]> git.ipfire.org Git - people/arne_f/kernel.git/blob - block/blk-mq.c
blk-mq: avoid to write intermediate result to hctx->next_cpu
[people/arne_f/kernel.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 }
80
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83 {
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 }
86
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90 };
91
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95 {
96 struct mq_inflight *mi = priv;
97
98 if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99 /*
100 * index[0] counts the specific partition that was asked
101 * for. index[1] counts the ones that are active on the
102 * whole device, so increment that if mi->part is indeed
103 * a partition, and not a whole device.
104 */
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
107 if (mi->part->partno)
108 mi->inflight[1]++;
109 }
110 }
111
112 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
113 unsigned int inflight[2])
114 {
115 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116
117 inflight[0] = inflight[1] = 0;
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 }
120
121 void blk_freeze_queue_start(struct request_queue *q)
122 {
123 int freeze_depth;
124
125 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
126 if (freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 if (q->mq_ops)
129 blk_mq_run_hw_queues(q, false);
130 }
131 }
132 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133
134 void blk_mq_freeze_queue_wait(struct request_queue *q)
135 {
136 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137 }
138 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139
140 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
141 unsigned long timeout)
142 {
143 return wait_event_timeout(q->mq_freeze_wq,
144 percpu_ref_is_zero(&q->q_usage_counter),
145 timeout);
146 }
147 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148
149 /*
150 * Guarantee no request is in use, so we can change any data structure of
151 * the queue afterward.
152 */
153 void blk_freeze_queue(struct request_queue *q)
154 {
155 /*
156 * In the !blk_mq case we are only calling this to kill the
157 * q_usage_counter, otherwise this increases the freeze depth
158 * and waits for it to return to zero. For this reason there is
159 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
160 * exported to drivers as the only user for unfreeze is blk_mq.
161 */
162 blk_freeze_queue_start(q);
163 if (!q->mq_ops)
164 blk_drain_queue(q);
165 blk_mq_freeze_queue_wait(q);
166 }
167
168 void blk_mq_freeze_queue(struct request_queue *q)
169 {
170 /*
171 * ...just an alias to keep freeze and unfreeze actions balanced
172 * in the blk_mq_* namespace
173 */
174 blk_freeze_queue(q);
175 }
176 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177
178 void blk_mq_unfreeze_queue(struct request_queue *q)
179 {
180 int freeze_depth;
181
182 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
183 WARN_ON_ONCE(freeze_depth < 0);
184 if (!freeze_depth) {
185 percpu_ref_reinit(&q->q_usage_counter);
186 wake_up_all(&q->mq_freeze_wq);
187 }
188 }
189 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190
191 /*
192 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
193 * mpt3sas driver such that this function can be removed.
194 */
195 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
196 {
197 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
200
201 /**
202 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
203 * @q: request queue.
204 *
205 * Note: this function does not prevent that the struct request end_io()
206 * callback function is invoked. Once this function is returned, we make
207 * sure no dispatch can happen until the queue is unquiesced via
208 * blk_mq_unquiesce_queue().
209 */
210 void blk_mq_quiesce_queue(struct request_queue *q)
211 {
212 struct blk_mq_hw_ctx *hctx;
213 unsigned int i;
214 bool rcu = false;
215
216 blk_mq_quiesce_queue_nowait(q);
217
218 queue_for_each_hw_ctx(q, hctx, i) {
219 if (hctx->flags & BLK_MQ_F_BLOCKING)
220 synchronize_srcu(hctx->srcu);
221 else
222 rcu = true;
223 }
224 if (rcu)
225 synchronize_rcu();
226 }
227 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
228
229 /*
230 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
231 * @q: request queue.
232 *
233 * This function recovers queue into the state before quiescing
234 * which is done by blk_mq_quiesce_queue.
235 */
236 void blk_mq_unquiesce_queue(struct request_queue *q)
237 {
238 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
239
240 /* dispatch requests which are inserted during quiescing */
241 blk_mq_run_hw_queues(q, true);
242 }
243 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
244
245 void blk_mq_wake_waiters(struct request_queue *q)
246 {
247 struct blk_mq_hw_ctx *hctx;
248 unsigned int i;
249
250 queue_for_each_hw_ctx(q, hctx, i)
251 if (blk_mq_hw_queue_mapped(hctx))
252 blk_mq_tag_wakeup_all(hctx->tags, true);
253 }
254
255 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
256 {
257 return blk_mq_has_free_tags(hctx->tags);
258 }
259 EXPORT_SYMBOL(blk_mq_can_queue);
260
261 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
262 unsigned int tag, unsigned int op)
263 {
264 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
265 struct request *rq = tags->static_rqs[tag];
266 req_flags_t rq_flags = 0;
267
268 if (data->flags & BLK_MQ_REQ_INTERNAL) {
269 rq->tag = -1;
270 rq->internal_tag = tag;
271 } else {
272 if (blk_mq_tag_busy(data->hctx)) {
273 rq_flags = RQF_MQ_INFLIGHT;
274 atomic_inc(&data->hctx->nr_active);
275 }
276 rq->tag = tag;
277 rq->internal_tag = -1;
278 data->hctx->tags->rqs[rq->tag] = rq;
279 }
280
281 /* csd/requeue_work/fifo_time is initialized before use */
282 rq->q = data->q;
283 rq->mq_ctx = data->ctx;
284 rq->rq_flags = rq_flags;
285 rq->cpu = -1;
286 rq->cmd_flags = op;
287 if (data->flags & BLK_MQ_REQ_PREEMPT)
288 rq->rq_flags |= RQF_PREEMPT;
289 if (blk_queue_io_stat(data->q))
290 rq->rq_flags |= RQF_IO_STAT;
291 INIT_LIST_HEAD(&rq->queuelist);
292 INIT_HLIST_NODE(&rq->hash);
293 RB_CLEAR_NODE(&rq->rb_node);
294 rq->rq_disk = NULL;
295 rq->part = NULL;
296 rq->start_time = jiffies;
297 rq->nr_phys_segments = 0;
298 #if defined(CONFIG_BLK_DEV_INTEGRITY)
299 rq->nr_integrity_segments = 0;
300 #endif
301 rq->special = NULL;
302 /* tag was already set */
303 rq->extra_len = 0;
304 rq->__deadline = 0;
305
306 INIT_LIST_HEAD(&rq->timeout_list);
307 rq->timeout = 0;
308
309 rq->end_io = NULL;
310 rq->end_io_data = NULL;
311 rq->next_rq = NULL;
312
313 #ifdef CONFIG_BLK_CGROUP
314 rq->rl = NULL;
315 set_start_time_ns(rq);
316 rq->io_start_time_ns = 0;
317 #endif
318
319 data->ctx->rq_dispatched[op_is_sync(op)]++;
320 return rq;
321 }
322
323 static struct request *blk_mq_get_request(struct request_queue *q,
324 struct bio *bio, unsigned int op,
325 struct blk_mq_alloc_data *data)
326 {
327 struct elevator_queue *e = q->elevator;
328 struct request *rq;
329 unsigned int tag;
330 bool put_ctx_on_error = false;
331
332 blk_queue_enter_live(q);
333 data->q = q;
334 if (likely(!data->ctx)) {
335 data->ctx = blk_mq_get_ctx(q);
336 put_ctx_on_error = true;
337 }
338 if (likely(!data->hctx))
339 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
340 if (op & REQ_NOWAIT)
341 data->flags |= BLK_MQ_REQ_NOWAIT;
342
343 if (e) {
344 data->flags |= BLK_MQ_REQ_INTERNAL;
345
346 /*
347 * Flush requests are special and go directly to the
348 * dispatch list.
349 */
350 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
351 e->type->ops.mq.limit_depth(op, data);
352 }
353
354 tag = blk_mq_get_tag(data);
355 if (tag == BLK_MQ_TAG_FAIL) {
356 if (put_ctx_on_error) {
357 blk_mq_put_ctx(data->ctx);
358 data->ctx = NULL;
359 }
360 blk_queue_exit(q);
361 return NULL;
362 }
363
364 rq = blk_mq_rq_ctx_init(data, tag, op);
365 if (!op_is_flush(op)) {
366 rq->elv.icq = NULL;
367 if (e && e->type->ops.mq.prepare_request) {
368 if (e->type->icq_cache && rq_ioc(bio))
369 blk_mq_sched_assign_ioc(rq, bio);
370
371 e->type->ops.mq.prepare_request(rq, bio);
372 rq->rq_flags |= RQF_ELVPRIV;
373 }
374 }
375 data->hctx->queued++;
376 return rq;
377 }
378
379 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
380 blk_mq_req_flags_t flags)
381 {
382 struct blk_mq_alloc_data alloc_data = { .flags = flags };
383 struct request *rq;
384 int ret;
385
386 ret = blk_queue_enter(q, flags);
387 if (ret)
388 return ERR_PTR(ret);
389
390 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
391 blk_queue_exit(q);
392
393 if (!rq)
394 return ERR_PTR(-EWOULDBLOCK);
395
396 blk_mq_put_ctx(alloc_data.ctx);
397
398 rq->__data_len = 0;
399 rq->__sector = (sector_t) -1;
400 rq->bio = rq->biotail = NULL;
401 return rq;
402 }
403 EXPORT_SYMBOL(blk_mq_alloc_request);
404
405 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
406 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
407 {
408 struct blk_mq_alloc_data alloc_data = { .flags = flags };
409 struct request *rq;
410 unsigned int cpu;
411 int ret;
412
413 /*
414 * If the tag allocator sleeps we could get an allocation for a
415 * different hardware context. No need to complicate the low level
416 * allocator for this for the rare use case of a command tied to
417 * a specific queue.
418 */
419 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
420 return ERR_PTR(-EINVAL);
421
422 if (hctx_idx >= q->nr_hw_queues)
423 return ERR_PTR(-EIO);
424
425 ret = blk_queue_enter(q, flags);
426 if (ret)
427 return ERR_PTR(ret);
428
429 /*
430 * Check if the hardware context is actually mapped to anything.
431 * If not tell the caller that it should skip this queue.
