]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - block/blk-mq.c
crypto: arm64/sha2-ce - clean up backwards function names
[thirdparty/kernel/linux.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47
48 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
49 static void blk_mq_request_bypass_insert(struct request *rq,
50 blk_insert_t flags);
51 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
52 struct list_head *list);
53 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
54 struct io_comp_batch *iob, unsigned int flags);
55
56 /*
57 * Check if any of the ctx, dispatch list or elevator
58 * have pending work in this hardware queue.
59 */
60 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 {
62 return !list_empty_careful(&hctx->dispatch) ||
63 sbitmap_any_bit_set(&hctx->ctx_map) ||
64 blk_mq_sched_has_work(hctx);
65 }
66
67 /*
68 * Mark this ctx as having pending work in this hardware queue
69 */
70 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
71 struct blk_mq_ctx *ctx)
72 {
73 const int bit = ctx->index_hw[hctx->type];
74
75 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
76 sbitmap_set_bit(&hctx->ctx_map, bit);
77 }
78
79 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
80 struct blk_mq_ctx *ctx)
81 {
82 const int bit = ctx->index_hw[hctx->type];
83
84 sbitmap_clear_bit(&hctx->ctx_map, bit);
85 }
86
87 struct mq_inflight {
88 struct block_device *part;
89 unsigned int inflight[2];
90 };
91
92 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 {
94 struct mq_inflight *mi = priv;
95
96 if (rq->part && blk_do_io_stat(rq) &&
97 (!mi->part->bd_partno || rq->part == mi->part) &&
98 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
99 mi->inflight[rq_data_dir(rq)]++;
100
101 return true;
102 }
103
104 unsigned int blk_mq_in_flight(struct request_queue *q,
105 struct block_device *part)
106 {
107 struct mq_inflight mi = { .part = part };
108
109 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110
111 return mi.inflight[0] + mi.inflight[1];
112 }
113
114 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
115 unsigned int inflight[2])
116 {
117 struct mq_inflight mi = { .part = part };
118
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 inflight[0] = mi.inflight[0];
121 inflight[1] = mi.inflight[1];
122 }
123
124 void blk_freeze_queue_start(struct request_queue *q)
125 {
126 mutex_lock(&q->mq_freeze_lock);
127 if (++q->mq_freeze_depth == 1) {
128 percpu_ref_kill(&q->q_usage_counter);
129 mutex_unlock(&q->mq_freeze_lock);
130 if (queue_is_mq(q))
131 blk_mq_run_hw_queues(q, false);
132 } else {
133 mutex_unlock(&q->mq_freeze_lock);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137
138 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 {
140 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143
144 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
145 unsigned long timeout)
146 {
147 return wait_event_timeout(q->mq_freeze_wq,
148 percpu_ref_is_zero(&q->q_usage_counter),
149 timeout);
150 }
151 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
152
153 /*
154 * Guarantee no request is in use, so we can change any data structure of
155 * the queue afterward.
156 */
157 void blk_freeze_queue(struct request_queue *q)
158 {
159 /*
160 * In the !blk_mq case we are only calling this to kill the
161 * q_usage_counter, otherwise this increases the freeze depth
162 * and waits for it to return to zero. For this reason there is
163 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
164 * exported to drivers as the only user for unfreeze is blk_mq.
165 */
166 blk_freeze_queue_start(q);
167 blk_mq_freeze_queue_wait(q);
168 }
169
170 void blk_mq_freeze_queue(struct request_queue *q)
171 {
172 /*
173 * ...just an alias to keep freeze and unfreeze actions balanced
174 * in the blk_mq_* namespace
175 */
176 blk_freeze_queue(q);
177 }
178 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179
180 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 {
182 mutex_lock(&q->mq_freeze_lock);
183 if (force_atomic)
184 q->q_usage_counter.data->force_atomic = true;
185 q->mq_freeze_depth--;
186 WARN_ON_ONCE(q->mq_freeze_depth < 0);
187 if (!q->mq_freeze_depth) {
188 percpu_ref_resurrect(&q->q_usage_counter);
189 wake_up_all(&q->mq_freeze_wq);
190 }
191 mutex_unlock(&q->mq_freeze_lock);
192 }
193
194 void blk_mq_unfreeze_queue(struct request_queue *q)
195 {
196 __blk_mq_unfreeze_queue(q, false);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
199
200 /*
201 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
202 * mpt3sas driver such that this function can be removed.
203 */
204 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 {
206 unsigned long flags;
207
208 spin_lock_irqsave(&q->queue_lock, flags);
209 if (!q->quiesce_depth++)
210 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
211 spin_unlock_irqrestore(&q->queue_lock, flags);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214
215 /**
216 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
217 * @set: tag_set to wait on
218 *
219 * Note: it is driver's responsibility for making sure that quiesce has
220 * been started on or more of the request_queues of the tag_set. This
221 * function only waits for the quiesce on those request_queues that had
222 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223 */
224 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 {
226 if (set->flags & BLK_MQ_F_BLOCKING)
227 synchronize_srcu(set->srcu);
228 else
229 synchronize_rcu();
230 }
231 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
232
233 /**
234 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
235 * @q: request queue.
236 *
237 * Note: this function does not prevent that the struct request end_io()
238 * callback function is invoked. Once this function is returned, we make
239 * sure no dispatch can happen until the queue is unquiesced via
240 * blk_mq_unquiesce_queue().
241 */
242 void blk_mq_quiesce_queue(struct request_queue *q)
243 {
244 blk_mq_quiesce_queue_nowait(q);
245 /* nothing to wait for non-mq queues */
246 if (queue_is_mq(q))
247 blk_mq_wait_quiesce_done(q->tag_set);
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253 * @q: request queue.
254 *
255 * This function recovers queue into the state before quiescing
256 * which is done by blk_mq_quiesce_queue.
257 */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 unsigned long flags;
261 bool run_queue = false;
262
263 spin_lock_irqsave(&q->queue_lock, flags);
264 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 ;
266 } else if (!--q->quiesce_depth) {
267 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
268 run_queue = true;
269 }
270 spin_unlock_irqrestore(&q->queue_lock, flags);
271
272 /* dispatch requests which are inserted during quiescing */
273 if (run_queue)
274 blk_mq_run_hw_queues(q, true);
275 }
276 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277
278 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 {
280 struct request_queue *q;
281
282 mutex_lock(&set->tag_list_lock);
283 list_for_each_entry(q, &set->tag_list, tag_set_list) {
284 if (!blk_queue_skip_tagset_quiesce(q))
285 blk_mq_quiesce_queue_nowait(q);
286 }
287 blk_mq_wait_quiesce_done(set);
288 mutex_unlock(&set->tag_list_lock);
289 }
290 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291
292 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 {
294 struct request_queue *q;
295
296 mutex_lock(&set->tag_list_lock);
297 list_for_each_entry(q, &set->tag_list, tag_set_list) {
298 if (!blk_queue_skip_tagset_quiesce(q))
299 blk_mq_unquiesce_queue(q);
300 }
301 mutex_unlock(&set->tag_list_lock);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304
305 void blk_mq_wake_waiters(struct request_queue *q)
306 {
307 struct blk_mq_hw_ctx *hctx;
308 unsigned long i;
309
310 queue_for_each_hw_ctx(q, hctx, i)
311 if (blk_mq_hw_queue_mapped(hctx))
312 blk_mq_tag_wakeup_all(hctx->tags, true);
313 }
314
315 void blk_rq_init(struct request_queue *q, struct request *rq)
316 {
317 memset(rq, 0, sizeof(*rq));
318
319 INIT_LIST_HEAD(&rq->queuelist);
320 rq->q = q;
321 rq->__sector = (sector_t) -1;
322 INIT_HLIST_NODE(&rq->hash);
323 RB_CLEAR_NODE(&rq->rb_node);
324 rq->tag = BLK_MQ_NO_TAG;
325 rq->internal_tag = BLK_MQ_NO_TAG;
326 rq->start_time_ns = ktime_get_ns();
327 rq->part = NULL;
328 blk_crypto_rq_set_defaults(rq);
329 }
330 EXPORT_SYMBOL(blk_rq_init);
331
332 /* Set start and alloc time when the allocated request is actually used */
333 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 {
335 if (blk_mq_need_time_stamp(rq))
336 rq->start_time_ns = ktime_get_ns();
337 else
338 rq->start_time_ns = 0;
339
340 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
341 if (blk_queue_rq_alloc_time(rq->q))
342 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 else
344 rq->alloc_time_ns = 0;
345 #endif
346 }
347
348 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
349 struct blk_mq_tags *tags, unsigned int tag)
350 {
351 struct blk_mq_ctx *ctx = data->ctx;
352 struct blk_mq_hw_ctx *hctx = data->hctx;
353 struct request_queue *q = data->q;
354 struct request *rq = tags->static_rqs[tag];
355
356 rq->q = q;
357 rq->mq_ctx = ctx;
358 rq->mq_hctx = hctx;
359 rq->cmd_flags = data->cmd_flags;
360
361 if (data->flags & BLK_MQ_REQ_PM)
362 data->rq_flags |= RQF_PM;
363 if (blk_queue_io_stat(q))
364 data->rq_flags |= RQF_IO_STAT;
365 rq->rq_flags = data->rq_flags;
366
367 if (data->rq_flags & RQF_SCHED_TAGS) {
368 rq->tag = BLK_MQ_NO_TAG;
369 rq->internal_tag = tag;
370 } else {
371 rq->tag = tag;
372 rq->internal_tag = BLK_MQ_NO_TAG;
373 }
374 rq->timeout = 0;
375
376 rq->part = NULL;
377 rq->io_start_time_ns = 0;
378 rq->stats_sectors = 0;
379 rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381 rq->nr_integrity_segments = 0;
382 #endif
383 rq->end_io = NULL;
384 rq->end_io_data = NULL;
385
386 blk_crypto_rq_set_defaults(rq);
387 INIT_LIST_HEAD(&rq->queuelist);
388 /* tag was already set */
389 WRITE_ONCE(rq->deadline, 0);
390 req_ref_set(rq, 1);
391
392 if (rq->rq_flags & RQF_USE_SCHED) {
393 struct elevator_queue *e = data->q->elevator;
394
395 INIT_HLIST_NODE(&rq->hash);
396 RB_CLEAR_NODE(&rq->rb_node);
397
398 if (e->type->ops.prepare_request)
399 e->type->ops.prepare_request(rq);
400 }
401
402 return rq;
403 }
404
405 static inline struct request *
406 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 {
408 unsigned int tag, tag_offset;
409 struct blk_mq_tags *tags;
410 struct request *rq;
411 unsigned long tag_mask;
412 int i, nr = 0;
413
414 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415 if (unlikely(!tag_mask))
416 return NULL;
417
418 tags = blk_mq_tags_from_data(data);
419 for (i = 0; tag_mask; i++) {
420 if (!(tag_mask & (1UL << i)))
421 continue;
422 tag = tag_offset + i;
423 prefetch(tags->static_rqs[tag]);
424 tag_mask &= ~(1UL << i);
425 rq = blk_mq_rq_ctx_init(data, tags, tag);
426 rq_list_add(data->cached_rq, rq);
427 nr++;
428 }
429 /* caller already holds a reference, add for remainder */
430 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431 data->nr_tags -= nr;
432
433 return rq_list_pop(data->cached_rq);
434 }
435
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438 struct request_queue *q = data->q;
439 u64 alloc_time_ns = 0;
440 struct request *rq;
441 unsigned int tag;
442
443 /* alloc_time includes depth and tag waits */
444 if (blk_queue_rq_alloc_time(q))
445 alloc_time_ns = ktime_get_ns();
446
447 if (data->cmd_flags & REQ_NOWAIT)
448 data->flags |= BLK_MQ_REQ_NOWAIT;
449
450 if (q->elevator) {
451 /*
452 * All requests use scheduler tags when an I/O scheduler is
453 * enabled for the queue.
454 */
455 data->rq_flags |= RQF_SCHED_TAGS;
456
457 /*
458 * Flush/passthrough requests are special and go directly to the
459 * dispatch list.
460 */
461 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462 !blk_op_is_passthrough(data->cmd_flags)) {
463 struct elevator_mq_ops *ops = &q->elevator->type->ops;
464
465 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466
467 data->rq_flags |= RQF_USE_SCHED;
468 if (ops->limit_depth)
469 ops->limit_depth(data->cmd_flags, data);
470 }
471 }
472
473 retry:
474 data->ctx = blk_mq_get_ctx(q);
475 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476 if (!(data->rq_flags & RQF_SCHED_TAGS))
477 blk_mq_tag_busy(data->hctx);
478
479 if (data->flags & BLK_MQ_REQ_RESERVED)
480 data->rq_flags |= RQF_RESV;
481
482 /*
483 * Try batched alloc if we want more than 1 tag.
