if (ret)
3358 return ret;
3359 }
3360
3361 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3362 return 0;
3363 }
3364
3365 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3366 struct blk_mq_tags *tags,
3367 unsigned int hctx_idx, unsigned int depth)
3368 {
3369 unsigned int i, j, entries_per_page, max_order = 4;
3370 int node = blk_mq_get_hctx_node(set, hctx_idx);
3371 size_t rq_size, left;
3372
3373 if (node == NUMA_NO_NODE)
3374 node = set->numa_node;
3375
3376 INIT_LIST_HEAD(&tags->page_list);
3377
3378 /*
3379 * rq_size is the size of the request plus driver payload, rounded
3380 * to the cacheline size
3381 */
3382 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3383 cache_line_size());
3384 left = rq_size * depth;
3385
3386 for (i = 0; i < depth; ) {
3387 int this_order = max_order;
3388 struct page *page;
3389 int to_do;
3390 void *p;
3391
3392 while (this_order && left < order_to_size(this_order - 1))
3393 this_order--;
3394
3395 do {
3396 page = alloc_pages_node(node,
3397 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3398 this_order);
3399 if (page)
3400 break;
3401 if (!this_order--)
3402 break;
3403 if (order_to_size(this_order) < rq_size)
3404 break;
3405 } while (1);
3406
3407 if (!page)
3408 goto fail;
3409
3410 page->private = this_order;
3411 list_add_tail(&page->lru, &tags->page_list);
3412
3413 p = page_address(page);
3414 /*
3415 * Allow kmemleak to scan these pages as they contain pointers
3416 * to additional allocations like via ops->init_request().
3417 */
3418 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3419 entries_per_page = order_to_size(this_order) / rq_size;
3420 to_do = min(entries_per_page, depth - i);
3421 left -= to_do * rq_size;
3422 for (j = 0; j < to_do; j++) {
3423 struct request *rq = p;
3424
3425 tags->static_rqs[i] = rq;
3426 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3427 tags->static_rqs[i] = NULL;
3428 goto fail;
3429 }
3430
3431 p += rq_size;
3432 i++;
3433 }
3434 }
3435 return 0;
3436
3437 fail:
3438 blk_mq_free_rqs(set, tags, hctx_idx);
3439 return -ENOMEM;
3440 }
3441
3442 struct rq_iter_data {
3443 struct blk_mq_hw_ctx *hctx;
3444 bool has_rq;
3445 };
3446
3447 static bool blk_mq_has_request(struct request *rq, void *data)
3448 {
3449 struct rq_iter_data *iter_data = data;
3450
3451 if (rq->mq_hctx != iter_data->hctx)
3452 return true;
3453 iter_data->has_rq = true;
3454 return false;
3455 }
3456
3457 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3458 {
3459 struct blk_mq_tags *tags = hctx->sched_tags ?
3460 hctx->sched_tags : hctx->tags;
3461 struct rq_iter_data data = {
3462 .hctx = hctx,
3463 };
3464
3465 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3466 return data.has_rq;
3467 }
3468
3469 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3470 struct blk_mq_hw_ctx *hctx)
3471 {
3472 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3473 return false;
3474 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3475 return false;
3476 return true;
3477 }
3478
3479 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3480 {
3481 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3482 struct blk_mq_hw_ctx, cpuhp_online);
3483
3484 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3485 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3486 return 0;
3487
3488 /*
3489 * Prevent new request from being allocated on the current hctx.
3490 *
3491 * The smp_mb__after_atomic() Pairs with the implied barrier in
3492 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3493 * seen once we return from the tag allocator.
3494 */
3495 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3496 smp_mb__after_atomic();
3497
3498 /*
3499 * Try to grab a reference to the queue and wait for any outstanding
3500 * requests. If we could not grab a reference the queue has been
3501 * frozen and there are no requests.
3502 */
3503 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3504 while (blk_mq_hctx_has_requests(hctx))
3505 msleep(5);
3506 percpu_ref_put(&hctx->queue->q_usage_counter);
3507 }
3508
3509 return 0;
3510 }
3511
3512 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3513 {
3514 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3515 struct blk_mq_hw_ctx, cpuhp_online);
3516
3517 if (cpumask_test_cpu(cpu, hctx->cpumask))
3518 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3519 return 0;
3520 }
3521
3522 /*
3523 * 'cpu' is going away. splice any existing rq_list entries from this
3524 * software queue to the hw queue dispatch list, and ensure that it
3525 * gets run.
3526 */
3527 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3528 {
3529 struct blk_mq_hw_ctx *hctx;
3530 struct blk_mq_ctx *ctx;
3531 LIST_HEAD(tmp);
3532 enum hctx_type type;
3533
3534 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3535 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3536 return 0;
3537
3538 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3539 type = hctx->type;
3540
3541 spin_lock(&ctx->lock);
3542 if (!list_empty(&ctx->rq_lists[type])) {
3543 list_splice_init(&ctx->rq_lists[type], &tmp);
3544 blk_mq_hctx_clear_pending(hctx, ctx);
3545 }
3546 spin_unlock(&ctx->lock);
3547
3548 if (list_empty(&tmp))
3549 return 0;
3550
3551 spin_lock(&hctx->lock);
3552 list_splice_tail_init(&tmp, &hctx->dispatch);
3553 spin_unlock(&hctx->lock);
3554
3555 blk_mq_run_hw_queue(hctx, true);
3556 return 0;
3557 }
3558
3559 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3560 {
3561 if (!(hctx->flags & BLK_MQ_F_STACKING))
3562 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3563 &hctx->cpuhp_online);
3564 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3565 &hctx->cpuhp_dead);
3566 }
3567
3568 /*
3569 * Before freeing hw queue, clearing the flush request reference in
3570 * tags->rqs[] for avoiding potential UAF.