432 */
433 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
434 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
435 blk_queue_exit(q);
436 return ERR_PTR(-EXDEV);
437 }
438 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
439 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
440
441 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
442 blk_queue_exit(q);
443
444 if (!rq)
445 return ERR_PTR(-EWOULDBLOCK);
446
447 return rq;
448 }
449 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
450
451 void blk_mq_free_request(struct request *rq)
452 {
453 struct request_queue *q = rq->q;
454 struct elevator_queue *e = q->elevator;
455 struct blk_mq_ctx *ctx = rq->mq_ctx;
456 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
457 const int sched_tag = rq->internal_tag;
458
459 if (rq->rq_flags & RQF_ELVPRIV) {
460 if (e && e->type->ops.mq.finish_request)
461 e->type->ops.mq.finish_request(rq);
462 if (rq->elv.icq) {
463 put_io_context(rq->elv.icq->ioc);
464 rq->elv.icq = NULL;
465 }
466 }
467
468 ctx->rq_completed[rq_is_sync(rq)]++;
469 if (rq->rq_flags & RQF_MQ_INFLIGHT)
470 atomic_dec(&hctx->nr_active);
471
472 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
473 laptop_io_completion(q->backing_dev_info);
474
475 wbt_done(q->rq_wb, &rq->issue_stat);
476
477 if (blk_rq_rl(rq))
478 blk_put_rl(blk_rq_rl(rq));
479
480 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
481 if (rq->tag != -1)
482 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
483 if (sched_tag != -1)
484 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
485 blk_mq_sched_restart(hctx);
486 blk_queue_exit(q);
487 }
488 EXPORT_SYMBOL_GPL(blk_mq_free_request);
489
490 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
491 {
492 blk_account_io_done(rq);
493
494 if (rq->end_io) {
495 wbt_done(rq->q->rq_wb, &rq->issue_stat);
496 rq->end_io(rq, error);
497 } else {
498 if (unlikely(blk_bidi_rq(rq)))
499 blk_mq_free_request(rq->next_rq);
500 blk_mq_free_request(rq);
501 }
502 }
503 EXPORT_SYMBOL(__blk_mq_end_request);
504
505 void blk_mq_end_request(struct request *rq, blk_status_t error)
506 {
507 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
508 BUG();
509 __blk_mq_end_request(rq, error);
510 }
511 EXPORT_SYMBOL(blk_mq_end_request);
512
513 static void __blk_mq_complete_request_remote(void *data)
514 {
515 struct request *rq = data;
516
517 rq->q->softirq_done_fn(rq);
518 }
519
520 static void __blk_mq_complete_request(struct request *rq)
521 {
522 struct blk_mq_ctx *ctx = rq->mq_ctx;
523 bool shared = false;
524 int cpu;
525
526 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
527 blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
528
529 if (rq->internal_tag != -1)
530 blk_mq_sched_completed_request(rq);
531 if (rq->rq_flags & RQF_STATS) {
532 blk_mq_poll_stats_start(rq->q);
533 blk_stat_add(rq);
534 }
535
536 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
537 rq->q->softirq_done_fn(rq);
538 return;
539 }
540
541 cpu = get_cpu();
542 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
543 shared = cpus_share_cache(cpu, ctx->cpu);
544
545 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
546 rq->csd.func = __blk_mq_complete_request_remote;
547 rq->csd.info = rq;
548 rq->csd.flags = 0;
549 smp_call_function_single_async(ctx->cpu, &rq->csd);
550 } else {
551 rq->q->softirq_done_fn(rq);
552 }
553 put_cpu();
554 }
555
556 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
557 __releases(hctx->srcu)
558 {
559 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
560 rcu_read_unlock();
561 else
562 srcu_read_unlock(hctx->srcu, srcu_idx);
563 }
564
565 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
566 __acquires(hctx->srcu)
567 {
568 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
569 /* shut up gcc false positive */
570 *srcu_idx = 0;
571 rcu_read_lock();
572 } else
573 *srcu_idx = srcu_read_lock(hctx->srcu);
574 }
575
576 static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
577 {
578 unsigned long flags;
579
580 /*
581 * blk_mq_rq_aborted_gstate() is used from the completion path and
582 * can thus be called from irq context. u64_stats_fetch in the
583 * middle of update on the same CPU leads to lockup. Disable irq
584 * while updating.
585 */
586 local_irq_save(flags);
587 u64_stats_update_begin(&rq->aborted_gstate_sync);
588 rq->aborted_gstate = gstate;
589 u64_stats_update_end(&rq->aborted_gstate_sync);
590 local_irq_restore(flags);
591 }
592
593 static u64 blk_mq_rq_aborted_gstate(struct request *rq)
594 {
595 unsigned int start;
596 u64 aborted_gstate;
597
598 do {
599 start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
600 aborted_gstate = rq->aborted_gstate;
601 } while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));
602
603 return aborted_gstate;
604 }
605
606 /**
607 * blk_mq_complete_request - end I/O on a request
608 * @rq: the request being processed
609 *
610 * Description:
611 * Ends all I/O on a request. It does not handle partial completions.
612 * The actual completion happens out-of-order, through a IPI handler.
613 **/
614 void blk_mq_complete_request(struct request *rq)
615 {
616 struct request_queue *q = rq->q;
617 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
618 int srcu_idx;
619
620 if (unlikely(blk_should_fake_timeout(q)))
621 return;
622
623 /*
624 * If @rq->aborted_gstate equals the current instance, timeout is
625 * claiming @rq and we lost. This is synchronized through
626 * hctx_lock(). See blk_mq_timeout_work() for details.
627 *
628 * Completion path never blocks and we can directly use RCU here
629 * instead of hctx_lock() which can be either RCU or SRCU.
630 * However, that would complicate paths which want to synchronize
631 * against us. Let stay in sync with the issue path so that
632 * hctx_lock() covers both issue and completion paths.
633 */
634 hctx_lock(hctx, &srcu_idx);
635 if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
636 __blk_mq_complete_request(rq);
637 hctx_unlock(hctx, srcu_idx);
638 }
639 EXPORT_SYMBOL(blk_mq_complete_request);
640
641 int blk_mq_request_started(struct request *rq)
642 {
643 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
644 }
645 EXPORT_SYMBOL_GPL(blk_mq_request_started);
646
647 void blk_mq_start_request(struct request *rq)
648 {
649 struct request_queue *q = rq->q;
650
651 blk_mq_sched_started_request(rq);
652
653 trace_block_rq_issue(q, rq);
654
655 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
656 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
657 rq->rq_flags |= RQF_STATS;
658 wbt_issue(q->rq_wb, &rq->issue_stat);
659 }
660
661 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
662
663 /*
664 * Mark @rq in-flight which also advances the generation number,
665 * and register for timeout. Protect with a seqcount to allow the
666 * timeout path to read both @rq->gstate and @rq->deadline
667 * coherently.
668 *
669 * This is the only place where a request is marked in-flight. If
670 * the timeout path reads an in-flight @rq->gstate, the
671 * @rq->deadline it reads together under @rq->gstate_seq is
672 * guaranteed to be the matching one.
673 */
674 preempt_disable();
675 write_seqcount_begin(&rq->gstate_seq);
676
677 blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
678 blk_add_timer(rq);
679
680 write_seqcount_end(&rq->gstate_seq);
681 preempt_enable();
682
683 if (q->dma_drain_size && blk_rq_bytes(rq)) {
684 /*
685 * Make sure space for the drain appears. We know we can do
686 * this because max_hw_segments has been adjusted to be one
687 * fewer than the device can handle.
688 */
689 rq->nr_phys_segments++;
690 }
691 }
692 EXPORT_SYMBOL(blk_mq_start_request);
693
694 /*
695 * When we reach here because queue is busy, it's safe to change the state
696 * to IDLE without checking @rq->aborted_gstate because we should still be
697 * holding the RCU read lock and thus protected against timeout.
698 */
699 static void __blk_mq_requeue_request(struct request *rq)
700 {
701 struct request_queue *q = rq->q;
702
703 blk_mq_put_driver_tag(rq);
704
705 trace_block_rq_requeue(q, rq);
706 wbt_requeue(q->rq_wb, &rq->issue_stat);
707
708 if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
709 blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
710 if (q->dma_drain_size && blk_rq_bytes(rq))
711 rq->nr_phys_segments--;
712 }
713 }
714
715 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
716 {
717 __blk_mq_requeue_request(rq);
718
719 /* this request will be re-inserted to io scheduler queue */
720 blk_mq_sched_requeue_request(rq);
721
722 BUG_ON(blk_queued_rq(rq));
723 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
724 }
725 EXPORT_SYMBOL(blk_mq_requeue_request);
726
727 static void blk_mq_requeue_work(struct work_struct *work)
728 {
729 struct request_queue *q =
730 container_of(work, struct request_queue, requeue_work.work);
731 LIST_HEAD(rq_list);
732 struct request *rq, *next;
733
734 spin_lock_irq(&q->requeue_lock);
735 list_splice_init(&q->requeue_list, &rq_list);
736 spin_unlock_irq(&q->requeue_lock);
737
738 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
739 if (!(rq->rq_flags & RQF_SOFTBARRIER))
740 continue;
741
742 rq->rq_flags &= ~RQF_SOFTBARRIER;
743 list_del_init(&rq->queuelist);
744 blk_mq_sched_insert_request(rq, true, false, false);
745 }
746
747 while (!list_empty(&rq_list)) {
748 rq = list_entry(rq_list.next, struct request, queuelist);
749 list_del_init(&rq->queuelist);
750 blk_mq_sched_insert_request(rq, false, false, false);
751 }
752
753 blk_mq_run_hw_queues(q, false);
754 }
755
756 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
757 bool kick_requeue_list)
758 {
759 struct request_queue *q = rq->q;
760 unsigned long flags;
761
762 /*
763 * We abuse this flag that is otherwise used by the I/O scheduler to
764 * request head insertion from the workqueue.
765 */
766 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
767
768 spin_lock_irqsave(&q->requeue_lock, flags);
769 if (at_head) {
770 rq->rq_flags |= RQF_SOFTBARRIER;
771 list_add(&rq->queuelist, &q->requeue_list);
772 } else {
773 list_add_tail(&rq->queuelist, &q->requeue_list);
774 }
775 spin_unlock_irqrestore(&q->requeue_lock, flags);
776
777 if (kick_requeue_list)
778 blk_mq_kick_requeue_list(q);
779 }
780 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
781
782 void blk_mq_kick_requeue_list(struct request_queue *q)
783 {
784 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
785 }
786 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
787
788 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
789 unsigned long msecs)
790 {
791 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
792 msecs_to_jiffies(msecs));
793 }
794 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
795
796 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
797 {
798 if (tag < tags->nr_tags) {
799 prefetch(tags->rqs[tag]);
800 return tags->rqs[tag];
801 }
802
803 return NULL;
804 }
805 EXPORT_SYMBOL(blk_mq_tag_to_rq);
806
807 struct blk_mq_timeout_data {
808 unsigned long next;
809 unsigned int next_set;
810 unsigned int nr_expired;
811 };
812
813 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
814 {
815 const struct blk_mq_ops *ops = req->q->mq_ops;
816 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
817
818 req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
819
820 if (ops->timeout)
821 ret = ops->timeout(req, reserved);
822
823 switch (ret) {
824 case BLK_EH_HANDLED:
825 __blk_mq_complete_request(req);
826 break;
827 case BLK_EH_RESET_TIMER:
828 /*
829 * As nothing prevents from completion happening while
830 * ->aborted_gstate is set, this may lead to ignored
831 * completions and further spurious timeouts.
