]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-mq.c
Merge branch 'for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
[thirdparty/linux.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29
30 #include <trace/events/block.h>
31
32 #include <linux/blk-mq.h>
33 #include "blk.h"
34 #include "blk-mq.h"
35 #include "blk-mq-debugfs.h"
36 #include "blk-mq-tag.h"
37 #include "blk-pm.h"
38 #include "blk-stat.h"
39 #include "blk-mq-sched.h"
40 #include "blk-rq-qos.h"
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 int ddir, bytes, bucket;
48
49 ddir = rq_data_dir(rq);
50 bytes = blk_rq_bytes(rq);
51
52 bucket = ddir + 2*(ilog2(bytes) - 9);
53
54 if (bucket < 0)
55 return -1;
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59 return bucket;
60 }
61
62 /*
63 * Check if any of the ctx, dispatch list or elevator
64 * have pending work in this hardware queue.
65 */
66 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 {
68 return !list_empty_careful(&hctx->dispatch) ||
69 sbitmap_any_bit_set(&hctx->ctx_map) ||
70 blk_mq_sched_has_work(hctx);
71 }
72
73 /*
74 * Mark this ctx as having pending work in this hardware queue
75 */
76 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 struct blk_mq_ctx *ctx)
78 {
79 const int bit = ctx->index_hw[hctx->type];
80
81 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
82 sbitmap_set_bit(&hctx->ctx_map, bit);
83 }
84
85 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
86 struct blk_mq_ctx *ctx)
87 {
88 const int bit = ctx->index_hw[hctx->type];
89
90 sbitmap_clear_bit(&hctx->ctx_map, bit);
91 }
92
93 struct mq_inflight {
94 struct hd_struct *part;
95 unsigned int *inflight;
96 };
97
98 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
99 struct request *rq, void *priv,
100 bool reserved)
101 {
102 struct mq_inflight *mi = priv;
103
104 /*
105 * index[0] counts the specific partition that was asked for.
106 */
107 if (rq->part == mi->part)
108 mi->inflight[0]++;
109
110 return true;
111 }
112
113 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
114 {
115 unsigned inflight[2];
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120
121 return inflight[0];
122 }
123
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125 struct request *rq, void *priv,
126 bool reserved)
127 {
128 struct mq_inflight *mi = priv;
129
130 if (rq->part == mi->part)
131 mi->inflight[rq_data_dir(rq)]++;
132
133 return true;
134 }
135
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 unsigned int inflight[2])
138 {
139 struct mq_inflight mi = { .part = part, .inflight = inflight, };
140
141 inflight[0] = inflight[1] = 0;
142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 }
144
145 void blk_freeze_queue_start(struct request_queue *q)
146 {
147 mutex_lock(&q->mq_freeze_lock);
148 if (++q->mq_freeze_depth == 1) {
149 percpu_ref_kill(&q->q_usage_counter);
150 mutex_unlock(&q->mq_freeze_lock);
151 if (queue_is_mq(q))
152 blk_mq_run_hw_queues(q, false);
153 } else {
154 mutex_unlock(&q->mq_freeze_lock);
155 }
156 }
157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
158
159 void blk_mq_freeze_queue_wait(struct request_queue *q)
160 {
161 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
164
165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166 unsigned long timeout)
167 {
168 return wait_event_timeout(q->mq_freeze_wq,
169 percpu_ref_is_zero(&q->q_usage_counter),
170 timeout);
171 }
172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173
174 /*
175 * Guarantee no request is in use, so we can change any data structure of
176 * the queue afterward.
177 */
178 void blk_freeze_queue(struct request_queue *q)
179 {
180 /*
181 * In the !blk_mq case we are only calling this to kill the
182 * q_usage_counter, otherwise this increases the freeze depth
183 * and waits for it to return to zero. For this reason there is
184 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185 * exported to drivers as the only user for unfreeze is blk_mq.
186 */
187 blk_freeze_queue_start(q);
188 blk_mq_freeze_queue_wait(q);
189 }
190
191 void blk_mq_freeze_queue(struct request_queue *q)
192 {
193 /*
194 * ...just an alias to keep freeze and unfreeze actions balanced
195 * in the blk_mq_* namespace
196 */
197 blk_freeze_queue(q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
200
201 void blk_mq_unfreeze_queue(struct request_queue *q)
202 {
203 mutex_lock(&q->mq_freeze_lock);
204 q->mq_freeze_depth--;
205 WARN_ON_ONCE(q->mq_freeze_depth < 0);
206 if (!q->mq_freeze_depth) {
207 percpu_ref_resurrect(&q->q_usage_counter);
208 wake_up_all(&q->mq_freeze_wq);
209 }
210 mutex_unlock(&q->mq_freeze_lock);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213
214 /*
215 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216 * mpt3sas driver such that this function can be removed.
217 */
218 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219 {
220 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223
224 /**
225 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226 * @q: request queue.
227 *
228 * Note: this function does not prevent that the struct request end_io()
229 * callback function is invoked. Once this function is returned, we make
230 * sure no dispatch can happen until the queue is unquiesced via
231 * blk_mq_unquiesce_queue().
232 */
233 void blk_mq_quiesce_queue(struct request_queue *q)
234 {
235 struct blk_mq_hw_ctx *hctx;
236 unsigned int i;
237 bool rcu = false;
238
239 blk_mq_quiesce_queue_nowait(q);
240
241 queue_for_each_hw_ctx(q, hctx, i) {
242 if (hctx->flags & BLK_MQ_F_BLOCKING)
243 synchronize_srcu(hctx->srcu);
244 else
245 rcu = true;
246 }
247 if (rcu)
248 synchronize_rcu();
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251
252 /*
253 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254 * @q: request queue.
255 *
256 * This function recovers queue into the state before quiescing
257 * which is done by blk_mq_quiesce_queue.
258 */
259 void blk_mq_unquiesce_queue(struct request_queue *q)
260 {
261 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
262
263 /* dispatch requests which are inserted during quiescing */
264 blk_mq_run_hw_queues(q, true);
265 }
266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267
268 void blk_mq_wake_waiters(struct request_queue *q)
269 {
270 struct blk_mq_hw_ctx *hctx;
271 unsigned int i;
272
273 queue_for_each_hw_ctx(q, hctx, i)
274 if (blk_mq_hw_queue_mapped(hctx))
275 blk_mq_tag_wakeup_all(hctx->tags, true);
276 }
277
278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279 {
280 return blk_mq_has_free_tags(hctx->tags);
281 }
282 EXPORT_SYMBOL(blk_mq_can_queue);
283
284 /*
285 * Only need start/end time stamping if we have stats enabled, or using
286 * an IO scheduler.
287 */
288 static inline bool blk_mq_need_time_stamp(struct request *rq)
289 {
290 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
291 }
292
293 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
294 unsigned int tag, unsigned int op)
295 {
296 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
297 struct request *rq = tags->static_rqs[tag];
298 req_flags_t rq_flags = 0;
299
300 if (data->flags & BLK_MQ_REQ_INTERNAL) {
301 rq->tag = -1;
302 rq->internal_tag = tag;
303 } else {
304 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
305 rq_flags = RQF_MQ_INFLIGHT;
306 atomic_inc(&data->hctx->nr_active);
307 }
308 rq->tag = tag;
309 rq->internal_tag = -1;
310 data->hctx->tags->rqs[rq->tag] = rq;
311 }
312
313 /* csd/requeue_work/fifo_time is initialized before use */
314 rq->q = data->q;
315 rq->mq_ctx = data->ctx;
316 rq->mq_hctx = data->hctx;
317 rq->rq_flags = rq_flags;
318 rq->cmd_flags = op;
319 if (data->flags & BLK_MQ_REQ_PREEMPT)
320 rq->rq_flags |= RQF_PREEMPT;
321 if (blk_queue_io_stat(data->q))
322 rq->rq_flags |= RQF_IO_STAT;
323 INIT_LIST_HEAD(&rq->queuelist);
324 INIT_HLIST_NODE(&rq->hash);
325 RB_CLEAR_NODE(&rq->rb_node);
326 rq->rq_disk = NULL;
327 rq->part = NULL;
328 if (blk_mq_need_time_stamp(rq))
329 rq->start_time_ns = ktime_get_ns();
330 else
331 rq->start_time_ns = 0;
332 rq->io_start_time_ns = 0;
333 rq->nr_phys_segments = 0;
334 #if defined(CONFIG_BLK_DEV_INTEGRITY)
335 rq->nr_integrity_segments = 0;
336 #endif
337 /* tag was already set */
338 rq->extra_len = 0;
339 WRITE_ONCE(rq->deadline, 0);
340
341 rq->timeout = 0;
342
343 rq->end_io = NULL;
344 rq->end_io_data = NULL;
345
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 refcount_set(&rq->ref, 1);
348 return rq;
349 }
350
351 static struct request *blk_mq_get_request(struct request_queue *q,
352 struct bio *bio,
353 struct blk_mq_alloc_data *data)
354 {
355 struct elevator_queue *e = q->elevator;
356 struct request *rq;
357 unsigned int tag;
358 bool clear_ctx_on_error = false;
359
360 blk_queue_enter_live(q);
361 data->q = q;
362 if (likely(!data->ctx)) {
363 data->ctx = blk_mq_get_ctx(q);
364 clear_ctx_on_error = true;
365 }
366 if (likely(!data->hctx))
367 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
368 data->ctx);
369 if (data->cmd_flags & REQ_NOWAIT)
370 data->flags |= BLK_MQ_REQ_NOWAIT;
371
372 if (e) {
373 data->flags |= BLK_MQ_REQ_INTERNAL;
374
375 /*
376 * Flush requests are special and go directly to the
377 * dispatch list. Don't include reserved tags in the
378 * limiting, as it isn't useful.
379 */
380 if (!op_is_flush(data->cmd_flags) &&
381 e->type->ops.limit_depth &&
382 !(data->flags & BLK_MQ_REQ_RESERVED))
383 e->type->ops.limit_depth(data->cmd_flags, data);
384 } else {
385 blk_mq_tag_busy(data->hctx);
386 }
387
388 tag = blk_mq_get_tag(data);
389 if (tag == BLK_MQ_TAG_FAIL) {
390 if (clear_ctx_on_error)
391 data->ctx = NULL;
392 blk_queue_exit(q);
393 return NULL;
394 }
395
396 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
397 if (!op_is_flush(data->cmd_flags)) {
398 rq->elv.icq = NULL;
399 if (e && e->type->ops.prepare_request) {
400 if (e->type->icq_cache)
401 blk_mq_sched_assign_ioc(rq);
402
403 e->type->ops.prepare_request(rq, bio);
404 rq->rq_flags |= RQF_ELVPRIV;
405 }
406 }
407 data->hctx->queued++;
408 return rq;
409 }
410
411 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
412 blk_mq_req_flags_t flags)
413 {
414 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
415 struct request *rq;
416 int ret;
417
418 ret = blk_queue_enter(q, flags);
419 if (ret)
420 return ERR_PTR(ret);
421
422 rq = blk_mq_get_request(q, NULL, &alloc_data);
423 blk_queue_exit(q);
424
425 if (!rq)
426 return ERR_PTR(-EWOULDBLOCK);
427
428 rq->__data_len = 0;
429 rq->__sector = (sector_t) -1;
430 rq->bio = rq->biotail = NULL;
431 return rq;
432 }
433 EXPORT_SYMBOL(blk_mq_alloc_request);
434
435 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
436 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
437 {
438 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
439 struct request *rq;
440 unsigned int cpu;
441 int ret;
442
443 /*
444 * If the tag allocator sleeps we could get an allocation for a
445 * different hardware context. No need to complicate the low level
446 * allocator for this for the rare use case of a command tied to
447 * a specific queue.
448 */
449 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
450 return ERR_PTR(-EINVAL);
451
452 if (hctx_idx >= q->nr_hw_queues)
453 return ERR_PTR(-EIO);
454
455 ret = blk_queue_enter(q, flags);
456 if (ret)
457 return ERR_PTR(ret);
458
459 /*
460 * Check if the hardware context is actually mapped to anything.
461 * If not tell the caller that it should skip this queue.