3571 */
3572 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3573 unsigned int queue_depth, struct request *flush_rq)
3574 {
3575 int i;
3576 unsigned long flags;
3577
3578 /* The hw queue may not be mapped yet */
3579 if (!tags)
3580 return;
3581
3582 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3583
3584 for (i = 0; i < queue_depth; i++)
3585 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3586
3587 /*
3588 * Wait until all pending iteration is done.
3589 *
3590 * Request reference is cleared and it is guaranteed to be observed
3591 * after the ->lock is released.
3592 */
3593 spin_lock_irqsave(&tags->lock, flags);
3594 spin_unlock_irqrestore(&tags->lock, flags);
3595 }
3596
3597 /* hctx->ctxs will be freed in queue's release handler */
3598 static void blk_mq_exit_hctx(struct request_queue *q,
3599 struct blk_mq_tag_set *set,
3600 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3601 {
3602 struct request *flush_rq = hctx->fq->flush_rq;
3603
3604 if (blk_mq_hw_queue_mapped(hctx))
3605 blk_mq_tag_idle(hctx);
3606
3607 if (blk_queue_init_done(q))
3608 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3609 set->queue_depth, flush_rq);
3610 if (set->ops->exit_request)
3611 set->ops->exit_request(set, flush_rq, hctx_idx);
3612
3613 if (set->ops->exit_hctx)
3614 set->ops->exit_hctx(hctx, hctx_idx);
3615
3616 blk_mq_remove_cpuhp(hctx);
3617
3618 xa_erase(&q->hctx_table, hctx_idx);
3619
3620 spin_lock(&q->unused_hctx_lock);
3621 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3622 spin_unlock(&q->unused_hctx_lock);
3623 }
3624
3625 static void blk_mq_exit_hw_queues(struct request_queue *q,
3626 struct blk_mq_tag_set *set, int nr_queue)
3627 {
3628 struct blk_mq_hw_ctx *hctx;
3629 unsigned long i;
3630
3631 queue_for_each_hw_ctx(q, hctx, i) {
3632 if (i == nr_queue)
3633 break;
3634 blk_mq_exit_hctx(q, set, hctx, i);
3635 }
3636 }
3637
3638 static int blk_mq_init_hctx(struct request_queue *q,
3639 struct blk_mq_tag_set *set,
3640 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3641 {
3642 hctx->queue_num = hctx_idx;
3643
3644 if (!(hctx->flags & BLK_MQ_F_STACKING))
3645 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3646 &hctx->cpuhp_online);
3647 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3648
3649 hctx->tags = set->tags[hctx_idx];
3650
3651 if (set->ops->init_hctx &&
3652 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3653 goto unregister_cpu_notifier;
3654
3655 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3656 hctx->numa_node))
3657 goto exit_hctx;
3658
3659 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3660 goto exit_flush_rq;
3661
3662 return 0;
3663
3664 exit_flush_rq:
3665 if (set->ops->exit_request)
3666 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3667 exit_hctx:
3668 if (set->ops->exit_hctx)
3669 set->ops->exit_hctx(hctx, hctx_idx);
3670 unregister_cpu_notifier:
3671 blk_mq_remove_cpuhp(hctx);
3672 return -1;
3673 }
3674
3675 static struct blk_mq_hw_ctx *
3676 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3677 int node)
3678 {
3679 struct blk_mq_hw_ctx *hctx;
3680 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3681
3682 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3683 if (!hctx)
3684 goto fail_alloc_hctx;
3685
3686 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3687 goto free_hctx;
3688
3689 atomic_set(&hctx->nr_active, 0);
3690 if (node == NUMA_NO_NODE)
3691 node = set->numa_node;
3692 hctx->numa_node = node;
3693
3694 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3695 spin_lock_init(&hctx->lock);
3696 INIT_LIST_HEAD(&hctx->dispatch);
3697 hctx->queue = q;
3698 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3699
3700 INIT_LIST_HEAD(&hctx->hctx_list);
3701
3702 /*
3703 * Allocate space for all possible cpus to avoid allocation at
3704 * runtime
3705 */
3706 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3707 gfp, node);
3708 if (!hctx->ctxs)
3709 goto free_cpumask;
3710
3711 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3712 gfp, node, false, false))
3713 goto free_ctxs;
3714 hctx->nr_ctx = 0;
3715
3716 spin_lock_init(&hctx->dispatch_wait_lock);
3717 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3718 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3719
3720 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3721 if (!hctx->fq)
3722 goto free_bitmap;
3723
3724 blk_mq_hctx_kobj_init(hctx);
3725
3726 return hctx;
3727
3728 free_bitmap:
3729 sbitmap_free(&hctx->ctx_map);
3730 free_ctxs:
3731 kfree(hctx->ctxs);
3732 free_cpumask:
3733 free_cpumask_var(hctx->cpumask);
3734 free_hctx:
3735 kfree(hctx);
3736 fail_alloc_hctx:
3737 return NULL;
3738 }
3739
3740 static void blk_mq_init_cpu_queues(struct request_queue *q,
3741 unsigned int nr_hw_queues)
3742 {
3743 struct blk_mq_tag_set *set = q->tag_set;
3744 unsigned int i, j;
3745
3746 for_each_possible_cpu(i) {