832 */
833 blk_mq_rq_update_aborted_gstate(req, 0);
834 blk_add_timer(req);
835 break;
836 case BLK_EH_NOT_HANDLED:
837 break;
838 default:
839 printk(KERN_ERR "block: bad eh return: %d\n", ret);
840 break;
841 }
842 }
843
844 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
845 struct request *rq, void *priv, bool reserved)
846 {
847 struct blk_mq_timeout_data *data = priv;
848 unsigned long gstate, deadline;
849 int start;
850
851 might_sleep();
852
853 if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
854 return;
855
856 /* read coherent snapshots of @rq->state_gen and @rq->deadline */
857 while (true) {
858 start = read_seqcount_begin(&rq->gstate_seq);
859 gstate = READ_ONCE(rq->gstate);
860 deadline = blk_rq_deadline(rq);
861 if (!read_seqcount_retry(&rq->gstate_seq, start))
862 break;
863 cond_resched();
864 }
865
866 /* if in-flight && overdue, mark for abortion */
867 if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
868 time_after_eq(jiffies, deadline)) {
869 blk_mq_rq_update_aborted_gstate(rq, gstate);
870 data->nr_expired++;
871 hctx->nr_expired++;
872 } else if (!data->next_set || time_after(data->next, deadline)) {
873 data->next = deadline;
874 data->next_set = 1;
875 }
876 }
877
878 static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
879 struct request *rq, void *priv, bool reserved)
880 {
881 /*
882 * We marked @rq->aborted_gstate and waited for RCU. If there were
883 * completions that we lost to, they would have finished and
884 * updated @rq->gstate by now; otherwise, the completion path is
885 * now guaranteed to see @rq->aborted_gstate and yield. If
886 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
887 */
888 if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
889 READ_ONCE(rq->gstate) == rq->aborted_gstate)
890 blk_mq_rq_timed_out(rq, reserved);
891 }
892
893 static void blk_mq_timeout_work(struct work_struct *work)
894 {
895 struct request_queue *q =
896 container_of(work, struct request_queue, timeout_work);
897 struct blk_mq_timeout_data data = {
898 .next = 0,
899 .next_set = 0,
900 .nr_expired = 0,
901 };
902 struct blk_mq_hw_ctx *hctx;
903 int i;
904
905 /* A deadlock might occur if a request is stuck requiring a
906 * timeout at the same time a queue freeze is waiting
907 * completion, since the timeout code would not be able to
908 * acquire the queue reference here.
909 *
910 * That's why we don't use blk_queue_enter here; instead, we use
911 * percpu_ref_tryget directly, because we need to be able to
912 * obtain a reference even in the short window between the queue
913 * starting to freeze, by dropping the first reference in
914 * blk_freeze_queue_start, and the moment the last request is
915 * consumed, marked by the instant q_usage_counter reaches
916 * zero.
917 */
918 if (!percpu_ref_tryget(&q->q_usage_counter))
919 return;
920
921 /* scan for the expired ones and set their ->aborted_gstate */
922 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
923
924 if (data.nr_expired) {
925 bool has_rcu = false;
926
927 /*
928 * Wait till everyone sees ->aborted_gstate. The
929 * sequential waits for SRCUs aren't ideal. If this ever
930 * becomes a problem, we can add per-hw_ctx rcu_head and
931 * wait in parallel.
932 */
933 queue_for_each_hw_ctx(q, hctx, i) {
934 if (!hctx->nr_expired)
935 continue;
936
937 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
938 has_rcu = true;
939 else
940 synchronize_srcu(hctx->srcu);
941
942 hctx->nr_expired = 0;
943 }
944 if (has_rcu)
945 synchronize_rcu();
946
947 /* terminate the ones we won */
948 blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
949 }
950
951 if (data.next_set) {
952 data.next = blk_rq_timeout(round_jiffies_up(data.next));
953 mod_timer(&q->timeout, data.next);
954 } else {
955 /*
956 * Request timeouts are handled as a forward rolling timer. If
957 * we end up here it means that no requests are pending and
958 * also that no request has been pending for a while. Mark
959 * each hctx as idle.
960 */
961 queue_for_each_hw_ctx(q, hctx, i) {
962 /* the hctx may be unmapped, so check it here */
963 if (blk_mq_hw_queue_mapped(hctx))
964 blk_mq_tag_idle(hctx);
965 }
966 }
967 blk_queue_exit(q);
968 }
969
970 struct flush_busy_ctx_data {
971 struct blk_mq_hw_ctx *hctx;
972 struct list_head *list;
973 };
974
975 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
976 {
977 struct flush_busy_ctx_data *flush_data = data;
978 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
979 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
980
981 spin_lock(&ctx->lock);
982 list_splice_tail_init(&ctx->rq_list, flush_data->list);
983 sbitmap_clear_bit(sb, bitnr);
984 spin_unlock(&ctx->lock);
985 return true;
986 }
987
988 /*
989 * Process software queues that have been marked busy, splicing them
990 * to the for-dispatch
991 */
992 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
993 {
994 struct flush_busy_ctx_data data = {
995 .hctx = hctx,
996 .list = list,
997 };
998
999 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1000 }
1001 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1002
1003 struct dispatch_rq_data {
1004 struct blk_mq_hw_ctx *hctx;
1005 struct request *rq;
1006 };
1007
1008 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1009 void *data)
1010 {
1011 struct dispatch_rq_data *dispatch_data = data;
1012 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1013 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1014
1015 spin_lock(&ctx->lock);
1016 if (unlikely(!list_empty(&ctx->rq_list))) {
1017 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1018 list_del_init(&dispatch_data->rq->queuelist);
1019 if (list_empty(&ctx->rq_list))
1020 sbitmap_clear_bit(sb, bitnr);
1021 }
1022 spin_unlock(&ctx->lock);
1023
1024 return !dispatch_data->rq;
1025 }
1026
1027 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1028 struct blk_mq_ctx *start)
1029 {
1030 unsigned off = start ? start->index_hw : 0;
1031 struct dispatch_rq_data data = {
1032 .hctx = hctx,
1033 .rq = NULL,
1034 };
1035
1036 __sbitmap_for_each_set(&hctx->ctx_map, off,
1037 dispatch_rq_from_ctx, &data);
1038
1039 return data.rq;
1040 }
1041
1042 static inline unsigned int queued_to_index(unsigned int queued)
1043 {
1044 if (!queued)
1045 return 0;
1046
1047 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1048 }
1049
1050 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1051 bool wait)
1052 {
1053 struct blk_mq_alloc_data data = {
1054 .q = rq->q,
1055 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1056 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1057 };
1058
1059 might_sleep_if(wait);
1060
1061 if (rq->tag != -1)
1062 goto done;
1063
1064 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1065 data.flags |= BLK_MQ_REQ_RESERVED;
1066
1067 rq->tag = blk_mq_get_tag(&data);
1068 if (rq->tag >= 0) {
1069 if (blk_mq_tag_busy(data.hctx)) {
1070 rq->rq_flags |= RQF_MQ_INFLIGHT;
1071 atomic_inc(&data.hctx->nr_active);
1072 }
1073 data.hctx->tags->rqs[rq->tag] = rq;
1074 }
1075
1076 done:
1077 if (hctx)
1078 *hctx = data.hctx;
1079 return rq->tag != -1;
1080 }
1081
1082 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1083 int flags, void *key)
1084 {
1085 struct blk_mq_hw_ctx *hctx;
1086
1087 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1088
1089 list_del_init(&wait->entry);
1090 blk_mq_run_hw_queue(hctx, true);
1091 return 1;
1092 }
1093
1094 /*
1095 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1096 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1097 * restart. For both cases, take care to check the condition again after
1098 * marking us as waiting.
1099 */
1100 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1101 struct request *rq)
1102 {
1103 struct blk_mq_hw_ctx *this_hctx = *hctx;
1104 struct sbq_wait_state *ws;
1105 wait_queue_entry_t *wait;
1106 bool ret;
1107
1108 if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1109 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1110 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1111
1112 /*
1113 * It's possible that a tag was freed in the window between the
1114 * allocation failure and adding the hardware queue to the wait
1115 * queue.
1116 *
1117 * Don't clear RESTART here, someone else could have set it.
1118 * At most this will cost an extra queue run.
1119 */
1120 return blk_mq_get_driver_tag(rq, hctx, false);
1121 }
1122
1123 wait = &this_hctx->dispatch_wait;
1124 if (!list_empty_careful(&wait->entry))
1125 return false;
1126
1127 spin_lock(&this_hctx->lock);
1128 if (!list_empty(&wait->entry)) {
1129 spin_unlock(&this_hctx->lock);
1130 return false;
1131 }
1132
1133 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1134 add_wait_queue(&ws->wait, wait);
1135
1136 /*
1137 * It's possible that a tag was freed in the window between the
1138 * allocation failure and adding the hardware queue to the wait
1139 * queue.
1140 */
1141 ret = blk_mq_get_driver_tag(rq, hctx, false);
1142 if (!ret) {
1143 spin_unlock(&this_hctx->lock);
1144 return false;
1145 }
1146
1147 /*
1148 * We got a tag, remove ourselves from the wait queue to ensure
1149 * someone else gets the wakeup.
1150 */
1151 spin_lock_irq(&ws->wait.lock);
1152 list_del_init(&wait->entry);
1153 spin_unlock_irq(&ws->wait.lock);
1154 spin_unlock(&this_hctx->lock);
1155
1156 return true;
1157 }
1158
1159 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1160
1161 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1162 bool got_budget)
1163 {
1164 struct blk_mq_hw_ctx *hctx;
1165 struct request *rq, *nxt;
1166 bool no_tag = false;
1167 int errors, queued;
1168 blk_status_t ret = BLK_STS_OK;
1169
1170 if (list_empty(list))
1171 return false;
1172
1173 WARN_ON(!list_is_singular(list) && got_budget);
1174
1175 /*
1176 * Now process all the entries, sending them to the driver.
1177 */
1178 errors = queued = 0;
1179 do {
1180 struct blk_mq_queue_data bd;
1181
1182 rq = list_first_entry(list, struct request, queuelist);
1183
1184 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1185 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1186 break;
1187
1188 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1189 /*
1190 * The initial allocation attempt failed, so we need to
1191 * rerun the hardware queue when a tag is freed. The
1192 * waitqueue takes care of that. If the queue is run
1193 * before we add this entry back on the dispatch list,
1194 * we'll re-run it below.
1195 */
1196 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1197 blk_mq_put_dispatch_budget(hctx);
1198 /*
1199 * For non-shared tags, the RESTART check
1200 * will suffice.
1201 */
1202 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1203 no_tag = true;
1204 break;
1205 }
1206 }
1207
1208 list_del_init(&rq->queuelist);
1209
1210 bd.rq = rq;
1211
1212 /*
1213 * Flag last if we have no more requests, or if we have more
1214 * but can't assign a driver tag to it.
1215 */
1216 if (list_empty(list))
1217 bd.last = true;
1218 else {
1219 nxt = list_first_entry(list, struct request, queuelist);
1220 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1221 }
1222
1223 ret = q->mq_ops->queue_rq(hctx, &bd);
1224 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1225 /*
1226 * If an I/O scheduler has been configured and we got a
1227 * driver tag for the next request already, free it
1228 * again.
1229 */
1230 if (!list_empty(list)) {
1231 nxt = list_first_entry(list, struct request, queuelist);
1232 blk_mq_put_driver_tag(nxt);
1233 }
1234 list_add(&rq->queuelist, list);
1235 __blk_mq_requeue_request(rq);
1236 break;
1237 }
1238
1239 if (unlikely(ret != BLK_STS_OK)) {
1240 errors++;
1241 blk_mq_end_request(rq, BLK_STS_IOERR);
1242 continue;
1243 }
1244
1245 queued++;
1246 } while (!list_empty(list));
1247
1248 hctx->dispatched[queued_to_index(queued)]++;
1249
1250 /*
1251 * Any items that need requeuing? Stuff them into hctx->dispatch,
1252 * that is where we will continue on next queue run.