462 */
463 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
464 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
465 blk_queue_exit(q);
466 return ERR_PTR(-EXDEV);
467 }
468 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
469 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
470
471 rq = blk_mq_get_request(q, NULL, &alloc_data);
472 blk_queue_exit(q);
473
474 if (!rq)
475 return ERR_PTR(-EWOULDBLOCK);
476
477 return rq;
478 }
479 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
480
481 static void __blk_mq_free_request(struct request *rq)
482 {
483 struct request_queue *q = rq->q;
484 struct blk_mq_ctx *ctx = rq->mq_ctx;
485 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
486 const int sched_tag = rq->internal_tag;
487
488 blk_pm_mark_last_busy(rq);
489 rq->mq_hctx = NULL;
490 if (rq->tag != -1)
491 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
492 if (sched_tag != -1)
493 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
494 blk_mq_sched_restart(hctx);
495 blk_queue_exit(q);
496 }
497
498 void blk_mq_free_request(struct request *rq)
499 {
500 struct request_queue *q = rq->q;
501 struct elevator_queue *e = q->elevator;
502 struct blk_mq_ctx *ctx = rq->mq_ctx;
503 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
504
505 if (rq->rq_flags & RQF_ELVPRIV) {
506 if (e && e->type->ops.finish_request)
507 e->type->ops.finish_request(rq);
508 if (rq->elv.icq) {
509 put_io_context(rq->elv.icq->ioc);
510 rq->elv.icq = NULL;
511 }
512 }
513
514 ctx->rq_completed[rq_is_sync(rq)]++;
515 if (rq->rq_flags & RQF_MQ_INFLIGHT)
516 atomic_dec(&hctx->nr_active);
517
518 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
519 laptop_io_completion(q->backing_dev_info);
520
521 rq_qos_done(q, rq);
522
523 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
524 if (refcount_dec_and_test(&rq->ref))
525 __blk_mq_free_request(rq);
526 }
527 EXPORT_SYMBOL_GPL(blk_mq_free_request);
528
529 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
530 {
531 u64 now = 0;
532
533 if (blk_mq_need_time_stamp(rq))
534 now = ktime_get_ns();
535
536 if (rq->rq_flags & RQF_STATS) {
537 blk_mq_poll_stats_start(rq->q);
538 blk_stat_add(rq, now);
539 }
540
541 if (rq->internal_tag != -1)
542 blk_mq_sched_completed_request(rq, now);
543
544 blk_account_io_done(rq, now);
545
546 if (rq->end_io) {
547 rq_qos_done(rq->q, rq);
548 rq->end_io(rq, error);
549 } else {
550 blk_mq_free_request(rq);
551 }
552 }
553 EXPORT_SYMBOL(__blk_mq_end_request);
554
555 void blk_mq_end_request(struct request *rq, blk_status_t error)
556 {
557 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
558 BUG();
559 __blk_mq_end_request(rq, error);
560 }
561 EXPORT_SYMBOL(blk_mq_end_request);
562
563 static void __blk_mq_complete_request_remote(void *data)
564 {
565 struct request *rq = data;
566 struct request_queue *q = rq->q;
567
568 q->mq_ops->complete(rq);
569 }
570
571 static void __blk_mq_complete_request(struct request *rq)
572 {
573 struct blk_mq_ctx *ctx = rq->mq_ctx;
574 struct request_queue *q = rq->q;
575 bool shared = false;
576 int cpu;
577
578 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
579 /*
580 * Most of single queue controllers, there is only one irq vector
581 * for handling IO completion, and the only irq's affinity is set
582 * as all possible CPUs. On most of ARCHs, this affinity means the
583 * irq is handled on one specific CPU.
584 *
585 * So complete IO reqeust in softirq context in case of single queue
586 * for not degrading IO performance by irqsoff latency.
587 */
588 if (q->nr_hw_queues == 1) {
589 __blk_complete_request(rq);
590 return;
591 }
592
593 /*
594 * For a polled request, always complete locallly, it's pointless
595 * to redirect the completion.
596 */
597 if ((rq->cmd_flags & REQ_HIPRI) ||
598 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
599 q->mq_ops->complete(rq);
600 return;
601 }
602
603 cpu = get_cpu();
604 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
605 shared = cpus_share_cache(cpu, ctx->cpu);
606
607 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
608 rq->csd.func = __blk_mq_complete_request_remote;
609 rq->csd.info = rq;
610 rq->csd.flags = 0;
611 smp_call_function_single_async(ctx->cpu, &rq->csd);
612 } else {
613 q->mq_ops->complete(rq);
614 }
615 put_cpu();
616 }
617
618 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
619 __releases(hctx->srcu)
620 {
621 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
622 rcu_read_unlock();
623 else
624 srcu_read_unlock(hctx->srcu, srcu_idx);
625 }
626
627 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
628 __acquires(hctx->srcu)
629 {
630 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
631 /* shut up gcc false positive */
632 *srcu_idx = 0;
633 rcu_read_lock();
634 } else
635 *srcu_idx = srcu_read_lock(hctx->srcu);
636 }
637
638 /**
639 * blk_mq_complete_request - end I/O on a request
640 * @rq: the request being processed
641 *
642 * Description:
643 * Ends all I/O on a request. It does not handle partial completions.
644 * The actual completion happens out-of-order, through a IPI handler.
645 **/
646 bool blk_mq_complete_request(struct request *rq)
647 {
648 if (unlikely(blk_should_fake_timeout(rq->q)))
649 return false;
650 __blk_mq_complete_request(rq);
651 return true;
652 }
653 EXPORT_SYMBOL(blk_mq_complete_request);
654
655 void blk_mq_complete_request_sync(struct request *rq)
656 {
657 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
658 rq->q->mq_ops->complete(rq);
659 }
660 EXPORT_SYMBOL_GPL(blk_mq_complete_request_sync);
661
662 int blk_mq_request_started(struct request *rq)
663 {
664 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
665 }
666 EXPORT_SYMBOL_GPL(blk_mq_request_started);
667
668 void blk_mq_start_request(struct request *rq)
669 {
670 struct request_queue *q = rq->q;
671
672 blk_mq_sched_started_request(rq);
673
674 trace_block_rq_issue(q, rq);
675
676 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
677 rq->io_start_time_ns = ktime_get_ns();
678 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
679 rq->throtl_size = blk_rq_sectors(rq);
680 #endif
681 rq->rq_flags |= RQF_STATS;
682 rq_qos_issue(q, rq);
683 }
684
685 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
686
687 blk_add_timer(rq);
688 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
689
690 if (q->dma_drain_size && blk_rq_bytes(rq)) {
691 /*
692 * Make sure space for the drain appears. We know we can do
693 * this because max_hw_segments has been adjusted to be one
694 * fewer than the device can handle.
695 */
696 rq->nr_phys_segments++;
697 }
698 }
699 EXPORT_SYMBOL(blk_mq_start_request);
700
701 static void __blk_mq_requeue_request(struct request *rq)
702 {
703 struct request_queue *q = rq->q;
704
705 blk_mq_put_driver_tag(rq);
706
707 trace_block_rq_requeue(q, rq);
708 rq_qos_requeue(q, rq);
709
710 if (blk_mq_request_started(rq)) {
711 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
712 rq->rq_flags &= ~RQF_TIMED_OUT;
713 if (q->dma_drain_size && blk_rq_bytes(rq))
714 rq->nr_phys_segments--;
715 }
716 }
717
718 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
719 {
720 __blk_mq_requeue_request(rq);
721
722 /* this request will be re-inserted to io scheduler queue */
723 blk_mq_sched_requeue_request(rq);
724
725 BUG_ON(!list_empty(&rq->queuelist));
726 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
727 }
728 EXPORT_SYMBOL(blk_mq_requeue_request);
729
730 static void blk_mq_requeue_work(struct work_struct *work)
731 {
732 struct request_queue *q =
733 container_of(work, struct request_queue, requeue_work.work);
734 LIST_HEAD(rq_list);
735 struct request *rq, *next;
736
737 spin_lock_irq(&q->requeue_lock);
738 list_splice_init(&q->requeue_list, &rq_list);
739 spin_unlock_irq(&q->requeue_lock);
740
741 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
742 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
743 continue;
744
745 rq->rq_flags &= ~RQF_SOFTBARRIER;
746 list_del_init(&rq->queuelist);
747 /*
748 * If RQF_DONTPREP, rq has contained some driver specific
749 * data, so insert it to hctx dispatch list to avoid any
750 * merge.
751 */
752 if (rq->rq_flags & RQF_DONTPREP)
753 blk_mq_request_bypass_insert(rq, false);
754 else
755 blk_mq_sched_insert_request(rq, true, false, false);
756 }
757
758 while (!list_empty(&rq_list)) {
759 rq = list_entry(rq_list.next, struct request, queuelist);
760 list_del_init(&rq->queuelist);
761 blk_mq_sched_insert_request(rq, false, false, false);
762 }
763
764 blk_mq_run_hw_queues(q, false);
765 }
766
767 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
768 bool kick_requeue_list)
769 {
770 struct request_queue *q = rq->q;
771 unsigned long flags;
772
773 /*
774 * We abuse this flag that is otherwise used by the I/O scheduler to
775 * request head insertion from the workqueue.
776 */
777 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
778
779 spin_lock_irqsave(&q->requeue_lock, flags);
780 if (at_head) {
781 rq->rq_flags |= RQF_SOFTBARRIER;
782 list_add(&rq->queuelist, &q->requeue_list);
783 } else {
784 list_add_tail(&rq->queuelist, &q->requeue_list);
785 }
786 spin_unlock_irqrestore(&q->requeue_lock, flags);
787
788 if (kick_requeue_list)
789 blk_mq_kick_requeue_list(q);
790 }
791
792 void blk_mq_kick_requeue_list(struct request_queue *q)
793 {
794 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
795 }
796 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
797
798 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
799 unsigned long msecs)
800 {
801 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
802 msecs_to_jiffies(msecs));
803 }
804 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
805
806 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
807 {
808 if (tag < tags->nr_tags) {
809 prefetch(tags->rqs[tag]);
810 return tags->rqs[tag];
811 }
812
813 return NULL;
814 }
815 EXPORT_SYMBOL(blk_mq_tag_to_rq);
816
817 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
818 void *priv, bool reserved)
819 {
820 /*
821 * If we find a request that is inflight and the queue matches,
822 * we know the queue is busy. Return false to stop the iteration.
823 */
824 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
825 bool *busy = priv;
826
827 *busy = true;
828 return false;
829 }
830
831 return true;
832 }
833
834 bool blk_mq_queue_inflight(struct request_queue *q)
835 {
836 bool busy = false;
837
838 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
839 return busy;
840 }
841 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
842
843 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
844 {
845 req->rq_flags |= RQF_TIMED_OUT;
846 if (req->q->mq_ops->timeout) {
847 enum blk_eh_timer_return ret;
848
849 ret = req->q->mq_ops->timeout(req, reserved);
850 if (ret == BLK_EH_DONE)
851 return;
852 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
853 }
854
855 blk_add_timer(req);
856 }
857
858 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
859 {
860 unsigned long deadline;
861
862 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
863 return false;
864 if (rq->rq_flags & RQF_TIMED_OUT)
865 return false;
866
867 deadline = READ_ONCE(rq->deadline);
868 if (time_after_eq(jiffies, deadline))
869 return true;
870
871 if (*next == 0)
872 *next = deadline;
873 else if (time_after(*next, deadline))
874 *next = deadline;
875 return false;
876 }
877
878 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
879 struct request *rq, void *priv, bool reserved)
880 {
881 unsigned long *next = priv;
882
883 /*
884 * Just do a quick check if it is expired before locking the request in
885 * so we're not unnecessarilly synchronizing across CPUs.
886 */
887 if (!blk_mq_req_expired(rq, next))
888 return true;
889
890 /*
891 * We have reason to believe the request may be expired. Take a
892 * reference on the request to lock this request lifetime into its
893 * currently allocated context to prevent it from being reallocated in
894 * the event the completion by-passes this timeout handler.
895 *
896 * If the reference was already released, then the driver beat the
897 * timeout handler to posting a natural completion.
898 */
899 if (!refcount_inc_not_zero(&rq->ref))
900 return true;
901
902 /*
903 * The request is now locked and cannot be reallocated underneath the
904 * timeout handler's processing. Re-verify this exact request is truly
905 * expired; if it is not expired, then the request was completed and
906 * reallocated as a new request.
907 */
908 if (blk_mq_req_expired(rq, next))
909 blk_mq_rq_timed_out(rq, reserved);
910 if (refcount_dec_and_test(&rq->ref))
911 __blk_mq_free_request(rq);
912
913 return true;
914 }
915
916 static void blk_mq_timeout_work(struct work_struct *work)
917 {
918 struct request_queue *q =
919 container_of(work, struct request_queue, timeout_work);
920 unsigned long next = 0;
921 struct blk_mq_hw_ctx *hctx;
922 int i;
923
924 /* A deadlock might occur if a request is stuck requiring a
925 * timeout at the same time a queue freeze is waiting
926 * completion, since the timeout code would not be able to
927 * acquire the queue reference here.
