]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
blk-mq: fix bad clear of RQF_MQ_INFLIGHT in blk_mq_ct_ctx_init()
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99 /*
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
109 }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114 {
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 int freeze_depth;
124
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 if (q->mq_ops)
129 blk_mq_run_hw_queues(q, false);
130 }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142 {
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
162 blk_freeze_queue_start(q);
163 blk_mq_freeze_queue_wait(q);
164 }
165
166 void blk_mq_freeze_queue(struct request_queue *q)
167 {
168 /*
169 * ...just an alias to keep freeze and unfreeze actions balanced
170 * in the blk_mq_* namespace
171 */
172 blk_freeze_queue(q);
173 }
174 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
175
176 void blk_mq_unfreeze_queue(struct request_queue *q)
177 {
178 int freeze_depth;
179
180 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
181 WARN_ON_ONCE(freeze_depth < 0);
182 if (!freeze_depth) {
183 percpu_ref_reinit(&q->q_usage_counter);
184 wake_up_all(&q->mq_freeze_wq);
185 }
186 }
187 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
188
189 /*
190 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
191 * mpt3sas driver such that this function can be removed.
192 */
193 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
194 {
195 unsigned long flags;
196
197 spin_lock_irqsave(q->queue_lock, flags);
198 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
199 spin_unlock_irqrestore(q->queue_lock, flags);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
202
203 /**
204 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
205 * @q: request queue.
206 *
207 * Note: this function does not prevent that the struct request end_io()
208 * callback function is invoked. Once this function is returned, we make
209 * sure no dispatch can happen until the queue is unquiesced via
210 * blk_mq_unquiesce_queue().
211 */
212 void blk_mq_quiesce_queue(struct request_queue *q)
213 {
214 struct blk_mq_hw_ctx *hctx;
215 unsigned int i;
216 bool rcu = false;
217
218 blk_mq_quiesce_queue_nowait(q);
219
220 queue_for_each_hw_ctx(q, hctx, i) {
221 if (hctx->flags & BLK_MQ_F_BLOCKING)
222 synchronize_srcu(hctx->srcu);
223 else
224 rcu = true;
225 }
226 if (rcu)
227 synchronize_rcu();
228 }
229 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
230
231 /*
232 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
233 * @q: request queue.
234 *
235 * This function recovers queue into the state before quiescing
236 * which is done by blk_mq_quiesce_queue.
237 */
238 void blk_mq_unquiesce_queue(struct request_queue *q)
239 {
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
243 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
244 spin_unlock_irqrestore(q->queue_lock, flags);
245
246 /* dispatch requests which are inserted during quiescing */
247 blk_mq_run_hw_queues(q, true);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
250
251 void blk_mq_wake_waiters(struct request_queue *q)
252 {
253 struct blk_mq_hw_ctx *hctx;
254 unsigned int i;
255
256 queue_for_each_hw_ctx(q, hctx, i)
257 if (blk_mq_hw_queue_mapped(hctx))
258 blk_mq_tag_wakeup_all(hctx->tags, true);
259 }
260
261 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
262 {
263 return blk_mq_has_free_tags(hctx->tags);
264 }
265 EXPORT_SYMBOL(blk_mq_can_queue);
266
267 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
268 unsigned int tag, unsigned int op)
269 {
270 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
271 struct request *rq = tags->static_rqs[tag];
272 req_flags_t rq_flags = 0;
273
274 if (data->flags & BLK_MQ_REQ_INTERNAL) {
275 rq->tag = -1;
276 rq->internal_tag = tag;
277 } else {
278 if (blk_mq_tag_busy(data->hctx)) {
279 rq_flags = RQF_MQ_INFLIGHT;
280 atomic_inc(&data->hctx->nr_active);
281 }
282 rq->tag = tag;
283 rq->internal_tag = -1;
284 data->hctx->tags->rqs[rq->tag] = rq;
285 }
286
287 /* csd/requeue_work/fifo_time is initialized before use */
288 rq->q = data->q;
289 rq->mq_ctx = data->ctx;
290 rq->rq_flags = rq_flags;
291 rq->cpu = -1;
292 rq->cmd_flags = op;
293 if (data->flags & BLK_MQ_REQ_PREEMPT)
294 rq->rq_flags |= RQF_PREEMPT;
295 if (blk_queue_io_stat(data->q))
296 rq->rq_flags |= RQF_IO_STAT;
297 INIT_LIST_HEAD(&rq->queuelist);
298 INIT_HLIST_NODE(&rq->hash);
299 RB_CLEAR_NODE(&rq->rb_node);
300 rq->rq_disk = NULL;
301 rq->part = NULL;
302 rq->start_time = jiffies;
303 rq->nr_phys_segments = 0;
304 #if defined(CONFIG_BLK_DEV_INTEGRITY)
305 rq->nr_integrity_segments = 0;
306 #endif
307 rq->special = NULL;
308 /* tag was already set */
309 rq->extra_len = 0;
310 rq->__deadline = 0;
311
312 INIT_LIST_HEAD(&rq->timeout_list);
313 rq->timeout = 0;
314
315 rq->end_io = NULL;
316 rq->end_io_data = NULL;
317 rq->next_rq = NULL;
318
319 #ifdef CONFIG_BLK_CGROUP
320 rq->rl = NULL;
321 set_start_time_ns(rq);
322 rq->io_start_time_ns = 0;
323 #endif
324
325 data->ctx->rq_dispatched[op_is_sync(op)]++;
326 return rq;
327 }
328
329 static struct request *blk_mq_get_request(struct request_queue *q,
330 struct bio *bio, unsigned int op,
331 struct blk_mq_alloc_data *data)
332 {
333 struct elevator_queue *e = q->elevator;
334 struct request *rq;
335 unsigned int tag;
336 bool put_ctx_on_error = false;
337
338 blk_queue_enter_live(q);
339 data->q = q;
340 if (likely(!data->ctx)) {
341 data->ctx = blk_mq_get_ctx(q);
342 put_ctx_on_error = true;
343 }
344 if (likely(!data->hctx))
345 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
346 if (op & REQ_NOWAIT)
347 data->flags |= BLK_MQ_REQ_NOWAIT;
348
349 if (e) {
350 data->flags |= BLK_MQ_REQ_INTERNAL;
351
352 /*
353 * Flush requests are special and go directly to the
354 * dispatch list.
355 */
356 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
357 e->type->ops.mq.limit_depth(op, data);
358 }
359
360 tag = blk_mq_get_tag(data);
361 if (tag == BLK_MQ_TAG_FAIL) {
362 if (put_ctx_on_error) {
363 blk_mq_put_ctx(data->ctx);
364 data->ctx = NULL;
365 }
366 blk_queue_exit(q);
367 return NULL;
368 }
369
370 rq = blk_mq_rq_ctx_init(data, tag, op);
371 if (!op_is_flush(op)) {
372 rq->elv.icq = NULL;
373 if (e && e->type->ops.mq.prepare_request) {
374 if (e->type->icq_cache && rq_ioc(bio))
375 blk_mq_sched_assign_ioc(rq, bio);
376
377 e->type->ops.mq.prepare_request(rq, bio);
378 rq->rq_flags |= RQF_ELVPRIV;
379 }
380 }
381 data->hctx->queued++;
382 return rq;
383 }
384
385 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
386 blk_mq_req_flags_t flags)
387 {
388 struct blk_mq_alloc_data alloc_data = { .flags = flags };
389 struct request *rq;
390 int ret;
391
392 ret = blk_queue_enter(q, flags);
393 if (ret)
394 return ERR_PTR(ret);
395
396 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
397 blk_queue_exit(q);
398
399 if (!rq)
400 return ERR_PTR(-EWOULDBLOCK);
401
402 blk_mq_put_ctx(alloc_data.ctx);
403
404 rq->__data_len = 0;
405 rq->__sector = (sector_t) -1;
406 rq->bio = rq->biotail = NULL;
407 return rq;
408 }
409 EXPORT_SYMBOL(blk_mq_alloc_request);
410
411 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
412 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
413 {
414 struct blk_mq_alloc_data alloc_data = { .flags = flags };
415 struct request *rq;
416 unsigned int cpu;
417 int ret;
418
419 /*
420 * If the tag allocator sleeps we could get an allocation for a
421 * different hardware context. No need to complicate the low level
422 * allocator for this for the rare use case of a command tied to
423 * a specific queue.
424 */
425 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
426 return ERR_PTR(-EINVAL);
427
428 if (hctx_idx >= q->nr_hw_queues)
429 return ERR_PTR(-EIO);
430
431 ret = blk_queue_enter(q, flags);
432 if (ret)
433 return ERR_PTR(ret);
434
435 /*
436 * Check if the hardware context is actually mapped to anything.
437 * If not tell the caller that it should skip this queue.