484 */
485 if (data->nr_tags > 1) {
486 rq = __blk_mq_alloc_requests_batch(data);
487 if (rq) {
488 blk_mq_rq_time_init(rq, alloc_time_ns);
489 return rq;
490 }
491 data->nr_tags = 1;
492 }
493
494 /*
495 * Waiting allocations only fail because of an inactive hctx. In that
496 * case just retry the hctx assignment and tag allocation as CPU hotplug
497 * should have migrated us to an online CPU by now.
498 */
499 tag = blk_mq_get_tag(data);
500 if (tag == BLK_MQ_NO_TAG) {
501 if (data->flags & BLK_MQ_REQ_NOWAIT)
502 return NULL;
503 /*
504 * Give up the CPU and sleep for a random short time to
505 * ensure that thread using a realtime scheduling class
506 * are migrated off the CPU, and thus off the hctx that
507 * is going away.
508 */
509 msleep(3);
510 goto retry;
511 }
512
513 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
514 blk_mq_rq_time_init(rq, alloc_time_ns);
515 return rq;
516 }
517
518 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
519 struct blk_plug *plug,
520 blk_opf_t opf,
521 blk_mq_req_flags_t flags)
522 {
523 struct blk_mq_alloc_data data = {
524 .q = q,
525 .flags = flags,
526 .cmd_flags = opf,
527 .nr_tags = plug->nr_ios,
528 .cached_rq = &plug->cached_rq,
529 };
530 struct request *rq;
531
532 if (blk_queue_enter(q, flags))
533 return NULL;
534
535 plug->nr_ios = 1;
536
537 rq = __blk_mq_alloc_requests(&data);
538 if (unlikely(!rq))
539 blk_queue_exit(q);
540 return rq;
541 }
542
543 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
544 blk_opf_t opf,
545 blk_mq_req_flags_t flags)
546 {
547 struct blk_plug *plug = current->plug;
548 struct request *rq;
549
550 if (!plug)
551 return NULL;
552
553 if (rq_list_empty(plug->cached_rq)) {
554 if (plug->nr_ios == 1)
555 return NULL;
556 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
557 if (!rq)
558 return NULL;
559 } else {
560 rq = rq_list_peek(&plug->cached_rq);
561 if (!rq || rq->q != q)
562 return NULL;
563
564 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
565 return NULL;
566 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
567 return NULL;
568
569 plug->cached_rq = rq_list_next(rq);
570 blk_mq_rq_time_init(rq, 0);
571 }
572
573 rq->cmd_flags = opf;
574 INIT_LIST_HEAD(&rq->queuelist);
575 return rq;
576 }
577
578 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
579 blk_mq_req_flags_t flags)
580 {
581 struct request *rq;
582
583 rq = blk_mq_alloc_cached_request(q, opf, flags);
584 if (!rq) {
585 struct blk_mq_alloc_data data = {
586 .q = q,
587 .flags = flags,
588 .cmd_flags = opf,
589 .nr_tags = 1,
590 };
591 int ret;
592
593 ret = blk_queue_enter(q, flags);
594 if (ret)
595 return ERR_PTR(ret);
596
597 rq = __blk_mq_alloc_requests(&data);
598 if (!rq)
599 goto out_queue_exit;
600 }
601 rq->__data_len = 0;
602 rq->__sector = (sector_t) -1;
603 rq->bio = rq->biotail = NULL;
604 return rq;
605 out_queue_exit:
606 blk_queue_exit(q);
607 return ERR_PTR(-EWOULDBLOCK);
608 }
609 EXPORT_SYMBOL(blk_mq_alloc_request);
610
611 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
612 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
613 {
614 struct blk_mq_alloc_data data = {
615 .q = q,
616 .flags = flags,
617 .cmd_flags = opf,
618 .nr_tags = 1,
619 };
620 u64 alloc_time_ns = 0;
621 struct request *rq;
622 unsigned int cpu;
623 unsigned int tag;
624 int ret;
625
626 /* alloc_time includes depth and tag waits */
627 if (blk_queue_rq_alloc_time(q))
628 alloc_time_ns = ktime_get_ns();
629
630 /*
631 * If the tag allocator sleeps we could get an allocation for a
632 * different hardware context. No need to complicate the low level
633 * allocator for this for the rare use case of a command tied to
634 * a specific queue.
635 */
636 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
637 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
638 return ERR_PTR(-EINVAL);
639
640 if (hctx_idx >= q->nr_hw_queues)
641 return ERR_PTR(-EIO);
642
643 ret = blk_queue_enter(q, flags);
644 if (ret)
645 return ERR_PTR(ret);
646
647 /*
648 * Check if the hardware context is actually mapped to anything.
649 * If not tell the caller that it should skip this queue.
650 */
651 ret = -EXDEV;
652 data.hctx = xa_load(&q->hctx_table, hctx_idx);
653 if (!blk_mq_hw_queue_mapped(data.hctx))
654 goto out_queue_exit;
655 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
656 if (cpu >= nr_cpu_ids)
657 goto out_queue_exit;
658 data.ctx = __blk_mq_get_ctx(q, cpu);
659
660 if (q->elevator)
661 data.rq_flags |= RQF_SCHED_TAGS;
662 else
663 blk_mq_tag_busy(data.hctx);
664
665 if (flags & BLK_MQ_REQ_RESERVED)
666 data.rq_flags |= RQF_RESV;
667
668 ret = -EWOULDBLOCK;
669 tag = blk_mq_get_tag(&data);
670 if (tag == BLK_MQ_NO_TAG)
671 goto out_queue_exit;
672 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
673 blk_mq_rq_time_init(rq, alloc_time_ns);
674 rq->__data_len = 0;
675 rq->__sector = (sector_t) -1;
676 rq->bio = rq->biotail = NULL;
677 return rq;
678
679 out_queue_exit:
680 blk_queue_exit(q);
681 return ERR_PTR(ret);
682 }
683 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
684
685 static void blk_mq_finish_request(struct request *rq)
686 {
687 struct request_queue *q = rq->q;
688
689 if (rq->rq_flags & RQF_USE_SCHED) {
690 q->elevator->type->ops.finish_request(rq);
691 /*
692 * For postflush request that may need to be
693 * completed twice, we should clear this flag
694 * to avoid double finish_request() on the rq.
695 */
696 rq->rq_flags &= ~RQF_USE_SCHED;
697 }
698 }
699
700 static void __blk_mq_free_request(struct request *rq)
701 {
702 struct request_queue *q = rq->q;
703 struct blk_mq_ctx *ctx = rq->mq_ctx;
704 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
705 const int sched_tag = rq->internal_tag;
706
707 blk_crypto_free_request(rq);
708 blk_pm_mark_last_busy(rq);
709 rq->mq_hctx = NULL;
710
711 if (rq->rq_flags & RQF_MQ_INFLIGHT)
712 __blk_mq_dec_active_requests(hctx);
713
714 if (rq->tag != BLK_MQ_NO_TAG)
715 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
716 if (sched_tag != BLK_MQ_NO_TAG)
717 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
718 blk_mq_sched_restart(hctx);
719 blk_queue_exit(q);
720 }
721
722 void blk_mq_free_request(struct request *rq)
723 {
724 struct request_queue *q = rq->q;
725
726 blk_mq_finish_request(rq);
727
728 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
729 laptop_io_completion(q->disk->bdi);
730
731 rq_qos_done(q, rq);
732
733 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
734 if (req_ref_put_and_test(rq))
735 __blk_mq_free_request(rq);
736 }
737 EXPORT_SYMBOL_GPL(blk_mq_free_request);
738
739 void blk_mq_free_plug_rqs(struct blk_plug *plug)
740 {
741 struct request *rq;
742
743 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
744 blk_mq_free_request(rq);
745 }
746
747 void blk_dump_rq_flags(struct request *rq, char *msg)
748 {
749 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
750 rq->q->disk ? rq->q->disk->disk_name : "?",
751 (__force unsigned long long) rq->cmd_flags);
752
753 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
754 (unsigned long long)blk_rq_pos(rq),
755 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
756 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
757 rq->bio, rq->biotail, blk_rq_bytes(rq));
758 }
759 EXPORT_SYMBOL(blk_dump_rq_flags);
760
761 static void req_bio_endio(struct request *rq, struct bio *bio,
762 unsigned int nbytes, blk_status_t error)
763 {
764 if (unlikely(error)) {
765 bio->bi_status = error;
766 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
767 /*
768 * Partial zone append completions cannot be supported as the
769 * BIO fragments may end up not being written sequentially.
770 */
771 if (bio->bi_iter.bi_size != nbytes)
772 bio->bi_status = BLK_STS_IOERR;
773 else
774 bio->bi_iter.bi_sector = rq->__sector;
775 }
776
777 bio_advance(bio, nbytes);
778
779 if (unlikely(rq->rq_flags & RQF_QUIET))
780 bio_set_flag(bio, BIO_QUIET);
781 /* don't actually finish bio if it's part of flush sequence */
782 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
783 bio_endio(bio);
784 }
785
786 static void blk_account_io_completion(struct request *req, unsigned int bytes)
787 {
788 if (req->part && blk_do_io_stat(req)) {
789 const int sgrp = op_stat_group(req_op(req));
790
791 part_stat_lock();
792 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
793 part_stat_unlock();
794 }
795 }
796
797 static void blk_print_req_error(struct request *req, blk_status_t status)
798 {
799 printk_ratelimited(KERN_ERR
800 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
801 "phys_seg %u prio class %u\n",
802 blk_status_to_str(status),
803 req->q->disk ? req->q->disk->disk_name : "?",
804 blk_rq_pos(req), (__force u32)req_op(req),
805 blk_op_str(req_op(req)),
806 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
807 req->nr_phys_segments,
808 IOPRIO_PRIO_CLASS(req->ioprio));
809 }
810
811 /*
812 * Fully end IO on a request. Does not support partial completions, or
813 * errors.
814 */
815 static void blk_complete_request(struct request *req)
816 {
817 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
818 int total_bytes = blk_rq_bytes(req);
819 struct bio *bio = req->bio;
820
821 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
822
823 if (!bio)
824 return;
825
826 #ifdef CONFIG_BLK_DEV_INTEGRITY
827 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
828 req->q->integrity.profile->complete_fn(req, total_bytes);
829 #endif
830
831 /*
832 * Upper layers may call blk_crypto_evict_key() anytime after the last
833 * bio_endio(). Therefore, the keyslot must be released before that.
834 */
835 blk_crypto_rq_put_keyslot(req);
836
837 blk_account_io_completion(req, total_bytes);
838
839 do {
840 struct bio *next = bio->bi_next;
841
842 /* Completion has already been traced */
843 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
844
845 if (req_op(req) == REQ_OP_ZONE_APPEND)
846 bio->bi_iter.bi_sector = req->__sector;
847
848 if (!is_flush)
849 bio_endio(bio);
850 bio = next;
851 } while (bio);
852
853 /*
854 * Reset counters so that the request stacking driver
855 * can find how many bytes remain in the request
856 * later.
857 */
858 if (!req->end_io) {
859 req->bio = NULL;
860 req->__data_len = 0;
861 }
862 }
863
864 /**
865 * blk_update_request - Complete multiple bytes without completing the request
866 * @req: the request being processed
867 * @error: block status code
868 * @nr_bytes: number of bytes to complete for @req
869 *
870 * Description:
871 * Ends I/O on a number of bytes attached to @req, but doesn't complete
872 * the request structure even if @req doesn't have leftover.
873 * If @req has leftover, sets it up for the next range of segments.
874 *
875 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
876 * %false return from this function.
877 *
878 * Note:
879 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
880 * except in the consistency check at the end of this function.
881 *
882 * Return:
883 * %false - this request doesn't have any more data
884 * %true - this request has more data
885 **/
886 bool blk_update_request(struct request *req, blk_status_t error,
887 unsigned int nr_bytes)
888 {
889 int total_bytes;
890
891 trace_block_rq_complete(req, error, nr_bytes);
892
893 if (!req->bio)
894 return false;
895
896 #ifdef CONFIG_BLK_DEV_INTEGRITY
897 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
898 error == BLK_STS_OK)
899 req->q->integrity.profile->complete_fn(req, nr_bytes);
900 #endif
901
902 /*
903 * Upper layers may call blk_crypto_evict_key() anytime after the last
904 * bio_endio(). Therefore, the keyslot must be released before that.