928 *
929 * That's why we don't use blk_queue_enter here; instead, we use
930 * percpu_ref_tryget directly, because we need to be able to
931 * obtain a reference even in the short window between the queue
932 * starting to freeze, by dropping the first reference in
933 * blk_freeze_queue_start, and the moment the last request is
934 * consumed, marked by the instant q_usage_counter reaches
935 * zero.
936 */
937 if (!percpu_ref_tryget(&q->q_usage_counter))
938 return;
939
940 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
941
942 if (next != 0) {
943 mod_timer(&q->timeout, next);
944 } else {
945 /*
946 * Request timeouts are handled as a forward rolling timer. If
947 * we end up here it means that no requests are pending and
948 * also that no request has been pending for a while. Mark
949 * each hctx as idle.
950 */
951 queue_for_each_hw_ctx(q, hctx, i) {
952 /* the hctx may be unmapped, so check it here */
953 if (blk_mq_hw_queue_mapped(hctx))
954 blk_mq_tag_idle(hctx);
955 }
956 }
957 blk_queue_exit(q);
958 }
959
960 struct flush_busy_ctx_data {
961 struct blk_mq_hw_ctx *hctx;
962 struct list_head *list;
963 };
964
965 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
966 {
967 struct flush_busy_ctx_data *flush_data = data;
968 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
969 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
970 enum hctx_type type = hctx->type;
971
972 spin_lock(&ctx->lock);
973 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
974 sbitmap_clear_bit(sb, bitnr);
975 spin_unlock(&ctx->lock);
976 return true;
977 }
978
979 /*
980 * Process software queues that have been marked busy, splicing them
981 * to the for-dispatch
982 */
983 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
984 {
985 struct flush_busy_ctx_data data = {
986 .hctx = hctx,
987 .list = list,
988 };
989
990 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
991 }
992 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
993
994 struct dispatch_rq_data {
995 struct blk_mq_hw_ctx *hctx;
996 struct request *rq;
997 };
998
999 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1000 void *data)
1001 {
1002 struct dispatch_rq_data *dispatch_data = data;
1003 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1004 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1005 enum hctx_type type = hctx->type;
1006
1007 spin_lock(&ctx->lock);
1008 if (!list_empty(&ctx->rq_lists[type])) {
1009 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1010 list_del_init(&dispatch_data->rq->queuelist);
1011 if (list_empty(&ctx->rq_lists[type]))
1012 sbitmap_clear_bit(sb, bitnr);
1013 }
1014 spin_unlock(&ctx->lock);
1015
1016 return !dispatch_data->rq;
1017 }
1018
1019 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1020 struct blk_mq_ctx *start)
1021 {
1022 unsigned off = start ? start->index_hw[hctx->type] : 0;
1023 struct dispatch_rq_data data = {
1024 .hctx = hctx,
1025 .rq = NULL,
1026 };
1027
1028 __sbitmap_for_each_set(&hctx->ctx_map, off,
1029 dispatch_rq_from_ctx, &data);
1030
1031 return data.rq;
1032 }
1033
1034 static inline unsigned int queued_to_index(unsigned int queued)
1035 {
1036 if (!queued)
1037 return 0;
1038
1039 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1040 }
1041
1042 bool blk_mq_get_driver_tag(struct request *rq)
1043 {
1044 struct blk_mq_alloc_data data = {
1045 .q = rq->q,
1046 .hctx = rq->mq_hctx,
1047 .flags = BLK_MQ_REQ_NOWAIT,
1048 .cmd_flags = rq->cmd_flags,
1049 };
1050 bool shared;
1051
1052 if (rq->tag != -1)
1053 goto done;
1054
1055 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1056 data.flags |= BLK_MQ_REQ_RESERVED;
1057
1058 shared = blk_mq_tag_busy(data.hctx);
1059 rq->tag = blk_mq_get_tag(&data);
1060 if (rq->tag >= 0) {
1061 if (shared) {
1062 rq->rq_flags |= RQF_MQ_INFLIGHT;
1063 atomic_inc(&data.hctx->nr_active);
1064 }
1065 data.hctx->tags->rqs[rq->tag] = rq;
1066 }
1067
1068 done:
1069 return rq->tag != -1;
1070 }
1071
1072 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1073 int flags, void *key)
1074 {
1075 struct blk_mq_hw_ctx *hctx;
1076
1077 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1078
1079 spin_lock(&hctx->dispatch_wait_lock);
1080 if (!list_empty(&wait->entry)) {
1081 struct sbitmap_queue *sbq;
1082
1083 list_del_init(&wait->entry);
1084 sbq = &hctx->tags->bitmap_tags;
1085 atomic_dec(&sbq->ws_active);
1086 }
1087 spin_unlock(&hctx->dispatch_wait_lock);
1088
1089 blk_mq_run_hw_queue(hctx, true);
1090 return 1;
1091 }
1092
1093 /*
1094 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1095 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1096 * restart. For both cases, take care to check the condition again after
1097 * marking us as waiting.
1098 */
1099 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1100 struct request *rq)
1101 {
1102 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1103 struct wait_queue_head *wq;
1104 wait_queue_entry_t *wait;
1105 bool ret;
1106
1107 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1108 blk_mq_sched_mark_restart_hctx(hctx);
1109
1110 /*
1111 * It's possible that a tag was freed in the window between the
1112 * allocation failure and adding the hardware queue to the wait
1113 * queue.
1114 *
1115 * Don't clear RESTART here, someone else could have set it.
1116 * At most this will cost an extra queue run.
1117 */
1118 return blk_mq_get_driver_tag(rq);
1119 }
1120
1121 wait = &hctx->dispatch_wait;
1122 if (!list_empty_careful(&wait->entry))
1123 return false;
1124
1125 wq = &bt_wait_ptr(sbq, hctx)->wait;
1126
1127 spin_lock_irq(&wq->lock);
1128 spin_lock(&hctx->dispatch_wait_lock);
1129 if (!list_empty(&wait->entry)) {
1130 spin_unlock(&hctx->dispatch_wait_lock);
1131 spin_unlock_irq(&wq->lock);
1132 return false;
1133 }
1134
1135 atomic_inc(&sbq->ws_active);
1136 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1137 __add_wait_queue(wq, wait);
1138
1139 /*
1140 * It's possible that a tag was freed in the window between the
1141 * allocation failure and adding the hardware queue to the wait
1142 * queue.
1143 */
1144 ret = blk_mq_get_driver_tag(rq);
1145 if (!ret) {
1146 spin_unlock(&hctx->dispatch_wait_lock);
1147 spin_unlock_irq(&wq->lock);
1148 return false;
1149 }
1150
1151 /*
1152 * We got a tag, remove ourselves from the wait queue to ensure
1153 * someone else gets the wakeup.
1154 */
1155 list_del_init(&wait->entry);
1156 atomic_dec(&sbq->ws_active);
1157 spin_unlock(&hctx->dispatch_wait_lock);
1158 spin_unlock_irq(&wq->lock);
1159
1160 return true;
1161 }
1162
1163 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1164 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1165 /*
1166 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1167 * - EWMA is one simple way to compute running average value
1168 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1169 * - take 4 as factor for avoiding to get too small(0) result, and this
1170 * factor doesn't matter because EWMA decreases exponentially
1171 */
1172 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1173 {
1174 unsigned int ewma;
1175
1176 if (hctx->queue->elevator)
1177 return;
1178
1179 ewma = hctx->dispatch_busy;
1180
1181 if (!ewma && !busy)
1182 return;
1183
1184 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1185 if (busy)
1186 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1187 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1188
1189 hctx->dispatch_busy = ewma;
1190 }
1191
1192 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1193
1194 /*
1195 * Returns true if we did some work AND can potentially do more.
1196 */
1197 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1198 bool got_budget)
1199 {
1200 struct blk_mq_hw_ctx *hctx;
1201 struct request *rq, *nxt;
1202 bool no_tag = false;
1203 int errors, queued;
1204 blk_status_t ret = BLK_STS_OK;
1205
1206 if (list_empty(list))
1207 return false;
1208
1209 WARN_ON(!list_is_singular(list) && got_budget);
1210
1211 /*
1212 * Now process all the entries, sending them to the driver.
1213 */
1214 errors = queued = 0;
1215 do {
1216 struct blk_mq_queue_data bd;
1217
1218 rq = list_first_entry(list, struct request, queuelist);
1219
1220 hctx = rq->mq_hctx;
1221 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1222 break;
1223
1224 if (!blk_mq_get_driver_tag(rq)) {
1225 /*
1226 * The initial allocation attempt failed, so we need to
1227 * rerun the hardware queue when a tag is freed. The
1228 * waitqueue takes care of that. If the queue is run
1229 * before we add this entry back on the dispatch list,
1230 * we'll re-run it below.
1231 */
1232 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1233 blk_mq_put_dispatch_budget(hctx);
1234 /*
1235 * For non-shared tags, the RESTART check
1236 * will suffice.
1237 */
1238 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1239 no_tag = true;
1240 break;
1241 }
1242 }
1243
1244 list_del_init(&rq->queuelist);
1245
1246 bd.rq = rq;
1247
1248 /*
1249 * Flag last if we have no more requests, or if we have more
1250 * but can't assign a driver tag to it.
1251 */
1252 if (list_empty(list))
1253 bd.last = true;
1254 else {
1255 nxt = list_first_entry(list, struct request, queuelist);
1256 bd.last = !blk_mq_get_driver_tag(nxt);
1257 }
1258
1259 ret = q->mq_ops->queue_rq(hctx, &bd);
1260 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1261 /*
1262 * If an I/O scheduler has been configured and we got a
1263 * driver tag for the next request already, free it
1264 * again.
1265 */
1266 if (!list_empty(list)) {
1267 nxt = list_first_entry(list, struct request, queuelist);
1268 blk_mq_put_driver_tag(nxt);
1269 }
1270 list_add(&rq->queuelist, list);
1271 __blk_mq_requeue_request(rq);
1272 break;
1273 }
1274
1275 if (unlikely(ret != BLK_STS_OK)) {
1276 errors++;
1277 blk_mq_end_request(rq, BLK_STS_IOERR);
1278 continue;
1279 }
1280
1281 queued++;
1282 } while (!list_empty(list));
1283
1284 hctx->dispatched[queued_to_index(queued)]++;
1285
1286 /*
1287 * Any items that need requeuing? Stuff them into hctx->dispatch,
1288 * that is where we will continue on next queue run.
1289 */
1290 if (!list_empty(list)) {
1291 bool needs_restart;
1292
1293 /*
1294 * If we didn't flush the entire list, we could have told
1295 * the driver there was more coming, but that turned out to
1296 * be a lie.
1297 */
1298 if (q->mq_ops->commit_rqs)
1299 q->mq_ops->commit_rqs(hctx);
1300
1301 spin_lock(&hctx->lock);
1302 list_splice_init(list, &hctx->dispatch);
1303 spin_unlock(&hctx->lock);
1304
1305 /*
1306 * If SCHED_RESTART was set by the caller of this function and
1307 * it is no longer set that means that it was cleared by another
1308 * thread and hence that a queue rerun is needed.
1309 *
1310 * If 'no_tag' is set, that means that we failed getting
1311 * a driver tag with an I/O scheduler attached. If our dispatch
1312 * waitqueue is no longer active, ensure that we run the queue
1313 * AFTER adding our entries back to the list.
1314 *
1315 * If no I/O scheduler has been configured it is possible that
1316 * the hardware queue got stopped and restarted before requests
1317 * were pushed back onto the dispatch list. Rerun the queue to
1318 * avoid starvation. Notes:
1319 * - blk_mq_run_hw_queue() checks whether or not a queue has
1320 * been stopped before rerunning a queue.
1321 * - Some but not all block drivers stop a queue before
1322 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1323 * and dm-rq.
1324 *
1325 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1326 * bit is set, run queue after a delay to avoid IO stalls
1327 * that could otherwise occur if the queue is idle.
1328 */
1329 needs_restart = blk_mq_sched_needs_restart(hctx);
1330 if (!needs_restart ||
1331 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1332 blk_mq_run_hw_queue(hctx, true);
1333 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1334 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1335
1336 blk_mq_update_dispatch_busy(hctx, true);
1337 return false;
1338 } else
1339 blk_mq_update_dispatch_busy(hctx, false);
1340
1341 /*
1342 * If the host/device is unable to accept more work, inform the
1343 * caller of that.
1344 */
1345 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1346 return false;
1347
1348 return (queued + errors) != 0;
1349 }
1350
1351 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1352 {
1353 int srcu_idx;
1354
1355 /*
1356 * We should be running this queue from one of the CPUs that
1357 * are mapped to it.
