]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-mq.c
c6dcd390be2d233fc90261fb22e1baad6960adeb
[thirdparty/linux.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static void blk_mq_poll_stats_start(struct request_queue *q);
45 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
46
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49 int ddir, sectors, bucket;
50
51 ddir = rq_data_dir(rq);
52 sectors = blk_rq_stats_sectors(rq);
53
54 bucket = ddir + 2 * ilog2(sectors);
55
56 if (bucket < 0)
57 return -1;
58 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61 return bucket;
62 }
63
64 /*
65 * Check if any of the ctx, dispatch list or elevator
66 * have pending work in this hardware queue.
67 */
68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69 {
70 return !list_empty_careful(&hctx->dispatch) ||
71 sbitmap_any_bit_set(&hctx->ctx_map) ||
72 blk_mq_sched_has_work(hctx);
73 }
74
75 /*
76 * Mark this ctx as having pending work in this hardware queue
77 */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
80 {
81 const int bit = ctx->index_hw[hctx->type];
82
83 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
84 sbitmap_set_bit(&hctx->ctx_map, bit);
85 }
86
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88 struct blk_mq_ctx *ctx)
89 {
90 const int bit = ctx->index_hw[hctx->type];
91
92 sbitmap_clear_bit(&hctx->ctx_map, bit);
93 }
94
95 struct mq_inflight {
96 struct hd_struct *part;
97 unsigned int inflight[2];
98 };
99
100 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
101 struct request *rq, void *priv,
102 bool reserved)
103 {
104 struct mq_inflight *mi = priv;
105
106 if (rq->part == mi->part)
107 mi->inflight[rq_data_dir(rq)]++;
108
109 return true;
110 }
111
112 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 {
114 struct mq_inflight mi = { .part = part };
115
116 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117
118 return mi.inflight[0] + mi.inflight[1];
119 }
120
121 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
122 unsigned int inflight[2])
123 {
124 struct mq_inflight mi = { .part = part };
125
126 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
127 inflight[0] = mi.inflight[0];
128 inflight[1] = mi.inflight[1];
129 }
130
131 void blk_freeze_queue_start(struct request_queue *q)
132 {
133 mutex_lock(&q->mq_freeze_lock);
134 if (++q->mq_freeze_depth == 1) {
135 percpu_ref_kill(&q->q_usage_counter);
136 mutex_unlock(&q->mq_freeze_lock);
137 if (queue_is_mq(q))
138 blk_mq_run_hw_queues(q, false);
139 } else {
140 mutex_unlock(&q->mq_freeze_lock);
141 }
142 }
143 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
144
145 void blk_mq_freeze_queue_wait(struct request_queue *q)
146 {
147 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
148 }
149 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
150
151 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
152 unsigned long timeout)
153 {
154 return wait_event_timeout(q->mq_freeze_wq,
155 percpu_ref_is_zero(&q->q_usage_counter),
156 timeout);
157 }
158 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
159
160 /*
161 * Guarantee no request is in use, so we can change any data structure of
162 * the queue afterward.
163 */
164 void blk_freeze_queue(struct request_queue *q)
165 {
166 /*
167 * In the !blk_mq case we are only calling this to kill the
168 * q_usage_counter, otherwise this increases the freeze depth
169 * and waits for it to return to zero. For this reason there is
170 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
171 * exported to drivers as the only user for unfreeze is blk_mq.
172 */
173 blk_freeze_queue_start(q);
174 blk_mq_freeze_queue_wait(q);
175 }
176
177 void blk_mq_freeze_queue(struct request_queue *q)
178 {
179 /*
180 * ...just an alias to keep freeze and unfreeze actions balanced
181 * in the blk_mq_* namespace
182 */
183 blk_freeze_queue(q);
184 }
185 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
186
187 void blk_mq_unfreeze_queue(struct request_queue *q)
188 {
189 mutex_lock(&q->mq_freeze_lock);
190 q->mq_freeze_depth--;
191 WARN_ON_ONCE(q->mq_freeze_depth < 0);
192 if (!q->mq_freeze_depth) {
193 percpu_ref_resurrect(&q->q_usage_counter);
194 wake_up_all(&q->mq_freeze_wq);
195 }
196 mutex_unlock(&q->mq_freeze_lock);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202 * mpt3sas driver such that this function can be removed.
203 */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
207 }
208 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
209
210 /**
211 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
212 * @q: request queue.
213 *
214 * Note: this function does not prevent that the struct request end_io()
215 * callback function is invoked. Once this function is returned, we make
216 * sure no dispatch can happen until the queue is unquiesced via
217 * blk_mq_unquiesce_queue().
218 */
219 void blk_mq_quiesce_queue(struct request_queue *q)
220 {
221 struct blk_mq_hw_ctx *hctx;
222 unsigned int i;
223 bool rcu = false;
224
225 blk_mq_quiesce_queue_nowait(q);
226
227 queue_for_each_hw_ctx(q, hctx, i) {
228 if (hctx->flags & BLK_MQ_F_BLOCKING)
229 synchronize_srcu(hctx->srcu);
230 else
231 rcu = true;
232 }
233 if (rcu)
234 synchronize_rcu();
235 }
236 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
237
238 /*
239 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
240 * @q: request queue.
241 *
242 * This function recovers queue into the state before quiescing
243 * which is done by blk_mq_quiesce_queue.
244 */
245 void blk_mq_unquiesce_queue(struct request_queue *q)
246 {
247 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
248
249 /* dispatch requests which are inserted during quiescing */
250 blk_mq_run_hw_queues(q, true);
251 }
252 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
253
254 void blk_mq_wake_waiters(struct request_queue *q)
255 {
256 struct blk_mq_hw_ctx *hctx;
257 unsigned int i;
258
259 queue_for_each_hw_ctx(q, hctx, i)
260 if (blk_mq_hw_queue_mapped(hctx))
261 blk_mq_tag_wakeup_all(hctx->tags, true);
262 }
263
264 /*
265 * Only need start/end time stamping if we have iostat or
266 * blk stats enabled, or using an IO scheduler.
267 */
268 static inline bool blk_mq_need_time_stamp(struct request *rq)
269 {
270 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
271 }
272
273 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
274 unsigned int tag, unsigned int op, u64 alloc_time_ns)
275 {
276 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
277 struct request *rq = tags->static_rqs[tag];
278 req_flags_t rq_flags = 0;
279
280 if (data->flags & BLK_MQ_REQ_INTERNAL) {
281 rq->tag = -1;
282 rq->internal_tag = tag;
283 } else {
284 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
285 rq_flags = RQF_MQ_INFLIGHT;
286 atomic_inc(&data->hctx->nr_active);
287 }
288 rq->tag = tag;
289 rq->internal_tag = -1;
290 data->hctx->tags->rqs[rq->tag] = rq;
291 }
292
293 /* csd/requeue_work/fifo_time is initialized before use */
294 rq->q = data->q;
295 rq->mq_ctx = data->ctx;
296 rq->mq_hctx = data->hctx;
297 rq->rq_flags = rq_flags;
298 rq->cmd_flags = op;
299 if (data->flags & BLK_MQ_REQ_PREEMPT)
300 rq->rq_flags |= RQF_PREEMPT;
301 if (blk_queue_io_stat(data->q))
302 rq->rq_flags |= RQF_IO_STAT;
303 INIT_LIST_HEAD(&rq->queuelist);
304 INIT_HLIST_NODE(&rq->hash);
305 RB_CLEAR_NODE(&rq->rb_node);
306 rq->rq_disk = NULL;
307 rq->part = NULL;
308 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
309 rq->alloc_time_ns = alloc_time_ns;
310 #endif
311 if (blk_mq_need_time_stamp(rq))
312 rq->start_time_ns = ktime_get_ns();
313 else
314 rq->start_time_ns = 0;
315 rq->io_start_time_ns = 0;
316 rq->stats_sectors = 0;
317 rq->nr_phys_segments = 0;
318 #if defined(CONFIG_BLK_DEV_INTEGRITY)
319 rq->nr_integrity_segments = 0;
320 #endif
321 blk_crypto_rq_set_defaults(rq);
322 /* tag was already set */
323 WRITE_ONCE(rq->deadline, 0);
324
325 rq->timeout = 0;
326
327 rq->end_io = NULL;
328 rq->end_io_data = NULL;
329
330 data->ctx->rq_dispatched[op_is_sync(op)]++;
331 refcount_set(&rq->ref, 1);
332 return rq;
333 }
334
335 static struct request *blk_mq_get_request(struct request_queue *q,
336 struct bio *bio,
337 struct blk_mq_alloc_data *data)
338 {
339 struct elevator_queue *e = q->elevator;
340 struct request *rq;
341 unsigned int tag;
342 bool clear_ctx_on_error = false;
343 u64 alloc_time_ns = 0;
344
345 /* alloc_time includes depth and tag waits */
346 if (blk_queue_rq_alloc_time(q))
347 alloc_time_ns = ktime_get_ns();
348
349 data->q = q;
350 if (likely(!data->ctx)) {
351 data->ctx = blk_mq_get_ctx(q);
352 clear_ctx_on_error = true;
353 }
354 if (likely(!data->hctx))
355 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
356 data->ctx);
357 if (data->cmd_flags & REQ_NOWAIT)
358 data->flags |= BLK_MQ_REQ_NOWAIT;
359
360 if (e) {
361 data->flags |= BLK_MQ_REQ_INTERNAL;
362
363 /*
364 * Flush requests are special and go directly to the
365 * dispatch list. Don't include reserved tags in the
366 * limiting, as it isn't useful.
367 */
368 if (!op_is_flush(data->cmd_flags) &&
369 e->type->ops.limit_depth &&
370 !(data->flags & BLK_MQ_REQ_RESERVED))
371 e->type->ops.limit_depth(data->cmd_flags, data);
372 } else {
373 blk_mq_tag_busy(data->hctx);
374 }
375
376 tag = blk_mq_get_tag(data);
377 if (tag == BLK_MQ_TAG_FAIL) {
378 if (clear_ctx_on_error)
379 data->ctx = NULL;
380 return NULL;
381 }
382
383 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
384 if (!op_is_flush(data->cmd_flags)) {
385 rq->elv.icq = NULL;
386 if (e && e->type->ops.prepare_request) {
387 if (e->type->icq_cache)
388 blk_mq_sched_assign_ioc(rq);
389
390 e->type->ops.prepare_request(rq, bio);
391 rq->rq_flags |= RQF_ELVPRIV;
392 }
393 }
394 data->hctx->queued++;
395 return rq;
396 }
397
398 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
399 blk_mq_req_flags_t flags)
400 {
401 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
402 struct request *rq;
403 int ret;
404
405 ret = blk_queue_enter(q, flags);
406 if (ret)
407 return ERR_PTR(ret);
408
409 rq = blk_mq_get_request(q, NULL, &alloc_data);
410 if (!rq)
411 goto out_queue_exit;
412 rq->__data_len = 0;
413 rq->__sector = (sector_t) -1;
414 rq->bio = rq->biotail = NULL;
415 return rq;
416 out_queue_exit:
417 blk_queue_exit(q);
418 return ERR_PTR(-EWOULDBLOCK);
419 }
420 EXPORT_SYMBOL(blk_mq_alloc_request);
421
422 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
423 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
424 {
425 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
426 struct request *rq;
427 unsigned int cpu;
428 int ret;
429
430 /*
431 * If the tag allocator sleeps we could get an allocation for a
432 * different hardware context. No need to complicate the low level
433 * allocator for this for the rare use case of a command tied to
434 * a specific queue.
435 */
436 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
437 return ERR_PTR(-EINVAL);
438
439 if (hctx_idx >= q->nr_hw_queues)
440 return ERR_PTR(-EIO);
441
442 ret = blk_queue_enter(q, flags);
443 if (ret)
444 return ERR_PTR(ret);
445
446 /*
447 * Check if the hardware context is actually mapped to anything.
448 * If not tell the caller that it should skip this queue.