3747 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3748 struct blk_mq_hw_ctx *hctx;
3749 int k;
3750
3751 __ctx->cpu = i;
3752 spin_lock_init(&__ctx->lock);
3753 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3754 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3755
3756 __ctx->queue = q;
3757
3758 /*
3759 * Set local node, IFF we have more than one hw queue. If
3760 * not, we remain on the home node of the device
3761 */
3762 for (j = 0; j < set->nr_maps; j++) {
3763 hctx = blk_mq_map_queue_type(q, j, i);
3764 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3765 hctx->numa_node = cpu_to_node(i);
3766 }
3767 }
3768 }
3769
3770 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3771 unsigned int hctx_idx,
3772 unsigned int depth)
3773 {
3774 struct blk_mq_tags *tags;
3775 int ret;
3776
3777 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3778 if (!tags)
3779 return NULL;
3780
3781 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3782 if (ret) {
3783 blk_mq_free_rq_map(tags);
3784 return NULL;
3785 }
3786
3787 return tags;
3788 }
3789
3790 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3791 int hctx_idx)
3792 {
3793 if (blk_mq_is_shared_tags(set->flags)) {
3794 set->tags[hctx_idx] = set->shared_tags;
3795
3796 return true;
3797 }
3798
3799 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3800 set->queue_depth);
3801
3802 return set->tags[hctx_idx];
3803 }
3804
3805 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3806 struct blk_mq_tags *tags,
3807 unsigned int hctx_idx)
3808 {
3809 if (tags) {
3810 blk_mq_free_rqs(set, tags, hctx_idx);
3811 blk_mq_free_rq_map(tags);
3812 }
3813 }
3814
3815 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3816 unsigned int hctx_idx)
3817 {
3818 if (!blk_mq_is_shared_tags(set->flags))
3819 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3820
3821 set->tags[hctx_idx] = NULL;
3822 }
3823
3824 static void blk_mq_map_swqueue(struct request_queue *q)
3825 {
3826 unsigned int j, hctx_idx;
3827 unsigned long i;
3828 struct blk_mq_hw_ctx *hctx;
3829 struct blk_mq_ctx *ctx;
3830 struct blk_mq_tag_set *set = q->tag_set;
3831
3832 queue_for_each_hw_ctx(q, hctx, i) {
3833 cpumask_clear(hctx->cpumask);
3834 hctx->nr_ctx = 0;
3835 hctx->dispatch_from = NULL;
3836 }
3837
3838 /*
3839 * Map software to hardware queues.
3840 *
3841 * If the cpu isn't present, the cpu is mapped to first hctx.
3842 */
3843 for_each_possible_cpu(i) {
3844
3845 ctx = per_cpu_ptr(q->queue_ctx, i);
3846 for (j = 0; j < set->nr_maps; j++) {
3847 if (!set->map[j].nr_queues) {
3848 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3849 HCTX_TYPE_DEFAULT, i);
3850 continue;
3851 }
3852 hctx_idx = set->map[j].mq_map[i];
3853 /* unmapped hw queue can be remapped after CPU topo changed */
3854 if (!set->tags[hctx_idx] &&
3855 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3856 /*
3857 * If tags initialization fail for some hctx,
3858 * that hctx won't be brought online. In this
3859 * case, remap the current ctx to hctx[0] which
3860 * is guaranteed to always have tags allocated
3861 */
3862 set->map[j].mq_map[i] = 0;
3863 }
3864
3865 hctx = blk_mq_map_queue_type(q, j, i);
3866 ctx->hctxs[j] = hctx;
3867 /*
3868 * If the CPU is already set in the mask, then we've
3869 * mapped this one already. This can happen if
3870 * devices share queues across queue maps.
3871 */
3872 if (cpumask_test_cpu(i, hctx->cpumask))
3873 continue;
3874
3875 cpumask_set_cpu(i, hctx->cpumask);
3876 hctx->type = j;
3877 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3878 hctx->ctxs[hctx->nr_ctx++] = ctx;
3879
3880 /*
3881 * If the nr_ctx type overflows, we have exceeded the
3882 * amount of sw queues we can support.
3883 */
3884 BUG_ON(!hctx->nr_ctx);
3885 }
3886
3887 for (; j < HCTX_MAX_TYPES; j++)
3888 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3889 HCTX_TYPE_DEFAULT, i);
3890 }
3891
3892 queue_for_each_hw_ctx(q, hctx, i) {
3893 /*
3894 * If no software queues are mapped to this hardware queue,
3895 * disable it and free the request entries.
3896 */
3897 if (!hctx->nr_ctx) {
3898 /* Never unmap queue 0. We need it as a
3899 * fallback in case of a new remap fails
3900 * allocation
3901 */
3902 if (i)
3903 __blk_mq_free_map_and_rqs(set, i);
3904
3905 hctx->tags = NULL;
3906 continue;
3907 }
3908
3909 hctx->tags = set->tags[i];
3910 WARN_ON(!hctx->tags);
3911
3912 /*
3913 * Set the map size to the number of mapped software queues.
3914 * This is more accurate and more efficient than looping
3915 * over all possibly mapped software queues.
3916 */
3917 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3918
3919 /*
3920 * Initialize batch roundrobin counts
3921 */
3922 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3923 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3924 }
3925 }
3926
3927 /*
3928 * Caller needs to ensure that we're either frozen/quiesced, or that
3929 * the queue isn't live yet.