1253 */
1254 if (!list_empty(list)) {
1255 bool needs_restart;
1256
1257 spin_lock(&hctx->lock);
1258 list_splice_init(list, &hctx->dispatch);
1259 spin_unlock(&hctx->lock);
1260
1261 /*
1262 * If SCHED_RESTART was set by the caller of this function and
1263 * it is no longer set that means that it was cleared by another
1264 * thread and hence that a queue rerun is needed.
1265 *
1266 * If 'no_tag' is set, that means that we failed getting
1267 * a driver tag with an I/O scheduler attached. If our dispatch
1268 * waitqueue is no longer active, ensure that we run the queue
1269 * AFTER adding our entries back to the list.
1270 *
1271 * If no I/O scheduler has been configured it is possible that
1272 * the hardware queue got stopped and restarted before requests
1273 * were pushed back onto the dispatch list. Rerun the queue to
1274 * avoid starvation. Notes:
1275 * - blk_mq_run_hw_queue() checks whether or not a queue has
1276 * been stopped before rerunning a queue.
1277 * - Some but not all block drivers stop a queue before
1278 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1279 * and dm-rq.
1280 *
1281 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1282 * bit is set, run queue after a delay to avoid IO stalls
1283 * that could otherwise occur if the queue is idle.
1284 */
1285 needs_restart = blk_mq_sched_needs_restart(hctx);
1286 if (!needs_restart ||
1287 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1288 blk_mq_run_hw_queue(hctx, true);
1289 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1290 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1291 }
1292
1293 return (queued + errors) != 0;
1294 }
1295
1296 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1297 {
1298 int srcu_idx;
1299
1300 /*
1301 * We should be running this queue from one of the CPUs that
1302 * are mapped to it.
1303 *
1304 * There are at least two related races now between setting
1305 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1306 * __blk_mq_run_hw_queue():
1307 *
1308 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1309 * but later it becomes online, then this warning is harmless
1310 * at all
1311 *
1312 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1313 * but later it becomes offline, then the warning can't be
1314 * triggered, and we depend on blk-mq timeout handler to
1315 * handle dispatched requests to this hctx
1316 */
1317 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1318 cpu_online(hctx->next_cpu)) {
1319 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1320 raw_smp_processor_id(),
1321 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1322 dump_stack();
1323 }
1324
1325 /*
1326 * We can't run the queue inline with ints disabled. Ensure that
1327 * we catch bad users of this early.
1328 */
1329 WARN_ON_ONCE(in_interrupt());
1330
1331 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1332
1333 hctx_lock(hctx, &srcu_idx);
1334 blk_mq_sched_dispatch_requests(hctx);
1335 hctx_unlock(hctx, srcu_idx);
1336 }
1337
1338 /*
1339 * It'd be great if the workqueue API had a way to pass
1340 * in a mask and had some smarts for more clever placement.
1341 * For now we just round-robin here, switching for every
1342 * BLK_MQ_CPU_WORK_BATCH queued items.
1343 */
1344 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1345 {
1346 bool tried = false;
1347 int next_cpu = hctx->next_cpu;
1348
1349 if (hctx->queue->nr_hw_queues == 1)
1350 return WORK_CPU_UNBOUND;
1351
1352 if (--hctx->next_cpu_batch <= 0) {
1353 select_cpu:
1354 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1355 cpu_online_mask);
1356 if (next_cpu >= nr_cpu_ids)
1357 next_cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1358
1359 /*
1360 * No online CPU is found, so have to make sure hctx->next_cpu
1361 * is set correctly for not breaking workqueue.
1362 */
1363 if (next_cpu >= nr_cpu_ids)
1364 next_cpu = cpumask_first(hctx->cpumask);
1365 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1366 }
1367
1368 /*
1369 * Do unbound schedule if we can't find a online CPU for this hctx,
1370 * and it should only happen in the path of handling CPU DEAD.
1371 */
1372 if (!cpu_online(next_cpu)) {
1373 if (!tried) {
1374 tried = true;
1375 goto select_cpu;
1376 }
1377
1378 /*
1379 * Make sure to re-select CPU next time once after CPUs
1380 * in hctx->cpumask become online again.
1381 */
1382 hctx->next_cpu = next_cpu;
1383 hctx->next_cpu_batch = 1;
1384 return WORK_CPU_UNBOUND;
1385 }
1386
1387 hctx->next_cpu = next_cpu;
1388 return next_cpu;
1389 }
1390
1391 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1392 unsigned long msecs)
1393 {
1394 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1395 return;
1396
1397 if (unlikely(blk_mq_hctx_stopped(hctx)))
1398 return;
1399
1400 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1401 int cpu = get_cpu();
1402 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1403 __blk_mq_run_hw_queue(hctx);
1404 put_cpu();
1405 return;
1406 }
1407
1408 put_cpu();
1409 }
1410
1411 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1412 msecs_to_jiffies(msecs));
1413 }
1414
1415 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1416 {
1417 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1418 }
1419 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1420
1421 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1422 {
1423 int srcu_idx;
1424 bool need_run;
1425
1426 /*
1427 * When queue is quiesced, we may be switching io scheduler, or
1428 * updating nr_hw_queues, or other things, and we can't run queue
1429 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1430 *
1431 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1432 * quiesced.
1433 */
1434 hctx_lock(hctx, &srcu_idx);
1435 need_run = !blk_queue_quiesced(hctx->queue) &&
1436 blk_mq_hctx_has_pending(hctx);
1437 hctx_unlock(hctx, srcu_idx);
1438
1439 if (need_run) {
1440 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1441 return true;
1442 }
1443
1444 return false;
1445 }
1446 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1447
1448 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1449 {
1450 struct blk_mq_hw_ctx *hctx;
1451 int i;
1452
1453 queue_for_each_hw_ctx(q, hctx, i) {
1454 if (blk_mq_hctx_stopped(hctx))
1455 continue;
1456
1457 blk_mq_run_hw_queue(hctx, async);
1458 }
1459 }
1460 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1461
1462 /**
1463 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1464 * @q: request queue.
1465 *
1466 * The caller is responsible for serializing this function against
1467 * blk_mq_{start,stop}_hw_queue().
1468 */
1469 bool blk_mq_queue_stopped(struct request_queue *q)
1470 {
1471 struct blk_mq_hw_ctx *hctx;
1472 int i;
1473
1474 queue_for_each_hw_ctx(q, hctx, i)
1475 if (blk_mq_hctx_stopped(hctx))
1476 return true;
1477
1478 return false;
1479 }
1480 EXPORT_SYMBOL(blk_mq_queue_stopped);
1481
1482 /*
1483 * This function is often used for pausing .queue_rq() by driver when
1484 * there isn't enough resource or some conditions aren't satisfied, and
1485 * BLK_STS_RESOURCE is usually returned.
1486 *
1487 * We do not guarantee that dispatch can be drained or blocked
1488 * after blk_mq_stop_hw_queue() returns. Please use
1489 * blk_mq_quiesce_queue() for that requirement.
1490 */
1491 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1492 {
1493 cancel_delayed_work(&hctx->run_work);
1494
1495 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1496 }
1497 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1498
1499 /*
1500 * This function is often used for pausing .queue_rq() by driver when
1501 * there isn't enough resource or some conditions aren't satisfied, and
1502 * BLK_STS_RESOURCE is usually returned.
1503 *
1504 * We do not guarantee that dispatch can be drained or blocked
1505 * after blk_mq_stop_hw_queues() returns. Please use
1506 * blk_mq_quiesce_queue() for that requirement.
1507 */
1508 void blk_mq_stop_hw_queues(struct request_queue *q)
1509 {
1510 struct blk_mq_hw_ctx *hctx;
1511 int i;
1512
1513 queue_for_each_hw_ctx(q, hctx, i)
1514 blk_mq_stop_hw_queue(hctx);
1515 }
1516 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1517
1518 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1519 {
1520 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1521
1522 blk_mq_run_hw_queue(hctx, false);
1523 }
1524 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1525
1526 void blk_mq_start_hw_queues(struct request_queue *q)
1527 {
1528 struct blk_mq_hw_ctx *hctx;
1529 int i;
1530
1531 queue_for_each_hw_ctx(q, hctx, i)
1532 blk_mq_start_hw_queue(hctx);
1533 }
1534 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1535
1536 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1537 {
1538 if (!blk_mq_hctx_stopped(hctx))
1539 return;
1540
1541 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1542 blk_mq_run_hw_queue(hctx, async);
1543 }
1544 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1545
1546 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1547 {
1548 struct blk_mq_hw_ctx *hctx;
1549 int i;
1550
1551 queue_for_each_hw_ctx(q, hctx, i)
1552 blk_mq_start_stopped_hw_queue(hctx, async);
1553 }
1554 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1555
1556 static void blk_mq_run_work_fn(struct work_struct *work)
1557 {
1558 struct blk_mq_hw_ctx *hctx;
1559
1560 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1561
1562 /*
1563 * If we are stopped, don't run the queue. The exception is if
1564 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1565 * the STOPPED bit and run it.
1566 */
1567 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1568 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1569 return;
1570
1571 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1572 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1573 }
1574
1575 __blk_mq_run_hw_queue(hctx);
1576 }
1577
1578
1579 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1580 {
1581 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1582 return;
1583
1584 /*
1585 * Stop the hw queue, then modify currently delayed work.
1586 * This should prevent us from running the queue prematurely.
1587 * Mark the queue as auto-clearing STOPPED when it runs.
1588 */
1589 blk_mq_stop_hw_queue(hctx);
1590 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1591 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1592 &hctx->run_work,
1593 msecs_to_jiffies(msecs));
1594 }
1595 EXPORT_SYMBOL(blk_mq_delay_queue);
1596
1597 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1598 struct request *rq,
1599 bool at_head)
1600 {
1601 struct blk_mq_ctx *ctx = rq->mq_ctx;
1602
1603 lockdep_assert_held(&ctx->lock);
1604
1605 trace_block_rq_insert(hctx->queue, rq);
1606
1607 if (at_head)
1608 list_add(&rq->queuelist, &ctx->rq_list);
1609 else
1610 list_add_tail(&rq->queuelist, &ctx->rq_list);
1611 }
1612
1613 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1614 bool at_head)
1615 {
1616 struct blk_mq_ctx *ctx = rq->mq_ctx;
1617
1618 lockdep_assert_held(&ctx->lock);
1619
1620 __blk_mq_insert_req_list(hctx, rq, at_head);
1621 blk_mq_hctx_mark_pending(hctx, ctx);
1622 }
1623
1624 /*
1625 * Should only be used carefully, when the caller knows we want to
1626 * bypass a potential IO scheduler on the target device.