905 */
906 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
907 __blk_crypto_rq_put_keyslot(req);
908
909 if (unlikely(error && !blk_rq_is_passthrough(req) &&
910 !(req->rq_flags & RQF_QUIET)) &&
911 !test_bit(GD_DEAD, &req->q->disk->state)) {
912 blk_print_req_error(req, error);
913 trace_block_rq_error(req, error, nr_bytes);
914 }
915
916 blk_account_io_completion(req, nr_bytes);
917
918 total_bytes = 0;
919 while (req->bio) {
920 struct bio *bio = req->bio;
921 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
922
923 if (bio_bytes == bio->bi_iter.bi_size)
924 req->bio = bio->bi_next;
925
926 /* Completion has already been traced */
927 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
928 req_bio_endio(req, bio, bio_bytes, error);
929
930 total_bytes += bio_bytes;
931 nr_bytes -= bio_bytes;
932
933 if (!nr_bytes)
934 break;
935 }
936
937 /*
938 * completely done
939 */
940 if (!req->bio) {
941 /*
942 * Reset counters so that the request stacking driver
943 * can find how many bytes remain in the request
944 * later.
945 */
946 req->__data_len = 0;
947 return false;
948 }
949
950 req->__data_len -= total_bytes;
951
952 /* update sector only for requests with clear definition of sector */
953 if (!blk_rq_is_passthrough(req))
954 req->__sector += total_bytes >> 9;
955
956 /* mixed attributes always follow the first bio */
957 if (req->rq_flags & RQF_MIXED_MERGE) {
958 req->cmd_flags &= ~REQ_FAILFAST_MASK;
959 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
960 }
961
962 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
963 /*
964 * If total number of sectors is less than the first segment
965 * size, something has gone terribly wrong.
966 */
967 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
968 blk_dump_rq_flags(req, "request botched");
969 req->__data_len = blk_rq_cur_bytes(req);
970 }
971
972 /* recalculate the number of segments */
973 req->nr_phys_segments = blk_recalc_rq_segments(req);
974 }
975
976 return true;
977 }
978 EXPORT_SYMBOL_GPL(blk_update_request);
979
980 static inline void blk_account_io_done(struct request *req, u64 now)
981 {
982 trace_block_io_done(req);
983
984 /*
985 * Account IO completion. flush_rq isn't accounted as a
986 * normal IO on queueing nor completion. Accounting the
987 * containing request is enough.
988 */
989 if (blk_do_io_stat(req) && req->part &&
990 !(req->rq_flags & RQF_FLUSH_SEQ)) {
991 const int sgrp = op_stat_group(req_op(req));
992
993 part_stat_lock();
994 update_io_ticks(req->part, jiffies, true);
995 part_stat_inc(req->part, ios[sgrp]);
996 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
997 part_stat_unlock();
998 }
999 }
1000
1001 static inline void blk_account_io_start(struct request *req)
1002 {
1003 trace_block_io_start(req);
1004
1005 if (blk_do_io_stat(req)) {
1006 /*
1007 * All non-passthrough requests are created from a bio with one
1008 * exception: when a flush command that is part of a flush sequence
1009 * generated by the state machine in blk-flush.c is cloned onto the
1010 * lower device by dm-multipath we can get here without a bio.
1011 */
1012 if (req->bio)
1013 req->part = req->bio->bi_bdev;
1014 else
1015 req->part = req->q->disk->part0;
1016
1017 part_stat_lock();
1018 update_io_ticks(req->part, jiffies, false);
1019 part_stat_unlock();
1020 }
1021 }
1022
1023 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1024 {
1025 if (rq->rq_flags & RQF_STATS)
1026 blk_stat_add(rq, now);
1027
1028 blk_mq_sched_completed_request(rq, now);
1029 blk_account_io_done(rq, now);
1030 }
1031
1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1033 {
1034 if (blk_mq_need_time_stamp(rq))
1035 __blk_mq_end_request_acct(rq, ktime_get_ns());
1036
1037 blk_mq_finish_request(rq);
1038
1039 if (rq->end_io) {
1040 rq_qos_done(rq->q, rq);
1041 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1042 blk_mq_free_request(rq);
1043 } else {
1044 blk_mq_free_request(rq);
1045 }
1046 }
1047 EXPORT_SYMBOL(__blk_mq_end_request);
1048
1049 void blk_mq_end_request(struct request *rq, blk_status_t error)
1050 {
1051 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1052 BUG();
1053 __blk_mq_end_request(rq, error);
1054 }
1055 EXPORT_SYMBOL(blk_mq_end_request);
1056
1057 #define TAG_COMP_BATCH 32
1058
1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1060 int *tag_array, int nr_tags)
1061 {
1062 struct request_queue *q = hctx->queue;
1063
1064 /*
1065 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1066 * update hctx->nr_active in batch
1067 */
1068 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1069 __blk_mq_sub_active_requests(hctx, nr_tags);
1070
1071 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1072 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1073 }
1074
1075 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1076 {
1077 int tags[TAG_COMP_BATCH], nr_tags = 0;
1078 struct blk_mq_hw_ctx *cur_hctx = NULL;
1079 struct request *rq;
1080 u64 now = 0;
1081
1082 if (iob->need_ts)
1083 now = ktime_get_ns();
1084
1085 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1086 prefetch(rq->bio);
1087 prefetch(rq->rq_next);
1088
1089 blk_complete_request(rq);
1090 if (iob->need_ts)
1091 __blk_mq_end_request_acct(rq, now);
1092
1093 blk_mq_finish_request(rq);
1094
1095 rq_qos_done(rq->q, rq);
1096
1097 /*
1098 * If end_io handler returns NONE, then it still has
1099 * ownership of the request.
1100 */
1101 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102 continue;
1103
1104 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105 if (!req_ref_put_and_test(rq))
1106 continue;
1107
1108 blk_crypto_free_request(rq);
1109 blk_pm_mark_last_busy(rq);
1110
1111 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112 if (cur_hctx)
1113 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114 nr_tags = 0;
1115 cur_hctx = rq->mq_hctx;
1116 }
1117 tags[nr_tags++] = rq->tag;
1118 }
1119
1120 if (nr_tags)
1121 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122 }
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125 static void blk_complete_reqs(struct llist_head *list)
1126 {
1127 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128 struct request *rq, *next;
1129
1130 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131 rq->q->mq_ops->complete(rq);
1132 }
1133
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135 {
1136 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137 }
1138
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1140 {
1141 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142 return 0;
1143 }
1144
1145 static void __blk_mq_complete_request_remote(void *data)
1146 {
1147 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148 }
1149
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151 {
1152 int cpu = raw_smp_processor_id();
1153
1154 if (!IS_ENABLED(CONFIG_SMP) ||
1155 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156 return false;
1157 /*
1158 * With force threaded interrupts enabled, raising softirq from an SMP
1159 * function call will always result in waking the ksoftirqd thread.
1160 * This is probably worse than completing the request on a different
1161 * cache domain.
1162 */
1163 if (force_irqthreads())
1164 return false;
1165
1166 /* same CPU or cache domain? Complete locally */
1167 if (cpu == rq->mq_ctx->cpu ||
1168 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1170 return false;
1171
1172 /* don't try to IPI to an offline CPU */
1173 return cpu_online(rq->mq_ctx->cpu);
1174 }
1175
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1177 {
1178 unsigned int cpu;
1179
1180 cpu = rq->mq_ctx->cpu;
1181 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1182 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1183 }
1184
1185 static void blk_mq_raise_softirq(struct request *rq)
1186 {
1187 struct llist_head *list;
1188
1189 preempt_disable();
1190 list = this_cpu_ptr(&blk_cpu_done);
1191 if (llist_add(&rq->ipi_list, list))
1192 raise_softirq(BLOCK_SOFTIRQ);
1193 preempt_enable();
1194 }
1195
1196 bool blk_mq_complete_request_remote(struct request *rq)
1197 {
1198 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1199
1200 /*
1201 * For request which hctx has only one ctx mapping,
1202 * or a polled request, always complete locally,
1203 * it's pointless to redirect the completion.
1204 */
1205 if ((rq->mq_hctx->nr_ctx == 1 &&
1206 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1207 rq->cmd_flags & REQ_POLLED)
1208 return false;
1209
1210 if (blk_mq_complete_need_ipi(rq)) {
1211 blk_mq_complete_send_ipi(rq);
1212 return true;
1213 }
1214
1215 if (rq->q->nr_hw_queues == 1) {
1216 blk_mq_raise_softirq(rq);
1217 return true;
1218 }
1219 return false;
1220 }
1221 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1222
1223 /**
1224 * blk_mq_complete_request - end I/O on a request
1225 * @rq: the request being processed
1226 *
1227 * Description:
1228 * Complete a request by scheduling the ->complete_rq operation.
1229 **/
1230 void blk_mq_complete_request(struct request *rq)
1231 {
1232 if (!blk_mq_complete_request_remote(rq))
1233 rq->q->mq_ops->complete(rq);
1234 }
1235 EXPORT_SYMBOL(blk_mq_complete_request);
1236
1237 /**
1238 * blk_mq_start_request - Start processing a request
1239 * @rq: Pointer to request to be started
1240 *
1241 * Function used by device drivers to notify the block layer that a request
1242 * is going to be processed now, so blk layer can do proper initializations
1243 * such as starting the timeout timer.
1244 */
1245 void blk_mq_start_request(struct request *rq)
1246 {
1247 struct request_queue *q = rq->q;
1248
1249 trace_block_rq_issue(rq);
1250
1251 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1252 rq->io_start_time_ns = ktime_get_ns();
1253 rq->stats_sectors = blk_rq_sectors(rq);
1254 rq->rq_flags |= RQF_STATS;
1255 rq_qos_issue(q, rq);
1256 }
1257
1258 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1259
1260 blk_add_timer(rq);
1261 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1262
1263 #ifdef CONFIG_BLK_DEV_INTEGRITY
1264 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1265 q->integrity.profile->prepare_fn(rq);
1266 #endif
1267 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1268 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1269 }
1270 EXPORT_SYMBOL(blk_mq_start_request);
1271
1272 /*
1273 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1274 * queues. This is important for md arrays to benefit from merging
1275 * requests.
1276 */
1277 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1278 {
1279 if (plug->multiple_queues)
1280 return BLK_MAX_REQUEST_COUNT * 2;
1281 return BLK_MAX_REQUEST_COUNT;
1282 }
1283
1284 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1285 {
1286 struct request *last = rq_list_peek(&plug->mq_list);
1287
1288 if (!plug->rq_count) {
1289 trace_block_plug(rq->q);
1290 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1291 (!blk_queue_nomerges(rq->q) &&
1292 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1293 blk_mq_flush_plug_list(plug, false);
1294 last = NULL;
1295 trace_block_plug(rq->q);
1296 }
1297
1298 if (!plug->multiple_queues && last && last->q != rq->q)
1299 plug->multiple_queues = true;
1300 /*
1301 * Any request allocated from sched tags can't be issued to
1302 * ->queue_rqs() directly
1303 */
1304 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1305 plug->has_elevator = true;
1306 rq->rq_next = NULL;
1307 rq_list_add(&plug->mq_list, rq);
1308 plug->rq_count++;
1309 }
1310
1311 /**
1312 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313 * @rq: request to insert
1314 * @at_head: insert request at head or tail of queue
1315 *
1316 * Description:
1317 * Insert a fully prepared request at the back of the I/O scheduler queue
1318 * for execution. Don't wait for completion.
1319 *
1320 * Note:
1321 * This function will invoke @done directly if the queue is dead.
1322 */
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 {
1325 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1326
1327 WARN_ON(irqs_disabled());
1328 WARN_ON(!blk_rq_is_passthrough(rq));
1329
1330 blk_account_io_start(rq);
1331
1332 /*
1333 * As plugging can be enabled for passthrough requests on a zoned
1334 * device, directly accessing the plug instead of using blk_mq_plug()
1335 * should not have any consequences.
1336 */
1337 if (current->plug && !at_head) {
1338 blk_add_rq_to_plug(current->plug, rq);
1339 return;
1340 }
1341
1342 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1343 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1344 }
1345 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1346
1347 struct blk_rq_wait {
1348 struct completion done;
1349 blk_status_t ret;
1350 };
1351
1352 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1353 {
1354 struct blk_rq_wait *wait = rq->end_io_data;
1355
1356 wait->ret = ret;
1357 complete(&wait->done);
1358 return RQ_END_IO_NONE;
1359 }
1360
1361 bool blk_rq_is_poll(struct request *rq)
1362 {
1363 if (!rq->mq_hctx)
1364 return false;
1365 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1366 return false;
1367 return true;
1368 }
1369 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1370
1371 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1372 {
1373 do {
1374 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1375 cond_resched();
1376 } while (!completion_done(wait));
1377 }
1378
1379 /**
1380 * blk_execute_rq - insert a request into queue for execution
1381 * @rq: request to insert
1382 * @at_head: insert request at head or tail of queue
1383 *
1384 * Description:
1385 * Insert a fully prepared request at the back of the I/O scheduler queue
1386 * for execution and wait for completion.
1387 * Return: The blk_status_t result provided to blk_mq_end_request().