3930 */
3931 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3932 {
3933 struct blk_mq_hw_ctx *hctx;
3934 unsigned long i;
3935
3936 queue_for_each_hw_ctx(q, hctx, i) {
3937 if (shared) {
3938 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3939 } else {
3940 blk_mq_tag_idle(hctx);
3941 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3942 }
3943 }
3944 }
3945
3946 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3947 bool shared)
3948 {
3949 struct request_queue *q;
3950
3951 lockdep_assert_held(&set->tag_list_lock);
3952
3953 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3954 blk_mq_freeze_queue(q);
3955 queue_set_hctx_shared(q, shared);
3956 blk_mq_unfreeze_queue(q);
3957 }
3958 }
3959
3960 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3961 {
3962 struct blk_mq_tag_set *set = q->tag_set;
3963
3964 mutex_lock(&set->tag_list_lock);
3965 list_del(&q->tag_set_list);
3966 if (list_is_singular(&set->tag_list)) {
3967 /* just transitioned to unshared */
3968 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3969 /* update existing queue */
3970 blk_mq_update_tag_set_shared(set, false);
3971 }
3972 mutex_unlock(&set->tag_list_lock);
3973 INIT_LIST_HEAD(&q->tag_set_list);
3974 }
3975
3976 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3977 struct request_queue *q)
3978 {
3979 mutex_lock(&set->tag_list_lock);
3980
3981 /*
3982 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3983 */
3984 if (!list_empty(&set->tag_list) &&
3985 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3986 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3987 /* update existing queue */
3988 blk_mq_update_tag_set_shared(set, true);
3989 }
3990 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3991 queue_set_hctx_shared(q, true);
3992 list_add_tail(&q->tag_set_list, &set->tag_list);
3993
3994 mutex_unlock(&set->tag_list_lock);
3995 }
3996
3997 /* All allocations will be freed in release handler of q->mq_kobj */
3998 static int blk_mq_alloc_ctxs(struct request_queue *q)
3999 {
4000 struct blk_mq_ctxs *ctxs;
4001 int cpu;
4002
4003 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4004 if (!ctxs)
4005 return -ENOMEM;
4006
4007 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4008 if (!ctxs->queue_ctx)
4009 goto fail;
4010
4011 for_each_possible_cpu(cpu) {
4012 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4013 ctx->ctxs = ctxs;
4014 }
4015
4016 q->mq_kobj = &ctxs->kobj;
4017 q->queue_ctx = ctxs->queue_ctx;
4018
4019 return 0;
4020 fail:
4021 kfree(ctxs);
4022 return -ENOMEM;
4023 }
4024
4025 /*
4026 * It is the actual release handler for mq, but we do it from
4027 * request queue's release handler for avoiding use-after-free
4028 * and headache because q->mq_kobj shouldn't have been introduced,
4029 * but we can't group ctx/kctx kobj without it.
4030 */
4031 void blk_mq_release(struct request_queue *q)
4032 {
4033 struct blk_mq_hw_ctx *hctx, *next;
4034 unsigned long i;
4035
4036 queue_for_each_hw_ctx(q, hctx, i)
4037 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4038
4039 /* all hctx are in .unused_hctx_list now */
4040 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4041 list_del_init(&hctx->hctx_list);
4042 kobject_put(&hctx->kobj);
4043 }
4044
4045 xa_destroy(&q->hctx_table);
4046
4047 /*
4048 * release .mq_kobj and sw queue's kobject now because
4049 * both share lifetime with request queue.
4050 */
4051 blk_mq_sysfs_deinit(q);
4052 }
4053
4054 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4055 void *queuedata)
4056 {
4057 struct request_queue *q;
4058 int ret;
4059
4060 q = blk_alloc_queue(set->numa_node);
4061 if (!q)
4062 return ERR_PTR(-ENOMEM);
4063 q->queuedata = queuedata;
4064 ret = blk_mq_init_allocated_queue(set, q);
4065 if (ret) {
4066 blk_put_queue(q);
4067 return ERR_PTR(ret);
4068 }
4069 return q;
4070 }
4071
4072 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4073 {
4074 return blk_mq_init_queue_data(set, NULL);
4075 }
4076 EXPORT_SYMBOL(blk_mq_init_queue);
4077
4078 /**
4079 * blk_mq_destroy_queue - shutdown a request queue
4080 * @q: request queue to shutdown
4081 *
4082 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4083 * requests will be failed with -ENODEV. The caller is responsible for dropping
4084 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4085 *
4086 * Context: can sleep
4087 */
4088 void blk_mq_destroy_queue(struct request_queue *q)
4089 {
4090 WARN_ON_ONCE(!queue_is_mq(q));
4091 WARN_ON_ONCE(blk_queue_registered(q));
4092
4093 might_sleep();
4094
4095 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4096 blk_queue_start_drain(q);
4097 blk_mq_freeze_queue_wait(q);
4098
4099 blk_sync_queue(q);
4100 blk_mq_cancel_work_sync(q);
4101 blk_mq_exit_queue(q);
4102 }
4103 EXPORT_SYMBOL(blk_mq_destroy_queue);
4104
4105 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4106 struct lock_class_key *lkclass)
4107 {
4108 struct request_queue *q;
4109 struct gendisk *disk;
4110
4111 q = blk_mq_init_queue_data(set, queuedata);
4112 if (IS_ERR(q))
4113 return ERR_CAST(q);
4114
4115 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4116 if (!disk) {
4117 blk_mq_destroy_queue(q);
4118 blk_put_queue(q);
4119 return ERR_PTR(-ENOMEM);
4120 }
4121 set_bit(GD_OWNS_QUEUE, &disk->state);
4122 return disk;
4123 }
4124 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4125