1627 */
1628 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1629 {
1630 struct blk_mq_ctx *ctx = rq->mq_ctx;
1631 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1632
1633 spin_lock(&hctx->lock);
1634 list_add_tail(&rq->queuelist, &hctx->dispatch);
1635 spin_unlock(&hctx->lock);
1636
1637 if (run_queue)
1638 blk_mq_run_hw_queue(hctx, false);
1639 }
1640
1641 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1642 struct list_head *list)
1643
1644 {
1645 /*
1646 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1647 * offline now
1648 */
1649 spin_lock(&ctx->lock);
1650 while (!list_empty(list)) {
1651 struct request *rq;
1652
1653 rq = list_first_entry(list, struct request, queuelist);
1654 BUG_ON(rq->mq_ctx != ctx);
1655 list_del_init(&rq->queuelist);
1656 __blk_mq_insert_req_list(hctx, rq, false);
1657 }
1658 blk_mq_hctx_mark_pending(hctx, ctx);
1659 spin_unlock(&ctx->lock);
1660 }
1661
1662 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1663 {
1664 struct request *rqa = container_of(a, struct request, queuelist);
1665 struct request *rqb = container_of(b, struct request, queuelist);
1666
1667 return !(rqa->mq_ctx < rqb->mq_ctx ||
1668 (rqa->mq_ctx == rqb->mq_ctx &&
1669 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1670 }
1671
1672 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1673 {
1674 struct blk_mq_ctx *this_ctx;
1675 struct request_queue *this_q;
1676 struct request *rq;
1677 LIST_HEAD(list);
1678 LIST_HEAD(ctx_list);
1679 unsigned int depth;
1680
1681 list_splice_init(&plug->mq_list, &list);
1682
1683 list_sort(NULL, &list, plug_ctx_cmp);
1684
1685 this_q = NULL;
1686 this_ctx = NULL;
1687 depth = 0;
1688
1689 while (!list_empty(&list)) {
1690 rq = list_entry_rq(list.next);
1691 list_del_init(&rq->queuelist);
1692 BUG_ON(!rq->q);
1693 if (rq->mq_ctx != this_ctx) {
1694 if (this_ctx) {
1695 trace_block_unplug(this_q, depth, from_schedule);
1696 blk_mq_sched_insert_requests(this_q, this_ctx,
1697 &ctx_list,
1698 from_schedule);
1699 }
1700
1701 this_ctx = rq->mq_ctx;
1702 this_q = rq->q;
1703 depth = 0;
1704 }
1705
1706 depth++;
1707 list_add_tail(&rq->queuelist, &ctx_list);
1708 }
1709
1710 /*
1711 * If 'this_ctx' is set, we know we have entries to complete
1712 * on 'ctx_list'. Do those.
1713 */
1714 if (this_ctx) {
1715 trace_block_unplug(this_q, depth, from_schedule);
1716 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1717 from_schedule);
1718 }
1719 }
1720
1721 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1722 {
1723 blk_init_request_from_bio(rq, bio);
1724
1725 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1726
1727 blk_account_io_start(rq, true);
1728 }
1729
1730 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1731 struct blk_mq_ctx *ctx,
1732 struct request *rq)
1733 {
1734 spin_lock(&ctx->lock);
1735 __blk_mq_insert_request(hctx, rq, false);
1736 spin_unlock(&ctx->lock);
1737 }
1738
1739 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1740 {
1741 if (rq->tag != -1)
1742 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1743
1744 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1745 }
1746
1747 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1748 struct request *rq,
1749 blk_qc_t *cookie)
1750 {
1751 struct request_queue *q = rq->q;
1752 struct blk_mq_queue_data bd = {
1753 .rq = rq,
1754 .last = true,
1755 };
1756 blk_qc_t new_cookie;
1757 blk_status_t ret;
1758
1759 new_cookie = request_to_qc_t(hctx, rq);
1760
1761 /*
1762 * For OK queue, we are done. For error, caller may kill it.
1763 * Any other error (busy), just add it to our list as we
1764 * previously would have done.
1765 */
1766 ret = q->mq_ops->queue_rq(hctx, &bd);
1767 switch (ret) {
1768 case BLK_STS_OK:
1769 *cookie = new_cookie;
1770 break;
1771 case BLK_STS_RESOURCE:
1772 case BLK_STS_DEV_RESOURCE:
1773 __blk_mq_requeue_request(rq);
1774 break;
1775 default:
1776 *cookie = BLK_QC_T_NONE;
1777 break;
1778 }
1779
1780 return ret;
1781 }
1782
1783 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1784 struct request *rq,
1785 blk_qc_t *cookie,
1786 bool bypass_insert)
1787 {
1788 struct request_queue *q = rq->q;
1789 bool run_queue = true;
1790
1791 /*
1792 * RCU or SRCU read lock is needed before checking quiesced flag.
1793 *
1794 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1795 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1796 * and avoid driver to try to dispatch again.
1797 */
1798 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1799 run_queue = false;
1800 bypass_insert = false;
1801 goto insert;
1802 }
1803
1804 if (q->elevator && !bypass_insert)
1805 goto insert;
1806
1807 if (!blk_mq_get_dispatch_budget(hctx))
1808 goto insert;
1809
1810 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1811 blk_mq_put_dispatch_budget(hctx);
1812 goto insert;
1813 }
1814
1815 return __blk_mq_issue_directly(hctx, rq, cookie);
1816 insert:
1817 if (bypass_insert)
1818 return BLK_STS_RESOURCE;
1819
1820 blk_mq_sched_insert_request(rq, false, run_queue, false);
1821 return BLK_STS_OK;
1822 }
1823
1824 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1825 struct request *rq, blk_qc_t *cookie)
1826 {
1827 blk_status_t ret;
1828 int srcu_idx;
1829
1830 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1831
1832 hctx_lock(hctx, &srcu_idx);
1833
1834 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1835 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1836 blk_mq_sched_insert_request(rq, false, true, false);
1837 else if (ret != BLK_STS_OK)
1838 blk_mq_end_request(rq, ret);
1839
1840 hctx_unlock(hctx, srcu_idx);
1841 }
1842
1843 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1844 {
1845 blk_status_t ret;
1846 int srcu_idx;
1847 blk_qc_t unused_cookie;
1848 struct blk_mq_ctx *ctx = rq->mq_ctx;
1849 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1850
1851 hctx_lock(hctx, &srcu_idx);
1852 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1853 hctx_unlock(hctx, srcu_idx);
1854
1855 return ret;
1856 }
1857
1858 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1859 {
1860 const int is_sync = op_is_sync(bio->bi_opf);
1861 const int is_flush_fua = op_is_flush(bio->bi_opf);
1862 struct blk_mq_alloc_data data = { .flags = 0 };
1863 struct request *rq;
1864 unsigned int request_count = 0;
1865 struct blk_plug *plug;
1866 struct request *same_queue_rq = NULL;
1867 blk_qc_t cookie;
1868 unsigned int wb_acct;
1869
1870 blk_queue_bounce(q, &bio);
1871
1872 blk_queue_split(q, &bio);
1873
1874 if (!bio_integrity_prep(bio))
1875 return BLK_QC_T_NONE;
1876
1877 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1878 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1879 return BLK_QC_T_NONE;
1880
1881 if (blk_mq_sched_bio_merge(q, bio))
1882 return BLK_QC_T_NONE;
1883
1884 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1885
1886 trace_block_getrq(q, bio, bio->bi_opf);
1887
1888 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1889 if (unlikely(!rq)) {
1890 __wbt_done(q->rq_wb, wb_acct);
1891 if (bio->bi_opf & REQ_NOWAIT)
1892 bio_wouldblock_error(bio);
1893 return BLK_QC_T_NONE;
1894 }
1895
1896 wbt_track(&rq->issue_stat, wb_acct);
1897
1898 cookie = request_to_qc_t(data.hctx, rq);
1899
1900 plug = current->plug;
1901 if (unlikely(is_flush_fua)) {
1902 blk_mq_put_ctx(data.ctx);
1903 blk_mq_bio_to_request(rq, bio);
1904
1905 /* bypass scheduler for flush rq */
1906 blk_insert_flush(rq);
1907 blk_mq_run_hw_queue(data.hctx, true);
1908 } else if (plug && q->nr_hw_queues == 1) {
1909 struct request *last = NULL;
1910
1911 blk_mq_put_ctx(data.ctx);
1912 blk_mq_bio_to_request(rq, bio);
1913
1914 /*
1915 * @request_count may become stale because of schedule
1916 * out, so check the list again.
1917 */
1918 if (list_empty(&plug->mq_list))
1919 request_count = 0;
1920 else if (blk_queue_nomerges(q))
1921 request_count = blk_plug_queued_count(q);
1922
1923 if (!request_count)
1924 trace_block_plug(q);
1925 else
1926 last = list_entry_rq(plug->mq_list.prev);
1927
1928 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1929 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1930 blk_flush_plug_list(plug, false);
1931 trace_block_plug(q);
1932 }
1933
1934 list_add_tail(&rq->queuelist, &plug->mq_list);
1935 } else if (plug && !blk_queue_nomerges(q)) {
1936 blk_mq_bio_to_request(rq, bio);
1937
1938 /*
1939 * We do limited plugging. If the bio can be merged, do that.
1940 * Otherwise the existing request in the plug list will be
1941 * issued. So the plug list will have one request at most
1942 * The plug list might get flushed before this. If that happens,
1943 * the plug list is empty, and same_queue_rq is invalid.
1944 */
1945 if (list_empty(&plug->mq_list))
1946 same_queue_rq = NULL;
1947 if (same_queue_rq)
1948 list_del_init(&same_queue_rq->queuelist);
1949 list_add_tail(&rq->queuelist, &plug->mq_list);
1950
1951 blk_mq_put_ctx(data.ctx);
1952
1953 if (same_queue_rq) {
1954 data.hctx = blk_mq_map_queue(q,
1955 same_queue_rq->mq_ctx->cpu);
1956 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1957 &cookie);
1958 }
1959 } else if (q->nr_hw_queues > 1 && is_sync) {
1960 blk_mq_put_ctx(data.ctx);
1961 blk_mq_bio_to_request(rq, bio);
1962 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1963 } else if (q->elevator) {
1964 blk_mq_put_ctx(data.ctx);
1965 blk_mq_bio_to_request(rq, bio);
1966 blk_mq_sched_insert_request(rq, false, true, true);
1967 } else {
1968 blk_mq_put_ctx(data.ctx);
1969 blk_mq_bio_to_request(rq, bio);
1970 blk_mq_queue_io(data.hctx, data.ctx, rq);
1971 blk_mq_run_hw_queue(data.hctx, true);
1972 }
1973
1974 return cookie;
1975 }
1976
1977 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1978 unsigned int hctx_idx)
1979 {
1980 struct page *page;
1981
1982 if (tags->rqs && set->ops->exit_request) {
1983 int i;
1984
1985 for (i = 0; i < tags->nr_tags; i++) {
1986 struct request *rq = tags->static_rqs[i];
1987
1988 if (!rq)
1989 continue;
1990 set->ops->exit_request(set, rq, hctx_idx);
1991 tags->static_rqs[i] = NULL;
1992 }
1993 }
1994
1995 while (!list_empty(&tags->page_list)) {
1996 page = list_first_entry(&tags->page_list, struct page, lru);
1997 list_del_init(&page->lru);
1998 /*
1999 * Remove kmemleak object previously allocated in
2000 * blk_mq_init_rq_map().