438 */
439 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
440 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
441 blk_queue_exit(q);
442 return ERR_PTR(-EXDEV);
443 }
444 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
445 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
446
447 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
448 blk_queue_exit(q);
449
450 if (!rq)
451 return ERR_PTR(-EWOULDBLOCK);
452
453 return rq;
454 }
455 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
456
457 void blk_mq_free_request(struct request *rq)
458 {
459 struct request_queue *q = rq->q;
460 struct elevator_queue *e = q->elevator;
461 struct blk_mq_ctx *ctx = rq->mq_ctx;
462 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
463 const int sched_tag = rq->internal_tag;
464
465 if (rq->rq_flags & RQF_ELVPRIV) {
466 if (e && e->type->ops.mq.finish_request)
467 e->type->ops.mq.finish_request(rq);
468 if (rq->elv.icq) {
469 put_io_context(rq->elv.icq->ioc);
470 rq->elv.icq = NULL;
471 }
472 }
473
474 ctx->rq_completed[rq_is_sync(rq)]++;
475 if (rq->rq_flags & RQF_MQ_INFLIGHT)
476 atomic_dec(&hctx->nr_active);
477
478 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
479 laptop_io_completion(q->backing_dev_info);
480
481 wbt_done(q->rq_wb, &rq->issue_stat);
482
483 if (blk_rq_rl(rq))
484 blk_put_rl(blk_rq_rl(rq));
485
486 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
487 if (rq->tag != -1)
488 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
489 if (sched_tag != -1)
490 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
491 blk_mq_sched_restart(hctx);
492 blk_queue_exit(q);
493 }
494 EXPORT_SYMBOL_GPL(blk_mq_free_request);
495
496 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
497 {
498 blk_account_io_done(rq);
499
500 if (rq->end_io) {
501 wbt_done(rq->q->rq_wb, &rq->issue_stat);
502 rq->end_io(rq, error);
503 } else {
504 if (unlikely(blk_bidi_rq(rq)))
505 blk_mq_free_request(rq->next_rq);
506 blk_mq_free_request(rq);
507 }
508 }
509 EXPORT_SYMBOL(__blk_mq_end_request);
510
511 void blk_mq_end_request(struct request *rq, blk_status_t error)
512 {
513 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
514 BUG();
515 __blk_mq_end_request(rq, error);
516 }
517 EXPORT_SYMBOL(blk_mq_end_request);
518
519 static void __blk_mq_complete_request_remote(void *data)
520 {
521 struct request *rq = data;
522
523 rq->q->softirq_done_fn(rq);
524 }
525
526 static void __blk_mq_complete_request(struct request *rq)
527 {
528 struct blk_mq_ctx *ctx = rq->mq_ctx;
529 bool shared = false;
530 int cpu;
531
532 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
533 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
534
535 if (rq->internal_tag != -1)
536 blk_mq_sched_completed_request(rq);
537 if (rq->rq_flags & RQF_STATS) {
538 blk_mq_poll_stats_start(rq->q);
539 blk_stat_add(rq);
540 }
541
542 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
543 rq->q->softirq_done_fn(rq);
544 return;
545 }
546
547 cpu = get_cpu();
548 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
549 shared = cpus_share_cache(cpu, ctx->cpu);
550
551 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
552 rq->csd.func = __blk_mq_complete_request_remote;
553 rq->csd.info = rq;
554 rq->csd.flags = 0;
555 smp_call_function_single_async(ctx->cpu, &rq->csd);
556 } else {
557 rq->q->softirq_done_fn(rq);
558 }
559 put_cpu();
560 }
561
562 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
563 __releases(hctx->srcu)
564 {
565 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
566 rcu_read_unlock();
567 else
568 srcu_read_unlock(hctx->srcu, srcu_idx);
569 }
570
571 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
572 __acquires(hctx->srcu)
573 {
574 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
575 /* shut up gcc false positive */
576 *srcu_idx = 0;
577 rcu_read_lock();
578 } else
579 *srcu_idx = srcu_read_lock(hctx->srcu);
580 }
581
582 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
583 {
584 unsigned long flags;
585
586 /*
587 * blk_mq_rq_aborted_gstate() is used from the completion path and
588 * can thus be called from irq context. u64_stats_fetch in the
589 * middle of update on the same CPU leads to lockup. Disable irq
590 * while updating.
591 */
592 local_irq_save(flags);
593 u64_stats_update_begin(&rq->aborted_gstate_sync);
594 rq->aborted_gstate = gstate;
595 u64_stats_update_end(&rq->aborted_gstate_sync);
596 local_irq_restore(flags);
597 }
598
599 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
600 {
601 unsigned int start;
602 u64 aborted_gstate;
603
604 do {
605 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
606 aborted_gstate = rq->aborted_gstate;
607 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
608
609 return aborted_gstate;
610 }
611
612 /**
613 * blk_mq_complete_request - end I/O on a request
614 * @rq: the request being processed
615 *
616 * Description:
617 * Ends all I/O on a request. It does not handle partial completions.
618 * The actual completion happens out-of-order, through a IPI handler.
619 **/
620 void blk_mq_complete_request(struct request *rq)
621 {
622 struct request_queue *q = rq->q;
623 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
624 int srcu_idx;
625
626 if (unlikely(blk_should_fake_timeout(q)))
627 return;
628
629 /*
630 * If @rq->aborted_gstate equals the current instance, timeout is
631 * claiming @rq and we lost. This is synchronized through
632 * hctx_lock(). See blk_mq_timeout_work() for details.
633 *
634 * Completion path never blocks and we can directly use RCU here
635 * instead of hctx_lock() which can be either RCU or SRCU.
636 * However, that would complicate paths which want to synchronize
637 * against us. Let stay in sync with the issue path so that
638 * hctx_lock() covers both issue and completion paths.
639 */
640 hctx_lock(hctx, &srcu_idx);
641 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
642 __blk_mq_complete_request(rq);
643 hctx_unlock(hctx, srcu_idx);
644 }
645 EXPORT_SYMBOL(blk_mq_complete_request);
646
647 int blk_mq_request_started(struct request *rq)
648 {
649 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
650 }
651 EXPORT_SYMBOL_GPL(blk_mq_request_started);
652
653 void blk_mq_start_request(struct request *rq)
654 {
655 struct request_queue *q = rq->q;
656
657 blk_mq_sched_started_request(rq);
658
659 trace_block_rq_issue(q, rq);
660
661 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
662 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
663 rq->rq_flags |= RQF_STATS;
664 wbt_issue(q->rq_wb, &rq->issue_stat);
665 }
666
667 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
668
669 /*
670 * Mark @rq in-flight which also advances the generation number,
671 * and register for timeout. Protect with a seqcount to allow the
672 * timeout path to read both @rq->gstate and @rq->deadline
673 * coherently.
674 *
675 * This is the only place where a request is marked in-flight. If
676 * the timeout path reads an in-flight @rq->gstate, the
677 * @rq->deadline it reads together under @rq->gstate_seq is
678 * guaranteed to be the matching one.
679 */
680 preempt_disable();
681 write_seqcount_begin(&rq->gstate_seq);
682
683 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
684 blk_add_timer(rq);
685
686 write_seqcount_end(&rq->gstate_seq);
687 preempt_enable();
688
689 if (q->dma_drain_size && blk_rq_bytes(rq)) {
690 /*
691 * Make sure space for the drain appears. We know we can do
692 * this because max_hw_segments has been adjusted to be one
693 * fewer than the device can handle.
694 */
695 rq->nr_phys_segments++;
696 }
697 }
698 EXPORT_SYMBOL(blk_mq_start_request);
699
700 /*
701 * When we reach here because queue is busy, it's safe to change the state
702 * to IDLE without checking @rq->aborted_gstate because we should still be
703 * holding the RCU read lock and thus protected against timeout.
704 */
705 static void __blk_mq_requeue_request(struct request *rq)
706 {
707 struct request_queue *q = rq->q;
708
709 blk_mq_put_driver_tag(rq);
710
711 trace_block_rq_requeue(q, rq);
712 wbt_requeue(q->rq_wb, &rq->issue_stat);
713 blk_mq_sched_requeue_request(rq);
714
715 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
716 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
717 if (q->dma_drain_size && blk_rq_bytes(rq))
718 rq->nr_phys_segments--;
719 }
720 }
721
722 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
723 {
724 __blk_mq_requeue_request(rq);
725
726 BUG_ON(blk_queued_rq(rq));
727 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
728 }
729 EXPORT_SYMBOL(blk_mq_requeue_request);
730
731 static void blk_mq_requeue_work(struct work_struct *work)
732 {
733 struct request_queue *q =
734 container_of(work, struct request_queue, requeue_work.work);
735 LIST_HEAD(rq_list);
736 struct request *rq, *next;
737
738 spin_lock_irq(&q->requeue_lock);
739 list_splice_init(&q->requeue_list, &rq_list);
740 spin_unlock_irq(&q->requeue_lock);
741
742 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
743 if (!(rq->rq_flags & RQF_SOFTBARRIER))
744 continue;
745
746 rq->rq_flags &= ~RQF_SOFTBARRIER;
747 list_del_init(&rq->queuelist);
748 blk_mq_sched_insert_request(rq, true, false, false, true);
749 }
750
751 while (!list_empty(&rq_list)) {
752 rq = list_entry(rq_list.next, struct request, queuelist);
753 list_del_init(&rq->queuelist);
754 blk_mq_sched_insert_request(rq, false, false, false, true);
755 }
756
757 blk_mq_run_hw_queues(q, false);
758 }
759
760 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
761 bool kick_requeue_list)
762 {
763 struct request_queue *q = rq->q;
764 unsigned long flags;
765
766 /*
767 * We abuse this flag that is otherwise used by the I/O scheduler to
768 * request head insertion from the workqueue.
769 */
770 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
771
772 spin_lock_irqsave(&q->requeue_lock, flags);
773 if (at_head) {
774 rq->rq_flags |= RQF_SOFTBARRIER;
775 list_add(&rq->queuelist, &q->requeue_list);
776 } else {
777 list_add_tail(&rq->queuelist, &q->requeue_list);
778 }
779 spin_unlock_irqrestore(&q->requeue_lock, flags);
780
781 if (kick_requeue_list)
782 blk_mq_kick_requeue_list(q);
783 }
784 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
785
786 void blk_mq_kick_requeue_list(struct request_queue *q)
787 {
788 kblockd_schedule_delayed_work(&q->requeue_work, 0);
789 }
790 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
791
792 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
793 unsigned long msecs)
794 {
795 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
796 msecs_to_jiffies(msecs));
797 }
798 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
799
800 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
801 {
802 if (tag < tags->nr_tags) {
803 prefetch(tags->rqs[tag]);
804 return tags->rqs[tag];
805 }
806
807 return NULL;
808 }
809 EXPORT_SYMBOL(blk_mq_tag_to_rq);
810
811 struct blk_mq_timeout_data {
812 unsigned long next;
813 unsigned int next_set;
814 unsigned int nr_expired;
815 };
816
817 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
818 {
819 const struct blk_mq_ops *ops = req->q->mq_ops;
820 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
821
822 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
823
824 if (ops->timeout)
825 ret = ops->timeout(req, reserved);
826
827 switch (ret) {
828 case BLK_EH_HANDLED:
829 __blk_mq_complete_request(req);
830 break;
831 case BLK_EH_RESET_TIMER:
832 /*
833 * As nothing prevents from completion happening while
834 * ->aborted_gstate is set, this may lead to ignored
835 * completions and further spurious timeouts.