1358 *
1359 * There are at least two related races now between setting
1360 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1361 * __blk_mq_run_hw_queue():
1362 *
1363 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1364 * but later it becomes online, then this warning is harmless
1365 * at all
1366 *
1367 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1368 * but later it becomes offline, then the warning can't be
1369 * triggered, and we depend on blk-mq timeout handler to
1370 * handle dispatched requests to this hctx
1371 */
1372 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1373 cpu_online(hctx->next_cpu)) {
1374 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1375 raw_smp_processor_id(),
1376 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1377 dump_stack();
1378 }
1379
1380 /*
1381 * We can't run the queue inline with ints disabled. Ensure that
1382 * we catch bad users of this early.
1383 */
1384 WARN_ON_ONCE(in_interrupt());
1385
1386 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1387
1388 hctx_lock(hctx, &srcu_idx);
1389 blk_mq_sched_dispatch_requests(hctx);
1390 hctx_unlock(hctx, srcu_idx);
1391 }
1392
1393 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1394 {
1395 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1396
1397 if (cpu >= nr_cpu_ids)
1398 cpu = cpumask_first(hctx->cpumask);
1399 return cpu;
1400 }
1401
1402 /*
1403 * It'd be great if the workqueue API had a way to pass
1404 * in a mask and had some smarts for more clever placement.
1405 * For now we just round-robin here, switching for every
1406 * BLK_MQ_CPU_WORK_BATCH queued items.
1407 */
1408 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1409 {
1410 bool tried = false;
1411 int next_cpu = hctx->next_cpu;
1412
1413 if (hctx->queue->nr_hw_queues == 1)
1414 return WORK_CPU_UNBOUND;
1415
1416 if (--hctx->next_cpu_batch <= 0) {
1417 select_cpu:
1418 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1419 cpu_online_mask);
1420 if (next_cpu >= nr_cpu_ids)
1421 next_cpu = blk_mq_first_mapped_cpu(hctx);
1422 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1423 }
1424
1425 /*
1426 * Do unbound schedule if we can't find a online CPU for this hctx,
1427 * and it should only happen in the path of handling CPU DEAD.
1428 */
1429 if (!cpu_online(next_cpu)) {
1430 if (!tried) {
1431 tried = true;
1432 goto select_cpu;
1433 }
1434
1435 /*
1436 * Make sure to re-select CPU next time once after CPUs
1437 * in hctx->cpumask become online again.
1438 */
1439 hctx->next_cpu = next_cpu;
1440 hctx->next_cpu_batch = 1;
1441 return WORK_CPU_UNBOUND;
1442 }
1443
1444 hctx->next_cpu = next_cpu;
1445 return next_cpu;
1446 }
1447
1448 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1449 unsigned long msecs)
1450 {
1451 if (unlikely(blk_mq_hctx_stopped(hctx)))
1452 return;
1453
1454 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1455 int cpu = get_cpu();
1456 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1457 __blk_mq_run_hw_queue(hctx);
1458 put_cpu();
1459 return;
1460 }
1461
1462 put_cpu();
1463 }
1464
1465 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1466 msecs_to_jiffies(msecs));
1467 }
1468
1469 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1470 {
1471 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1472 }
1473 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1474
1475 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1476 {
1477 int srcu_idx;
1478 bool need_run;
1479
1480 /*
1481 * When queue is quiesced, we may be switching io scheduler, or
1482 * updating nr_hw_queues, or other things, and we can't run queue
1483 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1484 *
1485 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1486 * quiesced.
1487 */
1488 hctx_lock(hctx, &srcu_idx);
1489 need_run = !blk_queue_quiesced(hctx->queue) &&
1490 blk_mq_hctx_has_pending(hctx);
1491 hctx_unlock(hctx, srcu_idx);
1492
1493 if (need_run) {
1494 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1495 return true;
1496 }
1497
1498 return false;
1499 }
1500 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1501
1502 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1503 {
1504 struct blk_mq_hw_ctx *hctx;
1505 int i;
1506
1507 queue_for_each_hw_ctx(q, hctx, i) {
1508 if (blk_mq_hctx_stopped(hctx))
1509 continue;
1510
1511 blk_mq_run_hw_queue(hctx, async);
1512 }
1513 }
1514 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1515
1516 /**
1517 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1518 * @q: request queue.
1519 *
1520 * The caller is responsible for serializing this function against
1521 * blk_mq_{start,stop}_hw_queue().
1522 */
1523 bool blk_mq_queue_stopped(struct request_queue *q)
1524 {
1525 struct blk_mq_hw_ctx *hctx;
1526 int i;
1527
1528 queue_for_each_hw_ctx(q, hctx, i)
1529 if (blk_mq_hctx_stopped(hctx))
1530 return true;
1531
1532 return false;
1533 }
1534 EXPORT_SYMBOL(blk_mq_queue_stopped);
1535
1536 /*
1537 * This function is often used for pausing .queue_rq() by driver when
1538 * there isn't enough resource or some conditions aren't satisfied, and
1539 * BLK_STS_RESOURCE is usually returned.
1540 *
1541 * We do not guarantee that dispatch can be drained or blocked
1542 * after blk_mq_stop_hw_queue() returns. Please use
1543 * blk_mq_quiesce_queue() for that requirement.
1544 */
1545 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1546 {
1547 cancel_delayed_work(&hctx->run_work);
1548
1549 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1550 }
1551 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1552
1553 /*
1554 * This function is often used for pausing .queue_rq() by driver when
1555 * there isn't enough resource or some conditions aren't satisfied, and
1556 * BLK_STS_RESOURCE is usually returned.
1557 *
1558 * We do not guarantee that dispatch can be drained or blocked
1559 * after blk_mq_stop_hw_queues() returns. Please use
1560 * blk_mq_quiesce_queue() for that requirement.
1561 */
1562 void blk_mq_stop_hw_queues(struct request_queue *q)
1563 {
1564 struct blk_mq_hw_ctx *hctx;
1565 int i;
1566
1567 queue_for_each_hw_ctx(q, hctx, i)
1568 blk_mq_stop_hw_queue(hctx);
1569 }
1570 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1571
1572 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1573 {
1574 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1575
1576 blk_mq_run_hw_queue(hctx, false);
1577 }
1578 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1579
1580 void blk_mq_start_hw_queues(struct request_queue *q)
1581 {
1582 struct blk_mq_hw_ctx *hctx;
1583 int i;
1584
1585 queue_for_each_hw_ctx(q, hctx, i)
1586 blk_mq_start_hw_queue(hctx);
1587 }
1588 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1589
1590 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1591 {
1592 if (!blk_mq_hctx_stopped(hctx))
1593 return;
1594
1595 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1596 blk_mq_run_hw_queue(hctx, async);
1597 }
1598 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1599
1600 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1601 {
1602 struct blk_mq_hw_ctx *hctx;
1603 int i;
1604
1605 queue_for_each_hw_ctx(q, hctx, i)
1606 blk_mq_start_stopped_hw_queue(hctx, async);
1607 }
1608 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1609
1610 static void blk_mq_run_work_fn(struct work_struct *work)
1611 {
1612 struct blk_mq_hw_ctx *hctx;
1613
1614 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1615
1616 /*
1617 * If we are stopped, don't run the queue.
1618 */
1619 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1620 return;
1621
1622 __blk_mq_run_hw_queue(hctx);
1623 }
1624
1625 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1626 struct request *rq,
1627 bool at_head)
1628 {
1629 struct blk_mq_ctx *ctx = rq->mq_ctx;
1630 enum hctx_type type = hctx->type;
1631
1632 lockdep_assert_held(&ctx->lock);
1633
1634 trace_block_rq_insert(hctx->queue, rq);
1635
1636 if (at_head)
1637 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1638 else
1639 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1640 }
1641
1642 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1643 bool at_head)
1644 {
1645 struct blk_mq_ctx *ctx = rq->mq_ctx;
1646
1647 lockdep_assert_held(&ctx->lock);
1648
1649 __blk_mq_insert_req_list(hctx, rq, at_head);
1650 blk_mq_hctx_mark_pending(hctx, ctx);
1651 }
1652
1653 /*
1654 * Should only be used carefully, when the caller knows we want to
1655 * bypass a potential IO scheduler on the target device.
1656 */
1657 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1658 {
1659 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1660
1661 spin_lock(&hctx->lock);
1662 list_add_tail(&rq->queuelist, &hctx->dispatch);
1663 spin_unlock(&hctx->lock);
1664
1665 if (run_queue)
1666 blk_mq_run_hw_queue(hctx, false);
1667 }
1668
1669 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1670 struct list_head *list)
1671
1672 {
1673 struct request *rq;
1674 enum hctx_type type = hctx->type;
1675
1676 /*
1677 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1678 * offline now
1679 */
1680 list_for_each_entry(rq, list, queuelist) {
1681 BUG_ON(rq->mq_ctx != ctx);
1682 trace_block_rq_insert(hctx->queue, rq);
1683 }
1684
1685 spin_lock(&ctx->lock);
1686 list_splice_tail_init(list, &ctx->rq_lists[type]);
1687 blk_mq_hctx_mark_pending(hctx, ctx);
1688 spin_unlock(&ctx->lock);
1689 }
1690
1691 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1692 {
1693 struct request *rqa = container_of(a, struct request, queuelist);
1694 struct request *rqb = container_of(b, struct request, queuelist);
1695
1696 if (rqa->mq_ctx < rqb->mq_ctx)
1697 return -1;
1698 else if (rqa->mq_ctx > rqb->mq_ctx)
1699 return 1;
1700 else if (rqa->mq_hctx < rqb->mq_hctx)
1701 return -1;
1702 else if (rqa->mq_hctx > rqb->mq_hctx)
1703 return 1;
1704
1705 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1706 }
1707
1708 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1709 {
1710 struct blk_mq_hw_ctx *this_hctx;
1711 struct blk_mq_ctx *this_ctx;
1712 struct request_queue *this_q;
1713 struct request *rq;
1714 LIST_HEAD(list);
1715 LIST_HEAD(rq_list);
1716 unsigned int depth;
1717
1718 list_splice_init(&plug->mq_list, &list);
1719
1720 if (plug->rq_count > 2 && plug->multiple_queues)
1721 list_sort(NULL, &list, plug_rq_cmp);
1722
1723 plug->rq_count = 0;
1724
1725 this_q = NULL;
1726 this_hctx = NULL;
1727 this_ctx = NULL;
1728 depth = 0;
1729
1730 while (!list_empty(&list)) {
1731 rq = list_entry_rq(list.next);
1732 list_del_init(&rq->queuelist);
1733 BUG_ON(!rq->q);
1734 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1735 if (this_hctx) {
1736 trace_block_unplug(this_q, depth, !from_schedule);
1737 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1738 &rq_list,
1739 from_schedule);
1740 }
1741
1742 this_q = rq->q;
1743 this_ctx = rq->mq_ctx;
1744 this_hctx = rq->mq_hctx;
1745 depth = 0;
1746 }
1747
1748 depth++;
1749 list_add_tail(&rq->queuelist, &rq_list);
1750 }
1751
1752 /*
1753 * If 'this_hctx' is set, we know we have entries to complete
1754 * on 'rq_list'. Do those.
1755 */
1756 if (this_hctx) {
1757 trace_block_unplug(this_q, depth, !from_schedule);
1758 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1759 from_schedule);
1760 }
1761 }
1762
1763 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1764 unsigned int nr_segs)
1765 {
1766 if (bio->bi_opf & REQ_RAHEAD)
1767 rq->cmd_flags |= REQ_FAILFAST_MASK;
1768
1769 rq->__sector = bio->bi_iter.bi_sector;
1770 rq->write_hint = bio->bi_write_hint;
1771 blk_rq_bio_prep(rq, bio, nr_segs);
1772
1773 blk_account_io_start(rq, true);
1774 }
1775
1776 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1777 struct request *rq,
1778 blk_qc_t *cookie, bool last)
1779 {
1780 struct request_queue *q = rq->q;
1781 struct blk_mq_queue_data bd = {
1782 .rq = rq,
1783 .last = last,
1784 };
1785 blk_qc_t new_cookie;
1786 blk_status_t ret;
1787
1788 new_cookie = request_to_qc_t(hctx, rq);
1789
1790 /*
1791 * For OK queue, we are done. For error, caller may kill it.
1792 * Any other error (busy), just add it to our list as we
1793 * previously would have done.