2001 */
2002 kmemleak_free(page_address(page));
2003 __free_pages(page, page->private);
2004 }
2005 }
2006
2007 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2008 {
2009 kfree(tags->rqs);
2010 tags->rqs = NULL;
2011 kfree(tags->static_rqs);
2012 tags->static_rqs = NULL;
2013
2014 blk_mq_free_tags(tags);
2015 }
2016
2017 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2018 unsigned int hctx_idx,
2019 unsigned int nr_tags,
2020 unsigned int reserved_tags)
2021 {
2022 struct blk_mq_tags *tags;
2023 int node;
2024
2025 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2026 if (node == NUMA_NO_NODE)
2027 node = set->numa_node;
2028
2029 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2030 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2031 if (!tags)
2032 return NULL;
2033
2034 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2035 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2036 node);
2037 if (!tags->rqs) {
2038 blk_mq_free_tags(tags);
2039 return NULL;
2040 }
2041
2042 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2043 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2044 node);
2045 if (!tags->static_rqs) {
2046 kfree(tags->rqs);
2047 blk_mq_free_tags(tags);
2048 return NULL;
2049 }
2050
2051 return tags;
2052 }
2053
2054 static size_t order_to_size(unsigned int order)
2055 {
2056 return (size_t)PAGE_SIZE << order;
2057 }
2058
2059 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2060 unsigned int hctx_idx, int node)
2061 {
2062 int ret;
2063
2064 if (set->ops->init_request) {
2065 ret = set->ops->init_request(set, rq, hctx_idx, node);
2066 if (ret)
2067 return ret;
2068 }
2069
2070 seqcount_init(&rq->gstate_seq);
2071 u64_stats_init(&rq->aborted_gstate_sync);
2072 return 0;
2073 }
2074
2075 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2076 unsigned int hctx_idx, unsigned int depth)
2077 {
2078 unsigned int i, j, entries_per_page, max_order = 4;
2079 size_t rq_size, left;
2080 int node;
2081
2082 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2083 if (node == NUMA_NO_NODE)
2084 node = set->numa_node;
2085
2086 INIT_LIST_HEAD(&tags->page_list);
2087
2088 /*
2089 * rq_size is the size of the request plus driver payload, rounded
2090 * to the cacheline size
2091 */
2092 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2093 cache_line_size());
2094 left = rq_size * depth;
2095
2096 for (i = 0; i < depth; ) {
2097 int this_order = max_order;
2098 struct page *page;
2099 int to_do;
2100 void *p;
2101
2102 while (this_order && left < order_to_size(this_order - 1))
2103 this_order--;
2104
2105 do {
2106 page = alloc_pages_node(node,
2107 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2108 this_order);
2109 if (page)
2110 break;
2111 if (!this_order--)
2112 break;
2113 if (order_to_size(this_order) < rq_size)
2114 break;
2115 } while (1);
2116
2117 if (!page)
2118 goto fail;
2119
2120 page->private = this_order;
2121 list_add_tail(&page->lru, &tags->page_list);
2122
2123 p = page_address(page);
2124 /*
2125 * Allow kmemleak to scan these pages as they contain pointers
2126 * to additional allocations like via ops->init_request().
2127 */
2128 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2129 entries_per_page = order_to_size(this_order) / rq_size;
2130 to_do = min(entries_per_page, depth - i);
2131 left -= to_do * rq_size;
2132 for (j = 0; j < to_do; j++) {
2133 struct request *rq = p;
2134
2135 tags->static_rqs[i] = rq;
2136 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2137 tags->static_rqs[i] = NULL;
2138 goto fail;
2139 }
2140
2141 p += rq_size;
2142 i++;
2143 }
2144 }
2145 return 0;
2146
2147 fail:
2148 blk_mq_free_rqs(set, tags, hctx_idx);
2149 return -ENOMEM;
2150 }
2151
2152 /*
2153 * 'cpu' is going away. splice any existing rq_list entries from this
2154 * software queue to the hw queue dispatch list, and ensure that it
2155 * gets run.
2156 */
2157 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2158 {
2159 struct blk_mq_hw_ctx *hctx;
2160 struct blk_mq_ctx *ctx;
2161 LIST_HEAD(tmp);
2162
2163 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2164 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2165
2166 spin_lock(&ctx->lock);
2167 if (!list_empty(&ctx->rq_list)) {
2168 list_splice_init(&ctx->rq_list, &tmp);
2169 blk_mq_hctx_clear_pending(hctx, ctx);
2170 }
2171 spin_unlock(&ctx->lock);
2172
2173 if (list_empty(&tmp))
2174 return 0;
2175
2176 spin_lock(&hctx->lock);
2177 list_splice_tail_init(&tmp, &hctx->dispatch);
2178 spin_unlock(&hctx->lock);
2179
2180 blk_mq_run_hw_queue(hctx, true);
2181 return 0;
2182 }
2183
2184 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2185 {
2186 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2187 &hctx->cpuhp_dead);
2188 }
2189
2190 /* hctx->ctxs will be freed in queue's release handler */
2191 static void blk_mq_exit_hctx(struct request_queue *q,
2192 struct blk_mq_tag_set *set,
2193 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2194 {
2195 blk_mq_debugfs_unregister_hctx(hctx);
2196
2197 if (blk_mq_hw_queue_mapped(hctx))
2198 blk_mq_tag_idle(hctx);
2199
2200 if (set->ops->exit_request)
2201 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2202
2203 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2204
2205 if (set->ops->exit_hctx)
2206 set->ops->exit_hctx(hctx, hctx_idx);
2207
2208 if (hctx->flags & BLK_MQ_F_BLOCKING)
2209 cleanup_srcu_struct(hctx->srcu);
2210
2211 blk_mq_remove_cpuhp(hctx);
2212 blk_free_flush_queue(hctx->fq);
2213 sbitmap_free(&hctx->ctx_map);
2214 }
2215
2216 static void blk_mq_exit_hw_queues(struct request_queue *q,
2217 struct blk_mq_tag_set *set, int nr_queue)
2218 {
2219 struct blk_mq_hw_ctx *hctx;
2220 unsigned int i;
2221
2222 queue_for_each_hw_ctx(q, hctx, i) {
2223 if (i == nr_queue)
2224 break;
2225 blk_mq_exit_hctx(q, set, hctx, i);
2226 }
2227 }
2228
2229 static int blk_mq_init_hctx(struct request_queue *q,
2230 struct blk_mq_tag_set *set,
2231 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2232 {
2233 int node;
2234
2235 node = hctx->numa_node;
2236 if (node == NUMA_NO_NODE)
2237 node = hctx->numa_node = set->numa_node;
2238
2239 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2240 spin_lock_init(&hctx->lock);
2241 INIT_LIST_HEAD(&hctx->dispatch);
2242 hctx->queue = q;
2243 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2244
2245 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2246
2247 hctx->tags = set->tags[hctx_idx];
2248
2249 /*
2250 * Allocate space for all possible cpus to avoid allocation at
2251 * runtime
2252 */
2253 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2254 GFP_KERNEL, node);
2255 if (!hctx->ctxs)
2256 goto unregister_cpu_notifier;
2257
2258 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2259 node))
2260 goto free_ctxs;
2261
2262 hctx->nr_ctx = 0;
2263
2264 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2265 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2266
2267 if (set->ops->init_hctx &&
2268 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2269 goto free_bitmap;
2270
2271 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2272 goto exit_hctx;
2273
2274 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2275 if (!hctx->fq)
2276 goto sched_exit_hctx;
2277
2278 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2279 goto free_fq;
2280
2281 if (hctx->flags & BLK_MQ_F_BLOCKING)
2282 init_srcu_struct(hctx->srcu);
2283
2284 blk_mq_debugfs_register_hctx(q, hctx);
2285
2286 return 0;
2287
2288 free_fq:
2289 kfree(hctx->fq);
2290 sched_exit_hctx:
2291 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2292 exit_hctx:
2293 if (set->ops->exit_hctx)
2294 set->ops->exit_hctx(hctx, hctx_idx);
2295 free_bitmap:
2296 sbitmap_free(&hctx->ctx_map);
2297 free_ctxs:
2298 kfree(hctx->ctxs);
2299 unregister_cpu_notifier:
2300 blk_mq_remove_cpuhp(hctx);
2301 return -1;
2302 }
2303
2304 static void blk_mq_init_cpu_queues(struct request_queue *q,
2305 unsigned int nr_hw_queues)
2306 {
2307 unsigned int i;
2308
2309 for_each_possible_cpu(i) {
2310 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2311 struct blk_mq_hw_ctx *hctx;
2312
2313 __ctx->cpu = i;
2314 spin_lock_init(&__ctx->lock);
2315 INIT_LIST_HEAD(&__ctx->rq_list);
2316 __ctx->queue = q;
2317
2318 /*
2319 * Set local node, IFF we have more than one hw queue. If
2320 * not, we remain on the home node of the device
2321 */
2322 hctx = blk_mq_map_queue(q, i);
2323 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2324 hctx->numa_node = local_memory_node(cpu_to_node(i));
2325 }
2326 }
2327
2328 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2329 {
2330 int ret = 0;
2331
2332 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2333 set->queue_depth, set->reserved_tags);
2334 if (!set->tags[hctx_idx])
2335 return false;
2336
2337 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2338 set->queue_depth);
2339 if (!ret)
2340 return true;
2341
2342 blk_mq_free_rq_map(set->tags[hctx_idx]);
2343 set->tags[hctx_idx] = NULL;
2344 return false;
2345 }
2346
2347 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2348 unsigned int hctx_idx)
2349 {
2350 if (set->tags[hctx_idx]) {
2351 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2352 blk_mq_free_rq_map(set->tags[hctx_idx]);
2353 set->tags[hctx_idx] = NULL;
2354 }
2355 }
2356
2357 static void blk_mq_map_swqueue(struct request_queue *q)
2358 {
2359 unsigned int i, hctx_idx;
2360 struct blk_mq_hw_ctx *hctx;
2361 struct blk_mq_ctx *ctx;
2362 struct blk_mq_tag_set *set = q->tag_set;
2363
2364 /*
2365 * Avoid others reading imcomplete hctx->cpumask through sysfs
2366 */
2367 mutex_lock(&q->sysfs_lock);
2368
2369 queue_for_each_hw_ctx(q, hctx, i) {
2370 cpumask_clear(hctx->cpumask);
2371 hctx->nr_ctx = 0;
2372 }
2373
2374 /*
2375 * Map software to hardware queues.
2376 *
2377 * If the cpu isn't present, the cpu is mapped to first hctx.
2378 */
2379 for_each_possible_cpu(i) {
2380 hctx_idx = q->mq_map[i];
2381 /* unmapped hw queue can be remapped after CPU topo changed */
2382 if (!set->tags[hctx_idx] &&
2383 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2384 /*
2385 * If tags initialization fail for some hctx,
2386 * that hctx won't be brought online. In this
2387 * case, remap the current ctx to hctx[0] which
2388 * is guaranteed to always have tags allocated
2389 */
2390 q->mq_map[i] = 0;
2391 }
2392
2393 ctx = per_cpu_ptr(q->queue_ctx, i);
2394 hctx = blk_mq_map_queue(q, i);
2395
2396 cpumask_set_cpu(i, hctx->cpumask);
2397 ctx->index_hw = hctx->nr_ctx;
2398 hctx->ctxs[hctx->nr_ctx++] = ctx;
2399 }
2400
2401 mutex_unlock(&q->sysfs_lock);
2402
2403 queue_for_each_hw_ctx(q, hctx, i) {
2404 /*
2405 * If no software queues are mapped to this hardware queue,
2406 * disable it and free the request entries.