449 */
450 ret = -EXDEV;
451 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
452 if (!blk_mq_hw_queue_mapped(alloc_data.hctx))
453 goto out_queue_exit;
454 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
455 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
456
457 ret = -EWOULDBLOCK;
458 rq = blk_mq_get_request(q, NULL, &alloc_data);
459 if (!rq)
460 goto out_queue_exit;
461 return rq;
462 out_queue_exit:
463 blk_queue_exit(q);
464 return ERR_PTR(ret);
465 }
466 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
467
468 static void __blk_mq_free_request(struct request *rq)
469 {
470 struct request_queue *q = rq->q;
471 struct blk_mq_ctx *ctx = rq->mq_ctx;
472 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
473 const int sched_tag = rq->internal_tag;
474
475 blk_crypto_free_request(rq);
476 blk_pm_mark_last_busy(rq);
477 rq->mq_hctx = NULL;
478 if (rq->tag != -1)
479 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
480 if (sched_tag != -1)
481 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
482 blk_mq_sched_restart(hctx);
483 blk_queue_exit(q);
484 }
485
486 void blk_mq_free_request(struct request *rq)
487 {
488 struct request_queue *q = rq->q;
489 struct elevator_queue *e = q->elevator;
490 struct blk_mq_ctx *ctx = rq->mq_ctx;
491 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
492
493 if (rq->rq_flags & RQF_ELVPRIV) {
494 if (e && e->type->ops.finish_request)
495 e->type->ops.finish_request(rq);
496 if (rq->elv.icq) {
497 put_io_context(rq->elv.icq->ioc);
498 rq->elv.icq = NULL;
499 }
500 }
501
502 ctx->rq_completed[rq_is_sync(rq)]++;
503 if (rq->rq_flags & RQF_MQ_INFLIGHT)
504 atomic_dec(&hctx->nr_active);
505
506 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507 laptop_io_completion(q->backing_dev_info);
508
509 rq_qos_done(q, rq);
510
511 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
512 if (refcount_dec_and_test(&rq->ref))
513 __blk_mq_free_request(rq);
514 }
515 EXPORT_SYMBOL_GPL(blk_mq_free_request);
516
517 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
518 {
519 u64 now = 0;
520
521 if (blk_mq_need_time_stamp(rq))
522 now = ktime_get_ns();
523
524 if (rq->rq_flags & RQF_STATS) {
525 blk_mq_poll_stats_start(rq->q);
526 blk_stat_add(rq, now);
527 }
528
529 if (rq->internal_tag != -1)
530 blk_mq_sched_completed_request(rq, now);
531
532 blk_account_io_done(rq, now);
533
534 if (rq->end_io) {
535 rq_qos_done(rq->q, rq);
536 rq->end_io(rq, error);
537 } else {
538 blk_mq_free_request(rq);
539 }
540 }
541 EXPORT_SYMBOL(__blk_mq_end_request);
542
543 void blk_mq_end_request(struct request *rq, blk_status_t error)
544 {
545 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
546 BUG();
547 __blk_mq_end_request(rq, error);
548 }
549 EXPORT_SYMBOL(blk_mq_end_request);
550
551 static void __blk_mq_complete_request_remote(void *data)
552 {
553 struct request *rq = data;
554 struct request_queue *q = rq->q;
555
556 q->mq_ops->complete(rq);
557 }
558
559 /**
560 * blk_mq_force_complete_rq() - Force complete the request, bypassing any error
561 * injection that could drop the completion.
562 * @rq: Request to be force completed
563 *
564 * Drivers should use blk_mq_complete_request() to complete requests in their
565 * normal IO path. For timeout error recovery, drivers may call this forced
566 * completion routine after they've reclaimed timed out requests to bypass
567 * potentially subsequent fake timeouts.
568 */
569 void blk_mq_force_complete_rq(struct request *rq)
570 {
571 struct blk_mq_ctx *ctx = rq->mq_ctx;
572 struct request_queue *q = rq->q;
573 bool shared = false;
574 int cpu;
575
576 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
577 /*
578 * Most of single queue controllers, there is only one irq vector
579 * for handling IO completion, and the only irq's affinity is set
580 * as all possible CPUs. On most of ARCHs, this affinity means the
581 * irq is handled on one specific CPU.
582 *
583 * So complete IO reqeust in softirq context in case of single queue
584 * for not degrading IO performance by irqsoff latency.
585 */
586 if (q->nr_hw_queues == 1) {
587 __blk_complete_request(rq);
588 return;
589 }
590
591 /*
592 * For a polled request, always complete locallly, it's pointless
593 * to redirect the completion.
594 */
595 if ((rq->cmd_flags & REQ_HIPRI) ||
596 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
597 q->mq_ops->complete(rq);
598 return;
599 }
600
601 cpu = get_cpu();
602 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
603 shared = cpus_share_cache(cpu, ctx->cpu);
604
605 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
606 rq->csd.func = __blk_mq_complete_request_remote;
607 rq->csd.info = rq;
608 rq->csd.flags = 0;
609 smp_call_function_single_async(ctx->cpu, &rq->csd);
610 } else {
611 q->mq_ops->complete(rq);
612 }
613 put_cpu();
614 }
615 EXPORT_SYMBOL_GPL(blk_mq_force_complete_rq);
616
617 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
618 __releases(hctx->srcu)
619 {
620 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
621 rcu_read_unlock();
622 else
623 srcu_read_unlock(hctx->srcu, srcu_idx);
624 }
625
626 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
627 __acquires(hctx->srcu)
628 {
629 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
630 /* shut up gcc false positive */
631 *srcu_idx = 0;
632 rcu_read_lock();
633 } else
634 *srcu_idx = srcu_read_lock(hctx->srcu);
635 }
636
637 /**
638 * blk_mq_complete_request - end I/O on a request
639 * @rq: the request being processed
640 *
641 * Description:
642 * Ends all I/O on a request. It does not handle partial completions.
643 * The actual completion happens out-of-order, through a IPI handler.
644 **/
645 bool blk_mq_complete_request(struct request *rq)
646 {
647 if (unlikely(blk_should_fake_timeout(rq->q)))
648 return false;
649 blk_mq_force_complete_rq(rq);
650 return true;
651 }
652 EXPORT_SYMBOL(blk_mq_complete_request);
653
654 /**
655 * blk_mq_start_request - Start processing a request
656 * @rq: Pointer to request to be started
657 *
658 * Function used by device drivers to notify the block layer that a request
659 * is going to be processed now, so blk layer can do proper initializations
660 * such as starting the timeout timer.
661 */
662 void blk_mq_start_request(struct request *rq)
663 {
664 struct request_queue *q = rq->q;
665
666 trace_block_rq_issue(q, rq);
667
668 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
669 rq->io_start_time_ns = ktime_get_ns();
670 rq->stats_sectors = blk_rq_sectors(rq);
671 rq->rq_flags |= RQF_STATS;
672 rq_qos_issue(q, rq);
673 }
674
675 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
676
677 blk_add_timer(rq);
678 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
679
680 #ifdef CONFIG_BLK_DEV_INTEGRITY
681 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
682 q->integrity.profile->prepare_fn(rq);
683 #endif
684 }
685 EXPORT_SYMBOL(blk_mq_start_request);
686
687 static void __blk_mq_requeue_request(struct request *rq)
688 {
689 struct request_queue *q = rq->q;
690
691 blk_mq_put_driver_tag(rq);
692
693 trace_block_rq_requeue(q, rq);
694 rq_qos_requeue(q, rq);
695
696 if (blk_mq_request_started(rq)) {
697 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
698 rq->rq_flags &= ~RQF_TIMED_OUT;
699 }
700 }
701
702 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
703 {
704 __blk_mq_requeue_request(rq);
705
706 /* this request will be re-inserted to io scheduler queue */
707 blk_mq_sched_requeue_request(rq);
708
709 BUG_ON(!list_empty(&rq->queuelist));
710 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
711 }
712 EXPORT_SYMBOL(blk_mq_requeue_request);
713
714 static void blk_mq_requeue_work(struct work_struct *work)
715 {
716 struct request_queue *q =
717 container_of(work, struct request_queue, requeue_work.work);
718 LIST_HEAD(rq_list);
719 struct request *rq, *next;
720
721 spin_lock_irq(&q->requeue_lock);
722 list_splice_init(&q->requeue_list, &rq_list);
723 spin_unlock_irq(&q->requeue_lock);
724
725 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
726 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
727 continue;
728
729 rq->rq_flags &= ~RQF_SOFTBARRIER;
730 list_del_init(&rq->queuelist);
731 /*
732 * If RQF_DONTPREP, rq has contained some driver specific
733 * data, so insert it to hctx dispatch list to avoid any
734 * merge.
735 */
736 if (rq->rq_flags & RQF_DONTPREP)
737 blk_mq_request_bypass_insert(rq, false, false);
738 else
739 blk_mq_sched_insert_request(rq, true, false, false);
740 }
741
742 while (!list_empty(&rq_list)) {
743 rq = list_entry(rq_list.next, struct request, queuelist);
744 list_del_init(&rq->queuelist);
745 blk_mq_sched_insert_request(rq, false, false, false);
746 }
747
748 blk_mq_run_hw_queues(q, false);
749 }
750
751 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
752 bool kick_requeue_list)
753 {
754 struct request_queue *q = rq->q;
755 unsigned long flags;
756
757 /*
758 * We abuse this flag that is otherwise used by the I/O scheduler to
759 * request head insertion from the workqueue.
760 */
761 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
762
763 spin_lock_irqsave(&q->requeue_lock, flags);
764 if (at_head) {
765 rq->rq_flags |= RQF_SOFTBARRIER;
766 list_add(&rq->queuelist, &q->requeue_list);
767 } else {
768 list_add_tail(&rq->queuelist, &q->requeue_list);
769 }
770 spin_unlock_irqrestore(&q->requeue_lock, flags);
771
772 if (kick_requeue_list)
773 blk_mq_kick_requeue_list(q);
774 }
775
776 void blk_mq_kick_requeue_list(struct request_queue *q)
777 {
778 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
779 }
780 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
781
782 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
783 unsigned long msecs)
784 {
785 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
786 msecs_to_jiffies(msecs));
787 }
788 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
789
790 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
791 {
792 if (tag < tags->nr_tags) {
793 prefetch(tags->rqs[tag]);
794 return tags->rqs[tag];
795 }
796
797 return NULL;
798 }
799 EXPORT_SYMBOL(blk_mq_tag_to_rq);
800
801 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
802 void *priv, bool reserved)
803 {
804 /*
805 * If we find a request that is inflight and the queue matches,
806 * we know the queue is busy. Return false to stop the iteration.
807 */
808 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
809 bool *busy = priv;
810
811 *busy = true;
812 return false;
813 }
814
815 return true;
816 }
817
818 bool blk_mq_queue_inflight(struct request_queue *q)
819 {
820 bool busy = false;
821
822 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
823 return busy;
824 }
825 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
826
827 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
828 {
829 req->rq_flags |= RQF_TIMED_OUT;
830 if (req->q->mq_ops->timeout) {
831 enum blk_eh_timer_return ret;
832
833 ret = req->q->mq_ops->timeout(req, reserved);
834 if (ret == BLK_EH_DONE)
835 return;
836 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
837 }
838
839 blk_add_timer(req);
840 }
841
842 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
843 {
844 unsigned long deadline;
845
846 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
847 return false;
848 if (rq->rq_flags & RQF_TIMED_OUT)
849 return false;
850
851 deadline = READ_ONCE(rq->deadline);
852 if (time_after_eq(jiffies, deadline))
853 return true;
854
855 if (*next == 0)
856 *next = deadline;
857 else if (time_after(*next, deadline))
858 *next = deadline;
859 return false;
860 }
861
862 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
863 struct request *rq, void *priv, bool reserved)
864 {
865 unsigned long *next = priv;
866
867 /*
868 * Just do a quick check if it is expired before locking the request in
869 * so we're not unnecessarilly synchronizing across CPUs.
870 */
871 if (!blk_mq_req_expired(rq, next))
872 return true;
873
874 /*
875 * We have reason to believe the request may be expired. Take a
876 * reference on the request to lock this request lifetime into its
877 * currently allocated context to prevent it from being reallocated in
878 * the event the completion by-passes this timeout handler.
879 *
880 * If the reference was already released, then the driver beat the
881 * timeout handler to posting a natural completion.
882 */
883 if (!refcount_inc_not_zero(&rq->ref))
884 return true;
885
886 /*
887 * The request is now locked and cannot be reallocated underneath the
888 * timeout handler's processing. Re-verify this exact request is truly
889 * expired; if it is not expired, then the request was completed and
890 * reallocated as a new request.
891 */
892 if (blk_mq_req_expired(rq, next))
893 blk_mq_rq_timed_out(rq, reserved);
894
895 if (is_flush_rq(rq, hctx))
896 rq->end_io(rq, 0);
897 else if (refcount_dec_and_test(&rq->ref))
898 __blk_mq_free_request(rq);
899
900 return true;
901 }
902
903 static void blk_mq_timeout_work(struct work_struct *work)
904 {
905 struct request_queue *q =
906 container_of(work, struct request_queue, timeout_work);
907 unsigned long next = 0;
908 struct blk_mq_hw_ctx *hctx;
909 int i;
910
911 /* A deadlock might occur if a request is stuck requiring a
912 * timeout at the same time a queue freeze is waiting
913 * completion, since the timeout code would not be able to
914 * acquire the queue reference here.
915 *
916 * That's why we don't use blk_queue_enter here; instead, we use
917 * percpu_ref_tryget directly, because we need to be able to
918 * obtain a reference even in the short window between the queue
919 * starting to freeze, by dropping the first reference in
920 * blk_freeze_queue_start, and the moment the last request is
921 * consumed, marked by the instant q_usage_counter reaches
922 * zero.
923 */
924 if (!percpu_ref_tryget(&q->q_usage_counter))
925 return;
926
927 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
928
929 if (next != 0) {
930 mod_timer(&q->timeout, next);
931 } else {
932 /*
933 * Request timeouts are handled as a forward rolling timer. If
934 * we end up here it means that no requests are pending and
935 * also that no request has been pending for a while. Mark
936 * each hctx as idle.