836 */
837 blk_mq_rq_update_aborted_gstate(req, 0);
838 blk_add_timer(req);
839 break;
840 case BLK_EH_NOT_HANDLED:
841 break;
842 default:
843 printk(KERN_ERR "block: bad eh return: %d\n", ret);
844 break;
845 }
846 }
847
848 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
849 struct request *rq, void *priv, bool reserved)
850 {
851 struct blk_mq_timeout_data *data = priv;
852 unsigned long gstate, deadline;
853 int start;
854
855 might_sleep();
856
857 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
858 return;
859
860 /* read coherent snapshots of @rq->state_gen and @rq->deadline */
861 while (true) {
862 start = read_seqcount_begin(&rq->gstate_seq);
863 gstate = READ_ONCE(rq->gstate);
864 deadline = blk_rq_deadline(rq);
865 if (!read_seqcount_retry(&rq->gstate_seq, start))
866 break;
867 cond_resched();
868 }
869
870 /* if in-flight && overdue, mark for abortion */
871 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
872 time_after_eq(jiffies, deadline)) {
873 blk_mq_rq_update_aborted_gstate(rq, gstate);
874 data->nr_expired++;
875 hctx->nr_expired++;
876 } else if (!data->next_set || time_after(data->next, deadline)) {
877 data->next = deadline;
878 data->next_set = 1;
879 }
880 }
881
882 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
883 struct request *rq, void *priv, bool reserved)
884 {
885 /*
886 * We marked @rq->aborted_gstate and waited for RCU. If there were
887 * completions that we lost to, they would have finished and
888 * updated @rq->gstate by now; otherwise, the completion path is
889 * now guaranteed to see @rq->aborted_gstate and yield. If
890 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
891 */
892 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
893 READ_ONCE(rq->gstate) == rq->aborted_gstate)
894 blk_mq_rq_timed_out(rq, reserved);
895 }
896
897 static void blk_mq_timeout_work(struct work_struct *work)
898 {
899 struct request_queue *q =
900 container_of(work, struct request_queue, timeout_work);
901 struct blk_mq_timeout_data data = {
902 .next = 0,
903 .next_set = 0,
904 .nr_expired = 0,
905 };
906 struct blk_mq_hw_ctx *hctx;
907 int i;
908
909 /* A deadlock might occur if a request is stuck requiring a
910 * timeout at the same time a queue freeze is waiting
911 * completion, since the timeout code would not be able to
912 * acquire the queue reference here.
913 *
914 * That's why we don't use blk_queue_enter here; instead, we use
915 * percpu_ref_tryget directly, because we need to be able to
916 * obtain a reference even in the short window between the queue
917 * starting to freeze, by dropping the first reference in
918 * blk_freeze_queue_start, and the moment the last request is
919 * consumed, marked by the instant q_usage_counter reaches
920 * zero.
921 */
922 if (!percpu_ref_tryget(&q->q_usage_counter))
923 return;
924
925 /* scan for the expired ones and set their ->aborted_gstate */
926 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
927
928 if (data.nr_expired) {
929 bool has_rcu = false;
930
931 /*
932 * Wait till everyone sees ->aborted_gstate. The
933 * sequential waits for SRCUs aren't ideal. If this ever
934 * becomes a problem, we can add per-hw_ctx rcu_head and
935 * wait in parallel.
936 */
937 queue_for_each_hw_ctx(q, hctx, i) {
938 if (!hctx->nr_expired)
939 continue;
940
941 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
942 has_rcu = true;
943 else
944 synchronize_srcu(hctx->srcu);
945
946 hctx->nr_expired = 0;
947 }
948 if (has_rcu)
949 synchronize_rcu();
950
951 /* terminate the ones we won */
952 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
953 }
954
955 if (data.next_set) {
956 data.next = blk_rq_timeout(round_jiffies_up(data.next));
957 mod_timer(&q->timeout, data.next);
958 } else {
959 /*
960 * Request timeouts are handled as a forward rolling timer. If
961 * we end up here it means that no requests are pending and
962 * also that no request has been pending for a while. Mark
963 * each hctx as idle.
964 */
965 queue_for_each_hw_ctx(q, hctx, i) {
966 /* the hctx may be unmapped, so check it here */
967 if (blk_mq_hw_queue_mapped(hctx))
968 blk_mq_tag_idle(hctx);
969 }
970 }
971 blk_queue_exit(q);
972 }
973
974 struct flush_busy_ctx_data {
975 struct blk_mq_hw_ctx *hctx;
976 struct list_head *list;
977 };
978
979 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
980 {
981 struct flush_busy_ctx_data *flush_data = data;
982 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
983 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
984
985 sbitmap_clear_bit(sb, bitnr);
986 spin_lock(&ctx->lock);
987 list_splice_tail_init(&ctx->rq_list, flush_data->list);
988 spin_unlock(&ctx->lock);
989 return true;
990 }
991
992 /*
993 * Process software queues that have been marked busy, splicing them
994 * to the for-dispatch
995 */
996 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
997 {
998 struct flush_busy_ctx_data data = {
999 .hctx = hctx,
1000 .list = list,
1001 };
1002
1003 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1004 }
1005 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1006
1007 struct dispatch_rq_data {
1008 struct blk_mq_hw_ctx *hctx;
1009 struct request *rq;
1010 };
1011
1012 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1013 void *data)
1014 {
1015 struct dispatch_rq_data *dispatch_data = data;
1016 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1017 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1018
1019 spin_lock(&ctx->lock);
1020 if (unlikely(!list_empty(&ctx->rq_list))) {
1021 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1022 list_del_init(&dispatch_data->rq->queuelist);
1023 if (list_empty(&ctx->rq_list))
1024 sbitmap_clear_bit(sb, bitnr);
1025 }
1026 spin_unlock(&ctx->lock);
1027
1028 return !dispatch_data->rq;
1029 }
1030
1031 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1032 struct blk_mq_ctx *start)
1033 {
1034 unsigned off = start ? start->index_hw : 0;
1035 struct dispatch_rq_data data = {
1036 .hctx = hctx,
1037 .rq = NULL,
1038 };
1039
1040 __sbitmap_for_each_set(&hctx->ctx_map, off,
1041 dispatch_rq_from_ctx, &data);
1042
1043 return data.rq;
1044 }
1045
1046 static inline unsigned int queued_to_index(unsigned int queued)
1047 {
1048 if (!queued)
1049 return 0;
1050
1051 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1052 }
1053
1054 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1055 bool wait)
1056 {
1057 struct blk_mq_alloc_data data = {
1058 .q = rq->q,
1059 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1060 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1061 };
1062
1063 might_sleep_if(wait);
1064
1065 if (rq->tag != -1)
1066 goto done;
1067
1068 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1069 data.flags |= BLK_MQ_REQ_RESERVED;
1070
1071 rq->tag = blk_mq_get_tag(&data);
1072 if (rq->tag >= 0) {
1073 if (blk_mq_tag_busy(data.hctx)) {
1074 rq->rq_flags |= RQF_MQ_INFLIGHT;
1075 atomic_inc(&data.hctx->nr_active);
1076 }
1077 data.hctx->tags->rqs[rq->tag] = rq;
1078 }
1079
1080 done:
1081 if (hctx)
1082 *hctx = data.hctx;
1083 return rq->tag != -1;
1084 }
1085
1086 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1087 int flags, void *key)
1088 {
1089 struct blk_mq_hw_ctx *hctx;
1090
1091 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1092
1093 list_del_init(&wait->entry);
1094 blk_mq_run_hw_queue(hctx, true);
1095 return 1;
1096 }
1097
1098 /*
1099 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1100 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1101 * restart. For both cases, take care to check the condition again after
1102 * marking us as waiting.
1103 */
1104 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1105 struct request *rq)
1106 {
1107 struct blk_mq_hw_ctx *this_hctx = *hctx;
1108 struct sbq_wait_state *ws;
1109 wait_queue_entry_t *wait;
1110 bool ret;
1111
1112 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1113 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1114 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1115
1116 /*
1117 * It's possible that a tag was freed in the window between the
1118 * allocation failure and adding the hardware queue to the wait
1119 * queue.
1120 *
1121 * Don't clear RESTART here, someone else could have set it.
1122 * At most this will cost an extra queue run.
1123 */
1124 return blk_mq_get_driver_tag(rq, hctx, false);
1125 }
1126
1127 wait = &this_hctx->dispatch_wait;
1128 if (!list_empty_careful(&wait->entry))
1129 return false;
1130
1131 spin_lock(&this_hctx->lock);
1132 if (!list_empty(&wait->entry)) {
1133 spin_unlock(&this_hctx->lock);
1134 return false;
1135 }
1136
1137 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1138 add_wait_queue(&ws->wait, wait);
1139
1140 /*
1141 * It's possible that a tag was freed in the window between the
1142 * allocation failure and adding the hardware queue to the wait
1143 * queue.
1144 */
1145 ret = blk_mq_get_driver_tag(rq, hctx, false);
1146 if (!ret) {
1147 spin_unlock(&this_hctx->lock);
1148 return false;
1149 }
1150
1151 /*
1152 * We got a tag, remove ourselves from the wait queue to ensure
1153 * someone else gets the wakeup.
1154 */
1155 spin_lock_irq(&ws->wait.lock);
1156 list_del_init(&wait->entry);
1157 spin_unlock_irq(&ws->wait.lock);
1158 spin_unlock(&this_hctx->lock);
1159
1160 return true;
1161 }
1162
1163 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1164 bool got_budget)
1165 {
1166 struct blk_mq_hw_ctx *hctx;
1167 struct request *rq, *nxt;
1168 bool no_tag = false;
1169 int errors, queued;
1170
1171 if (list_empty(list))
1172 return false;
1173
1174 WARN_ON(!list_is_singular(list) && got_budget);
1175
1176 /*
1177 * Now process all the entries, sending them to the driver.
1178 */
1179 errors = queued = 0;
1180 do {
1181 struct blk_mq_queue_data bd;
1182 blk_status_t ret;
1183
1184 rq = list_first_entry(list, struct request, queuelist);
1185 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1186 /*
1187 * The initial allocation attempt failed, so we need to
1188 * rerun the hardware queue when a tag is freed. The
1189 * waitqueue takes care of that. If the queue is run
1190 * before we add this entry back on the dispatch list,
1191 * we'll re-run it below.
1192 */
1193 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1194 if (got_budget)
1195 blk_mq_put_dispatch_budget(hctx);
1196 /*
1197 * For non-shared tags, the RESTART check
1198 * will suffice.
1199 */
1200 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1201 no_tag = true;
1202 break;
1203 }
1204 }
1205
1206 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
1207 blk_mq_put_driver_tag(rq);
1208 break;
1209 }
1210
1211 list_del_init(&rq->queuelist);
1212
1213 bd.rq = rq;
1214
1215 /*
1216 * Flag last if we have no more requests, or if we have more
1217 * but can't assign a driver tag to it.
1218 */
1219 if (list_empty(list))
1220 bd.last = true;
1221 else {
1222 nxt = list_first_entry(list, struct request, queuelist);
1223 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1224 }
1225
1226 ret = q->mq_ops->queue_rq(hctx, &bd);
1227 if (ret == BLK_STS_RESOURCE) {
1228 /*
1229 * If an I/O scheduler has been configured and we got a
1230 * driver tag for the next request already, free it
1231 * again.
1232 */
1233 if (!list_empty(list)) {
1234 nxt = list_first_entry(list, struct request, queuelist);
1235 blk_mq_put_driver_tag(nxt);
1236 }
1237 list_add(&rq->queuelist, list);
1238 __blk_mq_requeue_request(rq);
1239 break;
1240 }
1241
1242 if (unlikely(ret != BLK_STS_OK)) {
1243 errors++;
1244 blk_mq_end_request(rq, BLK_STS_IOERR);
1245 continue;
1246 }
1247
1248 queued++;
1249 } while (!list_empty(list));
1250
1251 hctx->dispatched[queued_to_index(queued)]++;
1252
1253 /*
1254 * Any items that need requeuing? Stuff them into hctx->dispatch,
1255 * that is where we will continue on next queue run.