2407 */
2408 if (!hctx->nr_ctx) {
2409 /* Never unmap queue 0. We need it as a
2410 * fallback in case of a new remap fails
2411 * allocation
2412 */
2413 if (i && set->tags[i])
2414 blk_mq_free_map_and_requests(set, i);
2415
2416 hctx->tags = NULL;
2417 continue;
2418 }
2419
2420 hctx->tags = set->tags[i];
2421 WARN_ON(!hctx->tags);
2422
2423 /*
2424 * Set the map size to the number of mapped software queues.
2425 * This is more accurate and more efficient than looping
2426 * over all possibly mapped software queues.
2427 */
2428 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2429
2430 /*
2431 * Initialize batch roundrobin counts
2432 */
2433 hctx->next_cpu = cpumask_first_and(hctx->cpumask,
2434 cpu_online_mask);
2435 if (hctx->next_cpu >= nr_cpu_ids)
2436 hctx->next_cpu = cpumask_first(hctx->cpumask);
2437 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2438 }
2439 }
2440
2441 /*
2442 * Caller needs to ensure that we're either frozen/quiesced, or that
2443 * the queue isn't live yet.
2444 */
2445 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2446 {
2447 struct blk_mq_hw_ctx *hctx;
2448 int i;
2449
2450 queue_for_each_hw_ctx(q, hctx, i) {
2451 if (shared) {
2452 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2453 atomic_inc(&q->shared_hctx_restart);
2454 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2455 } else {
2456 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2457 atomic_dec(&q->shared_hctx_restart);
2458 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2459 }
2460 }
2461 }
2462
2463 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2464 bool shared)
2465 {
2466 struct request_queue *q;
2467
2468 lockdep_assert_held(&set->tag_list_lock);
2469
2470 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2471 blk_mq_freeze_queue(q);
2472 queue_set_hctx_shared(q, shared);
2473 blk_mq_unfreeze_queue(q);
2474 }
2475 }
2476
2477 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2478 {
2479 struct blk_mq_tag_set *set = q->tag_set;
2480
2481 mutex_lock(&set->tag_list_lock);
2482 list_del_rcu(&q->tag_set_list);
2483 INIT_LIST_HEAD(&q->tag_set_list);
2484 if (list_is_singular(&set->tag_list)) {
2485 /* just transitioned to unshared */
2486 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2487 /* update existing queue */
2488 blk_mq_update_tag_set_depth(set, false);
2489 }
2490 mutex_unlock(&set->tag_list_lock);
2491
2492 synchronize_rcu();
2493 }
2494
2495 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2496 struct request_queue *q)
2497 {
2498 q->tag_set = set;
2499
2500 mutex_lock(&set->tag_list_lock);
2501
2502 /*
2503 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2504 */
2505 if (!list_empty(&set->tag_list) &&
2506 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2507 set->flags |= BLK_MQ_F_TAG_SHARED;
2508 /* update existing queue */
2509 blk_mq_update_tag_set_depth(set, true);
2510 }
2511 if (set->flags & BLK_MQ_F_TAG_SHARED)
2512 queue_set_hctx_shared(q, true);
2513 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2514
2515 mutex_unlock(&set->tag_list_lock);
2516 }
2517
2518 /*
2519 * It is the actual release handler for mq, but we do it from
2520 * request queue's release handler for avoiding use-after-free
2521 * and headache because q->mq_kobj shouldn't have been introduced,
2522 * but we can't group ctx/kctx kobj without it.
2523 */
2524 void blk_mq_release(struct request_queue *q)
2525 {
2526 struct blk_mq_hw_ctx *hctx;
2527 unsigned int i;
2528
2529 /* hctx kobj stays in hctx */
2530 queue_for_each_hw_ctx(q, hctx, i) {
2531 if (!hctx)
2532 continue;
2533 kobject_put(&hctx->kobj);
2534 }
2535
2536 q->mq_map = NULL;
2537
2538 kfree(q->queue_hw_ctx);
2539
2540 /*
2541 * release .mq_kobj and sw queue's kobject now because
2542 * both share lifetime with request queue.
2543 */
2544 blk_mq_sysfs_deinit(q);
2545
2546 free_percpu(q->queue_ctx);
2547 }
2548
2549 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2550 {
2551 struct request_queue *uninit_q, *q;
2552
2553 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2554 if (!uninit_q)
2555 return ERR_PTR(-ENOMEM);
2556
2557 q = blk_mq_init_allocated_queue(set, uninit_q);
2558 if (IS_ERR(q))
2559 blk_cleanup_queue(uninit_q);
2560
2561 return q;
2562 }
2563 EXPORT_SYMBOL(blk_mq_init_queue);
2564
2565 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2566 {
2567 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2568
2569 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2570 __alignof__(struct blk_mq_hw_ctx)) !=
2571 sizeof(struct blk_mq_hw_ctx));
2572
2573 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2574 hw_ctx_size += sizeof(struct srcu_struct);
2575
2576 return hw_ctx_size;
2577 }
2578
2579 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2580 struct request_queue *q)
2581 {
2582 int i, j;
2583 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2584
2585 blk_mq_sysfs_unregister(q);
2586
2587 /* protect against switching io scheduler */
2588 mutex_lock(&q->sysfs_lock);
2589 for (i = 0; i < set->nr_hw_queues; i++) {
2590 int node;
2591
2592 if (hctxs[i])
2593 continue;
2594
2595 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2596 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2597 GFP_KERNEL, node);
2598 if (!hctxs[i])
2599 break;
2600
2601 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2602 node)) {
2603 kfree(hctxs[i]);
2604 hctxs[i] = NULL;
2605 break;
2606 }
2607
2608 atomic_set(&hctxs[i]->nr_active, 0);
2609 hctxs[i]->numa_node = node;
2610 hctxs[i]->queue_num = i;
2611
2612 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2613 free_cpumask_var(hctxs[i]->cpumask);
2614 kfree(hctxs[i]);
2615 hctxs[i] = NULL;
2616 break;
2617 }
2618 blk_mq_hctx_kobj_init(hctxs[i]);
2619 }
2620 for (j = i; j < q->nr_hw_queues; j++) {
2621 struct blk_mq_hw_ctx *hctx = hctxs[j];
2622
2623 if (hctx) {
2624 if (hctx->tags)
2625 blk_mq_free_map_and_requests(set, j);
2626 blk_mq_exit_hctx(q, set, hctx, j);
2627 kobject_put(&hctx->kobj);
2628 hctxs[j] = NULL;
2629
2630 }
2631 }
2632 q->nr_hw_queues = i;
2633 mutex_unlock(&q->sysfs_lock);
2634 blk_mq_sysfs_register(q);
2635 }
2636
2637 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2638 struct request_queue *q)
2639 {
2640 /* mark the queue as mq asap */
2641 q->mq_ops = set->ops;
2642
2643 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2644 blk_mq_poll_stats_bkt,
2645 BLK_MQ_POLL_STATS_BKTS, q);
2646 if (!q->poll_cb)
2647 goto err_exit;
2648
2649 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2650 if (!q->queue_ctx)
2651 goto err_exit;
2652
2653 /* init q->mq_kobj and sw queues' kobjects */
2654 blk_mq_sysfs_init(q);
2655
2656 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2657 GFP_KERNEL, set->numa_node);
2658 if (!q->queue_hw_ctx)
2659 goto err_percpu;
2660
2661 q->mq_map = set->mq_map;
2662
2663 blk_mq_realloc_hw_ctxs(set, q);
2664 if (!q->nr_hw_queues)
2665 goto err_hctxs;
2666
2667 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2668 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2669
2670 q->nr_queues = nr_cpu_ids;
2671
2672 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2673
2674 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2675 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2676
2677 q->sg_reserved_size = INT_MAX;
2678
2679 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2680 INIT_LIST_HEAD(&q->requeue_list);
2681 spin_lock_init(&q->requeue_lock);
2682
2683 blk_queue_make_request(q, blk_mq_make_request);
2684 if (q->mq_ops->poll)
2685 q->poll_fn = blk_mq_poll;
2686
2687 /*
2688 * Do this after blk_queue_make_request() overrides it...
2689 */
2690 q->nr_requests = set->queue_depth;
2691
2692 /*
2693 * Default to classic polling
2694 */
2695 q->poll_nsec = -1;
2696
2697 if (set->ops->complete)
2698 blk_queue_softirq_done(q, set->ops->complete);
2699
2700 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2701 blk_mq_add_queue_tag_set(set, q);
2702 blk_mq_map_swqueue(q);
2703
2704 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2705 int ret;
2706
2707 ret = blk_mq_sched_init(q);
2708 if (ret)
2709 return ERR_PTR(ret);
2710 }
2711
2712 return q;
2713
2714 err_hctxs:
2715 kfree(q->queue_hw_ctx);
2716 err_percpu:
2717 free_percpu(q->queue_ctx);
2718 err_exit:
2719 q->mq_ops = NULL;
2720 return ERR_PTR(-ENOMEM);
2721 }
2722 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2723
2724 void blk_mq_free_queue(struct request_queue *q)
2725 {
2726 struct blk_mq_tag_set *set = q->tag_set;
2727
2728 blk_mq_del_queue_tag_set(q);
2729 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2730 }
2731
2732 /* Basically redo blk_mq_init_queue with queue frozen */
2733 static void blk_mq_queue_reinit(struct request_queue *q)
2734 {
2735 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2736
2737 blk_mq_debugfs_unregister_hctxs(q);
2738 blk_mq_sysfs_unregister(q);
2739
2740 /*
2741 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2742 * we should change hctx numa_node according to the new topology (this
2743 * involves freeing and re-allocating memory, worth doing?)
2744 */
2745 blk_mq_map_swqueue(q);
2746
2747 blk_mq_sysfs_register(q);
2748 blk_mq_debugfs_register_hctxs(q);
2749 }
2750
2751 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2752 {
2753 int i;
2754
2755 for (i = 0; i < set->nr_hw_queues; i++)
2756 if (!__blk_mq_alloc_rq_map(set, i))
2757 goto out_unwind;
2758
2759 return 0;
2760
2761 out_unwind:
2762 while (--i >= 0)
2763 blk_mq_free_rq_map(set->tags[i]);
2764
2765 return -ENOMEM;
2766 }
2767
2768 /*
2769 * Allocate the request maps associated with this tag_set. Note that this
2770 * may reduce the depth asked for, if memory is tight. set->queue_depth
2771 * will be updated to reflect the allocated depth.
2772 */
2773 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2774 {
2775 unsigned int depth;
2776 int err;
2777
2778 depth = set->queue_depth;
2779 do {
2780 err = __blk_mq_alloc_rq_maps(set);
2781 if (!err)
2782 break;
2783
2784 set->queue_depth >>= 1;
2785 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2786 err = -ENOMEM;
2787 break;
2788 }
2789 } while (set->queue_depth);
2790
2791 if (!set->queue_depth || err) {
2792 pr_err("blk-mq: failed to allocate request map\n");
2793 return -ENOMEM;
2794 }
2795
2796 if (depth != set->queue_depth)
2797 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2798 depth, set->queue_depth);
2799
2800 return 0;
2801 }
2802
2803 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2804 {
2805 if (set->ops->map_queues) {
2806 int cpu;
2807 /*
2808 * transport .map_queues is usually done in the following
2809 * way:
2810 *
2811 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2812 * mask = get_cpu_mask(queue)
2813 * for_each_cpu(cpu, mask)
2814 * set->mq_map[cpu] = queue;
2815 * }
2816 *
2817 * When we need to remap, the table has to be cleared for
2818 * killing stale mapping since one CPU may not be mapped
2819 * to any hw queue.