937 */
938 queue_for_each_hw_ctx(q, hctx, i) {
939 /* the hctx may be unmapped, so check it here */
940 if (blk_mq_hw_queue_mapped(hctx))
941 blk_mq_tag_idle(hctx);
942 }
943 }
944 blk_queue_exit(q);
945 }
946
947 struct flush_busy_ctx_data {
948 struct blk_mq_hw_ctx *hctx;
949 struct list_head *list;
950 };
951
952 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
953 {
954 struct flush_busy_ctx_data *flush_data = data;
955 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
956 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
957 enum hctx_type type = hctx->type;
958
959 spin_lock(&ctx->lock);
960 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
961 sbitmap_clear_bit(sb, bitnr);
962 spin_unlock(&ctx->lock);
963 return true;
964 }
965
966 /*
967 * Process software queues that have been marked busy, splicing them
968 * to the for-dispatch
969 */
970 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
971 {
972 struct flush_busy_ctx_data data = {
973 .hctx = hctx,
974 .list = list,
975 };
976
977 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
978 }
979 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
980
981 struct dispatch_rq_data {
982 struct blk_mq_hw_ctx *hctx;
983 struct request *rq;
984 };
985
986 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
987 void *data)
988 {
989 struct dispatch_rq_data *dispatch_data = data;
990 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
991 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
992 enum hctx_type type = hctx->type;
993
994 spin_lock(&ctx->lock);
995 if (!list_empty(&ctx->rq_lists[type])) {
996 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
997 list_del_init(&dispatch_data->rq->queuelist);
998 if (list_empty(&ctx->rq_lists[type]))
999 sbitmap_clear_bit(sb, bitnr);
1000 }
1001 spin_unlock(&ctx->lock);
1002
1003 return !dispatch_data->rq;
1004 }
1005
1006 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1007 struct blk_mq_ctx *start)
1008 {
1009 unsigned off = start ? start->index_hw[hctx->type] : 0;
1010 struct dispatch_rq_data data = {
1011 .hctx = hctx,
1012 .rq = NULL,
1013 };
1014
1015 __sbitmap_for_each_set(&hctx->ctx_map, off,
1016 dispatch_rq_from_ctx, &data);
1017
1018 return data.rq;
1019 }
1020
1021 static inline unsigned int queued_to_index(unsigned int queued)
1022 {
1023 if (!queued)
1024 return 0;
1025
1026 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1027 }
1028
1029 bool blk_mq_get_driver_tag(struct request *rq)
1030 {
1031 struct blk_mq_alloc_data data = {
1032 .q = rq->q,
1033 .hctx = rq->mq_hctx,
1034 .flags = BLK_MQ_REQ_NOWAIT,
1035 .cmd_flags = rq->cmd_flags,
1036 };
1037 bool shared;
1038
1039 if (rq->tag != -1)
1040 return true;
1041
1042 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1043 data.flags |= BLK_MQ_REQ_RESERVED;
1044
1045 shared = blk_mq_tag_busy(data.hctx);
1046 rq->tag = blk_mq_get_tag(&data);
1047 if (rq->tag >= 0) {
1048 if (shared) {
1049 rq->rq_flags |= RQF_MQ_INFLIGHT;
1050 atomic_inc(&data.hctx->nr_active);
1051 }
1052 data.hctx->tags->rqs[rq->tag] = rq;
1053 }
1054
1055 return rq->tag != -1;
1056 }
1057
1058 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1059 int flags, void *key)
1060 {
1061 struct blk_mq_hw_ctx *hctx;
1062
1063 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1064
1065 spin_lock(&hctx->dispatch_wait_lock);
1066 if (!list_empty(&wait->entry)) {
1067 struct sbitmap_queue *sbq;
1068
1069 list_del_init(&wait->entry);
1070 sbq = &hctx->tags->bitmap_tags;
1071 atomic_dec(&sbq->ws_active);
1072 }
1073 spin_unlock(&hctx->dispatch_wait_lock);
1074
1075 blk_mq_run_hw_queue(hctx, true);
1076 return 1;
1077 }
1078
1079 /*
1080 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1081 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1082 * restart. For both cases, take care to check the condition again after
1083 * marking us as waiting.
1084 */
1085 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1086 struct request *rq)
1087 {
1088 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1089 struct wait_queue_head *wq;
1090 wait_queue_entry_t *wait;
1091 bool ret;
1092
1093 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1094 blk_mq_sched_mark_restart_hctx(hctx);
1095
1096 /*
1097 * It's possible that a tag was freed in the window between the
1098 * allocation failure and adding the hardware queue to the wait
1099 * queue.
1100 *
1101 * Don't clear RESTART here, someone else could have set it.
1102 * At most this will cost an extra queue run.
1103 */
1104 return blk_mq_get_driver_tag(rq);
1105 }
1106
1107 wait = &hctx->dispatch_wait;
1108 if (!list_empty_careful(&wait->entry))
1109 return false;
1110
1111 wq = &bt_wait_ptr(sbq, hctx)->wait;
1112
1113 spin_lock_irq(&wq->lock);
1114 spin_lock(&hctx->dispatch_wait_lock);
1115 if (!list_empty(&wait->entry)) {
1116 spin_unlock(&hctx->dispatch_wait_lock);
1117 spin_unlock_irq(&wq->lock);
1118 return false;
1119 }
1120
1121 atomic_inc(&sbq->ws_active);
1122 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1123 __add_wait_queue(wq, wait);
1124
1125 /*
1126 * It's possible that a tag was freed in the window between the
1127 * allocation failure and adding the hardware queue to the wait
1128 * queue.
1129 */
1130 ret = blk_mq_get_driver_tag(rq);
1131 if (!ret) {
1132 spin_unlock(&hctx->dispatch_wait_lock);
1133 spin_unlock_irq(&wq->lock);
1134 return false;
1135 }
1136
1137 /*
1138 * We got a tag, remove ourselves from the wait queue to ensure
1139 * someone else gets the wakeup.
1140 */
1141 list_del_init(&wait->entry);
1142 atomic_dec(&sbq->ws_active);
1143 spin_unlock(&hctx->dispatch_wait_lock);
1144 spin_unlock_irq(&wq->lock);
1145
1146 return true;
1147 }
1148
1149 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1150 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1151 /*
1152 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1153 * - EWMA is one simple way to compute running average value
1154 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1155 * - take 4 as factor for avoiding to get too small(0) result, and this
1156 * factor doesn't matter because EWMA decreases exponentially
1157 */
1158 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1159 {
1160 unsigned int ewma;
1161
1162 if (hctx->queue->elevator)
1163 return;
1164
1165 ewma = hctx->dispatch_busy;
1166
1167 if (!ewma && !busy)
1168 return;
1169
1170 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1171 if (busy)
1172 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1173 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1174
1175 hctx->dispatch_busy = ewma;
1176 }
1177
1178 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1179
1180 static void blk_mq_handle_dev_resource(struct request *rq,
1181 struct list_head *list)
1182 {
1183 struct request *next =
1184 list_first_entry_or_null(list, struct request, queuelist);
1185
1186 /*
1187 * If an I/O scheduler has been configured and we got a driver tag for
1188 * the next request already, free it.
1189 */
1190 if (next)
1191 blk_mq_put_driver_tag(next);
1192
1193 list_add(&rq->queuelist, list);
1194 __blk_mq_requeue_request(rq);
1195 }
1196
1197 static void blk_mq_handle_zone_resource(struct request *rq,
1198 struct list_head *zone_list)
1199 {
1200 /*
1201 * If we end up here it is because we cannot dispatch a request to a
1202 * specific zone due to LLD level zone-write locking or other zone
1203 * related resource not being available. In this case, set the request
1204 * aside in zone_list for retrying it later.
1205 */
1206 list_add(&rq->queuelist, zone_list);
1207 __blk_mq_requeue_request(rq);
1208 }
1209
1210 /*
1211 * Returns true if we did some work AND can potentially do more.
1212 */
1213 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1214 bool got_budget)
1215 {
1216 struct blk_mq_hw_ctx *hctx;
1217 struct request *rq, *nxt;
1218 bool no_tag = false;
1219 int errors, queued;
1220 blk_status_t ret = BLK_STS_OK;
1221 bool no_budget_avail = false;
1222 LIST_HEAD(zone_list);
1223
1224 if (list_empty(list))
1225 return false;
1226
1227 WARN_ON(!list_is_singular(list) && got_budget);
1228
1229 /*
1230 * Now process all the entries, sending them to the driver.
1231 */
1232 errors = queued = 0;
1233 do {
1234 struct blk_mq_queue_data bd;
1235
1236 rq = list_first_entry(list, struct request, queuelist);
1237
1238 hctx = rq->mq_hctx;
1239 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1240 blk_mq_put_driver_tag(rq);
1241 no_budget_avail = true;
1242 break;
1243 }
1244
1245 if (!blk_mq_get_driver_tag(rq)) {
1246 /*
1247 * The initial allocation attempt failed, so we need to
1248 * rerun the hardware queue when a tag is freed. The
1249 * waitqueue takes care of that. If the queue is run
1250 * before we add this entry back on the dispatch list,
1251 * we'll re-run it below.
1252 */
1253 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1254 blk_mq_put_dispatch_budget(hctx);
1255 /*
1256 * For non-shared tags, the RESTART check
1257 * will suffice.
1258 */
1259 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1260 no_tag = true;
1261 break;
1262 }
1263 }
1264
1265 list_del_init(&rq->queuelist);
1266
1267 bd.rq = rq;
1268
1269 /*
1270 * Flag last if we have no more requests, or if we have more
1271 * but can't assign a driver tag to it.
1272 */
1273 if (list_empty(list))
1274 bd.last = true;
1275 else {
1276 nxt = list_first_entry(list, struct request, queuelist);
1277 bd.last = !blk_mq_get_driver_tag(nxt);
1278 }
1279
1280 ret = q->mq_ops->queue_rq(hctx, &bd);
1281 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1282 blk_mq_handle_dev_resource(rq, list);
1283 break;
1284 } else if (ret == BLK_STS_ZONE_RESOURCE) {
1285 /*
1286 * Move the request to zone_list and keep going through
1287 * the dispatch list to find more requests the drive can
1288 * accept.
1289 */
1290 blk_mq_handle_zone_resource(rq, &zone_list);
1291 if (list_empty(list))
1292 break;
1293 continue;
1294 }
1295
1296 if (unlikely(ret != BLK_STS_OK)) {
1297 errors++;
1298 blk_mq_end_request(rq, BLK_STS_IOERR);
1299 continue;
1300 }
1301
1302 queued++;
1303 } while (!list_empty(list));
1304
1305 if (!list_empty(&zone_list))
1306 list_splice_tail_init(&zone_list, list);
1307
1308 hctx->dispatched[queued_to_index(queued)]++;
1309
1310 /*
1311 * Any items that need requeuing? Stuff them into hctx->dispatch,
1312 * that is where we will continue on next queue run.
1313 */
1314 if (!list_empty(list)) {
1315 bool needs_restart;
1316
1317 /*
1318 * If we didn't flush the entire list, we could have told
1319 * the driver there was more coming, but that turned out to
1320 * be a lie.
1321 */
1322 if (q->mq_ops->commit_rqs && queued)
1323 q->mq_ops->commit_rqs(hctx);
1324
1325 spin_lock(&hctx->lock);
1326 list_splice_tail_init(list, &hctx->dispatch);
1327 spin_unlock(&hctx->lock);
1328
1329 /*
1330 * If SCHED_RESTART was set by the caller of this function and
1331 * it is no longer set that means that it was cleared by another
1332 * thread and hence that a queue rerun is needed.
1333 *
1334 * If 'no_tag' is set, that means that we failed getting
1335 * a driver tag with an I/O scheduler attached. If our dispatch
1336 * waitqueue is no longer active, ensure that we run the queue
1337 * AFTER adding our entries back to the list.
1338 *
1339 * If no I/O scheduler has been configured it is possible that
1340 * the hardware queue got stopped and restarted before requests
1341 * were pushed back onto the dispatch list. Rerun the queue to
1342 * avoid starvation. Notes:
1343 * - blk_mq_run_hw_queue() checks whether or not a queue has
1344 * been stopped before rerunning a queue.
1345 * - Some but not all block drivers stop a queue before
1346 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1347 * and dm-rq.
1348 *
1349 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1350 * bit is set, run queue after a delay to avoid IO stalls
1351 * that could otherwise occur if the queue is idle. We'll do
1352 * similar if we couldn't get budget and SCHED_RESTART is set.
1353 */
1354 needs_restart = blk_mq_sched_needs_restart(hctx);
1355 if (!needs_restart ||
1356 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1357 blk_mq_run_hw_queue(hctx, true);
1358 else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1359 no_budget_avail))
1360 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1361
1362 blk_mq_update_dispatch_busy(hctx, true);
1363 return false;
1364 } else
1365 blk_mq_update_dispatch_busy(hctx, false);
1366
1367 /*
1368 * If the host/device is unable to accept more work, inform the
1369 * caller of that.
1370 */
1371 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1372 return false;
1373
1374 return (queued + errors) != 0;
1375 }
1376
1377 /**
1378 * __blk_mq_run_hw_queue - Run a hardware queue.
1379 * @hctx: Pointer to the hardware queue to run.
1380 *
1381 * Send pending requests to the hardware.
1382 */
1383 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1384 {
1385 int srcu_idx;
1386
1387 /*
1388 * We should be running this queue from one of the CPUs that
1389 * are mapped to it.
1390 *
1391 * There are at least two related races now between setting
1392 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1393 * __blk_mq_run_hw_queue():
1394 *
1395 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1396 * but later it becomes online, then this warning is harmless
1397 * at all
1398 *
1399 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1400 * but later it becomes offline, then the warning can't be
1401 * triggered, and we depend on blk-mq timeout handler to
1402 * handle dispatched requests to this hctx
1403 */
1404 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1405 cpu_online(hctx->next_cpu)) {
1406 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1407 raw_smp_processor_id(),
1408 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1409 dump_stack();
1410 }
1411
1412 /*
1413 * We can't run the queue inline with ints disabled. Ensure that
1414 * we catch bad users of this early.