1794 */
1795 ret = q->mq_ops->queue_rq(hctx, &bd);
1796 switch (ret) {
1797 case BLK_STS_OK:
1798 blk_mq_update_dispatch_busy(hctx, false);
1799 *cookie = new_cookie;
1800 break;
1801 case BLK_STS_RESOURCE:
1802 case BLK_STS_DEV_RESOURCE:
1803 blk_mq_update_dispatch_busy(hctx, true);
1804 __blk_mq_requeue_request(rq);
1805 break;
1806 default:
1807 blk_mq_update_dispatch_busy(hctx, false);
1808 *cookie = BLK_QC_T_NONE;
1809 break;
1810 }
1811
1812 return ret;
1813 }
1814
1815 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1816 struct request *rq,
1817 blk_qc_t *cookie,
1818 bool bypass_insert, bool last)
1819 {
1820 struct request_queue *q = rq->q;
1821 bool run_queue = true;
1822
1823 /*
1824 * RCU or SRCU read lock is needed before checking quiesced flag.
1825 *
1826 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1827 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1828 * and avoid driver to try to dispatch again.
1829 */
1830 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1831 run_queue = false;
1832 bypass_insert = false;
1833 goto insert;
1834 }
1835
1836 if (q->elevator && !bypass_insert)
1837 goto insert;
1838
1839 if (!blk_mq_get_dispatch_budget(hctx))
1840 goto insert;
1841
1842 if (!blk_mq_get_driver_tag(rq)) {
1843 blk_mq_put_dispatch_budget(hctx);
1844 goto insert;
1845 }
1846
1847 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1848 insert:
1849 if (bypass_insert)
1850 return BLK_STS_RESOURCE;
1851
1852 blk_mq_request_bypass_insert(rq, run_queue);
1853 return BLK_STS_OK;
1854 }
1855
1856 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1857 struct request *rq, blk_qc_t *cookie)
1858 {
1859 blk_status_t ret;
1860 int srcu_idx;
1861
1862 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1863
1864 hctx_lock(hctx, &srcu_idx);
1865
1866 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1867 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1868 blk_mq_request_bypass_insert(rq, true);
1869 else if (ret != BLK_STS_OK)
1870 blk_mq_end_request(rq, ret);
1871
1872 hctx_unlock(hctx, srcu_idx);
1873 }
1874
1875 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1876 {
1877 blk_status_t ret;
1878 int srcu_idx;
1879 blk_qc_t unused_cookie;
1880 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1881
1882 hctx_lock(hctx, &srcu_idx);
1883 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1884 hctx_unlock(hctx, srcu_idx);
1885
1886 return ret;
1887 }
1888
1889 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1890 struct list_head *list)
1891 {
1892 while (!list_empty(list)) {
1893 blk_status_t ret;
1894 struct request *rq = list_first_entry(list, struct request,
1895 queuelist);
1896
1897 list_del_init(&rq->queuelist);
1898 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1899 if (ret != BLK_STS_OK) {
1900 if (ret == BLK_STS_RESOURCE ||
1901 ret == BLK_STS_DEV_RESOURCE) {
1902 blk_mq_request_bypass_insert(rq,
1903 list_empty(list));
1904 break;
1905 }
1906 blk_mq_end_request(rq, ret);
1907 }
1908 }
1909
1910 /*
1911 * If we didn't flush the entire list, we could have told
1912 * the driver there was more coming, but that turned out to
1913 * be a lie.
1914 */
1915 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1916 hctx->queue->mq_ops->commit_rqs(hctx);
1917 }
1918
1919 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1920 {
1921 list_add_tail(&rq->queuelist, &plug->mq_list);
1922 plug->rq_count++;
1923 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1924 struct request *tmp;
1925
1926 tmp = list_first_entry(&plug->mq_list, struct request,
1927 queuelist);
1928 if (tmp->q != rq->q)
1929 plug->multiple_queues = true;
1930 }
1931 }
1932
1933 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1934 {
1935 const int is_sync = op_is_sync(bio->bi_opf);
1936 const int is_flush_fua = op_is_flush(bio->bi_opf);
1937 struct blk_mq_alloc_data data = { .flags = 0};
1938 struct request *rq;
1939 struct blk_plug *plug;
1940 struct request *same_queue_rq = NULL;
1941 unsigned int nr_segs;
1942 blk_qc_t cookie;
1943
1944 blk_queue_bounce(q, &bio);
1945 __blk_queue_split(q, &bio, &nr_segs);
1946
1947 if (!bio_integrity_prep(bio))
1948 return BLK_QC_T_NONE;
1949
1950 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1951 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
1952 return BLK_QC_T_NONE;
1953
1954 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
1955 return BLK_QC_T_NONE;
1956
1957 rq_qos_throttle(q, bio);
1958
1959 data.cmd_flags = bio->bi_opf;
1960 rq = blk_mq_get_request(q, bio, &data);
1961 if (unlikely(!rq)) {
1962 rq_qos_cleanup(q, bio);
1963 if (bio->bi_opf & REQ_NOWAIT)
1964 bio_wouldblock_error(bio);
1965 return BLK_QC_T_NONE;
1966 }
1967
1968 trace_block_getrq(q, bio, bio->bi_opf);
1969
1970 rq_qos_track(q, rq, bio);
1971
1972 cookie = request_to_qc_t(data.hctx, rq);
1973
1974 blk_mq_bio_to_request(rq, bio, nr_segs);
1975
1976 plug = current->plug;
1977 if (unlikely(is_flush_fua)) {
1978 /* bypass scheduler for flush rq */
1979 blk_insert_flush(rq);
1980 blk_mq_run_hw_queue(data.hctx, true);
1981 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1982 /*
1983 * Use plugging if we have a ->commit_rqs() hook as well, as
1984 * we know the driver uses bd->last in a smart fashion.
1985 */
1986 unsigned int request_count = plug->rq_count;
1987 struct request *last = NULL;
1988
1989 if (!request_count)
1990 trace_block_plug(q);
1991 else
1992 last = list_entry_rq(plug->mq_list.prev);
1993
1994 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1995 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1996 blk_flush_plug_list(plug, false);
1997 trace_block_plug(q);
1998 }
1999
2000 blk_add_rq_to_plug(plug, rq);
2001 } else if (plug && !blk_queue_nomerges(q)) {
2002 /*
2003 * We do limited plugging. If the bio can be merged, do that.
2004 * Otherwise the existing request in the plug list will be
2005 * issued. So the plug list will have one request at most
2006 * The plug list might get flushed before this. If that happens,
2007 * the plug list is empty, and same_queue_rq is invalid.
2008 */
2009 if (list_empty(&plug->mq_list))
2010 same_queue_rq = NULL;
2011 if (same_queue_rq) {
2012 list_del_init(&same_queue_rq->queuelist);
2013 plug->rq_count--;
2014 }
2015 blk_add_rq_to_plug(plug, rq);
2016 trace_block_plug(q);
2017
2018 if (same_queue_rq) {
2019 data.hctx = same_queue_rq->mq_hctx;
2020 trace_block_unplug(q, 1, true);
2021 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2022 &cookie);
2023 }
2024 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2025 !data.hctx->dispatch_busy)) {
2026 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2027 } else {
2028 blk_mq_sched_insert_request(rq, false, true, true);
2029 }
2030
2031 return cookie;
2032 }
2033
2034 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2035 unsigned int hctx_idx)
2036 {
2037 struct page *page;
2038
2039 if (tags->rqs && set->ops->exit_request) {
2040 int i;
2041
2042 for (i = 0; i < tags->nr_tags; i++) {
2043 struct request *rq = tags->static_rqs[i];
2044
2045 if (!rq)
2046 continue;
2047 set->ops->exit_request(set, rq, hctx_idx);
2048 tags->static_rqs[i] = NULL;
2049 }
2050 }
2051
2052 while (!list_empty(&tags->page_list)) {
2053 page = list_first_entry(&tags->page_list, struct page, lru);
2054 list_del_init(&page->lru);
2055 /*
2056 * Remove kmemleak object previously allocated in
2057 * blk_mq_alloc_rqs().
2058 */
2059 kmemleak_free(page_address(page));
2060 __free_pages(page, page->private);
2061 }
2062 }
2063
2064 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2065 {
2066 kfree(tags->rqs);
2067 tags->rqs = NULL;
2068 kfree(tags->static_rqs);
2069 tags->static_rqs = NULL;
2070
2071 blk_mq_free_tags(tags);
2072 }
2073
2074 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2075 unsigned int hctx_idx,
2076 unsigned int nr_tags,
2077 unsigned int reserved_tags)
2078 {
2079 struct blk_mq_tags *tags;
2080 int node;
2081
2082 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2083 if (node == NUMA_NO_NODE)
2084 node = set->numa_node;
2085
2086 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2087 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2088 if (!tags)
2089 return NULL;
2090
2091 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2092 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2093 node);
2094 if (!tags->rqs) {
2095 blk_mq_free_tags(tags);
2096 return NULL;
2097 }
2098
2099 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2100 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2101 node);
2102 if (!tags->static_rqs) {
2103 kfree(tags->rqs);
2104 blk_mq_free_tags(tags);
2105 return NULL;
2106 }
2107
2108 return tags;
2109 }
2110
2111 static size_t order_to_size(unsigned int order)
2112 {
2113 return (size_t)PAGE_SIZE << order;
2114 }
2115
2116 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2117 unsigned int hctx_idx, int node)
2118 {
2119 int ret;
2120
2121 if (set->ops->init_request) {
2122 ret = set->ops->init_request(set, rq, hctx_idx, node);
2123 if (ret)
2124 return ret;
2125 }
2126
2127 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2128 return 0;
2129 }
2130
2131 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2132 unsigned int hctx_idx, unsigned int depth)
2133 {
2134 unsigned int i, j, entries_per_page, max_order = 4;
2135 size_t rq_size, left;
2136 int node;
2137
2138 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2139 if (node == NUMA_NO_NODE)
2140 node = set->numa_node;
2141
2142 INIT_LIST_HEAD(&tags->page_list);
2143
2144 /*
2145 * rq_size is the size of the request plus driver payload, rounded
2146 * to the cacheline size
2147 */
2148 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2149 cache_line_size());
2150 left = rq_size * depth;
2151
2152 for (i = 0; i < depth; ) {
2153 int this_order = max_order;
2154 struct page *page;
2155 int to_do;
2156 void *p;
2157
2158 while (this_order && left < order_to_size(this_order - 1))
2159 this_order--;
2160
2161 do {
2162 page = alloc_pages_node(node,
2163 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2164 this_order);
2165 if (page)
2166 break;
2167 if (!this_order--)
2168 break;
2169 if (order_to_size(this_order) < rq_size)
2170 break;
2171 } while (1);
2172
2173 if (!page)
2174 goto fail;
2175
2176 page->private = this_order;
2177 list_add_tail(&page->lru, &tags->page_list);
2178
2179 p = page_address(page);
2180 /*
2181 * Allow kmemleak to scan these pages as they contain pointers
2182 * to additional allocations like via ops->init_request().
2183 */
2184 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2185 entries_per_page = order_to_size(this_order) / rq_size;
2186 to_do = min(entries_per_page, depth - i);
2187 left -= to_do * rq_size;
2188 for (j = 0; j < to_do; j++) {
2189 struct request *rq = p;
2190
2191 tags->static_rqs[i] = rq;
2192 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2193 tags->static_rqs[i] = NULL;
2194 goto fail;
2195 }
2196
2197 p += rq_size;
2198 i++;
2199 }
2200 }
2201 return 0;
2202
2203 fail:
2204 blk_mq_free_rqs(set, tags, hctx_idx);
2205 return -ENOMEM;
2206 }
2207
2208 /*
2209 * 'cpu' is going away. splice any existing rq_list entries from this
2210 * software queue to the hw queue dispatch list, and ensure that it
2211 * gets run.