2820 */
2821 for_each_possible_cpu(cpu)
2822 set->mq_map[cpu] = 0;
2823
2824 return set->ops->map_queues(set);
2825 } else
2826 return blk_mq_map_queues(set);
2827 }
2828
2829 /*
2830 * Alloc a tag set to be associated with one or more request queues.
2831 * May fail with EINVAL for various error conditions. May adjust the
2832 * requested depth down, if if it too large. In that case, the set
2833 * value will be stored in set->queue_depth.
2834 */
2835 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2836 {
2837 int ret;
2838
2839 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2840
2841 if (!set->nr_hw_queues)
2842 return -EINVAL;
2843 if (!set->queue_depth)
2844 return -EINVAL;
2845 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2846 return -EINVAL;
2847
2848 if (!set->ops->queue_rq)
2849 return -EINVAL;
2850
2851 if (!set->ops->get_budget ^ !set->ops->put_budget)
2852 return -EINVAL;
2853
2854 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2855 pr_info("blk-mq: reduced tag depth to %u\n",
2856 BLK_MQ_MAX_DEPTH);
2857 set->queue_depth = BLK_MQ_MAX_DEPTH;
2858 }
2859
2860 /*
2861 * If a crashdump is active, then we are potentially in a very
2862 * memory constrained environment. Limit us to 1 queue and
2863 * 64 tags to prevent using too much memory.
2864 */
2865 if (is_kdump_kernel()) {
2866 set->nr_hw_queues = 1;
2867 set->queue_depth = min(64U, set->queue_depth);
2868 }
2869 /*
2870 * There is no use for more h/w queues than cpus.
2871 */
2872 if (set->nr_hw_queues > nr_cpu_ids)
2873 set->nr_hw_queues = nr_cpu_ids;
2874
2875 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2876 GFP_KERNEL, set->numa_node);
2877 if (!set->tags)
2878 return -ENOMEM;
2879
2880 ret = -ENOMEM;
2881 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2882 GFP_KERNEL, set->numa_node);
2883 if (!set->mq_map)
2884 goto out_free_tags;
2885
2886 ret = blk_mq_update_queue_map(set);
2887 if (ret)
2888 goto out_free_mq_map;
2889
2890 ret = blk_mq_alloc_rq_maps(set);
2891 if (ret)
2892 goto out_free_mq_map;
2893
2894 mutex_init(&set->tag_list_lock);
2895 INIT_LIST_HEAD(&set->tag_list);
2896
2897 return 0;
2898
2899 out_free_mq_map:
2900 kfree(set->mq_map);
2901 set->mq_map = NULL;
2902 out_free_tags:
2903 kfree(set->tags);
2904 set->tags = NULL;
2905 return ret;
2906 }
2907 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2908
2909 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2910 {
2911 int i;
2912
2913 for (i = 0; i < nr_cpu_ids; i++)
2914 blk_mq_free_map_and_requests(set, i);
2915
2916 kfree(set->mq_map);
2917 set->mq_map = NULL;
2918
2919 kfree(set->tags);
2920 set->tags = NULL;
2921 }
2922 EXPORT_SYMBOL(blk_mq_free_tag_set);
2923
2924 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2925 {
2926 struct blk_mq_tag_set *set = q->tag_set;
2927 struct blk_mq_hw_ctx *hctx;
2928 int i, ret;
2929
2930 if (!set)
2931 return -EINVAL;
2932
2933 blk_mq_freeze_queue(q);
2934 blk_mq_quiesce_queue(q);
2935
2936 ret = 0;
2937 queue_for_each_hw_ctx(q, hctx, i) {
2938 if (!hctx->tags)
2939 continue;
2940 /*
2941 * If we're using an MQ scheduler, just update the scheduler
2942 * queue depth. This is similar to what the old code would do.
2943 */
2944 if (!hctx->sched_tags) {
2945 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2946 false);
2947 } else {
2948 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2949 nr, true);
2950 }
2951 if (ret)
2952 break;
2953 }
2954
2955 if (!ret)
2956 q->nr_requests = nr;
2957
2958 blk_mq_unquiesce_queue(q);
2959 blk_mq_unfreeze_queue(q);
2960
2961 return ret;
2962 }
2963
2964 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2965 int nr_hw_queues)
2966 {
2967 struct request_queue *q;
2968
2969 lockdep_assert_held(&set->tag_list_lock);
2970
2971 if (nr_hw_queues > nr_cpu_ids)
2972 nr_hw_queues = nr_cpu_ids;
2973 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2974 return;
2975
2976 list_for_each_entry(q, &set->tag_list, tag_set_list)
2977 blk_mq_freeze_queue(q);
2978
2979 set->nr_hw_queues = nr_hw_queues;
2980 blk_mq_update_queue_map(set);
2981 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2982 blk_mq_realloc_hw_ctxs(set, q);
2983 blk_mq_queue_reinit(q);
2984 }
2985
2986 list_for_each_entry(q, &set->tag_list, tag_set_list)
2987 blk_mq_unfreeze_queue(q);
2988 }
2989
2990 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2991 {
2992 mutex_lock(&set->tag_list_lock);
2993 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2994 mutex_unlock(&set->tag_list_lock);
2995 }
2996 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2997
2998 /* Enable polling stats and return whether they were already enabled. */
2999 static bool blk_poll_stats_enable(struct request_queue *q)
3000 {
3001 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3002 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3003 return true;
3004 blk_stat_add_callback(q, q->poll_cb);
3005 return false;
3006 }
3007
3008 static void blk_mq_poll_stats_start(struct request_queue *q)
3009 {
3010 /*
3011 * We don't arm the callback if polling stats are not enabled or the
3012 * callback is already active.
3013 */
3014 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3015 blk_stat_is_active(q->poll_cb))
3016 return;
3017
3018 blk_stat_activate_msecs(q->poll_cb, 100);
3019 }
3020
3021 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3022 {
3023 struct request_queue *q = cb->data;
3024 int bucket;
3025
3026 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3027 if (cb->stat[bucket].nr_samples)
3028 q->poll_stat[bucket] = cb->stat[bucket];
3029 }
3030 }
3031
3032 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3033 struct blk_mq_hw_ctx *hctx,
3034 struct request *rq)
3035 {
3036 unsigned long ret = 0;
3037 int bucket;
3038
3039 /*
3040 * If stats collection isn't on, don't sleep but turn it on for
3041 * future users
3042 */
3043 if (!blk_poll_stats_enable(q))
3044 return 0;
3045
3046 /*
3047 * As an optimistic guess, use half of the mean service time
3048 * for this type of request. We can (and should) make this smarter.
3049 * For instance, if the completion latencies are tight, we can
3050 * get closer than just half the mean. This is especially
3051 * important on devices where the completion latencies are longer
3052 * than ~10 usec. We do use the stats for the relevant IO size
3053 * if available which does lead to better estimates.
3054 */
3055 bucket = blk_mq_poll_stats_bkt(rq);
3056 if (bucket < 0)
3057 return ret;
3058
3059 if (q->poll_stat[bucket].nr_samples)
3060 ret = (q->poll_stat[bucket].mean + 1) / 2;
3061
3062 return ret;
3063 }
3064
3065 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3066 struct blk_mq_hw_ctx *hctx,
3067 struct request *rq)
3068 {
3069 struct hrtimer_sleeper hs;
3070 enum hrtimer_mode mode;
3071 unsigned int nsecs;
3072 ktime_t kt;
3073
3074 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3075 return false;
3076
3077 /*
3078 * poll_nsec can be:
3079 *
3080 * -1: don't ever hybrid sleep
3081 * 0: use half of prev avg
3082 * >0: use this specific value
3083 */
3084 if (q->poll_nsec == -1)
3085 return false;
3086 else if (q->poll_nsec > 0)
3087 nsecs = q->poll_nsec;
3088 else
3089 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3090
3091 if (!nsecs)
3092 return false;
3093
3094 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3095
3096 /*
3097 * This will be replaced with the stats tracking code, using
3098 * 'avg_completion_time / 2' as the pre-sleep target.
3099 */
3100 kt = nsecs;
3101
3102 mode = HRTIMER_MODE_REL;
3103 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3104 hrtimer_set_expires(&hs.timer, kt);
3105
3106 hrtimer_init_sleeper(&hs, current);
3107 do {
3108 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3109 break;
3110 set_current_state(TASK_UNINTERRUPTIBLE);
3111 hrtimer_start_expires(&hs.timer, mode);
3112 if (hs.task)
3113 io_schedule();
3114 hrtimer_cancel(&hs.timer);
3115 mode = HRTIMER_MODE_ABS;
3116 } while (hs.task && !signal_pending(current));
3117
3118 __set_current_state(TASK_RUNNING);
3119 destroy_hrtimer_on_stack(&hs.timer);
3120 return true;
3121 }
3122
3123 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3124 {
3125 struct request_queue *q = hctx->queue;
3126 long state;
3127
3128 /*
3129 * If we sleep, have the caller restart the poll loop to reset
3130 * the state. Like for the other success return cases, the
3131 * caller is responsible for checking if the IO completed. If
3132 * the IO isn't complete, we'll get called again and will go
3133 * straight to the busy poll loop.
3134 */
3135 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3136 return true;
3137
3138 hctx->poll_considered++;
3139
3140 state = current->state;
3141 while (!need_resched()) {
3142 int ret;
3143
3144 hctx->poll_invoked++;
3145
3146 ret = q->mq_ops->poll(hctx, rq->tag);
3147 if (ret > 0) {
3148 hctx->poll_success++;
3149 set_current_state(TASK_RUNNING);
3150 return true;
3151 }
3152
3153 if (signal_pending_state(state, current))
3154 set_current_state(TASK_RUNNING);
3155
3156 if (current->state == TASK_RUNNING)
3157 return true;
3158 if (ret < 0)
3159 break;
3160 cpu_relax();
3161 }
3162
3163 __set_current_state(TASK_RUNNING);
3164 return false;
3165 }
3166
3167 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3168 {
3169 struct blk_mq_hw_ctx *hctx;
3170 struct request *rq;
3171
3172 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3173 return false;
3174
3175 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3176 if (!blk_qc_t_is_internal(cookie))
3177 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3178 else {
3179 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3180 /*
3181 * With scheduling, if the request has completed, we'll
3182 * get a NULL return here, as we clear the sched tag when
3183 * that happens. The request still remains valid, like always,
3184 * so we should be safe with just the NULL check.
3185 */
3186 if (!rq)
3187 return false;
3188 }
3189
3190 return __blk_mq_poll(hctx, rq);
3191 }
3192
3193 static int __init blk_mq_init(void)
3194 {
3195 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3196 blk_mq_hctx_notify_dead);
3197 return 0;
3198 }
3199 subsys_initcall(blk_mq_init);