1415 */
1416 WARN_ON_ONCE(in_interrupt());
1417
1418 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1419
1420 hctx_lock(hctx, &srcu_idx);
1421 blk_mq_sched_dispatch_requests(hctx);
1422 hctx_unlock(hctx, srcu_idx);
1423 }
1424
1425 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1426 {
1427 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1428
1429 if (cpu >= nr_cpu_ids)
1430 cpu = cpumask_first(hctx->cpumask);
1431 return cpu;
1432 }
1433
1434 /*
1435 * It'd be great if the workqueue API had a way to pass
1436 * in a mask and had some smarts for more clever placement.
1437 * For now we just round-robin here, switching for every
1438 * BLK_MQ_CPU_WORK_BATCH queued items.
1439 */
1440 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1441 {
1442 bool tried = false;
1443 int next_cpu = hctx->next_cpu;
1444
1445 if (hctx->queue->nr_hw_queues == 1)
1446 return WORK_CPU_UNBOUND;
1447
1448 if (--hctx->next_cpu_batch <= 0) {
1449 select_cpu:
1450 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1451 cpu_online_mask);
1452 if (next_cpu >= nr_cpu_ids)
1453 next_cpu = blk_mq_first_mapped_cpu(hctx);
1454 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1455 }
1456
1457 /*
1458 * Do unbound schedule if we can't find a online CPU for this hctx,
1459 * and it should only happen in the path of handling CPU DEAD.
1460 */
1461 if (!cpu_online(next_cpu)) {
1462 if (!tried) {
1463 tried = true;
1464 goto select_cpu;
1465 }
1466
1467 /*
1468 * Make sure to re-select CPU next time once after CPUs
1469 * in hctx->cpumask become online again.
1470 */
1471 hctx->next_cpu = next_cpu;
1472 hctx->next_cpu_batch = 1;
1473 return WORK_CPU_UNBOUND;
1474 }
1475
1476 hctx->next_cpu = next_cpu;
1477 return next_cpu;
1478 }
1479
1480 /**
1481 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1482 * @hctx: Pointer to the hardware queue to run.
1483 * @async: If we want to run the queue asynchronously.
1484 * @msecs: Microseconds of delay to wait before running the queue.
1485 *
1486 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1487 * with a delay of @msecs.
1488 */
1489 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1490 unsigned long msecs)
1491 {
1492 if (unlikely(blk_mq_hctx_stopped(hctx)))
1493 return;
1494
1495 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1496 int cpu = get_cpu();
1497 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1498 __blk_mq_run_hw_queue(hctx);
1499 put_cpu();
1500 return;
1501 }
1502
1503 put_cpu();
1504 }
1505
1506 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1507 msecs_to_jiffies(msecs));
1508 }
1509
1510 /**
1511 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1512 * @hctx: Pointer to the hardware queue to run.
1513 * @msecs: Microseconds of delay to wait before running the queue.
1514 *
1515 * Run a hardware queue asynchronously with a delay of @msecs.
1516 */
1517 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1518 {
1519 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1520 }
1521 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1522
1523 /**
1524 * blk_mq_run_hw_queue - Start to run a hardware queue.
1525 * @hctx: Pointer to the hardware queue to run.
1526 * @async: If we want to run the queue asynchronously.
1527 *
1528 * Check if the request queue is not in a quiesced state and if there are
1529 * pending requests to be sent. If this is true, run the queue to send requests
1530 * to hardware.
1531 */
1532 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1533 {
1534 int srcu_idx;
1535 bool need_run;
1536
1537 /*
1538 * When queue is quiesced, we may be switching io scheduler, or
1539 * updating nr_hw_queues, or other things, and we can't run queue
1540 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1541 *
1542 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1543 * quiesced.
1544 */
1545 hctx_lock(hctx, &srcu_idx);
1546 need_run = !blk_queue_quiesced(hctx->queue) &&
1547 blk_mq_hctx_has_pending(hctx);
1548 hctx_unlock(hctx, srcu_idx);
1549
1550 if (need_run)
1551 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1552 }
1553 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1554
1555 /**
1556 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1557 * @q: Pointer to the request queue to run.
1558 * @async: If we want to run the queue asynchronously.
1559 */
1560 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1561 {
1562 struct blk_mq_hw_ctx *hctx;
1563 int i;
1564
1565 queue_for_each_hw_ctx(q, hctx, i) {
1566 if (blk_mq_hctx_stopped(hctx))
1567 continue;
1568
1569 blk_mq_run_hw_queue(hctx, async);
1570 }
1571 }
1572 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1573
1574 /**
1575 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1576 * @q: Pointer to the request queue to run.
1577 * @msecs: Microseconds of delay to wait before running the queues.
1578 */
1579 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1580 {
1581 struct blk_mq_hw_ctx *hctx;
1582 int i;
1583
1584 queue_for_each_hw_ctx(q, hctx, i) {
1585 if (blk_mq_hctx_stopped(hctx))
1586 continue;
1587
1588 blk_mq_delay_run_hw_queue(hctx, msecs);
1589 }
1590 }
1591 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1592
1593 /**
1594 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1595 * @q: request queue.
1596 *
1597 * The caller is responsible for serializing this function against
1598 * blk_mq_{start,stop}_hw_queue().
1599 */
1600 bool blk_mq_queue_stopped(struct request_queue *q)
1601 {
1602 struct blk_mq_hw_ctx *hctx;
1603 int i;
1604
1605 queue_for_each_hw_ctx(q, hctx, i)
1606 if (blk_mq_hctx_stopped(hctx))
1607 return true;
1608
1609 return false;
1610 }
1611 EXPORT_SYMBOL(blk_mq_queue_stopped);
1612
1613 /*
1614 * This function is often used for pausing .queue_rq() by driver when
1615 * there isn't enough resource or some conditions aren't satisfied, and
1616 * BLK_STS_RESOURCE is usually returned.
1617 *
1618 * We do not guarantee that dispatch can be drained or blocked
1619 * after blk_mq_stop_hw_queue() returns. Please use
1620 * blk_mq_quiesce_queue() for that requirement.
1621 */
1622 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1623 {
1624 cancel_delayed_work(&hctx->run_work);
1625
1626 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1627 }
1628 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1629
1630 /*
1631 * This function is often used for pausing .queue_rq() by driver when
1632 * there isn't enough resource or some conditions aren't satisfied, and
1633 * BLK_STS_RESOURCE is usually returned.
1634 *
1635 * We do not guarantee that dispatch can be drained or blocked
1636 * after blk_mq_stop_hw_queues() returns. Please use
1637 * blk_mq_quiesce_queue() for that requirement.
1638 */
1639 void blk_mq_stop_hw_queues(struct request_queue *q)
1640 {
1641 struct blk_mq_hw_ctx *hctx;
1642 int i;
1643
1644 queue_for_each_hw_ctx(q, hctx, i)
1645 blk_mq_stop_hw_queue(hctx);
1646 }
1647 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1648
1649 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1650 {
1651 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1652
1653 blk_mq_run_hw_queue(hctx, false);
1654 }
1655 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1656
1657 void blk_mq_start_hw_queues(struct request_queue *q)
1658 {
1659 struct blk_mq_hw_ctx *hctx;
1660 int i;
1661
1662 queue_for_each_hw_ctx(q, hctx, i)
1663 blk_mq_start_hw_queue(hctx);
1664 }
1665 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1666
1667 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1668 {
1669 if (!blk_mq_hctx_stopped(hctx))
1670 return;
1671
1672 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1673 blk_mq_run_hw_queue(hctx, async);
1674 }
1675 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1676
1677 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1678 {
1679 struct blk_mq_hw_ctx *hctx;
1680 int i;
1681
1682 queue_for_each_hw_ctx(q, hctx, i)
1683 blk_mq_start_stopped_hw_queue(hctx, async);
1684 }
1685 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1686
1687 static void blk_mq_run_work_fn(struct work_struct *work)
1688 {
1689 struct blk_mq_hw_ctx *hctx;
1690
1691 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1692
1693 /*
1694 * If we are stopped, don't run the queue.
1695 */
1696 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1697 return;
1698
1699 __blk_mq_run_hw_queue(hctx);
1700 }
1701
1702 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1703 struct request *rq,
1704 bool at_head)
1705 {
1706 struct blk_mq_ctx *ctx = rq->mq_ctx;
1707 enum hctx_type type = hctx->type;
1708
1709 lockdep_assert_held(&ctx->lock);
1710
1711 trace_block_rq_insert(hctx->queue, rq);
1712
1713 if (at_head)
1714 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1715 else
1716 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1717 }
1718
1719 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1720 bool at_head)
1721 {
1722 struct blk_mq_ctx *ctx = rq->mq_ctx;
1723
1724 lockdep_assert_held(&ctx->lock);
1725
1726 __blk_mq_insert_req_list(hctx, rq, at_head);
1727 blk_mq_hctx_mark_pending(hctx, ctx);
1728 }
1729
1730 /**
1731 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1732 * @rq: Pointer to request to be inserted.
1733 * @run_queue: If we should run the hardware queue after inserting the request.
1734 *
1735 * Should only be used carefully, when the caller knows we want to
1736 * bypass a potential IO scheduler on the target device.
1737 */
1738 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1739 bool run_queue)
1740 {
1741 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1742
1743 spin_lock(&hctx->lock);
1744 if (at_head)
1745 list_add(&rq->queuelist, &hctx->dispatch);
1746 else
1747 list_add_tail(&rq->queuelist, &hctx->dispatch);
1748 spin_unlock(&hctx->lock);
1749
1750 if (run_queue)
1751 blk_mq_run_hw_queue(hctx, false);
1752 }
1753
1754 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1755 struct list_head *list)
1756
1757 {
1758 struct request *rq;
1759 enum hctx_type type = hctx->type;
1760
1761 /*
1762 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1763 * offline now
1764 */
1765 list_for_each_entry(rq, list, queuelist) {
1766 BUG_ON(rq->mq_ctx != ctx);
1767 trace_block_rq_insert(hctx->queue, rq);
1768 }
1769
1770 spin_lock(&ctx->lock);
1771 list_splice_tail_init(list, &ctx->rq_lists[type]);
1772 blk_mq_hctx_mark_pending(hctx, ctx);
1773 spin_unlock(&ctx->lock);
1774 }
1775
1776 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1777 {
1778 struct request *rqa = container_of(a, struct request, queuelist);
1779 struct request *rqb = container_of(b, struct request, queuelist);
1780
1781 if (rqa->mq_ctx != rqb->mq_ctx)
1782 return rqa->mq_ctx > rqb->mq_ctx;
1783 if (rqa->mq_hctx != rqb->mq_hctx)
1784 return rqa->mq_hctx > rqb->mq_hctx;
1785
1786 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1787 }
1788
1789 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1790 {
1791 LIST_HEAD(list);
1792
1793 if (list_empty(&plug->mq_list))
1794 return;
1795 list_splice_init(&plug->mq_list, &list);
1796
1797 if (plug->rq_count > 2 && plug->multiple_queues)
1798 list_sort(NULL, &list, plug_rq_cmp);
1799
1800 plug->rq_count = 0;
1801
1802 do {
1803 struct list_head rq_list;
1804 struct request *rq, *head_rq = list_entry_rq(list.next);
1805 struct list_head *pos = &head_rq->queuelist; /* skip first */
1806 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1807 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1808 unsigned int depth = 1;
1809
1810 list_for_each_continue(pos, &list) {
1811 rq = list_entry_rq(pos);
1812 BUG_ON(!rq->q);
1813 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1814 break;
1815 depth++;
1816 }
1817
1818 list_cut_before(&rq_list, &list, pos);
1819 trace_block_unplug(head_rq->q, depth, !from_schedule);
1820 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1821 from_schedule);
1822 } while(!list_empty(&list));
1823 }
1824
1825 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1826 unsigned int nr_segs)
1827 {
1828 if (bio->bi_opf & REQ_RAHEAD)
1829 rq->cmd_flags |= REQ_FAILFAST_MASK;
1830
1831 rq->__sector = bio->bi_iter.bi_sector;
1832 rq->write_hint = bio->bi_write_hint;
1833 blk_rq_bio_prep(rq, bio, nr_segs);
1834 blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1835
1836 blk_account_io_start(rq);
1837 }
1838
1839 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1840 struct request *rq,
1841 blk_qc_t *cookie, bool last)
1842 {
1843 struct request_queue *q = rq->q;
1844 struct blk_mq_queue_data bd = {
1845 .rq = rq,
1846 .last = last,
1847 };
1848 blk_qc_t new_cookie;
1849 blk_status_t ret;
1850
1851 new_cookie = request_to_qc_t(hctx, rq);
1852
1853 /*
1854 * For OK queue, we are done. For error, caller may kill it.
1855 * Any other error (busy), just add it to our list as we
1856 * previously would have done.