1256 */
1257 if (!list_empty(list)) {
1258 spin_lock(&hctx->lock);
1259 list_splice_init(list, &hctx->dispatch);
1260 spin_unlock(&hctx->lock);
1261
1262 /*
1263 * If SCHED_RESTART was set by the caller of this function and
1264 * it is no longer set that means that it was cleared by another
1265 * thread and hence that a queue rerun is needed.
1266 *
1267 * If 'no_tag' is set, that means that we failed getting
1268 * a driver tag with an I/O scheduler attached. If our dispatch
1269 * waitqueue is no longer active, ensure that we run the queue
1270 * AFTER adding our entries back to the list.
1271 *
1272 * If no I/O scheduler has been configured it is possible that
1273 * the hardware queue got stopped and restarted before requests
1274 * were pushed back onto the dispatch list. Rerun the queue to
1275 * avoid starvation. Notes:
1276 * - blk_mq_run_hw_queue() checks whether or not a queue has
1277 * been stopped before rerunning a queue.
1278 * - Some but not all block drivers stop a queue before
1279 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1280 * and dm-rq.
1281 */
1282 if (!blk_mq_sched_needs_restart(hctx) ||
1283 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1284 blk_mq_run_hw_queue(hctx, true);
1285 }
1286
1287 return (queued + errors) != 0;
1288 }
1289
1290 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1291 {
1292 int srcu_idx;
1293
1294 /*
1295 * We should be running this queue from one of the CPUs that
1296 * are mapped to it.
1297 */
1298 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1299 cpu_online(hctx->next_cpu));
1300
1301 /*
1302 * We can't run the queue inline with ints disabled. Ensure that
1303 * we catch bad users of this early.
1304 */
1305 WARN_ON_ONCE(in_interrupt());
1306
1307 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1308
1309 hctx_lock(hctx, &srcu_idx);
1310 blk_mq_sched_dispatch_requests(hctx);
1311 hctx_unlock(hctx, srcu_idx);
1312 }
1313
1314 /*
1315 * It'd be great if the workqueue API had a way to pass
1316 * in a mask and had some smarts for more clever placement.
1317 * For now we just round-robin here, switching for every
1318 * BLK_MQ_CPU_WORK_BATCH queued items.
1319 */
1320 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1321 {
1322 if (hctx->queue->nr_hw_queues == 1)
1323 return WORK_CPU_UNBOUND;
1324
1325 if (--hctx->next_cpu_batch <= 0) {
1326 int next_cpu;
1327
1328 next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
1329 cpu_online_mask);
1330 if (next_cpu >= nr_cpu_ids)
1331 next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1332
1333 hctx->next_cpu = next_cpu;
1334 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1335 }
1336
1337 return hctx->next_cpu;
1338 }
1339
1340 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1341 unsigned long msecs)
1342 {
1343 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1344 return;
1345
1346 if (unlikely(blk_mq_hctx_stopped(hctx)))
1347 return;
1348
1349 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1350 int cpu = get_cpu();
1351 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1352 __blk_mq_run_hw_queue(hctx);
1353 put_cpu();
1354 return;
1355 }
1356
1357 put_cpu();
1358 }
1359
1360 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1361 &hctx->run_work,
1362 msecs_to_jiffies(msecs));
1363 }
1364
1365 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1366 {
1367 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1368 }
1369 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1370
1371 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1372 {
1373 int srcu_idx;
1374 bool need_run;
1375
1376 /*
1377 * When queue is quiesced, we may be switching io scheduler, or
1378 * updating nr_hw_queues, or other things, and we can't run queue
1379 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1380 *
1381 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1382 * quiesced.
1383 */
1384 hctx_lock(hctx, &srcu_idx);
1385 need_run = !blk_queue_quiesced(hctx->queue) &&
1386 blk_mq_hctx_has_pending(hctx);
1387 hctx_unlock(hctx, srcu_idx);
1388
1389 if (need_run) {
1390 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1391 return true;
1392 }
1393
1394 return false;
1395 }
1396 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1397
1398 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1399 {
1400 struct blk_mq_hw_ctx *hctx;
1401 int i;
1402
1403 queue_for_each_hw_ctx(q, hctx, i) {
1404 if (blk_mq_hctx_stopped(hctx))
1405 continue;
1406
1407 blk_mq_run_hw_queue(hctx, async);
1408 }
1409 }
1410 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1411
1412 /**
1413 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1414 * @q: request queue.
1415 *
1416 * The caller is responsible for serializing this function against
1417 * blk_mq_{start,stop}_hw_queue().
1418 */
1419 bool blk_mq_queue_stopped(struct request_queue *q)
1420 {
1421 struct blk_mq_hw_ctx *hctx;
1422 int i;
1423
1424 queue_for_each_hw_ctx(q, hctx, i)
1425 if (blk_mq_hctx_stopped(hctx))
1426 return true;
1427
1428 return false;
1429 }
1430 EXPORT_SYMBOL(blk_mq_queue_stopped);
1431
1432 /*
1433 * This function is often used for pausing .queue_rq() by driver when
1434 * there isn't enough resource or some conditions aren't satisfied, and
1435 * BLK_STS_RESOURCE is usually returned.
1436 *
1437 * We do not guarantee that dispatch can be drained or blocked
1438 * after blk_mq_stop_hw_queue() returns. Please use
1439 * blk_mq_quiesce_queue() for that requirement.
1440 */
1441 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1442 {
1443 cancel_delayed_work(&hctx->run_work);
1444
1445 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1446 }
1447 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1448
1449 /*
1450 * This function is often used for pausing .queue_rq() by driver when
1451 * there isn't enough resource or some conditions aren't satisfied, and
1452 * BLK_STS_RESOURCE is usually returned.
1453 *
1454 * We do not guarantee that dispatch can be drained or blocked
1455 * after blk_mq_stop_hw_queues() returns. Please use
1456 * blk_mq_quiesce_queue() for that requirement.
1457 */
1458 void blk_mq_stop_hw_queues(struct request_queue *q)
1459 {
1460 struct blk_mq_hw_ctx *hctx;
1461 int i;
1462
1463 queue_for_each_hw_ctx(q, hctx, i)
1464 blk_mq_stop_hw_queue(hctx);
1465 }
1466 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1467
1468 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1469 {
1470 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1471
1472 blk_mq_run_hw_queue(hctx, false);
1473 }
1474 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1475
1476 void blk_mq_start_hw_queues(struct request_queue *q)
1477 {
1478 struct blk_mq_hw_ctx *hctx;
1479 int i;
1480
1481 queue_for_each_hw_ctx(q, hctx, i)
1482 blk_mq_start_hw_queue(hctx);
1483 }
1484 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1485
1486 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1487 {
1488 if (!blk_mq_hctx_stopped(hctx))
1489 return;
1490
1491 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1492 blk_mq_run_hw_queue(hctx, async);
1493 }
1494 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1495
1496 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1497 {
1498 struct blk_mq_hw_ctx *hctx;
1499 int i;
1500
1501 queue_for_each_hw_ctx(q, hctx, i)
1502 blk_mq_start_stopped_hw_queue(hctx, async);
1503 }
1504 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1505
1506 static void blk_mq_run_work_fn(struct work_struct *work)
1507 {
1508 struct blk_mq_hw_ctx *hctx;
1509
1510 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1511
1512 /*
1513 * If we are stopped, don't run the queue. The exception is if
1514 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1515 * the STOPPED bit and run it.
1516 */
1517 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1518 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1519 return;
1520
1521 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1522 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1523 }
1524
1525 __blk_mq_run_hw_queue(hctx);
1526 }
1527
1528
1529 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1530 {
1531 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1532 return;
1533
1534 /*
1535 * Stop the hw queue, then modify currently delayed work.
1536 * This should prevent us from running the queue prematurely.
1537 * Mark the queue as auto-clearing STOPPED when it runs.
1538 */
1539 blk_mq_stop_hw_queue(hctx);
1540 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1541 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1542 &hctx->run_work,
1543 msecs_to_jiffies(msecs));
1544 }
1545 EXPORT_SYMBOL(blk_mq_delay_queue);
1546
1547 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1548 struct request *rq,
1549 bool at_head)
1550 {
1551 struct blk_mq_ctx *ctx = rq->mq_ctx;
1552
1553 lockdep_assert_held(&ctx->lock);
1554
1555 trace_block_rq_insert(hctx->queue, rq);
1556
1557 if (at_head)
1558 list_add(&rq->queuelist, &ctx->rq_list);
1559 else
1560 list_add_tail(&rq->queuelist, &ctx->rq_list);
1561 }
1562
1563 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1564 bool at_head)
1565 {
1566 struct blk_mq_ctx *ctx = rq->mq_ctx;
1567
1568 lockdep_assert_held(&ctx->lock);
1569
1570 __blk_mq_insert_req_list(hctx, rq, at_head);
1571 blk_mq_hctx_mark_pending(hctx, ctx);
1572 }
1573
1574 /*
1575 * Should only be used carefully, when the caller knows we want to
1576 * bypass a potential IO scheduler on the target device.
1577 */
1578 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1579 {
1580 struct blk_mq_ctx *ctx = rq->mq_ctx;
1581 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1582
1583 spin_lock(&hctx->lock);
1584 list_add_tail(&rq->queuelist, &hctx->dispatch);
1585 spin_unlock(&hctx->lock);
1586
1587 if (run_queue)
1588 blk_mq_run_hw_queue(hctx, false);
1589 }
1590
1591 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1592 struct list_head *list)
1593
1594 {
1595 /*
1596 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1597 * offline now
1598 */
1599 spin_lock(&ctx->lock);
1600 while (!list_empty(list)) {
1601 struct request *rq;
1602
1603 rq = list_first_entry(list, struct request, queuelist);
1604 BUG_ON(rq->mq_ctx != ctx);
1605 list_del_init(&rq->queuelist);
1606 __blk_mq_insert_req_list(hctx, rq, false);
1607 }
1608 blk_mq_hctx_mark_pending(hctx, ctx);
1609 spin_unlock(&ctx->lock);
1610 }
1611
1612 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1613 {
1614 struct request *rqa = container_of(a, struct request, queuelist);
1615 struct request *rqb = container_of(b, struct request, queuelist);
1616
1617 return !(rqa->mq_ctx < rqb->mq_ctx ||
1618 (rqa->mq_ctx == rqb->mq_ctx &&
1619 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1620 }
1621
1622 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1623 {
1624 struct blk_mq_ctx *this_ctx;
1625 struct request_queue *this_q;
1626 struct request *rq;
1627 LIST_HEAD(list);
1628 LIST_HEAD(ctx_list);
1629 unsigned int depth;
1630
1631 list_splice_init(&plug->mq_list, &list);
1632
1633 list_sort(NULL, &list, plug_ctx_cmp);
1634
1635 this_q = NULL;
1636 this_ctx = NULL;
1637 depth = 0;
1638
1639 while (!list_empty(&list)) {
1640 rq = list_entry_rq(list.next);
1641 list_del_init(&rq->queuelist);
1642 BUG_ON(!rq->q);
1643 if (rq->mq_ctx != this_ctx) {
1644 if (this_ctx) {
1645 trace_block_unplug(this_q, depth, from_schedule);
1646 blk_mq_sched_insert_requests(this_q, this_ctx,
1647 &ctx_list,
1648 from_schedule);
1649 }
1650
1651 this_ctx = rq->mq_ctx;
1652 this_q = rq->q;
1653 depth = 0;
1654 }
1655
1656 depth++;
1657 list_add_tail(&rq->queuelist, &ctx_list);
1658 }
1659
1660 /*
1661 * If 'this_ctx' is set, we know we have entries to complete
1662 * on 'ctx_list'. Do those.