4126 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4127 struct lock_class_key *lkclass)
4128 {
4129 struct gendisk *disk;
4130
4131 if (!blk_get_queue(q))
4132 return NULL;
4133 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4134 if (!disk)
4135 blk_put_queue(q);
4136 return disk;
4137 }
4138 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4139
4140 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4141 struct blk_mq_tag_set *set, struct request_queue *q,
4142 int hctx_idx, int node)
4143 {
4144 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4145
4146 /* reuse dead hctx first */
4147 spin_lock(&q->unused_hctx_lock);
4148 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4149 if (tmp->numa_node == node) {
4150 hctx = tmp;
4151 break;
4152 }
4153 }
4154 if (hctx)
4155 list_del_init(&hctx->hctx_list);
4156 spin_unlock(&q->unused_hctx_lock);
4157
4158 if (!hctx)
4159 hctx = blk_mq_alloc_hctx(q, set, node);
4160 if (!hctx)
4161 goto fail;
4162
4163 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4164 goto free_hctx;
4165
4166 return hctx;
4167
4168 free_hctx:
4169 kobject_put(&hctx->kobj);
4170 fail:
4171 return NULL;
4172 }
4173
4174 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4175 struct request_queue *q)
4176 {
4177 struct blk_mq_hw_ctx *hctx;
4178 unsigned long i, j;
4179
4180 /* protect against switching io scheduler */
4181 mutex_lock(&q->sysfs_lock);
4182 for (i = 0; i < set->nr_hw_queues; i++) {
4183 int old_node;
4184 int node = blk_mq_get_hctx_node(set, i);
4185 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4186
4187 if (old_hctx) {
4188 old_node = old_hctx->numa_node;
4189 blk_mq_exit_hctx(q, set, old_hctx, i);
4190 }
4191
4192 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4193 if (!old_hctx)
4194 break;
4195 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4196 node, old_node);
4197 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4198 WARN_ON_ONCE(!hctx);
4199 }
4200 }
4201 /*
4202 * Increasing nr_hw_queues fails. Free the newly allocated
4203 * hctxs and keep the previous q->nr_hw_queues.
4204 */
4205 if (i != set->nr_hw_queues) {
4206 j = q->nr_hw_queues;
4207 } else {
4208 j = i;
4209 q->nr_hw_queues = set->nr_hw_queues;
4210 }
4211
4212 xa_for_each_start(&q->hctx_table, j, hctx, j)
4213 blk_mq_exit_hctx(q, set, hctx, j);
4214 mutex_unlock(&q->sysfs_lock);
4215 }
4216
4217 static void blk_mq_update_poll_flag(struct request_queue *q)
4218 {
4219 struct blk_mq_tag_set *set = q->tag_set;
4220
4221 if (set->nr_maps > HCTX_TYPE_POLL &&
4222 set->map[HCTX_TYPE_POLL].nr_queues)
4223 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4224 else
4225 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4226 }
4227
4228 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4229 struct request_queue *q)
4230 {
4231 /* mark the queue as mq asap */
4232 q->mq_ops = set->ops;
4233
4234 if (blk_mq_alloc_ctxs(q))
4235 goto err_exit;
4236
4237 /* init q->mq_kobj and sw queues' kobjects */
4238 blk_mq_sysfs_init(q);
4239
4240 INIT_LIST_HEAD(&q->unused_hctx_list);
4241 spin_lock_init(&q->unused_hctx_lock);
4242
4243 xa_init(&q->hctx_table);
4244
4245 blk_mq_realloc_hw_ctxs(set, q);
4246 if (!q->nr_hw_queues)
4247 goto err_hctxs;
4248
4249 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4250 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4251
4252 q->tag_set = set;
4253
4254 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4255 blk_mq_update_poll_flag(q);
4256
4257 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4258 INIT_LIST_HEAD(&q->flush_list);
4259 INIT_LIST_HEAD(&q->requeue_list);
4260 spin_lock_init(&q->requeue_lock);
4261
4262 q->nr_requests = set->queue_depth;
4263
4264 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4265 blk_mq_add_queue_tag_set(set, q);
4266 blk_mq_map_swqueue(q);
4267 return 0;
4268
4269 err_hctxs:
4270 blk_mq_release(q);
4271 err_exit:
4272 q->mq_ops = NULL;
4273 return -ENOMEM;
4274 }
4275 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4276
4277 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4278 void blk_mq_exit_queue(struct request_queue *q)
4279 {
4280 struct blk_mq_tag_set *set = q->tag_set;
4281
4282 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4283 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4284 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4285 blk_mq_del_queue_tag_set(q);
4286 }
4287
4288 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4289 {
4290 int i;
4291
4292 if (blk_mq_is_shared_tags(set->flags)) {
4293 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4294 BLK_MQ_NO_HCTX_IDX,
4295 set->queue_depth);
4296 if (!set->shared_tags)
4297 return -ENOMEM;
4298 }
4299
4300 for (i = 0; i < set->nr_hw_queues; i++) {
4301 if (!__blk_mq_alloc_map_and_rqs(set, i))
4302 goto out_unwind;
4303 cond_resched();
4304 }
4305
4306 return 0;
4307
4308 out_unwind:
4309 while (--i >= 0)
4310 __blk_mq_free_map_and_rqs(set, i);
4311
4312 if (blk_mq_is_shared_tags(set->flags)) {
4313 blk_mq_free_map_and_rqs(set, set->shared_tags,
4314 BLK_MQ_NO_HCTX_IDX);
4315 }
4316
4317 return -ENOMEM;
4318 }
4319
4320 /*
4321 * Allocate the request maps associated with this tag_set. Note that this
4322 * may reduce the depth asked for, if memory is tight. set->queue_depth
4323 * will be updated to reflect the allocated depth.