1857 */
1858 ret = q->mq_ops->queue_rq(hctx, &bd);
1859 switch (ret) {
1860 case BLK_STS_OK:
1861 blk_mq_update_dispatch_busy(hctx, false);
1862 *cookie = new_cookie;
1863 break;
1864 case BLK_STS_RESOURCE:
1865 case BLK_STS_DEV_RESOURCE:
1866 blk_mq_update_dispatch_busy(hctx, true);
1867 __blk_mq_requeue_request(rq);
1868 break;
1869 default:
1870 blk_mq_update_dispatch_busy(hctx, false);
1871 *cookie = BLK_QC_T_NONE;
1872 break;
1873 }
1874
1875 return ret;
1876 }
1877
1878 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1879 struct request *rq,
1880 blk_qc_t *cookie,
1881 bool bypass_insert, bool last)
1882 {
1883 struct request_queue *q = rq->q;
1884 bool run_queue = true;
1885
1886 /*
1887 * RCU or SRCU read lock is needed before checking quiesced flag.
1888 *
1889 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1890 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1891 * and avoid driver to try to dispatch again.
1892 */
1893 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1894 run_queue = false;
1895 bypass_insert = false;
1896 goto insert;
1897 }
1898
1899 if (q->elevator && !bypass_insert)
1900 goto insert;
1901
1902 if (!blk_mq_get_dispatch_budget(hctx))
1903 goto insert;
1904
1905 if (!blk_mq_get_driver_tag(rq)) {
1906 blk_mq_put_dispatch_budget(hctx);
1907 goto insert;
1908 }
1909
1910 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1911 insert:
1912 if (bypass_insert)
1913 return BLK_STS_RESOURCE;
1914
1915 blk_mq_request_bypass_insert(rq, false, run_queue);
1916 return BLK_STS_OK;
1917 }
1918
1919 /**
1920 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
1921 * @hctx: Pointer of the associated hardware queue.
1922 * @rq: Pointer to request to be sent.
1923 * @cookie: Request queue cookie.
1924 *
1925 * If the device has enough resources to accept a new request now, send the
1926 * request directly to device driver. Else, insert at hctx->dispatch queue, so
1927 * we can try send it another time in the future. Requests inserted at this
1928 * queue have higher priority.
1929 */
1930 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1931 struct request *rq, blk_qc_t *cookie)
1932 {
1933 blk_status_t ret;
1934 int srcu_idx;
1935
1936 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1937
1938 hctx_lock(hctx, &srcu_idx);
1939
1940 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1941 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1942 blk_mq_request_bypass_insert(rq, false, true);
1943 else if (ret != BLK_STS_OK)
1944 blk_mq_end_request(rq, ret);
1945
1946 hctx_unlock(hctx, srcu_idx);
1947 }
1948
1949 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1950 {
1951 blk_status_t ret;
1952 int srcu_idx;
1953 blk_qc_t unused_cookie;
1954 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1955
1956 hctx_lock(hctx, &srcu_idx);
1957 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1958 hctx_unlock(hctx, srcu_idx);
1959
1960 return ret;
1961 }
1962
1963 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1964 struct list_head *list)
1965 {
1966 int queued = 0;
1967
1968 while (!list_empty(list)) {
1969 blk_status_t ret;
1970 struct request *rq = list_first_entry(list, struct request,
1971 queuelist);
1972
1973 list_del_init(&rq->queuelist);
1974 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1975 if (ret != BLK_STS_OK) {
1976 if (ret == BLK_STS_RESOURCE ||
1977 ret == BLK_STS_DEV_RESOURCE) {
1978 blk_mq_request_bypass_insert(rq, false,
1979 list_empty(list));
1980 break;
1981 }
1982 blk_mq_end_request(rq, ret);
1983 } else
1984 queued++;
1985 }
1986
1987 /*
1988 * If we didn't flush the entire list, we could have told
1989 * the driver there was more coming, but that turned out to
1990 * be a lie.
1991 */
1992 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs && queued)
1993 hctx->queue->mq_ops->commit_rqs(hctx);
1994 }
1995
1996 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1997 {
1998 list_add_tail(&rq->queuelist, &plug->mq_list);
1999 plug->rq_count++;
2000 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2001 struct request *tmp;
2002
2003 tmp = list_first_entry(&plug->mq_list, struct request,
2004 queuelist);
2005 if (tmp->q != rq->q)
2006 plug->multiple_queues = true;
2007 }
2008 }
2009
2010 /**
2011 * blk_mq_make_request - Create and send a request to block device.
2012 * @q: Request queue pointer.
2013 * @bio: Bio pointer.
2014 *
2015 * Builds up a request structure from @q and @bio and send to the device. The
2016 * request may not be queued directly to hardware if:
2017 * * This request can be merged with another one
2018 * * We want to place request at plug queue for possible future merging
2019 * * There is an IO scheduler active at this queue
2020 *
2021 * It will not queue the request if there is an error with the bio, or at the
2022 * request creation.
2023 *
2024 * Returns: Request queue cookie.
2025 */
2026 blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
2027 {
2028 const int is_sync = op_is_sync(bio->bi_opf);
2029 const int is_flush_fua = op_is_flush(bio->bi_opf);
2030 struct blk_mq_alloc_data data = { .flags = 0};
2031 struct request *rq;
2032 struct blk_plug *plug;
2033 struct request *same_queue_rq = NULL;
2034 unsigned int nr_segs;
2035 blk_qc_t cookie;
2036 blk_status_t ret;
2037
2038 blk_queue_bounce(q, &bio);
2039 __blk_queue_split(q, &bio, &nr_segs);
2040
2041 if (!bio_integrity_prep(bio))
2042 goto queue_exit;
2043
2044 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2045 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2046 goto queue_exit;
2047
2048 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2049 goto queue_exit;
2050
2051 rq_qos_throttle(q, bio);
2052
2053 data.cmd_flags = bio->bi_opf;
2054 rq = blk_mq_get_request(q, bio, &data);
2055 if (unlikely(!rq)) {
2056 rq_qos_cleanup(q, bio);
2057 if (bio->bi_opf & REQ_NOWAIT)
2058 bio_wouldblock_error(bio);
2059 goto queue_exit;
2060 }
2061
2062 trace_block_getrq(q, bio, bio->bi_opf);
2063
2064 rq_qos_track(q, rq, bio);
2065
2066 cookie = request_to_qc_t(data.hctx, rq);
2067
2068 blk_mq_bio_to_request(rq, bio, nr_segs);
2069
2070 ret = blk_crypto_init_request(rq);
2071 if (ret != BLK_STS_OK) {
2072 bio->bi_status = ret;
2073 bio_endio(bio);
2074 blk_mq_free_request(rq);
2075 return BLK_QC_T_NONE;
2076 }
2077
2078 plug = blk_mq_plug(q, bio);
2079 if (unlikely(is_flush_fua)) {
2080 /* Bypass scheduler for flush requests */
2081 blk_insert_flush(rq);
2082 blk_mq_run_hw_queue(data.hctx, true);
2083 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2084 !blk_queue_nonrot(q))) {
2085 /*
2086 * Use plugging if we have a ->commit_rqs() hook as well, as
2087 * we know the driver uses bd->last in a smart fashion.
2088 *
2089 * Use normal plugging if this disk is slow HDD, as sequential
2090 * IO may benefit a lot from plug merging.
2091 */
2092 unsigned int request_count = plug->rq_count;
2093 struct request *last = NULL;
2094
2095 if (!request_count)
2096 trace_block_plug(q);
2097 else
2098 last = list_entry_rq(plug->mq_list.prev);
2099
2100 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2101 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2102 blk_flush_plug_list(plug, false);
2103 trace_block_plug(q);
2104 }
2105
2106 blk_add_rq_to_plug(plug, rq);
2107 } else if (q->elevator) {
2108 /* Insert the request at the IO scheduler queue */
2109 blk_mq_sched_insert_request(rq, false, true, true);
2110 } else if (plug && !blk_queue_nomerges(q)) {
2111 /*
2112 * We do limited plugging. If the bio can be merged, do that.
2113 * Otherwise the existing request in the plug list will be
2114 * issued. So the plug list will have one request at most
2115 * The plug list might get flushed before this. If that happens,
2116 * the plug list is empty, and same_queue_rq is invalid.
2117 */
2118 if (list_empty(&plug->mq_list))
2119 same_queue_rq = NULL;
2120 if (same_queue_rq) {
2121 list_del_init(&same_queue_rq->queuelist);
2122 plug->rq_count--;
2123 }
2124 blk_add_rq_to_plug(plug, rq);
2125 trace_block_plug(q);
2126
2127 if (same_queue_rq) {
2128 data.hctx = same_queue_rq->mq_hctx;
2129 trace_block_unplug(q, 1, true);
2130 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2131 &cookie);
2132 }
2133 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2134 !data.hctx->dispatch_busy) {
2135 /*
2136 * There is no scheduler and we can try to send directly
2137 * to the hardware.
2138 */
2139 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2140 } else {
2141 /* Default case. */
2142 blk_mq_sched_insert_request(rq, false, true, true);
2143 }
2144
2145 return cookie;
2146 queue_exit:
2147 blk_queue_exit(q);
2148 return BLK_QC_T_NONE;
2149 }
2150 EXPORT_SYMBOL_GPL(blk_mq_make_request); /* only for request based dm */
2151
2152 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2153 unsigned int hctx_idx)
2154 {
2155 struct page *page;
2156
2157 if (tags->rqs && set->ops->exit_request) {
2158 int i;
2159
2160 for (i = 0; i < tags->nr_tags; i++) {
2161 struct request *rq = tags->static_rqs[i];
2162
2163 if (!rq)
2164 continue;
2165 set->ops->exit_request(set, rq, hctx_idx);
2166 tags->static_rqs[i] = NULL;
2167 }
2168 }
2169
2170 while (!list_empty(&tags->page_list)) {
2171 page = list_first_entry(&tags->page_list, struct page, lru);
2172 list_del_init(&page->lru);
2173 /*
2174 * Remove kmemleak object previously allocated in
2175 * blk_mq_alloc_rqs().
2176 */
2177 kmemleak_free(page_address(page));
2178 __free_pages(page, page->private);
2179 }
2180 }
2181
2182 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2183 {
2184 kfree(tags->rqs);
2185 tags->rqs = NULL;
2186 kfree(tags->static_rqs);
2187 tags->static_rqs = NULL;
2188
2189 blk_mq_free_tags(tags);
2190 }
2191
2192 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2193 unsigned int hctx_idx,
2194 unsigned int nr_tags,
2195 unsigned int reserved_tags)
2196 {
2197 struct blk_mq_tags *tags;
2198 int node;
2199
2200 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2201 if (node == NUMA_NO_NODE)
2202 node = set->numa_node;
2203
2204 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2205 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2206 if (!tags)
2207 return NULL;
2208
2209 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2210 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2211 node);
2212 if (!tags->rqs) {
2213 blk_mq_free_tags(tags);
2214 return NULL;
2215 }
2216
2217 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2218 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2219 node);
2220 if (!tags->static_rqs) {
2221 kfree(tags->rqs);
2222 blk_mq_free_tags(tags);
2223 return NULL;
2224 }
2225
2226 return tags;
2227 }
2228
2229 static size_t order_to_size(unsigned int order)
2230 {
2231 return (size_t)PAGE_SIZE << order;
2232 }
2233
2234 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2235 unsigned int hctx_idx, int node)
2236 {
2237 int ret;
2238
2239 if (set->ops->init_request) {
2240 ret = set->ops->init_request(set, rq, hctx_idx, node);
2241 if (ret)
2242 return ret;
2243 }
2244
2245 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2246 return 0;
2247 }
2248
2249 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2250 unsigned int hctx_idx, unsigned int depth)
2251 {
2252 unsigned int i, j, entries_per_page, max_order = 4;
2253 size_t rq_size, left;
2254 int node;
2255
2256 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2257 if (node == NUMA_NO_NODE)
2258 node = set->numa_node;
2259
2260 INIT_LIST_HEAD(&tags->page_list);
2261
2262 /*
2263 * rq_size is the size of the request plus driver payload, rounded
2264 * to the cacheline size
2265 */
2266 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2267 cache_line_size());
2268 left = rq_size * depth;
2269
2270 for (i = 0; i < depth; ) {
2271 int this_order = max_order;
2272 struct page *page;
2273 int to_do;
2274 void *p;
2275
2276 while (this_order && left < order_to_size(this_order - 1))
2277 this_order--;
2278
2279 do {
2280 page = alloc_pages_node(node,
2281 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2282 this_order);
2283 if (page)
2284 break;
2285 if (!this_order--)
2286 break;
2287 if (order_to_size(this_order) < rq_size)
2288 break;
2289 } while (1);
2290
2291 if (!page)
2292 goto fail;
2293
2294 page->private = this_order;
2295 list_add_tail(&page->lru, &tags->page_list);
2296
2297 p = page_address(page);
2298 /*
2299 * Allow kmemleak to scan these pages as they contain pointers
2300 * to additional allocations like via ops->init_request().
2301 */
2302 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2303 entries_per_page = order_to_size(this_order) / rq_size;
2304 to_do = min(entries_per_page, depth - i);
2305 left -= to_do * rq_size;
2306 for (j = 0; j < to_do; j++) {
2307 struct request *rq = p;
2308
2309 tags->static_rqs[i] = rq;
2310 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2311 tags->static_rqs[i] = NULL;
2312 goto fail;
2313 }
2314
2315 p += rq_size;
2316 i++;
2317 }
2318 }
2319 return 0;
2320
2321 fail:
2322 blk_mq_free_rqs(set, tags, hctx_idx);
2323 return -ENOMEM;
2324 }
2325
2326 /*
2327 * 'cpu' is going away. splice any existing rq_list entries from this
2328 * software queue to the hw queue dispatch list, and ensure that it
2329 * gets run.