1663 */
1664 if (this_ctx) {
1665 trace_block_unplug(this_q, depth, from_schedule);
1666 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1667 from_schedule);
1668 }
1669 }
1670
1671 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1672 {
1673 blk_init_request_from_bio(rq, bio);
1674
1675 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1676
1677 blk_account_io_start(rq, true);
1678 }
1679
1680 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1681 struct blk_mq_ctx *ctx,
1682 struct request *rq)
1683 {
1684 spin_lock(&ctx->lock);
1685 __blk_mq_insert_request(hctx, rq, false);
1686 spin_unlock(&ctx->lock);
1687 }
1688
1689 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1690 {
1691 if (rq->tag != -1)
1692 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1693
1694 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1695 }
1696
1697 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1698 struct request *rq,
1699 blk_qc_t *cookie)
1700 {
1701 struct request_queue *q = rq->q;
1702 struct blk_mq_queue_data bd = {
1703 .rq = rq,
1704 .last = true,
1705 };
1706 blk_qc_t new_cookie;
1707 blk_status_t ret;
1708 bool run_queue = true;
1709
1710 /* RCU or SRCU read lock is needed before checking quiesced flag */
1711 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1712 run_queue = false;
1713 goto insert;
1714 }
1715
1716 if (q->elevator)
1717 goto insert;
1718
1719 if (!blk_mq_get_driver_tag(rq, NULL, false))
1720 goto insert;
1721
1722 if (!blk_mq_get_dispatch_budget(hctx)) {
1723 blk_mq_put_driver_tag(rq);
1724 goto insert;
1725 }
1726
1727 new_cookie = request_to_qc_t(hctx, rq);
1728
1729 /*
1730 * For OK queue, we are done. For error, kill it. Any other
1731 * error (busy), just add it to our list as we previously
1732 * would have done
1733 */
1734 ret = q->mq_ops->queue_rq(hctx, &bd);
1735 switch (ret) {
1736 case BLK_STS_OK:
1737 *cookie = new_cookie;
1738 return;
1739 case BLK_STS_RESOURCE:
1740 __blk_mq_requeue_request(rq);
1741 goto insert;
1742 default:
1743 *cookie = BLK_QC_T_NONE;
1744 blk_mq_end_request(rq, ret);
1745 return;
1746 }
1747
1748 insert:
1749 blk_mq_sched_insert_request(rq, false, run_queue, false,
1750 hctx->flags & BLK_MQ_F_BLOCKING);
1751 }
1752
1753 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1754 struct request *rq, blk_qc_t *cookie)
1755 {
1756 int srcu_idx;
1757
1758 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1759
1760 hctx_lock(hctx, &srcu_idx);
1761 __blk_mq_try_issue_directly(hctx, rq, cookie);
1762 hctx_unlock(hctx, srcu_idx);
1763 }
1764
1765 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1766 {
1767 const int is_sync = op_is_sync(bio->bi_opf);
1768 const int is_flush_fua = op_is_flush(bio->bi_opf);
1769 struct blk_mq_alloc_data data = { .flags = 0 };
1770 struct request *rq;
1771 unsigned int request_count = 0;
1772 struct blk_plug *plug;
1773 struct request *same_queue_rq = NULL;
1774 blk_qc_t cookie;
1775 unsigned int wb_acct;
1776
1777 blk_queue_bounce(q, &bio);
1778
1779 blk_queue_split(q, &bio);
1780
1781 if (!bio_integrity_prep(bio))
1782 return BLK_QC_T_NONE;
1783
1784 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1785 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1786 return BLK_QC_T_NONE;
1787
1788 if (blk_mq_sched_bio_merge(q, bio))
1789 return BLK_QC_T_NONE;
1790
1791 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1792
1793 trace_block_getrq(q, bio, bio->bi_opf);
1794
1795 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1796 if (unlikely(!rq)) {
1797 __wbt_done(q->rq_wb, wb_acct);
1798 if (bio->bi_opf & REQ_NOWAIT)
1799 bio_wouldblock_error(bio);
1800 return BLK_QC_T_NONE;
1801 }
1802
1803 wbt_track(&rq->issue_stat, wb_acct);
1804
1805 cookie = request_to_qc_t(data.hctx, rq);
1806
1807 plug = current->plug;
1808 if (unlikely(is_flush_fua)) {
1809 blk_mq_put_ctx(data.ctx);
1810 blk_mq_bio_to_request(rq, bio);
1811
1812 /* bypass scheduler for flush rq */
1813 blk_insert_flush(rq);
1814 blk_mq_run_hw_queue(data.hctx, true);
1815 } else if (plug && q->nr_hw_queues == 1) {
1816 struct request *last = NULL;
1817
1818 blk_mq_put_ctx(data.ctx);
1819 blk_mq_bio_to_request(rq, bio);
1820
1821 /*
1822 * @request_count may become stale because of schedule
1823 * out, so check the list again.
1824 */
1825 if (list_empty(&plug->mq_list))
1826 request_count = 0;
1827 else if (blk_queue_nomerges(q))
1828 request_count = blk_plug_queued_count(q);
1829
1830 if (!request_count)
1831 trace_block_plug(q);
1832 else
1833 last = list_entry_rq(plug->mq_list.prev);
1834
1835 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1836 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1837 blk_flush_plug_list(plug, false);
1838 trace_block_plug(q);
1839 }
1840
1841 list_add_tail(&rq->queuelist, &plug->mq_list);
1842 } else if (plug && !blk_queue_nomerges(q)) {
1843 blk_mq_bio_to_request(rq, bio);
1844
1845 /*
1846 * We do limited plugging. If the bio can be merged, do that.
1847 * Otherwise the existing request in the plug list will be
1848 * issued. So the plug list will have one request at most
1849 * The plug list might get flushed before this. If that happens,
1850 * the plug list is empty, and same_queue_rq is invalid.
1851 */
1852 if (list_empty(&plug->mq_list))
1853 same_queue_rq = NULL;
1854 if (same_queue_rq)
1855 list_del_init(&same_queue_rq->queuelist);
1856 list_add_tail(&rq->queuelist, &plug->mq_list);
1857
1858 blk_mq_put_ctx(data.ctx);
1859
1860 if (same_queue_rq) {
1861 data.hctx = blk_mq_map_queue(q,
1862 same_queue_rq->mq_ctx->cpu);
1863 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1864 &cookie);
1865 }
1866 } else if (q->nr_hw_queues > 1 && is_sync) {
1867 blk_mq_put_ctx(data.ctx);
1868 blk_mq_bio_to_request(rq, bio);
1869 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1870 } else if (q->elevator) {
1871 blk_mq_put_ctx(data.ctx);
1872 blk_mq_bio_to_request(rq, bio);
1873 blk_mq_sched_insert_request(rq, false, true, true, true);
1874 } else {
1875 blk_mq_put_ctx(data.ctx);
1876 blk_mq_bio_to_request(rq, bio);
1877 blk_mq_queue_io(data.hctx, data.ctx, rq);
1878 blk_mq_run_hw_queue(data.hctx, true);
1879 }
1880
1881 return cookie;
1882 }
1883
1884 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1885 unsigned int hctx_idx)
1886 {
1887 struct page *page;
1888
1889 if (tags->rqs && set->ops->exit_request) {
1890 int i;
1891
1892 for (i = 0; i < tags->nr_tags; i++) {
1893 struct request *rq = tags->static_rqs[i];
1894
1895 if (!rq)
1896 continue;
1897 set->ops->exit_request(set, rq, hctx_idx);
1898 tags->static_rqs[i] = NULL;
1899 }
1900 }
1901
1902 while (!list_empty(&tags->page_list)) {
1903 page = list_first_entry(&tags->page_list, struct page, lru);
1904 list_del_init(&page->lru);
1905 /*
1906 * Remove kmemleak object previously allocated in
1907 * blk_mq_init_rq_map().
1908 */
1909 kmemleak_free(page_address(page));
1910 __free_pages(page, page->private);
1911 }
1912 }
1913
1914 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1915 {
1916 kfree(tags->rqs);
1917 tags->rqs = NULL;
1918 kfree(tags->static_rqs);
1919 tags->static_rqs = NULL;
1920
1921 blk_mq_free_tags(tags);
1922 }
1923
1924 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1925 unsigned int hctx_idx,
1926 unsigned int nr_tags,
1927 unsigned int reserved_tags)
1928 {
1929 struct blk_mq_tags *tags;
1930 int node;
1931
1932 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1933 if (node == NUMA_NO_NODE)
1934 node = set->numa_node;
1935
1936 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1937 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1938 if (!tags)
1939 return NULL;
1940
1941 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1942 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1943 node);
1944 if (!tags->rqs) {
1945 blk_mq_free_tags(tags);
1946 return NULL;
1947 }
1948
1949 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1950 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1951 node);
1952 if (!tags->static_rqs) {
1953 kfree(tags->rqs);
1954 blk_mq_free_tags(tags);
1955 return NULL;
1956 }
1957
1958 return tags;
1959 }
1960
1961 static size_t order_to_size(unsigned int order)
1962 {
1963 return (size_t)PAGE_SIZE << order;
1964 }
1965
1966 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1967 unsigned int hctx_idx, int node)
1968 {
1969 int ret;
1970
1971 if (set->ops->init_request) {
1972 ret = set->ops->init_request(set, rq, hctx_idx, node);
1973 if (ret)
1974 return ret;
1975 }
1976
1977 seqcount_init(&rq->gstate_seq);
1978 u64_stats_init(&rq->aborted_gstate_sync);
1979 return 0;
1980 }
1981
1982 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1983 unsigned int hctx_idx, unsigned int depth)
1984 {
1985 unsigned int i, j, entries_per_page, max_order = 4;
1986 size_t rq_size, left;
1987 int node;
1988
1989 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1990 if (node == NUMA_NO_NODE)
1991 node = set->numa_node;
1992
1993 INIT_LIST_HEAD(&tags->page_list);
1994
1995 /*
1996 * rq_size is the size of the request plus driver payload, rounded
1997 * to the cacheline size
1998 */
1999 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2000 cache_line_size());
2001 left = rq_size * depth;
2002
2003 for (i = 0; i < depth; ) {
2004 int this_order = max_order;
2005 struct page *page;
2006 int to_do;
2007 void *p;
2008
2009 while (this_order && left < order_to_size(this_order - 1))
2010 this_order--;
2011
2012 do {
2013 page = alloc_pages_node(node,
2014 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2015 this_order);
2016 if (page)
2017 break;
2018 if (!this_order--)
2019 break;
2020 if (order_to_size(this_order) < rq_size)
2021 break;
2022 } while (1);
2023
2024 if (!page)
2025 goto fail;
2026
2027 page->private = this_order;
2028 list_add_tail(&page->lru, &tags->page_list);
2029
2030 p = page_address(page);
2031 /*
2032 * Allow kmemleak to scan these pages as they contain pointers
2033 * to additional allocations like via ops->init_request().