1388 */
1389 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1390 {
1391 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1392 struct blk_rq_wait wait = {
1393 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1394 };
1395
1396 WARN_ON(irqs_disabled());
1397 WARN_ON(!blk_rq_is_passthrough(rq));
1398
1399 rq->end_io_data = &wait;
1400 rq->end_io = blk_end_sync_rq;
1401
1402 blk_account_io_start(rq);
1403 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1404 blk_mq_run_hw_queue(hctx, false);
1405
1406 if (blk_rq_is_poll(rq)) {
1407 blk_rq_poll_completion(rq, &wait.done);
1408 } else {
1409 /*
1410 * Prevent hang_check timer from firing at us during very long
1411 * I/O
1412 */
1413 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1414
1415 if (hang_check)
1416 while (!wait_for_completion_io_timeout(&wait.done,
1417 hang_check * (HZ/2)))
1418 ;
1419 else
1420 wait_for_completion_io(&wait.done);
1421 }
1422
1423 return wait.ret;
1424 }
1425 EXPORT_SYMBOL(blk_execute_rq);
1426
1427 static void __blk_mq_requeue_request(struct request *rq)
1428 {
1429 struct request_queue *q = rq->q;
1430
1431 blk_mq_put_driver_tag(rq);
1432
1433 trace_block_rq_requeue(rq);
1434 rq_qos_requeue(q, rq);
1435
1436 if (blk_mq_request_started(rq)) {
1437 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1438 rq->rq_flags &= ~RQF_TIMED_OUT;
1439 }
1440 }
1441
1442 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1443 {
1444 struct request_queue *q = rq->q;
1445 unsigned long flags;
1446
1447 __blk_mq_requeue_request(rq);
1448
1449 /* this request will be re-inserted to io scheduler queue */
1450 blk_mq_sched_requeue_request(rq);
1451
1452 spin_lock_irqsave(&q->requeue_lock, flags);
1453 list_add_tail(&rq->queuelist, &q->requeue_list);
1454 spin_unlock_irqrestore(&q->requeue_lock, flags);
1455
1456 if (kick_requeue_list)
1457 blk_mq_kick_requeue_list(q);
1458 }
1459 EXPORT_SYMBOL(blk_mq_requeue_request);
1460
1461 static void blk_mq_requeue_work(struct work_struct *work)
1462 {
1463 struct request_queue *q =
1464 container_of(work, struct request_queue, requeue_work.work);
1465 LIST_HEAD(rq_list);
1466 LIST_HEAD(flush_list);
1467 struct request *rq;
1468
1469 spin_lock_irq(&q->requeue_lock);
1470 list_splice_init(&q->requeue_list, &rq_list);
1471 list_splice_init(&q->flush_list, &flush_list);
1472 spin_unlock_irq(&q->requeue_lock);
1473
1474 while (!list_empty(&rq_list)) {
1475 rq = list_entry(rq_list.next, struct request, queuelist);
1476 /*
1477 * If RQF_DONTPREP ist set, the request has been started by the
1478 * driver already and might have driver-specific data allocated
1479 * already. Insert it into the hctx dispatch list to avoid
1480 * block layer merges for the request.
1481 */
1482 if (rq->rq_flags & RQF_DONTPREP) {
1483 list_del_init(&rq->queuelist);
1484 blk_mq_request_bypass_insert(rq, 0);
1485 } else {
1486 list_del_init(&rq->queuelist);
1487 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1488 }
1489 }
1490
1491 while (!list_empty(&flush_list)) {
1492 rq = list_entry(flush_list.next, struct request, queuelist);
1493 list_del_init(&rq->queuelist);
1494 blk_mq_insert_request(rq, 0);
1495 }
1496
1497 blk_mq_run_hw_queues(q, false);
1498 }
1499
1500 void blk_mq_kick_requeue_list(struct request_queue *q)
1501 {
1502 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1503 }
1504 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1505
1506 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1507 unsigned long msecs)
1508 {
1509 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1510 msecs_to_jiffies(msecs));
1511 }
1512 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1513
1514 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1515 {
1516 /*
1517 * If we find a request that isn't idle we know the queue is busy
1518 * as it's checked in the iter.
1519 * Return false to stop the iteration.
1520 */
1521 if (blk_mq_request_started(rq)) {
1522 bool *busy = priv;
1523
1524 *busy = true;
1525 return false;
1526 }
1527
1528 return true;
1529 }
1530
1531 bool blk_mq_queue_inflight(struct request_queue *q)
1532 {
1533 bool busy = false;
1534
1535 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1536 return busy;
1537 }
1538 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1539
1540 static void blk_mq_rq_timed_out(struct request *req)
1541 {
1542 req->rq_flags |= RQF_TIMED_OUT;
1543 if (req->q->mq_ops->timeout) {
1544 enum blk_eh_timer_return ret;
1545
1546 ret = req->q->mq_ops->timeout(req);
1547 if (ret == BLK_EH_DONE)
1548 return;
1549 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1550 }
1551
1552 blk_add_timer(req);
1553 }
1554
1555 struct blk_expired_data {
1556 bool has_timedout_rq;
1557 unsigned long next;
1558 unsigned long timeout_start;
1559 };
1560
1561 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1562 {
1563 unsigned long deadline;
1564
1565 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1566 return false;
1567 if (rq->rq_flags & RQF_TIMED_OUT)
1568 return false;
1569
1570 deadline = READ_ONCE(rq->deadline);
1571 if (time_after_eq(expired->timeout_start, deadline))
1572 return true;
1573
1574 if (expired->next == 0)
1575 expired->next = deadline;
1576 else if (time_after(expired->next, deadline))
1577 expired->next = deadline;
1578 return false;
1579 }
1580
1581 void blk_mq_put_rq_ref(struct request *rq)
1582 {
1583 if (is_flush_rq(rq)) {
1584 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1585 blk_mq_free_request(rq);
1586 } else if (req_ref_put_and_test(rq)) {
1587 __blk_mq_free_request(rq);
1588 }
1589 }
1590
1591 static bool blk_mq_check_expired(struct request *rq, void *priv)
1592 {
1593 struct blk_expired_data *expired = priv;
1594
1595 /*
1596 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1597 * be reallocated underneath the timeout handler's processing, then
1598 * the expire check is reliable. If the request is not expired, then
1599 * it was completed and reallocated as a new request after returning
1600 * from blk_mq_check_expired().
1601 */
1602 if (blk_mq_req_expired(rq, expired)) {
1603 expired->has_timedout_rq = true;
1604 return false;
1605 }
1606 return true;
1607 }
1608
1609 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1610 {
1611 struct blk_expired_data *expired = priv;
1612
1613 if (blk_mq_req_expired(rq, expired))
1614 blk_mq_rq_timed_out(rq);
1615 return true;
1616 }
1617
1618 static void blk_mq_timeout_work(struct work_struct *work)
1619 {
1620 struct request_queue *q =
1621 container_of(work, struct request_queue, timeout_work);
1622 struct blk_expired_data expired = {
1623 .timeout_start = jiffies,
1624 };
1625 struct blk_mq_hw_ctx *hctx;
1626 unsigned long i;
1627
1628 /* A deadlock might occur if a request is stuck requiring a
1629 * timeout at the same time a queue freeze is waiting
1630 * completion, since the timeout code would not be able to
1631 * acquire the queue reference here.
1632 *
1633 * That's why we don't use blk_queue_enter here; instead, we use
1634 * percpu_ref_tryget directly, because we need to be able to
1635 * obtain a reference even in the short window between the queue
1636 * starting to freeze, by dropping the first reference in
1637 * blk_freeze_queue_start, and the moment the last request is
1638 * consumed, marked by the instant q_usage_counter reaches
1639 * zero.
1640 */
1641 if (!percpu_ref_tryget(&q->q_usage_counter))
1642 return;
1643
1644 /* check if there is any timed-out request */
1645 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1646 if (expired.has_timedout_rq) {
1647 /*
1648 * Before walking tags, we must ensure any submit started
1649 * before the current time has finished. Since the submit
1650 * uses srcu or rcu, wait for a synchronization point to
1651 * ensure all running submits have finished
1652 */
1653 blk_mq_wait_quiesce_done(q->tag_set);
1654
1655 expired.next = 0;
1656 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1657 }
1658
1659 if (expired.next != 0) {
1660 mod_timer(&q->timeout, expired.next);
1661 } else {
1662 /*
1663 * Request timeouts are handled as a forward rolling timer. If
1664 * we end up here it means that no requests are pending and
1665 * also that no request has been pending for a while. Mark
1666 * each hctx as idle.
1667 */
1668 queue_for_each_hw_ctx(q, hctx, i) {
1669 /* the hctx may be unmapped, so check it here */
1670 if (blk_mq_hw_queue_mapped(hctx))
1671 blk_mq_tag_idle(hctx);
1672 }
1673 }
1674 blk_queue_exit(q);
1675 }
1676
1677 struct flush_busy_ctx_data {
1678 struct blk_mq_hw_ctx *hctx;
1679 struct list_head *list;
1680 };
1681
1682 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1683 {
1684 struct flush_busy_ctx_data *flush_data = data;
1685 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1686 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1687 enum hctx_type type = hctx->type;
1688
1689 spin_lock(&ctx->lock);
1690 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1691 sbitmap_clear_bit(sb, bitnr);
1692 spin_unlock(&ctx->lock);
1693 return true;
1694 }
1695
1696 /*
1697 * Process software queues that have been marked busy, splicing them
1698 * to the for-dispatch
1699 */
1700 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1701 {
1702 struct flush_busy_ctx_data data = {
1703 .hctx = hctx,
1704 .list = list,
1705 };
1706
1707 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1708 }
1709 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1710
1711 struct dispatch_rq_data {
1712 struct blk_mq_hw_ctx *hctx;
1713 struct request *rq;
1714 };
1715
1716 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1717 void *data)
1718 {
1719 struct dispatch_rq_data *dispatch_data = data;
1720 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1721 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1722 enum hctx_type type = hctx->type;
1723
1724 spin_lock(&ctx->lock);
1725 if (!list_empty(&ctx->rq_lists[type])) {
1726 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1727 list_del_init(&dispatch_data->rq->queuelist);
1728 if (list_empty(&ctx->rq_lists[type]))
1729 sbitmap_clear_bit(sb, bitnr);
1730 }
1731 spin_unlock(&ctx->lock);
1732
1733 return !dispatch_data->rq;
1734 }
1735
1736 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1737 struct blk_mq_ctx *start)
1738 {
1739 unsigned off = start ? start->index_hw[hctx->type] : 0;
1740 struct dispatch_rq_data data = {
1741 .hctx = hctx,
1742 .rq = NULL,
1743 };
1744
1745 __sbitmap_for_each_set(&hctx->ctx_map, off,
1746 dispatch_rq_from_ctx, &data);
1747
1748 return data.rq;
1749 }
1750
1751 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1752 {
1753 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1754 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1755 int tag;
1756
1757 blk_mq_tag_busy(rq->mq_hctx);
1758
1759 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1760 bt = &rq->mq_hctx->tags->breserved_tags;
1761 tag_offset = 0;
1762 } else {
1763 if (!hctx_may_queue(rq->mq_hctx, bt))
1764 return false;
1765 }
1766
1767 tag = __sbitmap_queue_get(bt);
1768 if (tag == BLK_MQ_NO_TAG)
1769 return false;
1770
1771 rq->tag = tag + tag_offset;
1772 return true;
1773 }
1774
1775 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1776 {
1777 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1778 return false;
1779
1780 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1781 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1782 rq->rq_flags |= RQF_MQ_INFLIGHT;
1783 __blk_mq_inc_active_requests(hctx);
1784 }
1785 hctx->tags->rqs[rq->tag] = rq;
1786 return true;
1787 }
1788
1789 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1790 int flags, void *key)
1791 {
1792 struct blk_mq_hw_ctx *hctx;
1793
1794 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1795
1796 spin_lock(&hctx->dispatch_wait_lock);
1797 if (!list_empty(&wait->entry)) {
1798 struct sbitmap_queue *sbq;
1799
1800 list_del_init(&wait->entry);
1801 sbq = &hctx->tags->bitmap_tags;
1802 atomic_dec(&sbq->ws_active);
1803 }
1804 spin_unlock(&hctx->dispatch_wait_lock);
1805
1806 blk_mq_run_hw_queue(hctx, true);
1807 return 1;
1808 }
1809
1810 /*
1811 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1812 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1813 * restart. For both cases, take care to check the condition again after
1814 * marking us as waiting.
1815 */
1816 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1817 struct request *rq)
1818 {
1819 struct sbitmap_queue *sbq;
1820 struct wait_queue_head *wq;
1821 wait_queue_entry_t *wait;
1822 bool ret;
1823
1824 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1825 !(blk_mq_is_shared_tags(hctx->flags))) {
1826 blk_mq_sched_mark_restart_hctx(hctx);
1827
1828 /*
1829 * It's possible that a tag was freed in the window between the
1830 * allocation failure and adding the hardware queue to the wait
1831 * queue.