2330 */
2331 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2332 {
2333 struct blk_mq_hw_ctx *hctx;
2334 struct blk_mq_ctx *ctx;
2335 LIST_HEAD(tmp);
2336 enum hctx_type type;
2337
2338 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2339 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2340 type = hctx->type;
2341
2342 spin_lock(&ctx->lock);
2343 if (!list_empty(&ctx->rq_lists[type])) {
2344 list_splice_init(&ctx->rq_lists[type], &tmp);
2345 blk_mq_hctx_clear_pending(hctx, ctx);
2346 }
2347 spin_unlock(&ctx->lock);
2348
2349 if (list_empty(&tmp))
2350 return 0;
2351
2352 spin_lock(&hctx->lock);
2353 list_splice_tail_init(&tmp, &hctx->dispatch);
2354 spin_unlock(&hctx->lock);
2355
2356 blk_mq_run_hw_queue(hctx, true);
2357 return 0;
2358 }
2359
2360 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2361 {
2362 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2363 &hctx->cpuhp_dead);
2364 }
2365
2366 /* hctx->ctxs will be freed in queue's release handler */
2367 static void blk_mq_exit_hctx(struct request_queue *q,
2368 struct blk_mq_tag_set *set,
2369 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2370 {
2371 if (blk_mq_hw_queue_mapped(hctx))
2372 blk_mq_tag_idle(hctx);
2373
2374 if (set->ops->exit_request)
2375 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2376
2377 if (set->ops->exit_hctx)
2378 set->ops->exit_hctx(hctx, hctx_idx);
2379
2380 blk_mq_remove_cpuhp(hctx);
2381
2382 spin_lock(&q->unused_hctx_lock);
2383 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2384 spin_unlock(&q->unused_hctx_lock);
2385 }
2386
2387 static void blk_mq_exit_hw_queues(struct request_queue *q,
2388 struct blk_mq_tag_set *set, int nr_queue)
2389 {
2390 struct blk_mq_hw_ctx *hctx;
2391 unsigned int i;
2392
2393 queue_for_each_hw_ctx(q, hctx, i) {
2394 if (i == nr_queue)
2395 break;
2396 blk_mq_debugfs_unregister_hctx(hctx);
2397 blk_mq_exit_hctx(q, set, hctx, i);
2398 }
2399 }
2400
2401 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2402 {
2403 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2404
2405 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2406 __alignof__(struct blk_mq_hw_ctx)) !=
2407 sizeof(struct blk_mq_hw_ctx));
2408
2409 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2410 hw_ctx_size += sizeof(struct srcu_struct);
2411
2412 return hw_ctx_size;
2413 }
2414
2415 static int blk_mq_init_hctx(struct request_queue *q,
2416 struct blk_mq_tag_set *set,
2417 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2418 {
2419 hctx->queue_num = hctx_idx;
2420
2421 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2422
2423 hctx->tags = set->tags[hctx_idx];
2424
2425 if (set->ops->init_hctx &&
2426 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2427 goto unregister_cpu_notifier;
2428
2429 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2430 hctx->numa_node))
2431 goto exit_hctx;
2432 return 0;
2433
2434 exit_hctx:
2435 if (set->ops->exit_hctx)
2436 set->ops->exit_hctx(hctx, hctx_idx);
2437 unregister_cpu_notifier:
2438 blk_mq_remove_cpuhp(hctx);
2439 return -1;
2440 }
2441
2442 static struct blk_mq_hw_ctx *
2443 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2444 int node)
2445 {
2446 struct blk_mq_hw_ctx *hctx;
2447 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2448
2449 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2450 if (!hctx)
2451 goto fail_alloc_hctx;
2452
2453 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2454 goto free_hctx;
2455
2456 atomic_set(&hctx->nr_active, 0);
2457 if (node == NUMA_NO_NODE)
2458 node = set->numa_node;
2459 hctx->numa_node = node;
2460
2461 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2462 spin_lock_init(&hctx->lock);
2463 INIT_LIST_HEAD(&hctx->dispatch);
2464 hctx->queue = q;
2465 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2466
2467 INIT_LIST_HEAD(&hctx->hctx_list);
2468
2469 /*
2470 * Allocate space for all possible cpus to avoid allocation at
2471 * runtime
2472 */
2473 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2474 gfp, node);
2475 if (!hctx->ctxs)
2476 goto free_cpumask;
2477
2478 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2479 gfp, node))
2480 goto free_ctxs;
2481 hctx->nr_ctx = 0;
2482
2483 spin_lock_init(&hctx->dispatch_wait_lock);
2484 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2485 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2486
2487 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2488 if (!hctx->fq)
2489 goto free_bitmap;
2490
2491 if (hctx->flags & BLK_MQ_F_BLOCKING)
2492 init_srcu_struct(hctx->srcu);
2493 blk_mq_hctx_kobj_init(hctx);
2494
2495 return hctx;
2496
2497 free_bitmap:
2498 sbitmap_free(&hctx->ctx_map);
2499 free_ctxs:
2500 kfree(hctx->ctxs);
2501 free_cpumask:
2502 free_cpumask_var(hctx->cpumask);
2503 free_hctx:
2504 kfree(hctx);
2505 fail_alloc_hctx:
2506 return NULL;
2507 }
2508
2509 static void blk_mq_init_cpu_queues(struct request_queue *q,
2510 unsigned int nr_hw_queues)
2511 {
2512 struct blk_mq_tag_set *set = q->tag_set;
2513 unsigned int i, j;
2514
2515 for_each_possible_cpu(i) {
2516 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2517 struct blk_mq_hw_ctx *hctx;
2518 int k;
2519
2520 __ctx->cpu = i;
2521 spin_lock_init(&__ctx->lock);
2522 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2523 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2524
2525 __ctx->queue = q;
2526
2527 /*
2528 * Set local node, IFF we have more than one hw queue. If
2529 * not, we remain on the home node of the device
2530 */
2531 for (j = 0; j < set->nr_maps; j++) {
2532 hctx = blk_mq_map_queue_type(q, j, i);
2533 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2534 hctx->numa_node = local_memory_node(cpu_to_node(i));
2535 }
2536 }
2537 }
2538
2539 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2540 int hctx_idx)
2541 {
2542 int ret = 0;
2543
2544 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2545 set->queue_depth, set->reserved_tags);
2546 if (!set->tags[hctx_idx])
2547 return false;
2548
2549 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2550 set->queue_depth);
2551 if (!ret)
2552 return true;
2553
2554 blk_mq_free_rq_map(set->tags[hctx_idx]);
2555 set->tags[hctx_idx] = NULL;
2556 return false;
2557 }
2558
2559 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2560 unsigned int hctx_idx)
2561 {
2562 if (set->tags && set->tags[hctx_idx]) {
2563 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2564 blk_mq_free_rq_map(set->tags[hctx_idx]);
2565 set->tags[hctx_idx] = NULL;
2566 }
2567 }
2568
2569 static void blk_mq_map_swqueue(struct request_queue *q)
2570 {
2571 unsigned int i, j, hctx_idx;
2572 struct blk_mq_hw_ctx *hctx;
2573 struct blk_mq_ctx *ctx;
2574 struct blk_mq_tag_set *set = q->tag_set;
2575
2576 queue_for_each_hw_ctx(q, hctx, i) {
2577 cpumask_clear(hctx->cpumask);
2578 hctx->nr_ctx = 0;
2579 hctx->dispatch_from = NULL;
2580 }
2581
2582 /*
2583 * Map software to hardware queues.
2584 *
2585 * If the cpu isn't present, the cpu is mapped to first hctx.
2586 */
2587 for_each_possible_cpu(i) {
2588
2589 ctx = per_cpu_ptr(q->queue_ctx, i);
2590 for (j = 0; j < set->nr_maps; j++) {
2591 if (!set->map[j].nr_queues) {
2592 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2593 HCTX_TYPE_DEFAULT, i);
2594 continue;
2595 }
2596 hctx_idx = set->map[j].mq_map[i];
2597 /* unmapped hw queue can be remapped after CPU topo changed */
2598 if (!set->tags[hctx_idx] &&
2599 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2600 /*
2601 * If tags initialization fail for some hctx,
2602 * that hctx won't be brought online. In this
2603 * case, remap the current ctx to hctx[0] which
2604 * is guaranteed to always have tags allocated
2605 */
2606 set->map[j].mq_map[i] = 0;
2607 }
2608
2609 hctx = blk_mq_map_queue_type(q, j, i);
2610 ctx->hctxs[j] = hctx;
2611 /*
2612 * If the CPU is already set in the mask, then we've
2613 * mapped this one already. This can happen if
2614 * devices share queues across queue maps.
2615 */
2616 if (cpumask_test_cpu(i, hctx->cpumask))
2617 continue;
2618
2619 cpumask_set_cpu(i, hctx->cpumask);
2620 hctx->type = j;
2621 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2622 hctx->ctxs[hctx->nr_ctx++] = ctx;
2623
2624 /*
2625 * If the nr_ctx type overflows, we have exceeded the
2626 * amount of sw queues we can support.
2627 */
2628 BUG_ON(!hctx->nr_ctx);
2629 }
2630
2631 for (; j < HCTX_MAX_TYPES; j++)
2632 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2633 HCTX_TYPE_DEFAULT, i);
2634 }
2635
2636 queue_for_each_hw_ctx(q, hctx, i) {
2637 /*
2638 * If no software queues are mapped to this hardware queue,
2639 * disable it and free the request entries.
2640 */
2641 if (!hctx->nr_ctx) {
2642 /* Never unmap queue 0. We need it as a
2643 * fallback in case of a new remap fails
2644 * allocation
2645 */
2646 if (i && set->tags[i])
2647 blk_mq_free_map_and_requests(set, i);
2648
2649 hctx->tags = NULL;
2650 continue;
2651 }
2652
2653 hctx->tags = set->tags[i];
2654 WARN_ON(!hctx->tags);
2655
2656 /*
2657 * Set the map size to the number of mapped software queues.
2658 * This is more accurate and more efficient than looping
2659 * over all possibly mapped software queues.
2660 */
2661 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2662
2663 /*
2664 * Initialize batch roundrobin counts
2665 */
2666 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2667 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2668 }
2669 }
2670
2671 /*
2672 * Caller needs to ensure that we're either frozen/quiesced, or that
2673 * the queue isn't live yet.
2674 */
2675 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2676 {
2677 struct blk_mq_hw_ctx *hctx;
2678 int i;
2679
2680 queue_for_each_hw_ctx(q, hctx, i) {
2681 if (shared)
2682 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2683 else
2684 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2685 }
2686 }
2687
2688 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2689 bool shared)
2690 {
2691 struct request_queue *q;
2692
2693 lockdep_assert_held(&set->tag_list_lock);
2694
2695 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2696 blk_mq_freeze_queue(q);
2697 queue_set_hctx_shared(q, shared);
2698 blk_mq_unfreeze_queue(q);
2699 }
2700 }
2701
2702 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2703 {
2704 struct blk_mq_tag_set *set = q->tag_set;
2705
2706 mutex_lock(&set->tag_list_lock);
2707 list_del_rcu(&q->tag_set_list);
2708 if (list_is_singular(&set->tag_list)) {
2709 /* just transitioned to unshared */
2710 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2711 /* update existing queue */
2712 blk_mq_update_tag_set_depth(set, false);
2713 }
2714 mutex_unlock(&set->tag_list_lock);
2715 INIT_LIST_HEAD(&q->tag_set_list);
2716 }
2717
2718 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2719 struct request_queue *q)
2720 {
2721 mutex_lock(&set->tag_list_lock);
2722
2723 /*
2724 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2725 */
2726 if (!list_empty(&set->tag_list) &&
2727 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2728 set->flags |= BLK_MQ_F_TAG_SHARED;
2729 /* update existing queue */
2730 blk_mq_update_tag_set_depth(set, true);
2731 }
2732 if (set->flags & BLK_MQ_F_TAG_SHARED)
2733 queue_set_hctx_shared(q, true);
2734 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2735
2736 mutex_unlock(&set->tag_list_lock);
2737 }
2738
2739 /* All allocations will be freed in release handler of q->mq_kobj */
2740 static int blk_mq_alloc_ctxs(struct request_queue *q)
2741 {
2742 struct blk_mq_ctxs *ctxs;
2743 int cpu;
2744
2745 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2746 if (!ctxs)
2747 return -ENOMEM;
2748
2749 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2750 if (!ctxs->queue_ctx)
2751 goto fail;
2752
2753 for_each_possible_cpu(cpu) {
2754 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2755 ctx->ctxs = ctxs;
2756 }
2757
2758 q->mq_kobj = &ctxs->kobj;
2759 q->queue_ctx = ctxs->queue_ctx;
2760
2761 return 0;
2762 fail:
2763 kfree(ctxs);
2764 return -ENOMEM;
2765 }
2766
2767 /*
2768 * It is the actual release handler for mq, but we do it from
2769 * request queue's release handler for avoiding use-after-free
2770 * and headache because q->mq_kobj shouldn't have been introduced,
2771 * but we can't group ctx/kctx kobj without it.