2034 */
2035 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2036 entries_per_page = order_to_size(this_order) / rq_size;
2037 to_do = min(entries_per_page, depth - i);
2038 left -= to_do * rq_size;
2039 for (j = 0; j < to_do; j++) {
2040 struct request *rq = p;
2041
2042 tags->static_rqs[i] = rq;
2043 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2044 tags->static_rqs[i] = NULL;
2045 goto fail;
2046 }
2047
2048 p += rq_size;
2049 i++;
2050 }
2051 }
2052 return 0;
2053
2054 fail:
2055 blk_mq_free_rqs(set, tags, hctx_idx);
2056 return -ENOMEM;
2057 }
2058
2059 /*
2060 * 'cpu' is going away. splice any existing rq_list entries from this
2061 * software queue to the hw queue dispatch list, and ensure that it
2062 * gets run.
2063 */
2064 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2065 {
2066 struct blk_mq_hw_ctx *hctx;
2067 struct blk_mq_ctx *ctx;
2068 LIST_HEAD(tmp);
2069
2070 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2071 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2072
2073 spin_lock(&ctx->lock);
2074 if (!list_empty(&ctx->rq_list)) {
2075 list_splice_init(&ctx->rq_list, &tmp);
2076 blk_mq_hctx_clear_pending(hctx, ctx);
2077 }
2078 spin_unlock(&ctx->lock);
2079
2080 if (list_empty(&tmp))
2081 return 0;
2082
2083 spin_lock(&hctx->lock);
2084 list_splice_tail_init(&tmp, &hctx->dispatch);
2085 spin_unlock(&hctx->lock);
2086
2087 blk_mq_run_hw_queue(hctx, true);
2088 return 0;
2089 }
2090
2091 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2092 {
2093 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2094 &hctx->cpuhp_dead);
2095 }
2096
2097 /* hctx->ctxs will be freed in queue's release handler */
2098 static void blk_mq_exit_hctx(struct request_queue *q,
2099 struct blk_mq_tag_set *set,
2100 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2101 {
2102 blk_mq_debugfs_unregister_hctx(hctx);
2103
2104 if (blk_mq_hw_queue_mapped(hctx))
2105 blk_mq_tag_idle(hctx);
2106
2107 if (set->ops->exit_request)
2108 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2109
2110 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2111
2112 if (set->ops->exit_hctx)
2113 set->ops->exit_hctx(hctx, hctx_idx);
2114
2115 if (hctx->flags & BLK_MQ_F_BLOCKING)
2116 cleanup_srcu_struct(hctx->srcu);
2117
2118 blk_mq_remove_cpuhp(hctx);
2119 blk_free_flush_queue(hctx->fq);
2120 sbitmap_free(&hctx->ctx_map);
2121 }
2122
2123 static void blk_mq_exit_hw_queues(struct request_queue *q,
2124 struct blk_mq_tag_set *set, int nr_queue)
2125 {
2126 struct blk_mq_hw_ctx *hctx;
2127 unsigned int i;
2128
2129 queue_for_each_hw_ctx(q, hctx, i) {
2130 if (i == nr_queue)
2131 break;
2132 blk_mq_exit_hctx(q, set, hctx, i);
2133 }
2134 }
2135
2136 static int blk_mq_init_hctx(struct request_queue *q,
2137 struct blk_mq_tag_set *set,
2138 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2139 {
2140 int node;
2141
2142 node = hctx->numa_node;
2143 if (node == NUMA_NO_NODE)
2144 node = hctx->numa_node = set->numa_node;
2145
2146 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2147 spin_lock_init(&hctx->lock);
2148 INIT_LIST_HEAD(&hctx->dispatch);
2149 hctx->queue = q;
2150 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2151
2152 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2153
2154 hctx->tags = set->tags[hctx_idx];
2155
2156 /*
2157 * Allocate space for all possible cpus to avoid allocation at
2158 * runtime
2159 */
2160 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2161 GFP_KERNEL, node);
2162 if (!hctx->ctxs)
2163 goto unregister_cpu_notifier;
2164
2165 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2166 node))
2167 goto free_ctxs;
2168
2169 hctx->nr_ctx = 0;
2170
2171 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2172 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2173
2174 if (set->ops->init_hctx &&
2175 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2176 goto free_bitmap;
2177
2178 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2179 goto exit_hctx;
2180
2181 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2182 if (!hctx->fq)
2183 goto sched_exit_hctx;
2184
2185 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2186 goto free_fq;
2187
2188 if (hctx->flags & BLK_MQ_F_BLOCKING)
2189 init_srcu_struct(hctx->srcu);
2190
2191 blk_mq_debugfs_register_hctx(q, hctx);
2192
2193 return 0;
2194
2195 free_fq:
2196 kfree(hctx->fq);
2197 sched_exit_hctx:
2198 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2199 exit_hctx:
2200 if (set->ops->exit_hctx)
2201 set->ops->exit_hctx(hctx, hctx_idx);
2202 free_bitmap:
2203 sbitmap_free(&hctx->ctx_map);
2204 free_ctxs:
2205 kfree(hctx->ctxs);
2206 unregister_cpu_notifier:
2207 blk_mq_remove_cpuhp(hctx);
2208 return -1;
2209 }
2210
2211 static void blk_mq_init_cpu_queues(struct request_queue *q,
2212 unsigned int nr_hw_queues)
2213 {
2214 unsigned int i;
2215
2216 for_each_possible_cpu(i) {
2217 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2218 struct blk_mq_hw_ctx *hctx;
2219
2220 __ctx->cpu = i;
2221 spin_lock_init(&__ctx->lock);
2222 INIT_LIST_HEAD(&__ctx->rq_list);
2223 __ctx->queue = q;
2224
2225 /*
2226 * Set local node, IFF we have more than one hw queue. If
2227 * not, we remain on the home node of the device
2228 */
2229 hctx = blk_mq_map_queue(q, i);
2230 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2231 hctx->numa_node = local_memory_node(cpu_to_node(i));
2232 }
2233 }
2234
2235 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2236 {
2237 int ret = 0;
2238
2239 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2240 set->queue_depth, set->reserved_tags);
2241 if (!set->tags[hctx_idx])
2242 return false;
2243
2244 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2245 set->queue_depth);
2246 if (!ret)
2247 return true;
2248
2249 blk_mq_free_rq_map(set->tags[hctx_idx]);
2250 set->tags[hctx_idx] = NULL;
2251 return false;
2252 }
2253
2254 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2255 unsigned int hctx_idx)
2256 {
2257 if (set->tags[hctx_idx]) {
2258 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2259 blk_mq_free_rq_map(set->tags[hctx_idx]);
2260 set->tags[hctx_idx] = NULL;
2261 }
2262 }
2263
2264 static void blk_mq_map_swqueue(struct request_queue *q)
2265 {
2266 unsigned int i, hctx_idx;
2267 struct blk_mq_hw_ctx *hctx;
2268 struct blk_mq_ctx *ctx;
2269 struct blk_mq_tag_set *set = q->tag_set;
2270
2271 /*
2272 * Avoid others reading imcomplete hctx->cpumask through sysfs
2273 */
2274 mutex_lock(&q->sysfs_lock);
2275
2276 queue_for_each_hw_ctx(q, hctx, i) {
2277 cpumask_clear(hctx->cpumask);
2278 hctx->nr_ctx = 0;
2279 }
2280
2281 /*
2282 * Map software to hardware queues.
2283 *
2284 * If the cpu isn't present, the cpu is mapped to first hctx.
2285 */
2286 for_each_possible_cpu(i) {
2287 hctx_idx = q->mq_map[i];
2288 /* unmapped hw queue can be remapped after CPU topo changed */
2289 if (!set->tags[hctx_idx] &&
2290 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2291 /*
2292 * If tags initialization fail for some hctx,
2293 * that hctx won't be brought online. In this
2294 * case, remap the current ctx to hctx[0] which
2295 * is guaranteed to always have tags allocated
2296 */
2297 q->mq_map[i] = 0;
2298 }
2299
2300 ctx = per_cpu_ptr(q->queue_ctx, i);
2301 hctx = blk_mq_map_queue(q, i);
2302
2303 cpumask_set_cpu(i, hctx->cpumask);
2304 ctx->index_hw = hctx->nr_ctx;
2305 hctx->ctxs[hctx->nr_ctx++] = ctx;
2306 }
2307
2308 mutex_unlock(&q->sysfs_lock);
2309
2310 queue_for_each_hw_ctx(q, hctx, i) {
2311 /*
2312 * If no software queues are mapped to this hardware queue,
2313 * disable it and free the request entries.
2314 */
2315 if (!hctx->nr_ctx) {
2316 /* Never unmap queue 0. We need it as a
2317 * fallback in case of a new remap fails
2318 * allocation
2319 */
2320 if (i && set->tags[i])
2321 blk_mq_free_map_and_requests(set, i);
2322
2323 hctx->tags = NULL;
2324 continue;
2325 }
2326
2327 hctx->tags = set->tags[i];
2328 WARN_ON(!hctx->tags);
2329
2330 /*
2331 * Set the map size to the number of mapped software queues.
2332 * This is more accurate and more efficient than looping
2333 * over all possibly mapped software queues.