1832 *
1833 * Don't clear RESTART here, someone else could have set it.
1834 * At most this will cost an extra queue run.
1835 */
1836 return blk_mq_get_driver_tag(rq);
1837 }
1838
1839 wait = &hctx->dispatch_wait;
1840 if (!list_empty_careful(&wait->entry))
1841 return false;
1842
1843 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1844 sbq = &hctx->tags->breserved_tags;
1845 else
1846 sbq = &hctx->tags->bitmap_tags;
1847 wq = &bt_wait_ptr(sbq, hctx)->wait;
1848
1849 spin_lock_irq(&wq->lock);
1850 spin_lock(&hctx->dispatch_wait_lock);
1851 if (!list_empty(&wait->entry)) {
1852 spin_unlock(&hctx->dispatch_wait_lock);
1853 spin_unlock_irq(&wq->lock);
1854 return false;
1855 }
1856
1857 atomic_inc(&sbq->ws_active);
1858 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1859 __add_wait_queue(wq, wait);
1860
1861 /*
1862 * It's possible that a tag was freed in the window between the
1863 * allocation failure and adding the hardware queue to the wait
1864 * queue.
1865 */
1866 ret = blk_mq_get_driver_tag(rq);
1867 if (!ret) {
1868 spin_unlock(&hctx->dispatch_wait_lock);
1869 spin_unlock_irq(&wq->lock);
1870 return false;
1871 }
1872
1873 /*
1874 * We got a tag, remove ourselves from the wait queue to ensure
1875 * someone else gets the wakeup.
1876 */
1877 list_del_init(&wait->entry);
1878 atomic_dec(&sbq->ws_active);
1879 spin_unlock(&hctx->dispatch_wait_lock);
1880 spin_unlock_irq(&wq->lock);
1881
1882 return true;
1883 }
1884
1885 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1886 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1887 /*
1888 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1889 * - EWMA is one simple way to compute running average value
1890 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1891 * - take 4 as factor for avoiding to get too small(0) result, and this
1892 * factor doesn't matter because EWMA decreases exponentially
1893 */
1894 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1895 {
1896 unsigned int ewma;
1897
1898 ewma = hctx->dispatch_busy;
1899
1900 if (!ewma && !busy)
1901 return;
1902
1903 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1904 if (busy)
1905 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1906 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1907
1908 hctx->dispatch_busy = ewma;
1909 }
1910
1911 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1912
1913 static void blk_mq_handle_dev_resource(struct request *rq,
1914 struct list_head *list)
1915 {
1916 list_add(&rq->queuelist, list);
1917 __blk_mq_requeue_request(rq);
1918 }
1919
1920 static void blk_mq_handle_zone_resource(struct request *rq,
1921 struct list_head *zone_list)
1922 {
1923 /*
1924 * If we end up here it is because we cannot dispatch a request to a
1925 * specific zone due to LLD level zone-write locking or other zone
1926 * related resource not being available. In this case, set the request
1927 * aside in zone_list for retrying it later.
1928 */
1929 list_add(&rq->queuelist, zone_list);
1930 __blk_mq_requeue_request(rq);
1931 }
1932
1933 enum prep_dispatch {
1934 PREP_DISPATCH_OK,
1935 PREP_DISPATCH_NO_TAG,
1936 PREP_DISPATCH_NO_BUDGET,
1937 };
1938
1939 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1940 bool need_budget)
1941 {
1942 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1943 int budget_token = -1;
1944
1945 if (need_budget) {
1946 budget_token = blk_mq_get_dispatch_budget(rq->q);
1947 if (budget_token < 0) {
1948 blk_mq_put_driver_tag(rq);
1949 return PREP_DISPATCH_NO_BUDGET;
1950 }
1951 blk_mq_set_rq_budget_token(rq, budget_token);
1952 }
1953
1954 if (!blk_mq_get_driver_tag(rq)) {
1955 /*
1956 * The initial allocation attempt failed, so we need to
1957 * rerun the hardware queue when a tag is freed. The
1958 * waitqueue takes care of that. If the queue is run
1959 * before we add this entry back on the dispatch list,
1960 * we'll re-run it below.
1961 */
1962 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1963 /*
1964 * All budgets not got from this function will be put
1965 * together during handling partial dispatch
1966 */
1967 if (need_budget)
1968 blk_mq_put_dispatch_budget(rq->q, budget_token);
1969 return PREP_DISPATCH_NO_TAG;
1970 }
1971 }
1972
1973 return PREP_DISPATCH_OK;
1974 }
1975
1976 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1977 static void blk_mq_release_budgets(struct request_queue *q,
1978 struct list_head *list)
1979 {
1980 struct request *rq;
1981
1982 list_for_each_entry(rq, list, queuelist) {
1983 int budget_token = blk_mq_get_rq_budget_token(rq);
1984
1985 if (budget_token >= 0)
1986 blk_mq_put_dispatch_budget(q, budget_token);
1987 }
1988 }
1989
1990 /*
1991 * blk_mq_commit_rqs will notify driver using bd->last that there is no
1992 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1993 * details)
1994 * Attention, we should explicitly call this in unusual cases:
1995 * 1) did not queue everything initially scheduled to queue
1996 * 2) the last attempt to queue a request failed
1997 */
1998 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1999 bool from_schedule)
2000 {
2001 if (hctx->queue->mq_ops->commit_rqs && queued) {
2002 trace_block_unplug(hctx->queue, queued, !from_schedule);
2003 hctx->queue->mq_ops->commit_rqs(hctx);
2004 }
2005 }
2006
2007 /*
2008 * Returns true if we did some work AND can potentially do more.
2009 */
2010 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2011 unsigned int nr_budgets)
2012 {
2013 enum prep_dispatch prep;
2014 struct request_queue *q = hctx->queue;
2015 struct request *rq;
2016 int queued;
2017 blk_status_t ret = BLK_STS_OK;
2018 LIST_HEAD(zone_list);
2019 bool needs_resource = false;
2020
2021 if (list_empty(list))
2022 return false;
2023
2024 /*
2025 * Now process all the entries, sending them to the driver.
2026 */
2027 queued = 0;
2028 do {
2029 struct blk_mq_queue_data bd;
2030
2031 rq = list_first_entry(list, struct request, queuelist);
2032
2033 WARN_ON_ONCE(hctx != rq->mq_hctx);
2034 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2035 if (prep != PREP_DISPATCH_OK)
2036 break;
2037
2038 list_del_init(&rq->queuelist);
2039
2040 bd.rq = rq;
2041 bd.last = list_empty(list);
2042
2043 /*
2044 * once the request is queued to lld, no need to cover the
2045 * budget any more
2046 */
2047 if (nr_budgets)
2048 nr_budgets--;
2049 ret = q->mq_ops->queue_rq(hctx, &bd);
2050 switch (ret) {
2051 case BLK_STS_OK:
2052 queued++;
2053 break;
2054 case BLK_STS_RESOURCE:
2055 needs_resource = true;
2056 fallthrough;
2057 case BLK_STS_DEV_RESOURCE:
2058 blk_mq_handle_dev_resource(rq, list);
2059 goto out;
2060 case BLK_STS_ZONE_RESOURCE:
2061 /*
2062 * Move the request to zone_list and keep going through
2063 * the dispatch list to find more requests the drive can
2064 * accept.
2065 */
2066 blk_mq_handle_zone_resource(rq, &zone_list);
2067 needs_resource = true;
2068 break;
2069 default:
2070 blk_mq_end_request(rq, ret);
2071 }
2072 } while (!list_empty(list));
2073 out:
2074 if (!list_empty(&zone_list))
2075 list_splice_tail_init(&zone_list, list);
2076
2077 /* If we didn't flush the entire list, we could have told the driver
2078 * there was more coming, but that turned out to be a lie.
2079 */
2080 if (!list_empty(list) || ret != BLK_STS_OK)
2081 blk_mq_commit_rqs(hctx, queued, false);
2082
2083 /*
2084 * Any items that need requeuing? Stuff them into hctx->dispatch,
2085 * that is where we will continue on next queue run.
2086 */
2087 if (!list_empty(list)) {
2088 bool needs_restart;
2089 /* For non-shared tags, the RESTART check will suffice */
2090 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2091 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2092 blk_mq_is_shared_tags(hctx->flags));
2093
2094 if (nr_budgets)
2095 blk_mq_release_budgets(q, list);
2096
2097 spin_lock(&hctx->lock);
2098 list_splice_tail_init(list, &hctx->dispatch);
2099 spin_unlock(&hctx->lock);
2100
2101 /*
2102 * Order adding requests to hctx->dispatch and checking
2103 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2104 * in blk_mq_sched_restart(). Avoid restart code path to
2105 * miss the new added requests to hctx->dispatch, meantime
2106 * SCHED_RESTART is observed here.
2107 */
2108 smp_mb();
2109
2110 /*
2111 * If SCHED_RESTART was set by the caller of this function and
2112 * it is no longer set that means that it was cleared by another
2113 * thread and hence that a queue rerun is needed.
2114 *
2115 * If 'no_tag' is set, that means that we failed getting
2116 * a driver tag with an I/O scheduler attached. If our dispatch
2117 * waitqueue is no longer active, ensure that we run the queue
2118 * AFTER adding our entries back to the list.
2119 *
2120 * If no I/O scheduler has been configured it is possible that
2121 * the hardware queue got stopped and restarted before requests
2122 * were pushed back onto the dispatch list. Rerun the queue to
2123 * avoid starvation. Notes:
2124 * - blk_mq_run_hw_queue() checks whether or not a queue has
2125 * been stopped before rerunning a queue.
2126 * - Some but not all block drivers stop a queue before
2127 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2128 * and dm-rq.
2129 *
2130 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2131 * bit is set, run queue after a delay to avoid IO stalls
2132 * that could otherwise occur if the queue is idle. We'll do
2133 * similar if we couldn't get budget or couldn't lock a zone
2134 * and SCHED_RESTART is set.
2135 */
2136 needs_restart = blk_mq_sched_needs_restart(hctx);
2137 if (prep == PREP_DISPATCH_NO_BUDGET)
2138 needs_resource = true;
2139 if (!needs_restart ||
2140 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2141 blk_mq_run_hw_queue(hctx, true);
2142 else if (needs_resource)
2143 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2144
2145 blk_mq_update_dispatch_busy(hctx, true);
2146 return false;
2147 }
2148
2149 blk_mq_update_dispatch_busy(hctx, false);
2150 return true;
2151 }
2152
2153 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2154 {
2155 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2156
2157 if (cpu >= nr_cpu_ids)
2158 cpu = cpumask_first(hctx->cpumask);
2159 return cpu;
2160 }
2161
2162 /*
2163 * It'd be great if the workqueue API had a way to pass
2164 * in a mask and had some smarts for more clever placement.
2165 * For now we just round-robin here, switching for every
2166 * BLK_MQ_CPU_WORK_BATCH queued items.
2167 */
2168 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2169 {
2170 bool tried = false;
2171 int next_cpu = hctx->next_cpu;
2172
2173 if (hctx->queue->nr_hw_queues == 1)
2174 return WORK_CPU_UNBOUND;
2175
2176 if (--hctx->next_cpu_batch <= 0) {
2177 select_cpu:
2178 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2179 cpu_online_mask);
2180 if (next_cpu >= nr_cpu_ids)
2181 next_cpu = blk_mq_first_mapped_cpu(hctx);
2182 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2183 }
2184
2185 /*
2186 * Do unbound schedule if we can't find a online CPU for this hctx,
2187 * and it should only happen in the path of handling CPU DEAD.
2188 */
2189 if (!cpu_online(next_cpu)) {
2190 if (!tried) {
2191 tried = true;
2192 goto select_cpu;
2193 }
2194
2195 /*
2196 * Make sure to re-select CPU next time once after CPUs
2197 * in hctx->cpumask become online again.
2198 */
2199 hctx->next_cpu = next_cpu;
2200 hctx->next_cpu_batch = 1;
2201 return WORK_CPU_UNBOUND;
2202 }
2203
2204 hctx->next_cpu = next_cpu;
2205 return next_cpu;
2206 }
2207
2208 /**
2209 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2210 * @hctx: Pointer to the hardware queue to run.
2211 * @msecs: Milliseconds of delay to wait before running the queue.
2212 *
2213 * Run a hardware queue asynchronously with a delay of @msecs.
2214 */
2215 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2216 {
2217 if (unlikely(blk_mq_hctx_stopped(hctx)))
2218 return;
2219 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2220 msecs_to_jiffies(msecs));
2221 }
2222 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2223
2224 /**
2225 * blk_mq_run_hw_queue - Start to run a hardware queue.