2772 */
2773 void blk_mq_release(struct request_queue *q)
2774 {
2775 struct blk_mq_hw_ctx *hctx, *next;
2776 int i;
2777
2778 queue_for_each_hw_ctx(q, hctx, i)
2779 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2780
2781 /* all hctx are in .unused_hctx_list now */
2782 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2783 list_del_init(&hctx->hctx_list);
2784 kobject_put(&hctx->kobj);
2785 }
2786
2787 kfree(q->queue_hw_ctx);
2788
2789 /*
2790 * release .mq_kobj and sw queue's kobject now because
2791 * both share lifetime with request queue.
2792 */
2793 blk_mq_sysfs_deinit(q);
2794 }
2795
2796 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
2797 void *queuedata)
2798 {
2799 struct request_queue *uninit_q, *q;
2800
2801 uninit_q = __blk_alloc_queue(set->numa_node);
2802 if (!uninit_q)
2803 return ERR_PTR(-ENOMEM);
2804 uninit_q->queuedata = queuedata;
2805
2806 /*
2807 * Initialize the queue without an elevator. device_add_disk() will do
2808 * the initialization.
2809 */
2810 q = blk_mq_init_allocated_queue(set, uninit_q, false);
2811 if (IS_ERR(q))
2812 blk_cleanup_queue(uninit_q);
2813
2814 return q;
2815 }
2816 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
2817
2818 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2819 {
2820 return blk_mq_init_queue_data(set, NULL);
2821 }
2822 EXPORT_SYMBOL(blk_mq_init_queue);
2823
2824 /*
2825 * Helper for setting up a queue with mq ops, given queue depth, and
2826 * the passed in mq ops flags.
2827 */
2828 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2829 const struct blk_mq_ops *ops,
2830 unsigned int queue_depth,
2831 unsigned int set_flags)
2832 {
2833 struct request_queue *q;
2834 int ret;
2835
2836 memset(set, 0, sizeof(*set));
2837 set->ops = ops;
2838 set->nr_hw_queues = 1;
2839 set->nr_maps = 1;
2840 set->queue_depth = queue_depth;
2841 set->numa_node = NUMA_NO_NODE;
2842 set->flags = set_flags;
2843
2844 ret = blk_mq_alloc_tag_set(set);
2845 if (ret)
2846 return ERR_PTR(ret);
2847
2848 q = blk_mq_init_queue(set);
2849 if (IS_ERR(q)) {
2850 blk_mq_free_tag_set(set);
2851 return q;
2852 }
2853
2854 return q;
2855 }
2856 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2857
2858 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2859 struct blk_mq_tag_set *set, struct request_queue *q,
2860 int hctx_idx, int node)
2861 {
2862 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2863
2864 /* reuse dead hctx first */
2865 spin_lock(&q->unused_hctx_lock);
2866 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2867 if (tmp->numa_node == node) {
2868 hctx = tmp;
2869 break;
2870 }
2871 }
2872 if (hctx)
2873 list_del_init(&hctx->hctx_list);
2874 spin_unlock(&q->unused_hctx_lock);
2875
2876 if (!hctx)
2877 hctx = blk_mq_alloc_hctx(q, set, node);
2878 if (!hctx)
2879 goto fail;
2880
2881 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2882 goto free_hctx;
2883
2884 return hctx;
2885
2886 free_hctx:
2887 kobject_put(&hctx->kobj);
2888 fail:
2889 return NULL;
2890 }
2891
2892 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2893 struct request_queue *q)
2894 {
2895 int i, j, end;
2896 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2897
2898 if (q->nr_hw_queues < set->nr_hw_queues) {
2899 struct blk_mq_hw_ctx **new_hctxs;
2900
2901 new_hctxs = kcalloc_node(set->nr_hw_queues,
2902 sizeof(*new_hctxs), GFP_KERNEL,
2903 set->numa_node);
2904 if (!new_hctxs)
2905 return;
2906 if (hctxs)
2907 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
2908 sizeof(*hctxs));
2909 q->queue_hw_ctx = new_hctxs;
2910 kfree(hctxs);
2911 hctxs = new_hctxs;
2912 }
2913
2914 /* protect against switching io scheduler */
2915 mutex_lock(&q->sysfs_lock);
2916 for (i = 0; i < set->nr_hw_queues; i++) {
2917 int node;
2918 struct blk_mq_hw_ctx *hctx;
2919
2920 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2921 /*
2922 * If the hw queue has been mapped to another numa node,
2923 * we need to realloc the hctx. If allocation fails, fallback
2924 * to use the previous one.
2925 */
2926 if (hctxs[i] && (hctxs[i]->numa_node == node))
2927 continue;
2928
2929 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2930 if (hctx) {
2931 if (hctxs[i])
2932 blk_mq_exit_hctx(q, set, hctxs[i], i);
2933 hctxs[i] = hctx;
2934 } else {
2935 if (hctxs[i])
2936 pr_warn("Allocate new hctx on node %d fails,\
2937 fallback to previous one on node %d\n",
2938 node, hctxs[i]->numa_node);
2939 else
2940 break;
2941 }
2942 }
2943 /*
2944 * Increasing nr_hw_queues fails. Free the newly allocated
2945 * hctxs and keep the previous q->nr_hw_queues.
2946 */
2947 if (i != set->nr_hw_queues) {
2948 j = q->nr_hw_queues;
2949 end = i;
2950 } else {
2951 j = i;
2952 end = q->nr_hw_queues;
2953 q->nr_hw_queues = set->nr_hw_queues;
2954 }
2955
2956 for (; j < end; j++) {
2957 struct blk_mq_hw_ctx *hctx = hctxs[j];
2958
2959 if (hctx) {
2960 if (hctx->tags)
2961 blk_mq_free_map_and_requests(set, j);
2962 blk_mq_exit_hctx(q, set, hctx, j);
2963 hctxs[j] = NULL;
2964 }
2965 }
2966 mutex_unlock(&q->sysfs_lock);
2967 }
2968
2969 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2970 struct request_queue *q,
2971 bool elevator_init)
2972 {
2973 /* mark the queue as mq asap */
2974 q->mq_ops = set->ops;
2975
2976 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2977 blk_mq_poll_stats_bkt,
2978 BLK_MQ_POLL_STATS_BKTS, q);
2979 if (!q->poll_cb)
2980 goto err_exit;
2981
2982 if (blk_mq_alloc_ctxs(q))
2983 goto err_poll;
2984
2985 /* init q->mq_kobj and sw queues' kobjects */
2986 blk_mq_sysfs_init(q);
2987
2988 INIT_LIST_HEAD(&q->unused_hctx_list);
2989 spin_lock_init(&q->unused_hctx_lock);
2990
2991 blk_mq_realloc_hw_ctxs(set, q);
2992 if (!q->nr_hw_queues)
2993 goto err_hctxs;
2994
2995 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2996 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2997
2998 q->tag_set = set;
2999
3000 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3001 if (set->nr_maps > HCTX_TYPE_POLL &&
3002 set->map[HCTX_TYPE_POLL].nr_queues)
3003 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3004
3005 q->sg_reserved_size = INT_MAX;
3006
3007 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3008 INIT_LIST_HEAD(&q->requeue_list);
3009 spin_lock_init(&q->requeue_lock);
3010
3011 q->nr_requests = set->queue_depth;
3012
3013 /*
3014 * Default to classic polling
3015 */
3016 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3017
3018 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3019 blk_mq_add_queue_tag_set(set, q);
3020 blk_mq_map_swqueue(q);
3021
3022 if (elevator_init)
3023 elevator_init_mq(q);
3024
3025 return q;
3026
3027 err_hctxs:
3028 kfree(q->queue_hw_ctx);
3029 q->nr_hw_queues = 0;
3030 blk_mq_sysfs_deinit(q);
3031 err_poll:
3032 blk_stat_free_callback(q->poll_cb);
3033 q->poll_cb = NULL;
3034 err_exit:
3035 q->mq_ops = NULL;
3036 return ERR_PTR(-ENOMEM);
3037 }
3038 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3039
3040 /* tags can _not_ be used after returning from blk_mq_exit_queue */
3041 void blk_mq_exit_queue(struct request_queue *q)
3042 {
3043 struct blk_mq_tag_set *set = q->tag_set;
3044
3045 blk_mq_del_queue_tag_set(q);
3046 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3047 }
3048
3049 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3050 {
3051 int i;
3052
3053 for (i = 0; i < set->nr_hw_queues; i++)
3054 if (!__blk_mq_alloc_map_and_request(set, i))
3055 goto out_unwind;
3056
3057 return 0;
3058
3059 out_unwind:
3060 while (--i >= 0)
3061 blk_mq_free_map_and_requests(set, i);
3062
3063 return -ENOMEM;
3064 }
3065
3066 /*
3067 * Allocate the request maps associated with this tag_set. Note that this
3068 * may reduce the depth asked for, if memory is tight. set->queue_depth
3069 * will be updated to reflect the allocated depth.
3070 */
3071 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3072 {
3073 unsigned int depth;
3074 int err;
3075
3076 depth = set->queue_depth;
3077 do {
3078 err = __blk_mq_alloc_rq_maps(set);
3079 if (!err)
3080 break;
3081
3082 set->queue_depth >>= 1;
3083 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3084 err = -ENOMEM;
3085 break;
3086 }
3087 } while (set->queue_depth);
3088
3089 if (!set->queue_depth || err) {
3090 pr_err("blk-mq: failed to allocate request map\n");
3091 return -ENOMEM;
3092 }
3093
3094 if (depth != set->queue_depth)
3095 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3096 depth, set->queue_depth);
3097
3098 return 0;
3099 }
3100
3101 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3102 {
3103 /*
3104 * blk_mq_map_queues() and multiple .map_queues() implementations
3105 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3106 * number of hardware queues.
3107 */
3108 if (set->nr_maps == 1)
3109 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3110
3111 if (set->ops->map_queues && !is_kdump_kernel()) {
3112 int i;
3113
3114 /*
3115 * transport .map_queues is usually done in the following
3116 * way:
3117 *
3118 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3119 * mask = get_cpu_mask(queue)
3120 * for_each_cpu(cpu, mask)
3121 * set->map[x].mq_map[cpu] = queue;
3122 * }
3123 *
3124 * When we need to remap, the table has to be cleared for
3125 * killing stale mapping since one CPU may not be mapped
3126 * to any hw queue.
3127 */
3128 for (i = 0; i < set->nr_maps; i++)
3129 blk_mq_clear_mq_map(&set->map[i]);
3130
3131 return set->ops->map_queues(set);
3132 } else {
3133 BUG_ON(set->nr_maps > 1);
3134 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3135 }
3136 }
3137
3138 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3139 int cur_nr_hw_queues, int new_nr_hw_queues)
3140 {
3141 struct blk_mq_tags **new_tags;
3142
3143 if (cur_nr_hw_queues >= new_nr_hw_queues)
3144 return 0;
3145
3146 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3147 GFP_KERNEL, set->numa_node);
3148 if (!new_tags)
3149 return -ENOMEM;
3150
3151 if (set->tags)
3152 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3153 sizeof(*set->tags));
3154 kfree(set->tags);
3155 set->tags = new_tags;
3156 set->nr_hw_queues = new_nr_hw_queues;
3157
3158 return 0;
3159 }
3160
3161 /*
3162 * Alloc a tag set to be associated with one or more request queues.
3163 * May fail with EINVAL for various error conditions. May adjust the
3164 * requested depth down, if it's too large. In that case, the set
3165 * value will be stored in set->queue_depth.
3166 */
3167 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3168 {
3169 int i, ret;
3170
3171 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3172
3173 if (!set->nr_hw_queues)
3174 return -EINVAL;
3175 if (!set->queue_depth)
3176 return -EINVAL;
3177 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3178 return -EINVAL;
3179
3180 if (!set->ops->queue_rq)
3181 return -EINVAL;
3182
3183 if (!set->ops->get_budget ^ !set->ops->put_budget)
3184 return -EINVAL;
3185
3186 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3187 pr_info("blk-mq: reduced tag depth to %u\n",
3188 BLK_MQ_MAX_DEPTH);
3189 set->queue_depth = BLK_MQ_MAX_DEPTH;
3190 }
3191
3192 if (!set->nr_maps)
3193 set->nr_maps = 1;
3194 else if (set->nr_maps > HCTX_MAX_TYPES)
3195 return -EINVAL;
3196
3197 /*
3198 * If a crashdump is active, then we are potentially in a very
3199 * memory constrained environment. Limit us to 1 queue and
3200 * 64 tags to prevent using too much memory.