2212 */
2213 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2214 {
2215 struct blk_mq_hw_ctx *hctx;
2216 struct blk_mq_ctx *ctx;
2217 LIST_HEAD(tmp);
2218 enum hctx_type type;
2219
2220 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2221 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2222 type = hctx->type;
2223
2224 spin_lock(&ctx->lock);
2225 if (!list_empty(&ctx->rq_lists[type])) {
2226 list_splice_init(&ctx->rq_lists[type], &tmp);
2227 blk_mq_hctx_clear_pending(hctx, ctx);
2228 }
2229 spin_unlock(&ctx->lock);
2230
2231 if (list_empty(&tmp))
2232 return 0;
2233
2234 spin_lock(&hctx->lock);
2235 list_splice_tail_init(&tmp, &hctx->dispatch);
2236 spin_unlock(&hctx->lock);
2237
2238 blk_mq_run_hw_queue(hctx, true);
2239 return 0;
2240 }
2241
2242 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2243 {
2244 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2245 &hctx->cpuhp_dead);
2246 }
2247
2248 /* hctx->ctxs will be freed in queue's release handler */
2249 static void blk_mq_exit_hctx(struct request_queue *q,
2250 struct blk_mq_tag_set *set,
2251 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2252 {
2253 if (blk_mq_hw_queue_mapped(hctx))
2254 blk_mq_tag_idle(hctx);
2255
2256 if (set->ops->exit_request)
2257 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2258
2259 if (set->ops->exit_hctx)
2260 set->ops->exit_hctx(hctx, hctx_idx);
2261
2262 blk_mq_remove_cpuhp(hctx);
2263
2264 spin_lock(&q->unused_hctx_lock);
2265 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2266 spin_unlock(&q->unused_hctx_lock);
2267 }
2268
2269 static void blk_mq_exit_hw_queues(struct request_queue *q,
2270 struct blk_mq_tag_set *set, int nr_queue)
2271 {
2272 struct blk_mq_hw_ctx *hctx;
2273 unsigned int i;
2274
2275 queue_for_each_hw_ctx(q, hctx, i) {
2276 if (i == nr_queue)
2277 break;
2278 blk_mq_debugfs_unregister_hctx(hctx);
2279 blk_mq_exit_hctx(q, set, hctx, i);
2280 }
2281 }
2282
2283 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2284 {
2285 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2286
2287 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2288 __alignof__(struct blk_mq_hw_ctx)) !=
2289 sizeof(struct blk_mq_hw_ctx));
2290
2291 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2292 hw_ctx_size += sizeof(struct srcu_struct);
2293
2294 return hw_ctx_size;
2295 }
2296
2297 static int blk_mq_init_hctx(struct request_queue *q,
2298 struct blk_mq_tag_set *set,
2299 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2300 {
2301 hctx->queue_num = hctx_idx;
2302
2303 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2304
2305 hctx->tags = set->tags[hctx_idx];
2306
2307 if (set->ops->init_hctx &&
2308 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2309 goto unregister_cpu_notifier;
2310
2311 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2312 hctx->numa_node))
2313 goto exit_hctx;
2314 return 0;
2315
2316 exit_hctx:
2317 if (set->ops->exit_hctx)
2318 set->ops->exit_hctx(hctx, hctx_idx);
2319 unregister_cpu_notifier:
2320 blk_mq_remove_cpuhp(hctx);
2321 return -1;
2322 }
2323
2324 static struct blk_mq_hw_ctx *
2325 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2326 int node)
2327 {
2328 struct blk_mq_hw_ctx *hctx;
2329 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2330
2331 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2332 if (!hctx)
2333 goto fail_alloc_hctx;
2334
2335 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2336 goto free_hctx;
2337
2338 atomic_set(&hctx->nr_active, 0);
2339 if (node == NUMA_NO_NODE)
2340 node = set->numa_node;
2341 hctx->numa_node = node;
2342
2343 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2344 spin_lock_init(&hctx->lock);
2345 INIT_LIST_HEAD(&hctx->dispatch);
2346 hctx->queue = q;
2347 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2348
2349 INIT_LIST_HEAD(&hctx->hctx_list);
2350
2351 /*
2352 * Allocate space for all possible cpus to avoid allocation at
2353 * runtime
2354 */
2355 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2356 gfp, node);
2357 if (!hctx->ctxs)
2358 goto free_cpumask;
2359
2360 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2361 gfp, node))
2362 goto free_ctxs;
2363 hctx->nr_ctx = 0;
2364
2365 spin_lock_init(&hctx->dispatch_wait_lock);
2366 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2367 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2368
2369 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2370 gfp);
2371 if (!hctx->fq)
2372 goto free_bitmap;
2373
2374 if (hctx->flags & BLK_MQ_F_BLOCKING)
2375 init_srcu_struct(hctx->srcu);
2376 blk_mq_hctx_kobj_init(hctx);
2377
2378 return hctx;
2379
2380 free_bitmap:
2381 sbitmap_free(&hctx->ctx_map);
2382 free_ctxs:
2383 kfree(hctx->ctxs);
2384 free_cpumask:
2385 free_cpumask_var(hctx->cpumask);
2386 free_hctx:
2387 kfree(hctx);
2388 fail_alloc_hctx:
2389 return NULL;
2390 }
2391
2392 static void blk_mq_init_cpu_queues(struct request_queue *q,
2393 unsigned int nr_hw_queues)
2394 {
2395 struct blk_mq_tag_set *set = q->tag_set;
2396 unsigned int i, j;
2397
2398 for_each_possible_cpu(i) {
2399 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2400 struct blk_mq_hw_ctx *hctx;
2401 int k;
2402
2403 __ctx->cpu = i;
2404 spin_lock_init(&__ctx->lock);
2405 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2406 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2407
2408 __ctx->queue = q;
2409
2410 /*
2411 * Set local node, IFF we have more than one hw queue. If
2412 * not, we remain on the home node of the device
2413 */
2414 for (j = 0; j < set->nr_maps; j++) {
2415 hctx = blk_mq_map_queue_type(q, j, i);
2416 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2417 hctx->numa_node = local_memory_node(cpu_to_node(i));
2418 }
2419 }
2420 }
2421
2422 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2423 {
2424 int ret = 0;
2425
2426 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2427 set->queue_depth, set->reserved_tags);
2428 if (!set->tags[hctx_idx])
2429 return false;
2430
2431 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2432 set->queue_depth);
2433 if (!ret)
2434 return true;
2435
2436 blk_mq_free_rq_map(set->tags[hctx_idx]);
2437 set->tags[hctx_idx] = NULL;
2438 return false;
2439 }
2440
2441 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2442 unsigned int hctx_idx)
2443 {
2444 if (set->tags && set->tags[hctx_idx]) {
2445 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2446 blk_mq_free_rq_map(set->tags[hctx_idx]);
2447 set->tags[hctx_idx] = NULL;
2448 }
2449 }
2450
2451 static void blk_mq_map_swqueue(struct request_queue *q)
2452 {
2453 unsigned int i, j, hctx_idx;
2454 struct blk_mq_hw_ctx *hctx;
2455 struct blk_mq_ctx *ctx;
2456 struct blk_mq_tag_set *set = q->tag_set;
2457
2458 /*
2459 * Avoid others reading imcomplete hctx->cpumask through sysfs
2460 */
2461 mutex_lock(&q->sysfs_lock);
2462
2463 queue_for_each_hw_ctx(q, hctx, i) {
2464 cpumask_clear(hctx->cpumask);
2465 hctx->nr_ctx = 0;
2466 hctx->dispatch_from = NULL;
2467 }
2468
2469 /*
2470 * Map software to hardware queues.
2471 *
2472 * If the cpu isn't present, the cpu is mapped to first hctx.
2473 */
2474 for_each_possible_cpu(i) {
2475 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
2476 /* unmapped hw queue can be remapped after CPU topo changed */
2477 if (!set->tags[hctx_idx] &&
2478 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2479 /*
2480 * If tags initialization fail for some hctx,
2481 * that hctx won't be brought online. In this
2482 * case, remap the current ctx to hctx[0] which
2483 * is guaranteed to always have tags allocated
2484 */
2485 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
2486 }
2487
2488 ctx = per_cpu_ptr(q->queue_ctx, i);
2489 for (j = 0; j < set->nr_maps; j++) {
2490 if (!set->map[j].nr_queues) {
2491 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2492 HCTX_TYPE_DEFAULT, i);
2493 continue;
2494 }
2495
2496 hctx = blk_mq_map_queue_type(q, j, i);
2497 ctx->hctxs[j] = hctx;
2498 /*
2499 * If the CPU is already set in the mask, then we've
2500 * mapped this one already. This can happen if
2501 * devices share queues across queue maps.
2502 */
2503 if (cpumask_test_cpu(i, hctx->cpumask))
2504 continue;
2505
2506 cpumask_set_cpu(i, hctx->cpumask);
2507 hctx->type = j;
2508 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2509 hctx->ctxs[hctx->nr_ctx++] = ctx;
2510
2511 /*
2512 * If the nr_ctx type overflows, we have exceeded the
2513 * amount of sw queues we can support.
2514 */
2515 BUG_ON(!hctx->nr_ctx);
2516 }
2517
2518 for (; j < HCTX_MAX_TYPES; j++)
2519 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2520 HCTX_TYPE_DEFAULT, i);
2521 }
2522
2523 mutex_unlock(&q->sysfs_lock);
2524
2525 queue_for_each_hw_ctx(q, hctx, i) {
2526 /*
2527 * If no software queues are mapped to this hardware queue,
2528 * disable it and free the request entries.
2529 */
2530 if (!hctx->nr_ctx) {
2531 /* Never unmap queue 0. We need it as a
2532 * fallback in case of a new remap fails
2533 * allocation
2534 */
2535 if (i && set->tags[i])
2536 blk_mq_free_map_and_requests(set, i);
2537
2538 hctx->tags = NULL;
2539 continue;
2540 }
2541
2542 hctx->tags = set->tags[i];
2543 WARN_ON(!hctx->tags);
2544
2545 /*
2546 * Set the map size to the number of mapped software queues.
2547 * This is more accurate and more efficient than looping
2548 * over all possibly mapped software queues.
2549 */
2550 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2551
2552 /*
2553 * Initialize batch roundrobin counts
2554 */
2555 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2556 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2557 }
2558 }
2559
2560 /*
2561 * Caller needs to ensure that we're either frozen/quiesced, or that
2562 * the queue isn't live yet.
2563 */
2564 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2565 {
2566 struct blk_mq_hw_ctx *hctx;
2567 int i;
2568
2569 queue_for_each_hw_ctx(q, hctx, i) {
2570 if (shared)
2571 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2572 else
2573 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2574 }
2575 }
2576
2577 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2578 bool shared)
2579 {
2580 struct request_queue *q;
2581
2582 lockdep_assert_held(&set->tag_list_lock);
2583
2584 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2585 blk_mq_freeze_queue(q);
2586 queue_set_hctx_shared(q, shared);
2587 blk_mq_unfreeze_queue(q);
2588 }
2589 }
2590
2591 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2592 {
2593 struct blk_mq_tag_set *set = q->tag_set;
2594
2595 mutex_lock(&set->tag_list_lock);
2596 list_del_rcu(&q->tag_set_list);
2597 if (list_is_singular(&set->tag_list)) {
2598 /* just transitioned to unshared */
2599 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2600 /* update existing queue */
2601 blk_mq_update_tag_set_depth(set, false);
2602 }
2603 mutex_unlock(&set->tag_list_lock);
2604 INIT_LIST_HEAD(&q->tag_set_list);
2605 }
2606
2607 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2608 struct request_queue *q)
2609 {
2610 mutex_lock(&set->tag_list_lock);
2611
2612 /*
2613 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2614 */
2615 if (!list_empty(&set->tag_list) &&
2616 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2617 set->flags |= BLK_MQ_F_TAG_SHARED;
2618 /* update existing queue */
2619 blk_mq_update_tag_set_depth(set, true);
2620 }
2621 if (set->flags & BLK_MQ_F_TAG_SHARED)
2622 queue_set_hctx_shared(q, true);
2623 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2624
2625 mutex_unlock(&set->tag_list_lock);
2626 }
2627
2628 /* All allocations will be freed in release handler of q->mq_kobj */
2629 static int blk_mq_alloc_ctxs(struct request_queue *q)
2630 {
2631 struct blk_mq_ctxs *ctxs;
2632 int cpu;
2633
2634 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2635 if (!ctxs)
2636 return -ENOMEM;
2637
2638 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2639 if (!ctxs->queue_ctx)
2640 goto fail;
2641
2642 for_each_possible_cpu(cpu) {
2643 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2644 ctx->ctxs = ctxs;
2645 }
2646
2647 q->mq_kobj = &ctxs->kobj;
2648 q->queue_ctx = ctxs->queue_ctx;
2649
2650 return 0;
2651 fail:
2652 kfree(ctxs);
2653 return -ENOMEM;
2654 }
2655
2656 /*
2657 * It is the actual release handler for mq, but we do it from
2658 * request queue's release handler for avoiding use-after-free
2659 * and headache because q->mq_kobj shouldn't have been introduced,
2660 * but we can't group ctx/kctx kobj without it.
2661 */
2662 void blk_mq_release(struct request_queue *q)
2663 {
2664 struct blk_mq_hw_ctx *hctx, *next;
2665 int i;
2666
2667 cancel_delayed_work_sync(&q->requeue_work);
2668
2669 queue_for_each_hw_ctx(q, hctx, i)
2670 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2671
2672 /* all hctx are in .unused_hctx_list now */
2673 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2674 list_del_init(&hctx->hctx_list);
2675 kobject_put(&hctx->kobj);
2676 }
2677
2678 kfree(q->queue_hw_ctx);
2679
2680 /*
2681 * release .mq_kobj and sw queue's kobject now because
2682 * both share lifetime with request queue.