2226 * @hctx: Pointer to the hardware queue to run.
2227 * @async: If we want to run the queue asynchronously.
2228 *
2229 * Check if the request queue is not in a quiesced state and if there are
2230 * pending requests to be sent. If this is true, run the queue to send requests
2231 * to hardware.
2232 */
2233 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2234 {
2235 bool need_run;
2236
2237 /*
2238 * We can't run the queue inline with interrupts disabled.
2239 */
2240 WARN_ON_ONCE(!async && in_interrupt());
2241
2242 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2243
2244 /*
2245 * When queue is quiesced, we may be switching io scheduler, or
2246 * updating nr_hw_queues, or other things, and we can't run queue
2247 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2248 *
2249 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2250 * quiesced.
2251 */
2252 __blk_mq_run_dispatch_ops(hctx->queue, false,
2253 need_run = !blk_queue_quiesced(hctx->queue) &&
2254 blk_mq_hctx_has_pending(hctx));
2255
2256 if (!need_run)
2257 return;
2258
2259 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2260 blk_mq_delay_run_hw_queue(hctx, 0);
2261 return;
2262 }
2263
2264 blk_mq_run_dispatch_ops(hctx->queue,
2265 blk_mq_sched_dispatch_requests(hctx));
2266 }
2267 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2268
2269 /*
2270 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2271 * scheduler.
2272 */
2273 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2274 {
2275 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2276 /*
2277 * If the IO scheduler does not respect hardware queues when
2278 * dispatching, we just don't bother with multiple HW queues and
2279 * dispatch from hctx for the current CPU since running multiple queues
2280 * just causes lock contention inside the scheduler and pointless cache
2281 * bouncing.
2282 */
2283 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2284
2285 if (!blk_mq_hctx_stopped(hctx))
2286 return hctx;
2287 return NULL;
2288 }
2289
2290 /**
2291 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2292 * @q: Pointer to the request queue to run.
2293 * @async: If we want to run the queue asynchronously.
2294 */
2295 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2296 {
2297 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2298 unsigned long i;
2299
2300 sq_hctx = NULL;
2301 if (blk_queue_sq_sched(q))
2302 sq_hctx = blk_mq_get_sq_hctx(q);
2303 queue_for_each_hw_ctx(q, hctx, i) {
2304 if (blk_mq_hctx_stopped(hctx))
2305 continue;
2306 /*
2307 * Dispatch from this hctx either if there's no hctx preferred
2308 * by IO scheduler or if it has requests that bypass the
2309 * scheduler.
2310 */
2311 if (!sq_hctx || sq_hctx == hctx ||
2312 !list_empty_careful(&hctx->dispatch))
2313 blk_mq_run_hw_queue(hctx, async);
2314 }
2315 }
2316 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2317
2318 /**
2319 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2320 * @q: Pointer to the request queue to run.
2321 * @msecs: Milliseconds of delay to wait before running the queues.
2322 */
2323 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2324 {
2325 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2326 unsigned long i;
2327
2328 sq_hctx = NULL;
2329 if (blk_queue_sq_sched(q))
2330 sq_hctx = blk_mq_get_sq_hctx(q);
2331 queue_for_each_hw_ctx(q, hctx, i) {
2332 if (blk_mq_hctx_stopped(hctx))
2333 continue;
2334 /*
2335 * If there is already a run_work pending, leave the
2336 * pending delay untouched. Otherwise, a hctx can stall
2337 * if another hctx is re-delaying the other's work
2338 * before the work executes.
2339 */
2340 if (delayed_work_pending(&hctx->run_work))
2341 continue;
2342 /*
2343 * Dispatch from this hctx either if there's no hctx preferred
2344 * by IO scheduler or if it has requests that bypass the
2345 * scheduler.
2346 */
2347 if (!sq_hctx || sq_hctx == hctx ||
2348 !list_empty_careful(&hctx->dispatch))
2349 blk_mq_delay_run_hw_queue(hctx, msecs);
2350 }
2351 }
2352 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2353
2354 /*
2355 * This function is often used for pausing .queue_rq() by driver when
2356 * there isn't enough resource or some conditions aren't satisfied, and
2357 * BLK_STS_RESOURCE is usually returned.
2358 *
2359 * We do not guarantee that dispatch can be drained or blocked
2360 * after blk_mq_stop_hw_queue() returns. Please use
2361 * blk_mq_quiesce_queue() for that requirement.
2362 */
2363 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2364 {
2365 cancel_delayed_work(&hctx->run_work);
2366
2367 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2368 }
2369 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2370
2371 /*
2372 * This function is often used for pausing .queue_rq() by driver when
2373 * there isn't enough resource or some conditions aren't satisfied, and
2374 * BLK_STS_RESOURCE is usually returned.
2375 *
2376 * We do not guarantee that dispatch can be drained or blocked
2377 * after blk_mq_stop_hw_queues() returns. Please use
2378 * blk_mq_quiesce_queue() for that requirement.
2379 */
2380 void blk_mq_stop_hw_queues(struct request_queue *q)
2381 {
2382 struct blk_mq_hw_ctx *hctx;
2383 unsigned long i;
2384
2385 queue_for_each_hw_ctx(q, hctx, i)
2386 blk_mq_stop_hw_queue(hctx);
2387 }
2388 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2389
2390 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2391 {
2392 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2393
2394 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2395 }
2396 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2397
2398 void blk_mq_start_hw_queues(struct request_queue *q)
2399 {
2400 struct blk_mq_hw_ctx *hctx;
2401 unsigned long i;
2402
2403 queue_for_each_hw_ctx(q, hctx, i)
2404 blk_mq_start_hw_queue(hctx);
2405 }
2406 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2407
2408 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2409 {
2410 if (!blk_mq_hctx_stopped(hctx))
2411 return;
2412
2413 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2414 blk_mq_run_hw_queue(hctx, async);
2415 }
2416 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2417
2418 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2419 {
2420 struct blk_mq_hw_ctx *hctx;
2421 unsigned long i;
2422
2423 queue_for_each_hw_ctx(q, hctx, i)
2424 blk_mq_start_stopped_hw_queue(hctx, async ||
2425 (hctx->flags & BLK_MQ_F_BLOCKING));
2426 }
2427 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2428
2429 static void blk_mq_run_work_fn(struct work_struct *work)
2430 {
2431 struct blk_mq_hw_ctx *hctx =
2432 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2433
2434 blk_mq_run_dispatch_ops(hctx->queue,
2435 blk_mq_sched_dispatch_requests(hctx));
2436 }
2437
2438 /**
2439 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2440 * @rq: Pointer to request to be inserted.
2441 * @flags: BLK_MQ_INSERT_*
2442 *
2443 * Should only be used carefully, when the caller knows we want to
2444 * bypass a potential IO scheduler on the target device.
2445 */
2446 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2447 {
2448 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2449
2450 spin_lock(&hctx->lock);
2451 if (flags & BLK_MQ_INSERT_AT_HEAD)
2452 list_add(&rq->queuelist, &hctx->dispatch);
2453 else
2454 list_add_tail(&rq->queuelist, &hctx->dispatch);
2455 spin_unlock(&hctx->lock);
2456 }
2457
2458 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2459 struct blk_mq_ctx *ctx, struct list_head *list,
2460 bool run_queue_async)
2461 {
2462 struct request *rq;
2463 enum hctx_type type = hctx->type;
2464
2465 /*
2466 * Try to issue requests directly if the hw queue isn't busy to save an
2467 * extra enqueue & dequeue to the sw queue.
2468 */
2469 if (!hctx->dispatch_busy && !run_queue_async) {
2470 blk_mq_run_dispatch_ops(hctx->queue,
2471 blk_mq_try_issue_list_directly(hctx, list));
2472 if (list_empty(list))
2473 goto out;
2474 }
2475
2476 /*
2477 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2478 * offline now
2479 */
2480 list_for_each_entry(rq, list, queuelist) {
2481 BUG_ON(rq->mq_ctx != ctx);
2482 trace_block_rq_insert(rq);
2483 if (rq->cmd_flags & REQ_NOWAIT)
2484 run_queue_async = true;
2485 }
2486
2487 spin_lock(&ctx->lock);
2488 list_splice_tail_init(list, &ctx->rq_lists[type]);
2489 blk_mq_hctx_mark_pending(hctx, ctx);
2490 spin_unlock(&ctx->lock);
2491 out:
2492 blk_mq_run_hw_queue(hctx, run_queue_async);
2493 }
2494
2495 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2496 {
2497 struct request_queue *q = rq->q;
2498 struct blk_mq_ctx *ctx = rq->mq_ctx;
2499 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2500
2501 if (blk_rq_is_passthrough(rq)) {
2502 /*
2503 * Passthrough request have to be added to hctx->dispatch
2504 * directly. The device may be in a situation where it can't
2505 * handle FS request, and always returns BLK_STS_RESOURCE for
2506 * them, which gets them added to hctx->dispatch.
2507 *
2508 * If a passthrough request is required to unblock the queues,
2509 * and it is added to the scheduler queue, there is no chance to
2510 * dispatch it given we prioritize requests in hctx->dispatch.
2511 */
2512 blk_mq_request_bypass_insert(rq, flags);
2513 } else if (req_op(rq) == REQ_OP_FLUSH) {
2514 /*
2515 * Firstly normal IO request is inserted to scheduler queue or
2516 * sw queue, meantime we add flush request to dispatch queue(
2517 * hctx->dispatch) directly and there is at most one in-flight
2518 * flush request for each hw queue, so it doesn't matter to add
2519 * flush request to tail or front of the dispatch queue.
2520 *
2521 * Secondly in case of NCQ, flush request belongs to non-NCQ
2522 * command, and queueing it will fail when there is any
2523 * in-flight normal IO request(NCQ command). When adding flush
2524 * rq to the front of hctx->dispatch, it is easier to introduce
2525 * extra time to flush rq's latency because of S_SCHED_RESTART
2526 * compared with adding to the tail of dispatch queue, then
2527 * chance of flush merge is increased, and less flush requests
2528 * will be issued to controller. It is observed that ~10% time
2529 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2530 * drive when adding flush rq to the front of hctx->dispatch.
2531 *
2532 * Simply queue flush rq to the front of hctx->dispatch so that
2533 * intensive flush workloads can benefit in case of NCQ HW.
2534 */
2535 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2536 } else if (q->elevator) {
2537 LIST_HEAD(list);
2538
2539 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2540
2541 list_add(&rq->queuelist, &list);
2542 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2543 } else {
2544 trace_block_rq_insert(rq);
2545
2546 spin_lock(&ctx->lock);
2547 if (flags & BLK_MQ_INSERT_AT_HEAD)
2548 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2549 else
2550 list_add_tail(&rq->queuelist,
2551 &ctx->rq_lists[hctx->type]);
2552 blk_mq_hctx_mark_pending(hctx, ctx);
2553 spin_unlock(&ctx->lock);
2554 }
2555 }
2556
2557 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2558 unsigned int nr_segs)
2559 {
2560 int err;
2561
2562 if (bio->bi_opf & REQ_RAHEAD)
2563 rq->cmd_flags |= REQ_FAILFAST_MASK;
2564
2565 rq->__sector = bio->bi_iter.bi_sector;
2566 blk_rq_bio_prep(rq, bio, nr_segs);
2567
2568 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2569 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2570 WARN_ON_ONCE(err);
2571
2572 blk_account_io_start(rq);
2573 }
2574
2575 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2576 struct request *rq, bool last)
2577 {
2578 struct request_queue *q = rq->q;
2579 struct blk_mq_queue_data bd = {
2580 .rq = rq,
2581 .last = last,
2582 };
2583 blk_status_t ret;
2584
2585 /*
2586 * For OK queue, we are done. For error, caller may kill it.
2587 * Any other error (busy), just add it to our list as we
2588 * previously would have done.
2589 */
2590 ret = q->mq_ops->queue_rq(hctx, &bd);
2591 switch (ret) {
2592 case BLK_STS_OK:
2593 blk_mq_update_dispatch_busy(hctx, false);
2594 break;
2595 case BLK_STS_RESOURCE:
2596 case BLK_STS_DEV_RESOURCE:
2597 blk_mq_update_dispatch_busy(hctx, true);
2598 __blk_mq_requeue_request(rq);
2599 break;
2600 default:
2601 blk_mq_update_dispatch_busy(hctx, false);
2602 break;
2603 }
2604
2605 return ret;
2606 }
2607
2608 static bool blk_mq_get_budget_and_tag(struct request *rq)
2609 {
2610 int budget_token;
2611
2612 budget_token = blk_mq_get_dispatch_budget(rq->q);
2613 if (budget_token < 0)
2614 return false;
2615 blk_mq_set_rq_budget_token(rq, budget_token);
2616 if (!blk_mq_get_driver_tag(rq)) {
2617 blk_mq_put_dispatch_budget(rq->q, budget_token);
2618 return false;
2619 }
2620 return true;
2621 }
2622
2623 /**
2624 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2625 * @hctx: Pointer of the associated hardware queue.