3201 */
3202 if (is_kdump_kernel()) {
3203 set->nr_hw_queues = 1;
3204 set->nr_maps = 1;
3205 set->queue_depth = min(64U, set->queue_depth);
3206 }
3207 /*
3208 * There is no use for more h/w queues than cpus if we just have
3209 * a single map
3210 */
3211 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3212 set->nr_hw_queues = nr_cpu_ids;
3213
3214 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3215 return -ENOMEM;
3216
3217 ret = -ENOMEM;
3218 for (i = 0; i < set->nr_maps; i++) {
3219 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3220 sizeof(set->map[i].mq_map[0]),
3221 GFP_KERNEL, set->numa_node);
3222 if (!set->map[i].mq_map)
3223 goto out_free_mq_map;
3224 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3225 }
3226
3227 ret = blk_mq_update_queue_map(set);
3228 if (ret)
3229 goto out_free_mq_map;
3230
3231 ret = blk_mq_alloc_map_and_requests(set);
3232 if (ret)
3233 goto out_free_mq_map;
3234
3235 mutex_init(&set->tag_list_lock);
3236 INIT_LIST_HEAD(&set->tag_list);
3237
3238 return 0;
3239
3240 out_free_mq_map:
3241 for (i = 0; i < set->nr_maps; i++) {
3242 kfree(set->map[i].mq_map);
3243 set->map[i].mq_map = NULL;
3244 }
3245 kfree(set->tags);
3246 set->tags = NULL;
3247 return ret;
3248 }
3249 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3250
3251 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3252 {
3253 int i, j;
3254
3255 for (i = 0; i < set->nr_hw_queues; i++)
3256 blk_mq_free_map_and_requests(set, i);
3257
3258 for (j = 0; j < set->nr_maps; j++) {
3259 kfree(set->map[j].mq_map);
3260 set->map[j].mq_map = NULL;
3261 }
3262
3263 kfree(set->tags);
3264 set->tags = NULL;
3265 }
3266 EXPORT_SYMBOL(blk_mq_free_tag_set);
3267
3268 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3269 {
3270 struct blk_mq_tag_set *set = q->tag_set;
3271 struct blk_mq_hw_ctx *hctx;
3272 int i, ret;
3273
3274 if (!set)
3275 return -EINVAL;
3276
3277 if (q->nr_requests == nr)
3278 return 0;
3279
3280 blk_mq_freeze_queue(q);
3281 blk_mq_quiesce_queue(q);
3282
3283 ret = 0;
3284 queue_for_each_hw_ctx(q, hctx, i) {
3285 if (!hctx->tags)
3286 continue;
3287 /*
3288 * If we're using an MQ scheduler, just update the scheduler
3289 * queue depth. This is similar to what the old code would do.
3290 */
3291 if (!hctx->sched_tags) {
3292 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3293 false);
3294 } else {
3295 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3296 nr, true);
3297 }
3298 if (ret)
3299 break;
3300 if (q->elevator && q->elevator->type->ops.depth_updated)
3301 q->elevator->type->ops.depth_updated(hctx);
3302 }
3303
3304 if (!ret)
3305 q->nr_requests = nr;
3306
3307 blk_mq_unquiesce_queue(q);
3308 blk_mq_unfreeze_queue(q);
3309
3310 return ret;
3311 }
3312
3313 /*
3314 * request_queue and elevator_type pair.
3315 * It is just used by __blk_mq_update_nr_hw_queues to cache
3316 * the elevator_type associated with a request_queue.
3317 */
3318 struct blk_mq_qe_pair {
3319 struct list_head node;
3320 struct request_queue *q;
3321 struct elevator_type *type;
3322 };
3323
3324 /*
3325 * Cache the elevator_type in qe pair list and switch the
3326 * io scheduler to 'none'
3327 */
3328 static bool blk_mq_elv_switch_none(struct list_head *head,
3329 struct request_queue *q)
3330 {
3331 struct blk_mq_qe_pair *qe;
3332
3333 if (!q->elevator)
3334 return true;
3335
3336 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3337 if (!qe)
3338 return false;
3339
3340 INIT_LIST_HEAD(&qe->node);
3341 qe->q = q;
3342 qe->type = q->elevator->type;
3343 list_add(&qe->node, head);
3344
3345 mutex_lock(&q->sysfs_lock);
3346 /*
3347 * After elevator_switch_mq, the previous elevator_queue will be
3348 * released by elevator_release. The reference of the io scheduler
3349 * module get by elevator_get will also be put. So we need to get
3350 * a reference of the io scheduler module here to prevent it to be
3351 * removed.
3352 */
3353 __module_get(qe->type->elevator_owner);
3354 elevator_switch_mq(q, NULL);
3355 mutex_unlock(&q->sysfs_lock);
3356
3357 return true;
3358 }
3359
3360 static void blk_mq_elv_switch_back(struct list_head *head,
3361 struct request_queue *q)
3362 {
3363 struct blk_mq_qe_pair *qe;
3364 struct elevator_type *t = NULL;
3365
3366 list_for_each_entry(qe, head, node)
3367 if (qe->q == q) {
3368 t = qe->type;
3369 break;
3370 }
3371
3372 if (!t)
3373 return;
3374
3375 list_del(&qe->node);
3376 kfree(qe);
3377
3378 mutex_lock(&q->sysfs_lock);
3379 elevator_switch_mq(q, t);
3380 mutex_unlock(&q->sysfs_lock);
3381 }
3382
3383 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3384 int nr_hw_queues)
3385 {
3386 struct request_queue *q;
3387 LIST_HEAD(head);
3388 int prev_nr_hw_queues;
3389
3390 lockdep_assert_held(&set->tag_list_lock);
3391
3392 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3393 nr_hw_queues = nr_cpu_ids;
3394 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3395 return;
3396
3397 list_for_each_entry(q, &set->tag_list, tag_set_list)
3398 blk_mq_freeze_queue(q);
3399 /*
3400 * Switch IO scheduler to 'none', cleaning up the data associated
3401 * with the previous scheduler. We will switch back once we are done
3402 * updating the new sw to hw queue mappings.
3403 */
3404 list_for_each_entry(q, &set->tag_list, tag_set_list)
3405 if (!blk_mq_elv_switch_none(&head, q))
3406 goto switch_back;
3407
3408 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3409 blk_mq_debugfs_unregister_hctxs(q);
3410 blk_mq_sysfs_unregister(q);
3411 }
3412
3413 prev_nr_hw_queues = set->nr_hw_queues;
3414 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3415 0)
3416 goto reregister;
3417
3418 set->nr_hw_queues = nr_hw_queues;
3419 fallback:
3420 blk_mq_update_queue_map(set);
3421 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3422 blk_mq_realloc_hw_ctxs(set, q);
3423 if (q->nr_hw_queues != set->nr_hw_queues) {
3424 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3425 nr_hw_queues, prev_nr_hw_queues);
3426 set->nr_hw_queues = prev_nr_hw_queues;
3427 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3428 goto fallback;
3429 }
3430 blk_mq_map_swqueue(q);
3431 }
3432
3433 reregister:
3434 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3435 blk_mq_sysfs_register(q);
3436 blk_mq_debugfs_register_hctxs(q);
3437 }
3438
3439 switch_back:
3440 list_for_each_entry(q, &set->tag_list, tag_set_list)
3441 blk_mq_elv_switch_back(&head, q);
3442
3443 list_for_each_entry(q, &set->tag_list, tag_set_list)
3444 blk_mq_unfreeze_queue(q);
3445 }
3446
3447 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3448 {
3449 mutex_lock(&set->tag_list_lock);
3450 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3451 mutex_unlock(&set->tag_list_lock);
3452 }
3453 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3454
3455 /* Enable polling stats and return whether they were already enabled. */
3456 static bool blk_poll_stats_enable(struct request_queue *q)
3457 {
3458 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3459 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3460 return true;
3461 blk_stat_add_callback(q, q->poll_cb);
3462 return false;
3463 }
3464
3465 static void blk_mq_poll_stats_start(struct request_queue *q)
3466 {
3467 /*
3468 * We don't arm the callback if polling stats are not enabled or the
3469 * callback is already active.
3470 */
3471 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3472 blk_stat_is_active(q->poll_cb))
3473 return;
3474
3475 blk_stat_activate_msecs(q->poll_cb, 100);
3476 }
3477
3478 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3479 {
3480 struct request_queue *q = cb->data;
3481 int bucket;
3482
3483 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3484 if (cb->stat[bucket].nr_samples)
3485 q->poll_stat[bucket] = cb->stat[bucket];
3486 }
3487 }
3488
3489 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3490 struct request *rq)
3491 {
3492 unsigned long ret = 0;
3493 int bucket;
3494
3495 /*
3496 * If stats collection isn't on, don't sleep but turn it on for
3497 * future users
3498 */
3499 if (!blk_poll_stats_enable(q))
3500 return 0;
3501
3502 /*
3503 * As an optimistic guess, use half of the mean service time
3504 * for this type of request. We can (and should) make this smarter.
3505 * For instance, if the completion latencies are tight, we can
3506 * get closer than just half the mean. This is especially
3507 * important on devices where the completion latencies are longer
3508 * than ~10 usec. We do use the stats for the relevant IO size
3509 * if available which does lead to better estimates.
3510 */
3511 bucket = blk_mq_poll_stats_bkt(rq);
3512 if (bucket < 0)
3513 return ret;
3514
3515 if (q->poll_stat[bucket].nr_samples)
3516 ret = (q->poll_stat[bucket].mean + 1) / 2;
3517
3518 return ret;
3519 }
3520
3521 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3522 struct request *rq)
3523 {
3524 struct hrtimer_sleeper hs;
3525 enum hrtimer_mode mode;
3526 unsigned int nsecs;
3527 ktime_t kt;
3528
3529 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3530 return false;
3531
3532 /*
3533 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3534 *
3535 * 0: use half of prev avg
3536 * >0: use this specific value
3537 */
3538 if (q->poll_nsec > 0)
3539 nsecs = q->poll_nsec;
3540 else
3541 nsecs = blk_mq_poll_nsecs(q, rq);
3542
3543 if (!nsecs)
3544 return false;
3545
3546 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3547
3548 /*
3549 * This will be replaced with the stats tracking code, using
3550 * 'avg_completion_time / 2' as the pre-sleep target.
3551 */
3552 kt = nsecs;
3553
3554 mode = HRTIMER_MODE_REL;
3555 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3556 hrtimer_set_expires(&hs.timer, kt);
3557
3558 do {
3559 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3560 break;
3561 set_current_state(TASK_UNINTERRUPTIBLE);
3562 hrtimer_sleeper_start_expires(&hs, mode);
3563 if (hs.task)
3564 io_schedule();
3565 hrtimer_cancel(&hs.timer);
3566 mode = HRTIMER_MODE_ABS;
3567 } while (hs.task && !signal_pending(current));
3568
3569 __set_current_state(TASK_RUNNING);
3570 destroy_hrtimer_on_stack(&hs.timer);
3571 return true;
3572 }
3573
3574 static bool blk_mq_poll_hybrid(struct request_queue *q,
3575 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3576 {
3577 struct request *rq;
3578
3579 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3580 return false;
3581
3582 if (!blk_qc_t_is_internal(cookie))
3583 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3584 else {
3585 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3586 /*
3587 * With scheduling, if the request has completed, we'll
3588 * get a NULL return here, as we clear the sched tag when
3589 * that happens. The request still remains valid, like always,
3590 * so we should be safe with just the NULL check.
3591 */
3592 if (!rq)
3593 return false;
3594 }
3595
3596 return blk_mq_poll_hybrid_sleep(q, rq);
3597 }
3598
3599 /**
3600 * blk_poll - poll for IO completions
3601 * @q: the queue
3602 * @cookie: cookie passed back at IO submission time
3603 * @spin: whether to spin for completions
3604 *
3605 * Description:
3606 * Poll for completions on the passed in queue. Returns number of
3607 * completed entries found. If @spin is true, then blk_poll will continue
3608 * looping until at least one completion is found, unless the task is
3609 * otherwise marked running (or we need to reschedule).
3610 */
3611 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3612 {
3613 struct blk_mq_hw_ctx *hctx;
3614 long state;
3615
3616 if (!blk_qc_t_valid(cookie) ||
3617 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3618 return 0;
3619
3620 if (current->plug)
3621 blk_flush_plug_list(current->plug, false);
3622
3623 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3624
3625 /*
3626 * If we sleep, have the caller restart the poll loop to reset
3627 * the state. Like for the other success return cases, the
3628 * caller is responsible for checking if the IO completed. If
3629 * the IO isn't complete, we'll get called again and will go
3630 * straight to the busy poll loop.
3631 */
3632 if (blk_mq_poll_hybrid(q, hctx, cookie))
3633 return 1;
3634
3635 hctx->poll_considered++;
3636
3637 state = current->state;
3638 do {
3639 int ret;
3640
3641 hctx->poll_invoked++;
3642
3643 ret = q->mq_ops->poll(hctx);
3644 if (ret > 0) {
3645 hctx->poll_success++;
3646 __set_current_state(TASK_RUNNING);
3647 return ret;
3648 }
3649
3650 if (signal_pending_state(state, current))
3651 __set_current_state(TASK_RUNNING);
3652
3653 if (current->state == TASK_RUNNING)
3654 return 1;
3655 if (ret < 0 || !spin)
3656 break;
3657 cpu_relax();
3658 } while (!need_resched());
3659
3660 __set_current_state(TASK_RUNNING);
3661 return 0;
3662 }
3663 EXPORT_SYMBOL_GPL(blk_poll);
3664
3665 unsigned int blk_mq_rq_cpu(struct request *rq)
3666 {
3667 return rq->mq_ctx->cpu;
3668 }
3669 EXPORT_SYMBOL(blk_mq_rq_cpu);
3670
3671 static int __init blk_mq_init(void)
3672 {
3673 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3674 blk_mq_hctx_notify_dead);
3675 return 0;
3676 }
3677 subsys_initcall(blk_mq_init);