2334 */
2335 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2336
2337 /*
2338 * Initialize batch roundrobin counts
2339 */
2340 hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2341 cpu_online_mask);
2342 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2343 }
2344 }
2345
2346 /*
2347 * Caller needs to ensure that we're either frozen/quiesced, or that
2348 * the queue isn't live yet.
2349 */
2350 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2351 {
2352 struct blk_mq_hw_ctx *hctx;
2353 int i;
2354
2355 queue_for_each_hw_ctx(q, hctx, i) {
2356 if (shared) {
2357 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2358 atomic_inc(&q->shared_hctx_restart);
2359 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2360 } else {
2361 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2362 atomic_dec(&q->shared_hctx_restart);
2363 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2364 }
2365 }
2366 }
2367
2368 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2369 bool shared)
2370 {
2371 struct request_queue *q;
2372
2373 lockdep_assert_held(&set->tag_list_lock);
2374
2375 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2376 blk_mq_freeze_queue(q);
2377 queue_set_hctx_shared(q, shared);
2378 blk_mq_unfreeze_queue(q);
2379 }
2380 }
2381
2382 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2383 {
2384 struct blk_mq_tag_set *set = q->tag_set;
2385
2386 mutex_lock(&set->tag_list_lock);
2387 list_del_rcu(&q->tag_set_list);
2388 INIT_LIST_HEAD(&q->tag_set_list);
2389 if (list_is_singular(&set->tag_list)) {
2390 /* just transitioned to unshared */
2391 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2392 /* update existing queue */
2393 blk_mq_update_tag_set_depth(set, false);
2394 }
2395 mutex_unlock(&set->tag_list_lock);
2396
2397 synchronize_rcu();
2398 }
2399
2400 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2401 struct request_queue *q)
2402 {
2403 q->tag_set = set;
2404
2405 mutex_lock(&set->tag_list_lock);
2406
2407 /*
2408 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2409 */
2410 if (!list_empty(&set->tag_list) &&
2411 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2412 set->flags |= BLK_MQ_F_TAG_SHARED;
2413 /* update existing queue */
2414 blk_mq_update_tag_set_depth(set, true);
2415 }
2416 if (set->flags & BLK_MQ_F_TAG_SHARED)
2417 queue_set_hctx_shared(q, true);
2418 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2419
2420 mutex_unlock(&set->tag_list_lock);
2421 }
2422
2423 /*
2424 * It is the actual release handler for mq, but we do it from
2425 * request queue's release handler for avoiding use-after-free
2426 * and headache because q->mq_kobj shouldn't have been introduced,
2427 * but we can't group ctx/kctx kobj without it.
2428 */
2429 void blk_mq_release(struct request_queue *q)
2430 {
2431 struct blk_mq_hw_ctx *hctx;
2432 unsigned int i;
2433
2434 /* hctx kobj stays in hctx */
2435 queue_for_each_hw_ctx(q, hctx, i) {
2436 if (!hctx)
2437 continue;
2438 kobject_put(&hctx->kobj);
2439 }
2440
2441 q->mq_map = NULL;
2442
2443 kfree(q->queue_hw_ctx);
2444
2445 /*
2446 * release .mq_kobj and sw queue's kobject now because
2447 * both share lifetime with request queue.
2448 */
2449 blk_mq_sysfs_deinit(q);
2450
2451 free_percpu(q->queue_ctx);
2452 }
2453
2454 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2455 {
2456 struct request_queue *uninit_q, *q;
2457
2458 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2459 if (!uninit_q)
2460 return ERR_PTR(-ENOMEM);
2461
2462 q = blk_mq_init_allocated_queue(set, uninit_q);
2463 if (IS_ERR(q))
2464 blk_cleanup_queue(uninit_q);
2465
2466 return q;
2467 }
2468 EXPORT_SYMBOL(blk_mq_init_queue);
2469
2470 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2471 {
2472 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2473
2474 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2475 __alignof__(struct blk_mq_hw_ctx)) !=
2476 sizeof(struct blk_mq_hw_ctx));
2477
2478 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2479 hw_ctx_size += sizeof(struct srcu_struct);
2480
2481 return hw_ctx_size;
2482 }
2483
2484 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2485 struct request_queue *q)
2486 {
2487 int i, j;
2488 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2489
2490 blk_mq_sysfs_unregister(q);
2491
2492 /* protect against switching io scheduler */
2493 mutex_lock(&q->sysfs_lock);
2494 for (i = 0; i < set->nr_hw_queues; i++) {
2495 int node;
2496
2497 if (hctxs[i])
2498 continue;
2499
2500 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2501 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2502 GFP_KERNEL, node);
2503 if (!hctxs[i])
2504 break;
2505
2506 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2507 node)) {
2508 kfree(hctxs[i]);
2509 hctxs[i] = NULL;
2510 break;
2511 }
2512
2513 atomic_set(&hctxs[i]->nr_active, 0);
2514 hctxs[i]->numa_node = node;
2515 hctxs[i]->queue_num = i;
2516
2517 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2518 free_cpumask_var(hctxs[i]->cpumask);
2519 kfree(hctxs[i]);
2520 hctxs[i] = NULL;
2521 break;
2522 }
2523 blk_mq_hctx_kobj_init(hctxs[i]);
2524 }
2525 for (j = i; j < q->nr_hw_queues; j++) {
2526 struct blk_mq_hw_ctx *hctx = hctxs[j];
2527
2528 if (hctx) {
2529 if (hctx->tags)
2530 blk_mq_free_map_and_requests(set, j);
2531 blk_mq_exit_hctx(q, set, hctx, j);
2532 kobject_put(&hctx->kobj);
2533 hctxs[j] = NULL;
2534
2535 }
2536 }
2537 q->nr_hw_queues = i;
2538 mutex_unlock(&q->sysfs_lock);
2539 blk_mq_sysfs_register(q);
2540 }
2541
2542 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2543 struct request_queue *q)
2544 {
2545 /* mark the queue as mq asap */
2546 q->mq_ops = set->ops;
2547
2548 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2549 blk_mq_poll_stats_bkt,
2550 BLK_MQ_POLL_STATS_BKTS, q);
2551 if (!q->poll_cb)
2552 goto err_exit;
2553
2554 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2555 if (!q->queue_ctx)
2556 goto err_exit;
2557
2558 /* init q->mq_kobj and sw queues' kobjects */
2559 blk_mq_sysfs_init(q);
2560
2561 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2562 GFP_KERNEL, set->numa_node);
2563 if (!q->queue_hw_ctx)
2564 goto err_percpu;
2565
2566 q->mq_map = set->mq_map;
2567
2568 blk_mq_realloc_hw_ctxs(set, q);
2569 if (!q->nr_hw_queues)
2570 goto err_hctxs;
2571
2572 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2573 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2574
2575 q->nr_queues = nr_cpu_ids;
2576
2577 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2578
2579 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2580 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2581
2582 q->sg_reserved_size = INT_MAX;
2583
2584 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2585 INIT_LIST_HEAD(&q->requeue_list);
2586 spin_lock_init(&q->requeue_lock);
2587
2588 blk_queue_make_request(q, blk_mq_make_request);
2589 if (q->mq_ops->poll)
2590 q->poll_fn = blk_mq_poll;
2591
2592 /*
2593 * Do this after blk_queue_make_request() overrides it...
2594 */
2595 q->nr_requests = set->queue_depth;
2596
2597 /*
2598 * Default to classic polling
2599 */
2600 q->poll_nsec = -1;
2601
2602 if (set->ops->complete)
2603 blk_queue_softirq_done(q, set->ops->complete);
2604
2605 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2606 blk_mq_add_queue_tag_set(set, q);
2607 blk_mq_map_swqueue(q);
2608
2609 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2610 int ret;
2611
2612 ret = blk_mq_sched_init(q);
2613 if (ret)
2614 return ERR_PTR(ret);
2615 }
2616
2617 return q;
2618
2619 err_hctxs:
2620 kfree(q->queue_hw_ctx);
2621 err_percpu:
2622 free_percpu(q->queue_ctx);
2623 err_exit:
2624 q->mq_ops = NULL;
2625 return ERR_PTR(-ENOMEM);
2626 }
2627 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2628
2629 void blk_mq_free_queue(struct request_queue *q)
2630 {
2631 struct blk_mq_tag_set *set = q->tag_set;
2632
2633 blk_mq_del_queue_tag_set(q);
2634 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2635 }
2636
2637 /* Basically redo blk_mq_init_queue with queue frozen */
2638 static void blk_mq_queue_reinit(struct request_queue *q)
2639 {
2640 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2641
2642 blk_mq_debugfs_unregister_hctxs(q);
2643 blk_mq_sysfs_unregister(q);
2644
2645 /*
2646 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2647 * we should change hctx numa_node according to the new topology (this
2648 * involves freeing and re-allocating memory, worth doing?)
2649 */
2650 blk_mq_map_swqueue(q);
2651
2652 blk_mq_sysfs_register(q);
2653 blk_mq_debugfs_register_hctxs(q);
2654 }
2655
2656 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2657 {
2658 int i;
2659
2660 for (i = 0; i < set->nr_hw_queues; i++)
2661 if (!__blk_mq_alloc_rq_map(set, i))
2662 goto out_unwind;
2663
2664 return 0;
2665
2666 out_unwind:
2667 while (--i >= 0)
2668 blk_mq_free_rq_map(set->tags[i]);
2669
2670 return -ENOMEM;
2671 }
2672
2673 /*
2674 * Allocate the request maps associated with this tag_set. Note that this
2675 * may reduce the depth asked for, if memory is tight. set->queue_depth
2676 * will be updated to reflect the allocated depth.
2677 */
2678 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2679 {
2680 unsigned int depth;
2681 int err;
2682
2683 depth = set->queue_depth;
2684 do {
2685 err = __blk_mq_alloc_rq_maps(set);
2686 if (!err)
2687 break;
2688
2689 set->queue_depth >>= 1;
2690 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2691 err = -ENOMEM;
2692 break;
2693 }
2694 } while (set->queue_depth);
2695
2696 if (!set->queue_depth || err) {
2697 pr_err("blk-mq: failed to allocate request map\n");
2698 return -ENOMEM;
2699 }
2700
2701 if (depth != set->queue_depth)
2702 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2703 depth, set->queue_depth);
2704
2705 return 0;
2706 }
2707
2708 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2709 {
2710 if (set->ops->map_queues) {
2711 int cpu;
2712 /*
2713 * transport .map_queues is usually done in the following
2714 * way:
2715 *
2716 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2717 * mask = get_cpu_mask(queue)
2718 * for_each_cpu(cpu, mask)
2719 * set->mq_map[cpu] = queue;
2720 * }
2721 *
2722 * When we need to remap, the table has to be cleared for
2723 * killing stale mapping since one CPU may not be mapped
2724 * to any hw queue.