2626 * @rq: Pointer to request to be sent.
2627 *
2628 * If the device has enough resources to accept a new request now, send the
2629 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2630 * we can try send it another time in the future. Requests inserted at this
2631 * queue have higher priority.
2632 */
2633 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2634 struct request *rq)
2635 {
2636 blk_status_t ret;
2637
2638 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2639 blk_mq_insert_request(rq, 0);
2640 return;
2641 }
2642
2643 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2644 blk_mq_insert_request(rq, 0);
2645 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2646 return;
2647 }
2648
2649 ret = __blk_mq_issue_directly(hctx, rq, true);
2650 switch (ret) {
2651 case BLK_STS_OK:
2652 break;
2653 case BLK_STS_RESOURCE:
2654 case BLK_STS_DEV_RESOURCE:
2655 blk_mq_request_bypass_insert(rq, 0);
2656 blk_mq_run_hw_queue(hctx, false);
2657 break;
2658 default:
2659 blk_mq_end_request(rq, ret);
2660 break;
2661 }
2662 }
2663
2664 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2665 {
2666 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2667
2668 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2669 blk_mq_insert_request(rq, 0);
2670 return BLK_STS_OK;
2671 }
2672
2673 if (!blk_mq_get_budget_and_tag(rq))
2674 return BLK_STS_RESOURCE;
2675 return __blk_mq_issue_directly(hctx, rq, last);
2676 }
2677
2678 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2679 {
2680 struct blk_mq_hw_ctx *hctx = NULL;
2681 struct request *rq;
2682 int queued = 0;
2683 blk_status_t ret = BLK_STS_OK;
2684
2685 while ((rq = rq_list_pop(&plug->mq_list))) {
2686 bool last = rq_list_empty(plug->mq_list);
2687
2688 if (hctx != rq->mq_hctx) {
2689 if (hctx) {
2690 blk_mq_commit_rqs(hctx, queued, false);
2691 queued = 0;
2692 }
2693 hctx = rq->mq_hctx;
2694 }
2695
2696 ret = blk_mq_request_issue_directly(rq, last);
2697 switch (ret) {
2698 case BLK_STS_OK:
2699 queued++;
2700 break;
2701 case BLK_STS_RESOURCE:
2702 case BLK_STS_DEV_RESOURCE:
2703 blk_mq_request_bypass_insert(rq, 0);
2704 blk_mq_run_hw_queue(hctx, false);
2705 goto out;
2706 default:
2707 blk_mq_end_request(rq, ret);
2708 break;
2709 }
2710 }
2711
2712 out:
2713 if (ret != BLK_STS_OK)
2714 blk_mq_commit_rqs(hctx, queued, false);
2715 }
2716
2717 static void __blk_mq_flush_plug_list(struct request_queue *q,
2718 struct blk_plug *plug)
2719 {
2720 if (blk_queue_quiesced(q))
2721 return;
2722 q->mq_ops->queue_rqs(&plug->mq_list);
2723 }
2724
2725 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2726 {
2727 struct blk_mq_hw_ctx *this_hctx = NULL;
2728 struct blk_mq_ctx *this_ctx = NULL;
2729 struct request *requeue_list = NULL;
2730 struct request **requeue_lastp = &requeue_list;
2731 unsigned int depth = 0;
2732 bool is_passthrough = false;
2733 LIST_HEAD(list);
2734
2735 do {
2736 struct request *rq = rq_list_pop(&plug->mq_list);
2737
2738 if (!this_hctx) {
2739 this_hctx = rq->mq_hctx;
2740 this_ctx = rq->mq_ctx;
2741 is_passthrough = blk_rq_is_passthrough(rq);
2742 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2743 is_passthrough != blk_rq_is_passthrough(rq)) {
2744 rq_list_add_tail(&requeue_lastp, rq);
2745 continue;
2746 }
2747 list_add(&rq->queuelist, &list);
2748 depth++;
2749 } while (!rq_list_empty(plug->mq_list));
2750
2751 plug->mq_list = requeue_list;
2752 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2753
2754 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2755 /* passthrough requests should never be issued to the I/O scheduler */
2756 if (is_passthrough) {
2757 spin_lock(&this_hctx->lock);
2758 list_splice_tail_init(&list, &this_hctx->dispatch);
2759 spin_unlock(&this_hctx->lock);
2760 blk_mq_run_hw_queue(this_hctx, from_sched);
2761 } else if (this_hctx->queue->elevator) {
2762 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2763 &list, 0);
2764 blk_mq_run_hw_queue(this_hctx, from_sched);
2765 } else {
2766 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2767 }
2768 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2769 }
2770
2771 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2772 {
2773 struct request *rq;
2774
2775 /*
2776 * We may have been called recursively midway through handling
2777 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2778 * To avoid mq_list changing under our feet, clear rq_count early and
2779 * bail out specifically if rq_count is 0 rather than checking
2780 * whether the mq_list is empty.
2781 */
2782 if (plug->rq_count == 0)
2783 return;
2784 plug->rq_count = 0;
2785
2786 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2787 struct request_queue *q;
2788
2789 rq = rq_list_peek(&plug->mq_list);
2790 q = rq->q;
2791
2792 /*
2793 * Peek first request and see if we have a ->queue_rqs() hook.
2794 * If we do, we can dispatch the whole plug list in one go. We
2795 * already know at this point that all requests belong to the
2796 * same queue, caller must ensure that's the case.
2797 *
2798 * Since we pass off the full list to the driver at this point,
2799 * we do not increment the active request count for the queue.
2800 * Bypass shared tags for now because of that.
2801 */
2802 if (q->mq_ops->queue_rqs &&
2803 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2804 blk_mq_run_dispatch_ops(q,
2805 __blk_mq_flush_plug_list(q, plug));
2806 if (rq_list_empty(plug->mq_list))
2807 return;
2808 }
2809
2810 blk_mq_run_dispatch_ops(q,
2811 blk_mq_plug_issue_direct(plug));
2812 if (rq_list_empty(plug->mq_list))
2813 return;
2814 }
2815
2816 do {
2817 blk_mq_dispatch_plug_list(plug, from_schedule);
2818 } while (!rq_list_empty(plug->mq_list));
2819 }
2820
2821 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2822 struct list_head *list)
2823 {
2824 int queued = 0;
2825 blk_status_t ret = BLK_STS_OK;
2826
2827 while (!list_empty(list)) {
2828 struct request *rq = list_first_entry(list, struct request,
2829 queuelist);
2830
2831 list_del_init(&rq->queuelist);
2832 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2833 switch (ret) {
2834 case BLK_STS_OK:
2835 queued++;
2836 break;
2837 case BLK_STS_RESOURCE:
2838 case BLK_STS_DEV_RESOURCE:
2839 blk_mq_request_bypass_insert(rq, 0);
2840 if (list_empty(list))
2841 blk_mq_run_hw_queue(hctx, false);
2842 goto out;
2843 default:
2844 blk_mq_end_request(rq, ret);
2845 break;
2846 }
2847 }
2848
2849 out:
2850 if (ret != BLK_STS_OK)
2851 blk_mq_commit_rqs(hctx, queued, false);
2852 }
2853
2854 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2855 struct bio *bio, unsigned int nr_segs)
2856 {
2857 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2858 if (blk_attempt_plug_merge(q, bio, nr_segs))
2859 return true;
2860 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2861 return true;
2862 }
2863 return false;
2864 }
2865
2866 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2867 struct blk_plug *plug,
2868 struct bio *bio,
2869 unsigned int nsegs)
2870 {
2871 struct blk_mq_alloc_data data = {
2872 .q = q,
2873 .nr_tags = 1,
2874 .cmd_flags = bio->bi_opf,
2875 };
2876 struct request *rq;
2877
2878 if (unlikely(bio_queue_enter(bio)))
2879 return NULL;
2880
2881 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2882 goto queue_exit;
2883
2884 rq_qos_throttle(q, bio);
2885
2886 if (plug) {
2887 data.nr_tags = plug->nr_ios;
2888 plug->nr_ios = 1;
2889 data.cached_rq = &plug->cached_rq;
2890 }
2891
2892 rq = __blk_mq_alloc_requests(&data);
2893 if (rq)
2894 return rq;
2895 rq_qos_cleanup(q, bio);
2896 if (bio->bi_opf & REQ_NOWAIT)
2897 bio_wouldblock_error(bio);
2898 queue_exit:
2899 blk_queue_exit(q);
2900 return NULL;
2901 }
2902
2903 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2904 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2905 {
2906 struct request *rq;
2907 enum hctx_type type, hctx_type;
2908
2909 if (!plug)
2910 return NULL;
2911 rq = rq_list_peek(&plug->cached_rq);
2912 if (!rq || rq->q != q)
2913 return NULL;
2914
2915 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2916 *bio = NULL;
2917 return NULL;
2918 }
2919
2920 type = blk_mq_get_hctx_type((*bio)->bi_opf);
2921 hctx_type = rq->mq_hctx->type;
2922 if (type != hctx_type &&
2923 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2924 return NULL;
2925 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2926 return NULL;
2927
2928 /*
2929 * If any qos ->throttle() end up blocking, we will have flushed the
2930 * plug and hence killed the cached_rq list as well. Pop this entry
2931 * before we throttle.
2932 */
2933 plug->cached_rq = rq_list_next(rq);
2934 rq_qos_throttle(q, *bio);
2935
2936 blk_mq_rq_time_init(rq, 0);
2937 rq->cmd_flags = (*bio)->bi_opf;
2938 INIT_LIST_HEAD(&rq->queuelist);
2939 return rq;
2940 }
2941
2942 static void bio_set_ioprio(struct bio *bio)
2943 {
2944 /* Nobody set ioprio so far? Initialize it based on task's nice value */
2945 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2946 bio->bi_ioprio = get_current_ioprio();
2947 blkcg_set_ioprio(bio);
2948 }
2949
2950 /**
2951 * blk_mq_submit_bio - Create and send a request to block device.
2952 * @bio: Bio pointer.
2953 *
2954 * Builds up a request structure from @q and @bio and send to the device. The
2955 * request may not be queued directly to hardware if:
2956 * * This request can be merged with another one
2957 * * We want to place request at plug queue for possible future merging
2958 * * There is an IO scheduler active at this queue
2959 *
2960 * It will not queue the request if there is an error with the bio, or at the
2961 * request creation.
2962 */
2963 void blk_mq_submit_bio(struct bio *bio)
2964 {
2965 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2966 struct blk_plug *plug = blk_mq_plug(bio);
2967 const int is_sync = op_is_sync(bio->bi_opf);
2968 struct blk_mq_hw_ctx *hctx;
2969 struct request *rq;
2970 unsigned int nr_segs = 1;
2971 blk_status_t ret;
2972
2973 bio = blk_queue_bounce(bio, q);
2974 if (bio_may_exceed_limits(bio, &q->limits)) {
2975 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2976 if (!bio)
2977 return;
2978 }
2979
2980 if (!bio_integrity_prep(bio))
2981 return;
2982
2983 bio_set_ioprio(bio);
2984
2985 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2986 if (!rq) {
2987 if (!bio)
2988 return;
2989 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2990 if (unlikely(!rq))
2991 return;
2992 }
2993
2994 trace_block_getrq(bio);
2995
2996 rq_qos_track(q, rq, bio);
2997
2998 blk_mq_bio_to_request(rq, bio, nr_segs);
2999
3000 ret = blk_crypto_rq_get_keyslot(rq);
3001 if (ret != BLK_STS_OK) {
3002 bio->bi_status = ret;
3003 bio_endio(bio);
3004 blk_mq_free_request(rq);
3005 return;
3006 }
3007
3008 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3009 return;
3010
3011 if (plug) {
3012 blk_add_rq_to_plug(plug, rq);
3013 return;
3014 }
3015
3016 hctx = rq->mq_hctx;
3017 if ((rq->rq_flags & RQF_USE_SCHED) ||
3018 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3019 blk_mq_insert_request(rq, 0);
3020 blk_mq_run_hw_queue(hctx, true);
3021 } else {
3022 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3023 }
3024 }
3025
3026 #ifdef CONFIG_BLK_MQ_STACKING
3027 /**
3028 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3029 * @rq: the request being queued
3030 */
3031 blk_status_t blk_insert_cloned_request(struct request *rq)
3032 {
3033 struct request_queue *q = rq->q;
3034 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3035 unsigned int max_segments = blk_rq_get_max_segments(rq);
3036 blk_status_t ret;
3037
3038 if (blk_rq_sectors(rq) > max_sectors) {
3039 /*
3040 * SCSI device does not have a good way to return if
3041 * Write Same/Zero is actually supported. If a device rejects
3042 * a non-read/write command (discard, write same,etc.) the
3043 * low-level device driver will set the relevant queue limit to
3044 * 0 to prevent blk-lib from issuing more of the offending
3045 * operations. Commands queued prior to the queue limit being
3046 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3047 * errors being propagated to upper layers.