4324 */
4325 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4326 {
4327 unsigned int depth;
4328 int err;
4329
4330 depth = set->queue_depth;
4331 do {
4332 err = __blk_mq_alloc_rq_maps(set);
4333 if (!err)
4334 break;
4335
4336 set->queue_depth >>= 1;
4337 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4338 err = -ENOMEM;
4339 break;
4340 }
4341 } while (set->queue_depth);
4342
4343 if (!set->queue_depth || err) {
4344 pr_err("blk-mq: failed to allocate request map\n");
4345 return -ENOMEM;
4346 }
4347
4348 if (depth != set->queue_depth)
4349 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4350 depth, set->queue_depth);
4351
4352 return 0;
4353 }
4354
4355 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4356 {
4357 /*
4358 * blk_mq_map_queues() and multiple .map_queues() implementations
4359 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4360 * number of hardware queues.
4361 */
4362 if (set->nr_maps == 1)
4363 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4364
4365 if (set->ops->map_queues && !is_kdump_kernel()) {
4366 int i;
4367
4368 /*
4369 * transport .map_queues is usually done in the following
4370 * way:
4371 *
4372 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4373 * mask = get_cpu_mask(queue)
4374 * for_each_cpu(cpu, mask)
4375 * set->map[x].mq_map[cpu] = queue;
4376 * }
4377 *
4378 * When we need to remap, the table has to be cleared for
4379 * killing stale mapping since one CPU may not be mapped
4380 * to any hw queue.
4381 */
4382 for (i = 0; i < set->nr_maps; i++)
4383 blk_mq_clear_mq_map(&set->map[i]);
4384
4385 set->ops->map_queues(set);
4386 } else {
4387 BUG_ON(set->nr_maps > 1);
4388 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4389 }
4390 }
4391
4392 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4393 int new_nr_hw_queues)
4394 {
4395 struct blk_mq_tags **new_tags;
4396 int i;
4397
4398 if (set->nr_hw_queues >= new_nr_hw_queues)
4399 goto done;
4400
4401 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4402 GFP_KERNEL, set->numa_node);
4403 if (!new_tags)
4404 return -ENOMEM;
4405
4406 if (set->tags)
4407 memcpy(new_tags, set->tags, set->nr_hw_queues *
4408 sizeof(*set->tags));
4409 kfree(set->tags);
4410 set->tags = new_tags;
4411
4412 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4413 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4414 while (--i >= set->nr_hw_queues)
4415 __blk_mq_free_map_and_rqs(set, i);
4416 return -ENOMEM;
4417 }
4418 cond_resched();
4419 }
4420
4421 done:
4422 set->nr_hw_queues = new_nr_hw_queues;
4423 return 0;
4424 }
4425
4426 /*
4427 * Alloc a tag set to be associated with one or more request queues.
4428 * May fail with EINVAL for various error conditions. May adjust the
4429 * requested depth down, if it's too large. In that case, the set
4430 * value will be stored in set->queue_depth.
4431 */
4432 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4433 {
4434 int i, ret;
4435
4436 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4437
4438 if (!set->nr_hw_queues)
4439 return -EINVAL;
4440 if (!set->queue_depth)
4441 return -EINVAL;
4442 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4443 return -EINVAL;
4444
4445 if (!set->ops->queue_rq)
4446 return -EINVAL;
4447
4448 if (!set->ops->get_budget ^ !set->ops->put_budget)
4449 return -EINVAL;
4450
4451 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4452 pr_info("blk-mq: reduced tag depth to %u\n",
4453 BLK_MQ_MAX_DEPTH);
4454 set->queue_depth = BLK_MQ_MAX_DEPTH;
4455 }
4456
4457 if (!set->nr_maps)
4458 set->nr_maps = 1;
4459 else if (set->nr_maps > HCTX_MAX_TYPES)
4460 return -EINVAL;
4461
4462 /*
4463 * If a crashdump is active, then we are potentially in a very
4464 * memory constrained environment. Limit us to 1 queue and
4465 * 64 tags to prevent using too much memory.
4466 */
4467 if (is_kdump_kernel()) {
4468 set->nr_hw_queues = 1;
4469 set->nr_maps = 1;
4470 set->queue_depth = min(64U, set->queue_depth);
4471 }
4472 /*
4473 * There is no use for more h/w queues than cpus if we just have
4474 * a single map
4475 */
4476 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4477 set->nr_hw_queues = nr_cpu_ids;
4478
4479 if (set->flags & BLK_MQ_F_BLOCKING) {
4480 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4481 if (!set->srcu)
4482 return -ENOMEM;
4483 ret = init_srcu_struct(set->srcu);
4484 if (ret)
4485 goto out_free_srcu;
4486 }
4487
4488 ret = -ENOMEM;
4489 set->tags = kcalloc_node(set->nr_hw_queues,
4490 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4491 set->numa_node);
4492 if (!set->tags)
4493 goto out_cleanup_srcu;
4494
4495 for (i = 0; i < set->nr_maps; i++) {
4496 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4497 sizeof(set->map[i].mq_map[0]),
4498 GFP_KERNEL, set->numa_node);
4499 if (!set->map[i].mq_map)
4500 goto out_free_mq_map;
4501 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4502 }
4503
4504 blk_mq_update_queue_map(set);
4505
4506 ret = blk_mq_alloc_set_map_and_rqs(set);
4507 if (ret)
4508 goto out_free_mq_map;
4509
4510 mutex_init(&set->tag_list_lock);
4511 INIT_LIST_HEAD(&set->tag_list);
4512
4513 return 0;
4514
4515 out_free_mq_map:
4516 for (i = 0; i < set->nr_maps; i++) {
4517 kfree(set->map[i].mq_map);
4518 set->map[i].mq_map = NULL;
4519 }
4520 kfree(set->tags);
4521 set->tags = NULL;
4522 out_cleanup_srcu:
4523 if (set->flags & BLK_MQ_F_BLOCKING)
4524 cleanup_srcu_struct(set->srcu);
4525 out_free_srcu:
4526 if (set->flags & BLK_MQ_F_BLOCKING)
4527 kfree(set->srcu);
4528 return ret;
4529 }
4530 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4531
4532 /* allocate and initialize a tagset for a simple single-queue device */
4533 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4534 const struct blk_mq_ops *ops, unsigned int queue_depth,
4535 unsigned int set_flags)
4536 {
4537 memset(set, 0, sizeof(*set));
4538 set->ops = ops;
4539 set->nr_hw_queues = 1;
4540 set->nr_maps = 1;
4541 set->queue_depth = queue_depth;
4542 set->numa_node = NUMA_NO_NODE;
4543 set->flags = set_flags;
4544 return blk_mq_alloc_tag_set(set);
4545 }
4546 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4547
4548 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4549 {
4550 int i, j;
4551
4552 for (i = 0; i < set->nr_hw_queues; i++)
4553 __blk_mq_free_map_and_rqs(set, i);
4554
4555 if (blk_mq_is_shared_tags(set->flags)) {
4556 blk_mq_free_map_and_rqs(set, set->shared_tags,
4557 BLK_MQ_NO_HCTX_IDX);
4558 }
4559
4560 for (j = 0; j < set->nr_maps; j++) {
4561 kfree(set->map[j].mq_map);
4562 set->map[j].mq_map = NULL;
4563 }
4564
4565 kfree(set->tags);
4566 set->tags = NULL;
4567 if (set->flags & BLK_MQ_F_BLOCKING) {
4568 cleanup_srcu_struct(set->srcu);
4569 kfree(set->srcu);
4570 }
4571 }
4572 EXPORT_SYMBOL(blk_mq_free_tag_set);
4573
4574 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4575 {
4576 struct blk_mq_tag_set *set = q->tag_set;
4577 struct blk_mq_hw_ctx *hctx;
4578 int ret;
4579 unsigned long i;
4580
4581 if (!set)
4582 return -EINVAL;
4583
4584 if (q->nr_requests == nr)
4585 return 0;
4586
4587 blk_mq_freeze_queue(q);
4588 blk_mq_quiesce_queue(q);
4589
4590 ret = 0;
4591 queue_for_each_hw_ctx(q, hctx, i) {
4592 if (!hctx->tags)
4593 continue;
4594 /*
4595 * If we're using an MQ scheduler, just update the scheduler
4596 * queue depth. This is similar to what the old code would do.
4597 */
4598 if (hctx->sched_tags) {
4599 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4600 nr, true);
4601 } else {
4602 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4603 false);
4604 }
4605 if (ret)
4606 break;
4607 if (q->elevator && q->elevator->type->ops.depth_updated)
4608 q->elevator->type->ops.depth_updated(hctx);
4609 }
4610 if (!ret) {
4611 q->nr_requests = nr;
4612 if (blk_mq_is_shared_tags(set->flags)) {
4613 if (q->elevator)
4614 blk_mq_tag_update_sched_shared_tags(q);
4615 else
4616 blk_mq_tag_resize_shared_tags(set, nr);
4617 }
4618 }
4619
4620 blk_mq_unquiesce_queue(q);
4621 blk_mq_unfreeze_queue(q);
4622
4623 return ret;
4624 }
4625
4626 /*
4627 * request_queue and elevator_type pair.
4628 * It is just used by __blk_mq_update_nr_hw_queues to cache
4629 * the elevator_type associated with a request_queue.
4630 */
4631 struct blk_mq_qe_pair {
4632 struct list_head node;
4633 struct request_queue *q;
4634 struct elevator_type *type;
4635 };
4636
4637 /*
4638 * Cache the elevator_type in qe pair list and switch the
4639 * io scheduler to 'none'
4640 */
4641 static bool blk_mq_elv_switch_none(struct list_head *head,
4642 struct request_queue *q)
4643 {
4644 struct blk_mq_qe_pair *qe;
4645
4646 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4647 if (!qe)
4648 return false;
4649
4650 /* q->elevator needs protection from ->sysfs_lock */
4651 mutex_lock(&q->sysfs_lock);
4652
4653 /* the check has to be done with holding sysfs_lock */
4654 if (!q->elevator) {
4655 kfree(qe);
4656 goto unlock;
4657 }
4658
4659 INIT_LIST_HEAD(&qe->node);
4660 qe->q = q;
4661 qe->type = q->elevator->type;
4662 /* keep a reference to the elevator module as we'll switch back */
4663 __elevator_get(qe->type);
4664 list_add(&qe->node, head);
4665 elevator_disable(q);
4666 unlock:
4667 mutex_unlock(&q->sysfs_lock);
4668
4669 return true;
4670 }
4671
4672 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4673 struct request_queue *q)
4674 {
4675 struct blk_mq_qe_pair *qe;
4676
4677 list_for_each_entry(qe, head, node)
4678 if (qe->q == q)
4679 return qe;
4680
4681 return NULL;
4682 }
4683
4684 static void blk_mq_elv_switch_back(struct list_head *head,
4685 struct request_queue *q)
4686 {
4687 struct blk_mq_qe_pair *qe;
4688 struct elevator_type *t;
4689
4690 qe = blk_lookup_qe_pair(head, q);
4691 if (!qe)
4692 return;
4693 t = qe->type;
4694 list_del(&qe->node);
4695 kfree(qe);
4696
4697 mutex_lock(&q->sysfs_lock);
4698 elevator_switch(q, t);
4699 /* drop the reference acquired in blk_mq_elv_switch_none */
4700 elevator_put(t);
4701 mutex_unlock(&q->sysfs_lock);
4702 }
4703
4704 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4705 int nr_hw_queues)
4706 {
4707 struct request_queue *q;
4708 LIST_HEAD(head);
4709 int prev_nr_hw_queues = set->nr_hw_queues;
4710 int i;
4711
4712 lockdep_assert_held(&set->tag_list_lock);
4713
4714 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4715 nr_hw_queues = nr_cpu_ids;
4716 if (nr_hw_queues < 1)
4717 return;
4718 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4719 return;
4720
4721 list_for_each_entry(q, &set->tag_list, tag_set_list)
4722 blk_mq_freeze_queue(q);
4723 /*
4724 * Switch IO scheduler to 'none', cleaning up the data associated
4725 * with the previous scheduler. We will switch back once we are done
4726 * updating the new sw to hw queue mappings.