2725 */
2726 for_each_possible_cpu(cpu)
2727 set->mq_map[cpu] = 0;
2728
2729 return set->ops->map_queues(set);
2730 } else
2731 return blk_mq_map_queues(set);
2732 }
2733
2734 /*
2735 * Alloc a tag set to be associated with one or more request queues.
2736 * May fail with EINVAL for various error conditions. May adjust the
2737 * requested depth down, if if it too large. In that case, the set
2738 * value will be stored in set->queue_depth.
2739 */
2740 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2741 {
2742 int ret;
2743
2744 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2745
2746 if (!set->nr_hw_queues)
2747 return -EINVAL;
2748 if (!set->queue_depth)
2749 return -EINVAL;
2750 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2751 return -EINVAL;
2752
2753 if (!set->ops->queue_rq)
2754 return -EINVAL;
2755
2756 if (!set->ops->get_budget ^ !set->ops->put_budget)
2757 return -EINVAL;
2758
2759 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2760 pr_info("blk-mq: reduced tag depth to %u\n",
2761 BLK_MQ_MAX_DEPTH);
2762 set->queue_depth = BLK_MQ_MAX_DEPTH;
2763 }
2764
2765 /*
2766 * If a crashdump is active, then we are potentially in a very
2767 * memory constrained environment. Limit us to 1 queue and
2768 * 64 tags to prevent using too much memory.
2769 */
2770 if (is_kdump_kernel()) {
2771 set->nr_hw_queues = 1;
2772 set->queue_depth = min(64U, set->queue_depth);
2773 }
2774 /*
2775 * There is no use for more h/w queues than cpus.
2776 */
2777 if (set->nr_hw_queues > nr_cpu_ids)
2778 set->nr_hw_queues = nr_cpu_ids;
2779
2780 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2781 GFP_KERNEL, set->numa_node);
2782 if (!set->tags)
2783 return -ENOMEM;
2784
2785 ret = -ENOMEM;
2786 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2787 GFP_KERNEL, set->numa_node);
2788 if (!set->mq_map)
2789 goto out_free_tags;
2790
2791 ret = blk_mq_update_queue_map(set);
2792 if (ret)
2793 goto out_free_mq_map;
2794
2795 ret = blk_mq_alloc_rq_maps(set);
2796 if (ret)
2797 goto out_free_mq_map;
2798
2799 mutex_init(&set->tag_list_lock);
2800 INIT_LIST_HEAD(&set->tag_list);
2801
2802 return 0;
2803
2804 out_free_mq_map:
2805 kfree(set->mq_map);
2806 set->mq_map = NULL;
2807 out_free_tags:
2808 kfree(set->tags);
2809 set->tags = NULL;
2810 return ret;
2811 }
2812 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2813
2814 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2815 {
2816 int i;
2817
2818 for (i = 0; i < nr_cpu_ids; i++)
2819 blk_mq_free_map_and_requests(set, i);
2820
2821 kfree(set->mq_map);
2822 set->mq_map = NULL;
2823
2824 kfree(set->tags);
2825 set->tags = NULL;
2826 }
2827 EXPORT_SYMBOL(blk_mq_free_tag_set);
2828
2829 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2830 {
2831 struct blk_mq_tag_set *set = q->tag_set;
2832 struct blk_mq_hw_ctx *hctx;
2833 int i, ret;
2834
2835 if (!set)
2836 return -EINVAL;
2837
2838 blk_mq_freeze_queue(q);
2839 blk_mq_quiesce_queue(q);
2840
2841 ret = 0;
2842 queue_for_each_hw_ctx(q, hctx, i) {
2843 if (!hctx->tags)
2844 continue;
2845 /*
2846 * If we're using an MQ scheduler, just update the scheduler
2847 * queue depth. This is similar to what the old code would do.
2848 */
2849 if (!hctx->sched_tags) {
2850 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2851 false);
2852 } else {
2853 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2854 nr, true);
2855 }
2856 if (ret)
2857 break;
2858 }
2859
2860 if (!ret)
2861 q->nr_requests = nr;
2862
2863 blk_mq_unquiesce_queue(q);
2864 blk_mq_unfreeze_queue(q);
2865
2866 return ret;
2867 }
2868
2869 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2870 int nr_hw_queues)
2871 {
2872 struct request_queue *q;
2873
2874 lockdep_assert_held(&set->tag_list_lock);
2875
2876 if (nr_hw_queues > nr_cpu_ids)
2877 nr_hw_queues = nr_cpu_ids;
2878 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2879 return;
2880
2881 list_for_each_entry(q, &set->tag_list, tag_set_list)
2882 blk_mq_freeze_queue(q);
2883
2884 set->nr_hw_queues = nr_hw_queues;
2885 blk_mq_update_queue_map(set);
2886 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2887 blk_mq_realloc_hw_ctxs(set, q);
2888 blk_mq_queue_reinit(q);
2889 }
2890
2891 list_for_each_entry(q, &set->tag_list, tag_set_list)
2892 blk_mq_unfreeze_queue(q);
2893 }
2894
2895 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2896 {
2897 mutex_lock(&set->tag_list_lock);
2898 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2899 mutex_unlock(&set->tag_list_lock);
2900 }
2901 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2902
2903 /* Enable polling stats and return whether they were already enabled. */
2904 static bool blk_poll_stats_enable(struct request_queue *q)
2905 {
2906 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2907 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2908 return true;
2909 blk_stat_add_callback(q, q->poll_cb);
2910 return false;
2911 }
2912
2913 static void blk_mq_poll_stats_start(struct request_queue *q)
2914 {
2915 /*
2916 * We don't arm the callback if polling stats are not enabled or the
2917 * callback is already active.
2918 */
2919 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2920 blk_stat_is_active(q->poll_cb))
2921 return;
2922
2923 blk_stat_activate_msecs(q->poll_cb, 100);
2924 }
2925
2926 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2927 {
2928 struct request_queue *q = cb->data;
2929 int bucket;
2930
2931 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2932 if (cb->stat[bucket].nr_samples)
2933 q->poll_stat[bucket] = cb->stat[bucket];
2934 }
2935 }
2936
2937 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2938 struct blk_mq_hw_ctx *hctx,
2939 struct request *rq)
2940 {
2941 unsigned long ret = 0;
2942 int bucket;
2943
2944 /*
2945 * If stats collection isn't on, don't sleep but turn it on for
2946 * future users
2947 */
2948 if (!blk_poll_stats_enable(q))
2949 return 0;
2950
2951 /*
2952 * As an optimistic guess, use half of the mean service time
2953 * for this type of request. We can (and should) make this smarter.
2954 * For instance, if the completion latencies are tight, we can
2955 * get closer than just half the mean. This is especially
2956 * important on devices where the completion latencies are longer
2957 * than ~10 usec. We do use the stats for the relevant IO size
2958 * if available which does lead to better estimates.
2959 */
2960 bucket = blk_mq_poll_stats_bkt(rq);
2961 if (bucket < 0)
2962 return ret;
2963
2964 if (q->poll_stat[bucket].nr_samples)
2965 ret = (q->poll_stat[bucket].mean + 1) / 2;
2966
2967 return ret;
2968 }
2969
2970 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2971 struct blk_mq_hw_ctx *hctx,
2972 struct request *rq)
2973 {
2974 struct hrtimer_sleeper hs;
2975 enum hrtimer_mode mode;
2976 unsigned int nsecs;
2977 ktime_t kt;
2978
2979 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
2980 return false;
2981
2982 /*
2983 * poll_nsec can be:
2984 *
2985 * -1: don't ever hybrid sleep
2986 * 0: use half of prev avg
2987 * >0: use this specific value
2988 */
2989 if (q->poll_nsec == -1)
2990 return false;
2991 else if (q->poll_nsec > 0)
2992 nsecs = q->poll_nsec;
2993 else
2994 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2995
2996 if (!nsecs)
2997 return false;
2998
2999 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3000
3001 /*
3002 * This will be replaced with the stats tracking code, using
3003 * 'avg_completion_time / 2' as the pre-sleep target.
3004 */
3005 kt = nsecs;
3006
3007 mode = HRTIMER_MODE_REL;
3008 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3009 hrtimer_set_expires(&hs.timer, kt);
3010
3011 hrtimer_init_sleeper(&hs, current);
3012 do {
3013 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3014 break;
3015 set_current_state(TASK_UNINTERRUPTIBLE);
3016 hrtimer_start_expires(&hs.timer, mode);
3017 if (hs.task)
3018 io_schedule();
3019 hrtimer_cancel(&hs.timer);
3020 mode = HRTIMER_MODE_ABS;
3021 } while (hs.task && !signal_pending(current));
3022
3023 __set_current_state(TASK_RUNNING);
3024 destroy_hrtimer_on_stack(&hs.timer);
3025 return true;
3026 }
3027
3028 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3029 {
3030 struct request_queue *q = hctx->queue;
3031 long state;
3032
3033 /*
3034 * If we sleep, have the caller restart the poll loop to reset
3035 * the state. Like for the other success return cases, the
3036 * caller is responsible for checking if the IO completed. If
3037 * the IO isn't complete, we'll get called again and will go
3038 * straight to the busy poll loop.
3039 */
3040 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3041 return true;
3042
3043 hctx->poll_considered++;
3044
3045 state = current->state;
3046 while (!need_resched()) {
3047 int ret;
3048
3049 hctx->poll_invoked++;
3050
3051 ret = q->mq_ops->poll(hctx, rq->tag);
3052 if (ret > 0) {
3053 hctx->poll_success++;
3054 set_current_state(TASK_RUNNING);
3055 return true;
3056 }
3057
3058 if (signal_pending_state(state, current))
3059 set_current_state(TASK_RUNNING);
3060
3061 if (current->state == TASK_RUNNING)
3062 return true;
3063 if (ret < 0)
3064 break;
3065 cpu_relax();
3066 }
3067
3068 return false;
3069 }
3070
3071 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3072 {
3073 struct blk_mq_hw_ctx *hctx;
3074 struct request *rq;
3075
3076 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3077 return false;
3078
3079 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3080 if (!blk_qc_t_is_internal(cookie))
3081 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3082 else {
3083 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3084 /*
3085 * With scheduling, if the request has completed, we'll
3086 * get a NULL return here, as we clear the sched tag when
3087 * that happens. The request still remains valid, like always,
3088 * so we should be safe with just the NULL check.
3089 */
3090 if (!rq)
3091 return false;
3092 }
3093
3094 return __blk_mq_poll(hctx, rq);
3095 }
3096
3097 static int __init blk_mq_init(void)
3098 {
3099 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3100 blk_mq_hctx_notify_dead);
3101 return 0;
3102 }
3103 subsys_initcall(blk_mq_init);