2683 */
2684 blk_mq_sysfs_deinit(q);
2685 }
2686
2687 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2688 {
2689 struct request_queue *uninit_q, *q;
2690
2691 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2692 if (!uninit_q)
2693 return ERR_PTR(-ENOMEM);
2694
2695 q = blk_mq_init_allocated_queue(set, uninit_q);
2696 if (IS_ERR(q))
2697 blk_cleanup_queue(uninit_q);
2698
2699 return q;
2700 }
2701 EXPORT_SYMBOL(blk_mq_init_queue);
2702
2703 /*
2704 * Helper for setting up a queue with mq ops, given queue depth, and
2705 * the passed in mq ops flags.
2706 */
2707 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2708 const struct blk_mq_ops *ops,
2709 unsigned int queue_depth,
2710 unsigned int set_flags)
2711 {
2712 struct request_queue *q;
2713 int ret;
2714
2715 memset(set, 0, sizeof(*set));
2716 set->ops = ops;
2717 set->nr_hw_queues = 1;
2718 set->nr_maps = 1;
2719 set->queue_depth = queue_depth;
2720 set->numa_node = NUMA_NO_NODE;
2721 set->flags = set_flags;
2722
2723 ret = blk_mq_alloc_tag_set(set);
2724 if (ret)
2725 return ERR_PTR(ret);
2726
2727 q = blk_mq_init_queue(set);
2728 if (IS_ERR(q)) {
2729 blk_mq_free_tag_set(set);
2730 return q;
2731 }
2732
2733 return q;
2734 }
2735 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2736
2737 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2738 struct blk_mq_tag_set *set, struct request_queue *q,
2739 int hctx_idx, int node)
2740 {
2741 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
2742
2743 /* reuse dead hctx first */
2744 spin_lock(&q->unused_hctx_lock);
2745 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2746 if (tmp->numa_node == node) {
2747 hctx = tmp;
2748 break;
2749 }
2750 }
2751 if (hctx)
2752 list_del_init(&hctx->hctx_list);
2753 spin_unlock(&q->unused_hctx_lock);
2754
2755 if (!hctx)
2756 hctx = blk_mq_alloc_hctx(q, set, node);
2757 if (!hctx)
2758 goto fail;
2759
2760 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2761 goto free_hctx;
2762
2763 return hctx;
2764
2765 free_hctx:
2766 kobject_put(&hctx->kobj);
2767 fail:
2768 return NULL;
2769 }
2770
2771 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2772 struct request_queue *q)
2773 {
2774 int i, j, end;
2775 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2776
2777 /* protect against switching io scheduler */
2778 mutex_lock(&q->sysfs_lock);
2779 for (i = 0; i < set->nr_hw_queues; i++) {
2780 int node;
2781 struct blk_mq_hw_ctx *hctx;
2782
2783 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
2784 /*
2785 * If the hw queue has been mapped to another numa node,
2786 * we need to realloc the hctx. If allocation fails, fallback
2787 * to use the previous one.
2788 */
2789 if (hctxs[i] && (hctxs[i]->numa_node == node))
2790 continue;
2791
2792 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2793 if (hctx) {
2794 if (hctxs[i])
2795 blk_mq_exit_hctx(q, set, hctxs[i], i);
2796 hctxs[i] = hctx;
2797 } else {
2798 if (hctxs[i])
2799 pr_warn("Allocate new hctx on node %d fails,\
2800 fallback to previous one on node %d\n",
2801 node, hctxs[i]->numa_node);
2802 else
2803 break;
2804 }
2805 }
2806 /*
2807 * Increasing nr_hw_queues fails. Free the newly allocated
2808 * hctxs and keep the previous q->nr_hw_queues.
2809 */
2810 if (i != set->nr_hw_queues) {
2811 j = q->nr_hw_queues;
2812 end = i;
2813 } else {
2814 j = i;
2815 end = q->nr_hw_queues;
2816 q->nr_hw_queues = set->nr_hw_queues;
2817 }
2818
2819 for (; j < end; j++) {
2820 struct blk_mq_hw_ctx *hctx = hctxs[j];
2821
2822 if (hctx) {
2823 if (hctx->tags)
2824 blk_mq_free_map_and_requests(set, j);
2825 blk_mq_exit_hctx(q, set, hctx, j);
2826 hctxs[j] = NULL;
2827 }
2828 }
2829 mutex_unlock(&q->sysfs_lock);
2830 }
2831
2832 /*
2833 * Maximum number of hardware queues we support. For single sets, we'll never
2834 * have more than the CPUs (software queues). For multiple sets, the tag_set
2835 * user may have set ->nr_hw_queues larger.
2836 */
2837 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2838 {
2839 if (set->nr_maps == 1)
2840 return nr_cpu_ids;
2841
2842 return max(set->nr_hw_queues, nr_cpu_ids);
2843 }
2844
2845 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2846 struct request_queue *q)
2847 {
2848 /* mark the queue as mq asap */
2849 q->mq_ops = set->ops;
2850
2851 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2852 blk_mq_poll_stats_bkt,
2853 BLK_MQ_POLL_STATS_BKTS, q);
2854 if (!q->poll_cb)
2855 goto err_exit;
2856
2857 if (blk_mq_alloc_ctxs(q))
2858 goto err_poll;
2859
2860 /* init q->mq_kobj and sw queues' kobjects */
2861 blk_mq_sysfs_init(q);
2862
2863 q->nr_queues = nr_hw_queues(set);
2864 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2865 GFP_KERNEL, set->numa_node);
2866 if (!q->queue_hw_ctx)
2867 goto err_sys_init;
2868
2869 INIT_LIST_HEAD(&q->unused_hctx_list);
2870 spin_lock_init(&q->unused_hctx_lock);
2871
2872 blk_mq_realloc_hw_ctxs(set, q);
2873 if (!q->nr_hw_queues)
2874 goto err_hctxs;
2875
2876 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2877 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2878
2879 q->tag_set = set;
2880
2881 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2882 if (set->nr_maps > HCTX_TYPE_POLL &&
2883 set->map[HCTX_TYPE_POLL].nr_queues)
2884 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2885
2886 q->sg_reserved_size = INT_MAX;
2887
2888 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2889 INIT_LIST_HEAD(&q->requeue_list);
2890 spin_lock_init(&q->requeue_lock);
2891
2892 blk_queue_make_request(q, blk_mq_make_request);
2893
2894 /*
2895 * Do this after blk_queue_make_request() overrides it...
2896 */
2897 q->nr_requests = set->queue_depth;
2898
2899 /*
2900 * Default to classic polling
2901 */
2902 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
2903
2904 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2905 blk_mq_add_queue_tag_set(set, q);
2906 blk_mq_map_swqueue(q);
2907
2908 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2909 int ret;
2910
2911 ret = elevator_init_mq(q);
2912 if (ret)
2913 return ERR_PTR(ret);
2914 }
2915
2916 return q;
2917
2918 err_hctxs:
2919 kfree(q->queue_hw_ctx);
2920 err_sys_init:
2921 blk_mq_sysfs_deinit(q);
2922 err_poll:
2923 blk_stat_free_callback(q->poll_cb);
2924 q->poll_cb = NULL;
2925 err_exit:
2926 q->mq_ops = NULL;
2927 return ERR_PTR(-ENOMEM);
2928 }
2929 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2930
2931 /* tags can _not_ be used after returning from blk_mq_exit_queue */
2932 void blk_mq_exit_queue(struct request_queue *q)
2933 {
2934 struct blk_mq_tag_set *set = q->tag_set;
2935
2936 blk_mq_del_queue_tag_set(q);
2937 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2938 }
2939
2940 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2941 {
2942 int i;
2943
2944 for (i = 0; i < set->nr_hw_queues; i++)
2945 if (!__blk_mq_alloc_rq_map(set, i))
2946 goto out_unwind;
2947
2948 return 0;
2949
2950 out_unwind:
2951 while (--i >= 0)
2952 blk_mq_free_rq_map(set->tags[i]);
2953
2954 return -ENOMEM;
2955 }
2956
2957 /*
2958 * Allocate the request maps associated with this tag_set. Note that this
2959 * may reduce the depth asked for, if memory is tight. set->queue_depth
2960 * will be updated to reflect the allocated depth.
2961 */
2962 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2963 {
2964 unsigned int depth;
2965 int err;
2966
2967 depth = set->queue_depth;
2968 do {
2969 err = __blk_mq_alloc_rq_maps(set);
2970 if (!err)
2971 break;
2972
2973 set->queue_depth >>= 1;
2974 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2975 err = -ENOMEM;
2976 break;
2977 }
2978 } while (set->queue_depth);
2979
2980 if (!set->queue_depth || err) {
2981 pr_err("blk-mq: failed to allocate request map\n");
2982 return -ENOMEM;
2983 }
2984
2985 if (depth != set->queue_depth)
2986 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2987 depth, set->queue_depth);
2988
2989 return 0;
2990 }
2991
2992 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2993 {
2994 if (set->ops->map_queues && !is_kdump_kernel()) {
2995 int i;
2996
2997 /*
2998 * transport .map_queues is usually done in the following
2999 * way:
3000 *
3001 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3002 * mask = get_cpu_mask(queue)
3003 * for_each_cpu(cpu, mask)
3004 * set->map[x].mq_map[cpu] = queue;
3005 * }
3006 *
3007 * When we need to remap, the table has to be cleared for
3008 * killing stale mapping since one CPU may not be mapped
3009 * to any hw queue.
3010 */
3011 for (i = 0; i < set->nr_maps; i++)
3012 blk_mq_clear_mq_map(&set->map[i]);
3013
3014 return set->ops->map_queues(set);
3015 } else {
3016 BUG_ON(set->nr_maps > 1);
3017 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3018 }
3019 }
3020
3021 /*
3022 * Alloc a tag set to be associated with one or more request queues.
3023 * May fail with EINVAL for various error conditions. May adjust the
3024 * requested depth down, if it's too large. In that case, the set
3025 * value will be stored in set->queue_depth.
3026 */
3027 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3028 {
3029 int i, ret;
3030
3031 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3032
3033 if (!set->nr_hw_queues)
3034 return -EINVAL;
3035 if (!set->queue_depth)
3036 return -EINVAL;
3037 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3038 return -EINVAL;
3039
3040 if (!set->ops->queue_rq)
3041 return -EINVAL;
3042
3043 if (!set->ops->get_budget ^ !set->ops->put_budget)
3044 return -EINVAL;
3045
3046 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3047 pr_info("blk-mq: reduced tag depth to %u\n",
3048 BLK_MQ_MAX_DEPTH);
3049 set->queue_depth = BLK_MQ_MAX_DEPTH;
3050 }
3051
3052 if (!set->nr_maps)
3053 set->nr_maps = 1;
3054 else if (set->nr_maps > HCTX_MAX_TYPES)
3055 return -EINVAL;
3056
3057 /*
3058 * If a crashdump is active, then we are potentially in a very
3059 * memory constrained environment. Limit us to 1 queue and
3060 * 64 tags to prevent using too much memory.
3061 */
3062 if (is_kdump_kernel()) {
3063 set->nr_hw_queues = 1;
3064 set->nr_maps = 1;
3065 set->queue_depth = min(64U, set->queue_depth);
3066 }
3067 /*
3068 * There is no use for more h/w queues than cpus if we just have
3069 * a single map
3070 */
3071 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3072 set->nr_hw_queues = nr_cpu_ids;
3073
3074 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3075 GFP_KERNEL, set->numa_node);
3076 if (!set->tags)
3077 return -ENOMEM;
3078
3079 ret = -ENOMEM;
3080 for (i = 0; i < set->nr_maps; i++) {
3081 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3082 sizeof(set->map[i].mq_map[0]),
3083 GFP_KERNEL, set->numa_node);
3084 if (!set->map[i].mq_map)
3085 goto out_free_mq_map;
3086 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3087 }
3088
3089 ret = blk_mq_update_queue_map(set);
3090 if (ret)
3091 goto out_free_mq_map;
3092
3093 ret = blk_mq_alloc_rq_maps(set);
3094 if (ret)
3095 goto out_free_mq_map;
3096
3097 mutex_init(&set->tag_list_lock);
3098 INIT_LIST_HEAD(&set->tag_list);
3099
3100 return 0;
3101
3102 out_free_mq_map:
3103 for (i = 0; i < set->nr_maps; i++) {
3104 kfree(set->map[i].mq_map);
3105 set->map[i].mq_map = NULL;
3106 }
3107 kfree(set->tags);
3108 set->tags = NULL;
3109 return ret;
3110 }
3111 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3112
3113 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3114 {
3115 int i, j;
3116
3117 for (i = 0; i < nr_hw_queues(set); i++)
3118 blk_mq_free_map_and_requests(set, i);
3119
3120 for (j = 0; j < set->nr_maps; j++) {
3121 kfree(set->map[j].mq_map);
3122 set->map[j].mq_map = NULL;
3123 }
3124
3125 kfree(set->tags);
3126 set->tags = NULL;
3127 }
3128 EXPORT_SYMBOL(blk_mq_free_tag_set);
3129
3130 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3131 {
3132 struct blk_mq_tag_set *set = q->tag_set;
3133 struct blk_mq_hw_ctx *hctx;
3134 int i, ret;
3135
3136 if (!set)
3137 return -EINVAL;
3138
3139 if (q->nr_requests == nr)
3140 return 0;
3141
3142 blk_mq_freeze_queue(q);
3143 blk_mq_quiesce_queue(q);
3144
3145 ret = 0;
3146 queue_for_each_hw_ctx(q, hctx, i) {
3147 if (!hctx->tags)
3148 continue;
3149 /*
3150 * If we're using an MQ scheduler, just update the scheduler
3151 * queue depth. This is similar to what the old code would do.