4727 */
4728 list_for_each_entry(q, &set->tag_list, tag_set_list)
4729 if (!blk_mq_elv_switch_none(&head, q))
4730 goto switch_back;
4731
4732 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4733 blk_mq_debugfs_unregister_hctxs(q);
4734 blk_mq_sysfs_unregister_hctxs(q);
4735 }
4736
4737 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4738 goto reregister;
4739
4740 fallback:
4741 blk_mq_update_queue_map(set);
4742 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4743 blk_mq_realloc_hw_ctxs(set, q);
4744 blk_mq_update_poll_flag(q);
4745 if (q->nr_hw_queues != set->nr_hw_queues) {
4746 int i = prev_nr_hw_queues;
4747
4748 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4749 nr_hw_queues, prev_nr_hw_queues);
4750 for (; i < set->nr_hw_queues; i++)
4751 __blk_mq_free_map_and_rqs(set, i);
4752
4753 set->nr_hw_queues = prev_nr_hw_queues;
4754 goto fallback;
4755 }
4756 blk_mq_map_swqueue(q);
4757 }
4758
4759 reregister:
4760 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4761 blk_mq_sysfs_register_hctxs(q);
4762 blk_mq_debugfs_register_hctxs(q);
4763 }
4764
4765 switch_back:
4766 list_for_each_entry(q, &set->tag_list, tag_set_list)
4767 blk_mq_elv_switch_back(&head, q);
4768
4769 list_for_each_entry(q, &set->tag_list, tag_set_list)
4770 blk_mq_unfreeze_queue(q);
4771
4772 /* Free the excess tags when nr_hw_queues shrink. */
4773 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4774 __blk_mq_free_map_and_rqs(set, i);
4775 }
4776
4777 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4778 {
4779 mutex_lock(&set->tag_list_lock);
4780 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4781 mutex_unlock(&set->tag_list_lock);
4782 }
4783 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4784
4785 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4786 struct io_comp_batch *iob, unsigned int flags)
4787 {
4788 long state = get_current_state();
4789 int ret;
4790
4791 do {
4792 ret = q->mq_ops->poll(hctx, iob);
4793 if (ret > 0) {
4794 __set_current_state(TASK_RUNNING);
4795 return ret;
4796 }
4797
4798 if (signal_pending_state(state, current))
4799 __set_current_state(TASK_RUNNING);
4800 if (task_is_running(current))
4801 return 1;
4802
4803 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4804 break;
4805 cpu_relax();
4806 } while (!need_resched());
4807
4808 __set_current_state(TASK_RUNNING);
4809 return 0;
4810 }
4811
4812 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4813 struct io_comp_batch *iob, unsigned int flags)
4814 {
4815 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4816
4817 return blk_hctx_poll(q, hctx, iob, flags);
4818 }
4819
4820 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4821 unsigned int poll_flags)
4822 {
4823 struct request_queue *q = rq->q;
4824 int ret;
4825
4826 if (!blk_rq_is_poll(rq))
4827 return 0;
4828 if (!percpu_ref_tryget(&q->q_usage_counter))
4829 return 0;
4830
4831 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4832 blk_queue_exit(q);
4833
4834 return ret;
4835 }
4836 EXPORT_SYMBOL_GPL(blk_rq_poll);
4837
4838 unsigned int blk_mq_rq_cpu(struct request *rq)
4839 {
4840 return rq->mq_ctx->cpu;
4841 }
4842 EXPORT_SYMBOL(blk_mq_rq_cpu);
4843
4844 void blk_mq_cancel_work_sync(struct request_queue *q)
4845 {
4846 struct blk_mq_hw_ctx *hctx;
4847 unsigned long i;
4848
4849 cancel_delayed_work_sync(&q->requeue_work);
4850
4851 queue_for_each_hw_ctx(q, hctx, i)
4852 cancel_delayed_work_sync(&hctx->run_work);
4853 }
4854
4855 static int __init blk_mq_init(void)
4856 {
4857 int i;
4858
4859 for_each_possible_cpu(i)
4860 init_llist_head(&per_cpu(blk_cpu_done, i));
4861 for_each_possible_cpu(i)
4862 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4863 __blk_mq_complete_request_remote, NULL);
4864 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4865
4866 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4867 "block/softirq:dead", NULL,
4868 blk_softirq_cpu_dead);
4869 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4870 blk_mq_hctx_notify_dead);
4871 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4872 blk_mq_hctx_notify_online,
4873 blk_mq_hctx_notify_offline);
4874 return 0;
4875 }
4876 subsys_initcall(blk_mq_init);