3152 */
3153 if (!hctx->sched_tags) {
3154 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3155 false);
3156 } else {
3157 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3158 nr, true);
3159 }
3160 if (ret)
3161 break;
3162 if (q->elevator && q->elevator->type->ops.depth_updated)
3163 q->elevator->type->ops.depth_updated(hctx);
3164 }
3165
3166 if (!ret)
3167 q->nr_requests = nr;
3168
3169 blk_mq_unquiesce_queue(q);
3170 blk_mq_unfreeze_queue(q);
3171
3172 return ret;
3173 }
3174
3175 /*
3176 * request_queue and elevator_type pair.
3177 * It is just used by __blk_mq_update_nr_hw_queues to cache
3178 * the elevator_type associated with a request_queue.
3179 */
3180 struct blk_mq_qe_pair {
3181 struct list_head node;
3182 struct request_queue *q;
3183 struct elevator_type *type;
3184 };
3185
3186 /*
3187 * Cache the elevator_type in qe pair list and switch the
3188 * io scheduler to 'none'
3189 */
3190 static bool blk_mq_elv_switch_none(struct list_head *head,
3191 struct request_queue *q)
3192 {
3193 struct blk_mq_qe_pair *qe;
3194
3195 if (!q->elevator)
3196 return true;
3197
3198 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3199 if (!qe)
3200 return false;
3201
3202 INIT_LIST_HEAD(&qe->node);
3203 qe->q = q;
3204 qe->type = q->elevator->type;
3205 list_add(&qe->node, head);
3206
3207 mutex_lock(&q->sysfs_lock);
3208 /*
3209 * After elevator_switch_mq, the previous elevator_queue will be
3210 * released by elevator_release. The reference of the io scheduler
3211 * module get by elevator_get will also be put. So we need to get
3212 * a reference of the io scheduler module here to prevent it to be
3213 * removed.
3214 */
3215 __module_get(qe->type->elevator_owner);
3216 elevator_switch_mq(q, NULL);
3217 mutex_unlock(&q->sysfs_lock);
3218
3219 return true;
3220 }
3221
3222 static void blk_mq_elv_switch_back(struct list_head *head,
3223 struct request_queue *q)
3224 {
3225 struct blk_mq_qe_pair *qe;
3226 struct elevator_type *t = NULL;
3227
3228 list_for_each_entry(qe, head, node)
3229 if (qe->q == q) {
3230 t = qe->type;
3231 break;
3232 }
3233
3234 if (!t)
3235 return;
3236
3237 list_del(&qe->node);
3238 kfree(qe);
3239
3240 mutex_lock(&q->sysfs_lock);
3241 elevator_switch_mq(q, t);
3242 mutex_unlock(&q->sysfs_lock);
3243 }
3244
3245 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3246 int nr_hw_queues)
3247 {
3248 struct request_queue *q;
3249 LIST_HEAD(head);
3250 int prev_nr_hw_queues;
3251
3252 lockdep_assert_held(&set->tag_list_lock);
3253
3254 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3255 nr_hw_queues = nr_cpu_ids;
3256 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3257 return;
3258
3259 list_for_each_entry(q, &set->tag_list, tag_set_list)
3260 blk_mq_freeze_queue(q);
3261 /*
3262 * Sync with blk_mq_queue_tag_busy_iter.
3263 */
3264 synchronize_rcu();
3265 /*
3266 * Switch IO scheduler to 'none', cleaning up the data associated
3267 * with the previous scheduler. We will switch back once we are done
3268 * updating the new sw to hw queue mappings.
3269 */
3270 list_for_each_entry(q, &set->tag_list, tag_set_list)
3271 if (!blk_mq_elv_switch_none(&head, q))
3272 goto switch_back;
3273
3274 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3275 blk_mq_debugfs_unregister_hctxs(q);
3276 blk_mq_sysfs_unregister(q);
3277 }
3278
3279 prev_nr_hw_queues = set->nr_hw_queues;
3280 set->nr_hw_queues = nr_hw_queues;
3281 blk_mq_update_queue_map(set);
3282 fallback:
3283 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3284 blk_mq_realloc_hw_ctxs(set, q);
3285 if (q->nr_hw_queues != set->nr_hw_queues) {
3286 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3287 nr_hw_queues, prev_nr_hw_queues);
3288 set->nr_hw_queues = prev_nr_hw_queues;
3289 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3290 goto fallback;
3291 }
3292 blk_mq_map_swqueue(q);
3293 }
3294
3295 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3296 blk_mq_sysfs_register(q);
3297 blk_mq_debugfs_register_hctxs(q);
3298 }
3299
3300 switch_back:
3301 list_for_each_entry(q, &set->tag_list, tag_set_list)
3302 blk_mq_elv_switch_back(&head, q);
3303
3304 list_for_each_entry(q, &set->tag_list, tag_set_list)
3305 blk_mq_unfreeze_queue(q);
3306 }
3307
3308 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3309 {
3310 mutex_lock(&set->tag_list_lock);
3311 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3312 mutex_unlock(&set->tag_list_lock);
3313 }
3314 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3315
3316 /* Enable polling stats and return whether they were already enabled. */
3317 static bool blk_poll_stats_enable(struct request_queue *q)
3318 {
3319 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3320 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3321 return true;
3322 blk_stat_add_callback(q, q->poll_cb);
3323 return false;
3324 }
3325
3326 static void blk_mq_poll_stats_start(struct request_queue *q)
3327 {
3328 /*
3329 * We don't arm the callback if polling stats are not enabled or the
3330 * callback is already active.
3331 */
3332 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3333 blk_stat_is_active(q->poll_cb))
3334 return;
3335
3336 blk_stat_activate_msecs(q->poll_cb, 100);
3337 }
3338
3339 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3340 {
3341 struct request_queue *q = cb->data;
3342 int bucket;
3343
3344 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3345 if (cb->stat[bucket].nr_samples)
3346 q->poll_stat[bucket] = cb->stat[bucket];
3347 }
3348 }
3349
3350 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3351 struct blk_mq_hw_ctx *hctx,
3352 struct request *rq)
3353 {
3354 unsigned long ret = 0;
3355 int bucket;
3356
3357 /*
3358 * If stats collection isn't on, don't sleep but turn it on for
3359 * future users
3360 */
3361 if (!blk_poll_stats_enable(q))
3362 return 0;
3363
3364 /*
3365 * As an optimistic guess, use half of the mean service time
3366 * for this type of request. We can (and should) make this smarter.
3367 * For instance, if the completion latencies are tight, we can
3368 * get closer than just half the mean. This is especially
3369 * important on devices where the completion latencies are longer
3370 * than ~10 usec. We do use the stats for the relevant IO size
3371 * if available which does lead to better estimates.
3372 */
3373 bucket = blk_mq_poll_stats_bkt(rq);
3374 if (bucket < 0)
3375 return ret;
3376
3377 if (q->poll_stat[bucket].nr_samples)
3378 ret = (q->poll_stat[bucket].mean + 1) / 2;
3379
3380 return ret;
3381 }
3382
3383 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3384 struct blk_mq_hw_ctx *hctx,
3385 struct request *rq)
3386 {
3387 struct hrtimer_sleeper hs;
3388 enum hrtimer_mode mode;
3389 unsigned int nsecs;
3390 ktime_t kt;
3391
3392 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3393 return false;
3394
3395 /*
3396 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3397 *
3398 * 0: use half of prev avg
3399 * >0: use this specific value
3400 */
3401 if (q->poll_nsec > 0)
3402 nsecs = q->poll_nsec;
3403 else
3404 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3405
3406 if (!nsecs)
3407 return false;
3408
3409 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3410
3411 /*
3412 * This will be replaced with the stats tracking code, using
3413 * 'avg_completion_time / 2' as the pre-sleep target.
3414 */
3415 kt = nsecs;
3416
3417 mode = HRTIMER_MODE_REL;
3418 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3419 hrtimer_set_expires(&hs.timer, kt);
3420
3421 hrtimer_init_sleeper(&hs, current);
3422 do {
3423 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3424 break;
3425 set_current_state(TASK_UNINTERRUPTIBLE);
3426 hrtimer_start_expires(&hs.timer, mode);
3427 if (hs.task)
3428 io_schedule();
3429 hrtimer_cancel(&hs.timer);
3430 mode = HRTIMER_MODE_ABS;
3431 } while (hs.task && !signal_pending(current));
3432
3433 __set_current_state(TASK_RUNNING);
3434 destroy_hrtimer_on_stack(&hs.timer);
3435 return true;
3436 }
3437
3438 static bool blk_mq_poll_hybrid(struct request_queue *q,
3439 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3440 {
3441 struct request *rq;
3442
3443 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3444 return false;
3445
3446 if (!blk_qc_t_is_internal(cookie))
3447 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3448 else {
3449 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3450 /*
3451 * With scheduling, if the request has completed, we'll
3452 * get a NULL return here, as we clear the sched tag when
3453 * that happens. The request still remains valid, like always,
3454 * so we should be safe with just the NULL check.
3455 */
3456 if (!rq)
3457 return false;
3458 }
3459
3460 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3461 }
3462
3463 /**
3464 * blk_poll - poll for IO completions
3465 * @q: the queue
3466 * @cookie: cookie passed back at IO submission time
3467 * @spin: whether to spin for completions
3468 *
3469 * Description:
3470 * Poll for completions on the passed in queue. Returns number of
3471 * completed entries found. If @spin is true, then blk_poll will continue
3472 * looping until at least one completion is found, unless the task is
3473 * otherwise marked running (or we need to reschedule).
3474 */
3475 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3476 {
3477 struct blk_mq_hw_ctx *hctx;
3478 long state;
3479
3480 if (!blk_qc_t_valid(cookie) ||
3481 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3482 return 0;
3483
3484 if (current->plug)
3485 blk_flush_plug_list(current->plug, false);
3486
3487 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3488
3489 /*
3490 * If we sleep, have the caller restart the poll loop to reset
3491 * the state. Like for the other success return cases, the
3492 * caller is responsible for checking if the IO completed. If
3493 * the IO isn't complete, we'll get called again and will go
3494 * straight to the busy poll loop.
3495 */
3496 if (blk_mq_poll_hybrid(q, hctx, cookie))
3497 return 1;
3498
3499 hctx->poll_considered++;
3500
3501 state = current->state;
3502 do {
3503 int ret;
3504
3505 hctx->poll_invoked++;
3506
3507 ret = q->mq_ops->poll(hctx);
3508 if (ret > 0) {
3509 hctx->poll_success++;
3510 __set_current_state(TASK_RUNNING);
3511 return ret;
3512 }
3513
3514 if (signal_pending_state(state, current))
3515 __set_current_state(TASK_RUNNING);
3516
3517 if (current->state == TASK_RUNNING)
3518 return 1;
3519 if (ret < 0 || !spin)
3520 break;
3521 cpu_relax();
3522 } while (!need_resched());
3523
3524 __set_current_state(TASK_RUNNING);
3525 return 0;
3526 }
3527 EXPORT_SYMBOL_GPL(blk_poll);
3528
3529 unsigned int blk_mq_rq_cpu(struct request *rq)
3530 {
3531 return rq->mq_ctx->cpu;
3532 }
3533 EXPORT_SYMBOL(blk_mq_rq_cpu);
3534
3535 static int __init blk_mq_init(void)
3536 {
3537 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3538 blk_mq_hctx_notify_dead);
3539 return 0;
3540 }
3541 subsys_initcall(blk_mq_init);