3048 */
3049 if (max_sectors == 0)
3050 return BLK_STS_NOTSUPP;
3051
3052 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3053 __func__, blk_rq_sectors(rq), max_sectors);
3054 return BLK_STS_IOERR;
3055 }
3056
3057 /*
3058 * The queue settings related to segment counting may differ from the
3059 * original queue.
3060 */
3061 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3062 if (rq->nr_phys_segments > max_segments) {
3063 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3064 __func__, rq->nr_phys_segments, max_segments);
3065 return BLK_STS_IOERR;
3066 }
3067
3068 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3069 return BLK_STS_IOERR;
3070
3071 ret = blk_crypto_rq_get_keyslot(rq);
3072 if (ret != BLK_STS_OK)
3073 return ret;
3074
3075 blk_account_io_start(rq);
3076
3077 /*
3078 * Since we have a scheduler attached on the top device,
3079 * bypass a potential scheduler on the bottom device for
3080 * insert.
3081 */
3082 blk_mq_run_dispatch_ops(q,
3083 ret = blk_mq_request_issue_directly(rq, true));
3084 if (ret)
3085 blk_account_io_done(rq, ktime_get_ns());
3086 return ret;
3087 }
3088 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3089
3090 /**
3091 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3092 * @rq: the clone request to be cleaned up
3093 *
3094 * Description:
3095 * Free all bios in @rq for a cloned request.
3096 */
3097 void blk_rq_unprep_clone(struct request *rq)
3098 {
3099 struct bio *bio;
3100
3101 while ((bio = rq->bio) != NULL) {
3102 rq->bio = bio->bi_next;
3103
3104 bio_put(bio);
3105 }
3106 }
3107 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3108
3109 /**
3110 * blk_rq_prep_clone - Helper function to setup clone request
3111 * @rq: the request to be setup
3112 * @rq_src: original request to be cloned
3113 * @bs: bio_set that bios for clone are allocated from
3114 * @gfp_mask: memory allocation mask for bio
3115 * @bio_ctr: setup function to be called for each clone bio.
3116 * Returns %0 for success, non %0 for failure.
3117 * @data: private data to be passed to @bio_ctr
3118 *
3119 * Description:
3120 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3121 * Also, pages which the original bios are pointing to are not copied
3122 * and the cloned bios just point same pages.
3123 * So cloned bios must be completed before original bios, which means
3124 * the caller must complete @rq before @rq_src.
3125 */
3126 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3127 struct bio_set *bs, gfp_t gfp_mask,
3128 int (*bio_ctr)(struct bio *, struct bio *, void *),
3129 void *data)
3130 {
3131 struct bio *bio, *bio_src;
3132
3133 if (!bs)
3134 bs = &fs_bio_set;
3135
3136 __rq_for_each_bio(bio_src, rq_src) {
3137 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3138 bs);
3139 if (!bio)
3140 goto free_and_out;
3141
3142 if (bio_ctr && bio_ctr(bio, bio_src, data))
3143 goto free_and_out;
3144
3145 if (rq->bio) {
3146 rq->biotail->bi_next = bio;
3147 rq->biotail = bio;
3148 } else {
3149 rq->bio = rq->biotail = bio;
3150 }
3151 bio = NULL;
3152 }
3153
3154 /* Copy attributes of the original request to the clone request. */
3155 rq->__sector = blk_rq_pos(rq_src);
3156 rq->__data_len = blk_rq_bytes(rq_src);
3157 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3158 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3159 rq->special_vec = rq_src->special_vec;
3160 }
3161 rq->nr_phys_segments = rq_src->nr_phys_segments;
3162 rq->ioprio = rq_src->ioprio;
3163
3164 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3165 goto free_and_out;
3166
3167 return 0;
3168
3169 free_and_out:
3170 if (bio)
3171 bio_put(bio);
3172 blk_rq_unprep_clone(rq);
3173
3174 return -ENOMEM;
3175 }
3176 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3177 #endif /* CONFIG_BLK_MQ_STACKING */
3178
3179 /*
3180 * Steal bios from a request and add them to a bio list.
3181 * The request must not have been partially completed before.
3182 */
3183 void blk_steal_bios(struct bio_list *list, struct request *rq)
3184 {
3185 if (rq->bio) {
3186 if (list->tail)
3187 list->tail->bi_next = rq->bio;
3188 else
3189 list->head = rq->bio;
3190 list->tail = rq->biotail;
3191
3192 rq->bio = NULL;
3193 rq->biotail = NULL;
3194 }
3195
3196 rq->__data_len = 0;
3197 }
3198 EXPORT_SYMBOL_GPL(blk_steal_bios);
3199
3200 static size_t order_to_size(unsigned int order)
3201 {
3202 return (size_t)PAGE_SIZE << order;
3203 }
3204
3205 /* called before freeing request pool in @tags */
3206 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3207 struct blk_mq_tags *tags)
3208 {
3209 struct page *page;
3210 unsigned long flags;
3211
3212 /*
3213 * There is no need to clear mapping if driver tags is not initialized
3214 * or the mapping belongs to the driver tags.
3215 */
3216 if (!drv_tags || drv_tags == tags)
3217 return;
3218
3219 list_for_each_entry(page, &tags->page_list, lru) {
3220 unsigned long start = (unsigned long)page_address(page);
3221 unsigned long end = start + order_to_size(page->private);
3222 int i;
3223
3224 for (i = 0; i < drv_tags->nr_tags; i++) {
3225 struct request *rq = drv_tags->rqs[i];
3226 unsigned long rq_addr = (unsigned long)rq;
3227
3228 if (rq_addr >= start && rq_addr < end) {
3229 WARN_ON_ONCE(req_ref_read(rq) != 0);
3230 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3231 }
3232 }
3233 }
3234
3235 /*
3236 * Wait until all pending iteration is done.
3237 *
3238 * Request reference is cleared and it is guaranteed to be observed
3239 * after the ->lock is released.
3240 */
3241 spin_lock_irqsave(&drv_tags->lock, flags);
3242 spin_unlock_irqrestore(&drv_tags->lock, flags);
3243 }
3244
3245 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3246 unsigned int hctx_idx)
3247 {
3248 struct blk_mq_tags *drv_tags;
3249 struct page *page;
3250
3251 if (list_empty(&tags->page_list))
3252 return;
3253
3254 if (blk_mq_is_shared_tags(set->flags))
3255 drv_tags = set->shared_tags;
3256 else
3257 drv_tags = set->tags[hctx_idx];
3258
3259 if (tags->static_rqs && set->ops->exit_request) {
3260 int i;
3261
3262 for (i = 0; i < tags->nr_tags; i++) {
3263 struct request *rq = tags->static_rqs[i];
3264
3265 if (!rq)
3266 continue;
3267 set->ops->exit_request(set, rq, hctx_idx);
3268 tags->static_rqs[i] = NULL;
3269 }
3270 }
3271
3272 blk_mq_clear_rq_mapping(drv_tags, tags);
3273
3274 while (!list_empty(&tags->page_list)) {
3275 page = list_first_entry(&tags->page_list, struct page, lru);
3276 list_del_init(&page->lru);
3277 /*
3278 * Remove kmemleak object previously allocated in
3279 * blk_mq_alloc_rqs().
3280 */
3281 kmemleak_free(page_address(page));
3282 __free_pages(page, page->private);
3283 }
3284 }
3285
3286 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3287 {
3288 kfree(tags->rqs);
3289 tags->rqs = NULL;
3290 kfree(tags->static_rqs);
3291 tags->static_rqs = NULL;
3292
3293 blk_mq_free_tags(tags);
3294 }
3295
3296 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3297 unsigned int hctx_idx)
3298 {
3299 int i;
3300
3301 for (i = 0; i < set->nr_maps; i++) {
3302 unsigned int start = set->map[i].queue_offset;
3303 unsigned int end = start + set->map[i].nr_queues;
3304
3305 if (hctx_idx >= start && hctx_idx < end)
3306 break;
3307 }
3308
3309 if (i >= set->nr_maps)
3310 i = HCTX_TYPE_DEFAULT;
3311
3312 return i;
3313 }
3314
3315 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3316 unsigned int hctx_idx)
3317 {
3318 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3319
3320 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3321 }
3322
3323 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3324 unsigned int hctx_idx,
3325 unsigned int nr_tags,
3326 unsigned int reserved_tags)
3327 {
3328 int node = blk_mq_get_hctx_node(set, hctx_idx);
3329 struct blk_mq_tags *tags;
3330
3331 if (node == NUMA_NO_NODE)
3332 node = set->numa_node;
3333
3334 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3335 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3336 if (!tags)
3337 return NULL;
3338
3339 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3340 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3341 node);
3342 if (!tags->rqs)
3343 goto err_free_tags;
3344
3345 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3346 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3347 node);
3348 if (!tags->static_rqs)
3349 goto err_free_rqs;
3350
3351 return tags;
3352
3353 err_free_rqs:
3354 kfree(tags->rqs);
3355 err_free_tags:
3356 blk_mq_free_tags(tags);
3357 return NULL;
3358 }
3359
3360 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3361 unsigned int hctx_idx, int node)
3362 {
3363 int ret;
3364
3365 if (set->ops->init_request) {
3366 ret = set->ops->init_request(set, rq, hctx_idx, node);
3367 if (ret)
3368 return ret;
3369 }
3370
3371 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3372 return 0;
3373 }
3374
3375 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3376 struct blk_mq_tags *tags,
3377 unsigned int hctx_idx, unsigned int depth)
3378 {
3379 unsigned int i, j, entries_per_page, max_order = 4;
3380 int node = blk_mq_get_hctx_node(set, hctx_idx);
3381 size_t rq_size, left;
3382
3383 if (node == NUMA_NO_NODE)
3384 node = set->numa_node;
3385
3386 INIT_LIST_HEAD(&tags->page_list);
3387
3388 /*
3389 * rq_size is the size of the request plus driver payload, rounded
3390 * to the cacheline size
3391 */
3392 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3393 cache_line_size());
3394 left = rq_size * depth;
3395
3396 for (i = 0; i < depth; ) {
3397 int this_order = max_order;
3398 struct page *page;
3399 int to_do;
3400 void *p;
3401
3402 while (this_order && left < order_to_size(this_order - 1))
3403 this_order--;
3404
3405 do {
3406 page = alloc_pages_node(node,
3407 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3408 this_order);
3409 if (page)
3410 break;
3411 if (!this_order--)
3412 break;
3413 if (order_to_size(this_order) < rq_size)
3414 break;
3415 } while (1);
3416
3417 if (!page)
3418 goto fail;
3419
3420 page->private = this_order;
3421 list_add_tail(&page->lru, &tags->page_list);
3422
3423 p = page_address(page);
3424 /*
3425 * Allow kmemleak to scan these pages as they contain pointers
3426 * to additional allocations like via ops->init_request().
3427 */
3428 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3429 entries_per_page = order_to_size(this_order) / rq_size;
3430 to_do = min(entries_per_page, depth - i);
3431 left -= to_do * rq_size;
3432 for (j = 0; j < to_do; j++) {
3433 struct request *rq = p;
3434
3435 tags->static_rqs[i] = rq;
3436 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3437 tags->static_rqs[i] = NULL;
3438 goto fail;
3439 }
3440
3441 p += rq_size;
3442 i++;
3443 }
3444 }
3445 return 0;
3446
3447 fail:
3448 blk_mq_free_rqs(set, tags, hctx_idx);
3449 return -ENOMEM;
3450 }
3451
3452 struct rq_iter_data {
3453 struct blk_mq_hw_ctx *hctx;
3454 bool has_rq;
3455 };
3456
3457 static bool blk_mq_has_request(struct request *rq, void *data)
3458 {
3459 struct rq_iter_data *iter_data = data;
3460
3461 if (rq->mq_hctx != iter_data->hctx)
3462 return true;
3463 iter_data->has_rq = true;
3464 return false;
3465 }
3466
3467 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3468 {
3469 struct blk_mq_tags *tags = hctx->sched_tags ?
3470 hctx->sched_tags : hctx->tags;
3471 struct rq_iter_data data = {
3472 .hctx = hctx,
3473 };
3474
3475 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3476 return data.has_rq;
3477 }
3478
3479 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3480 struct blk_mq_hw_ctx *hctx)
3481 {
3482 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3483 return false;
3484 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3485 return false;
3486 return true;
3487 }
3488
3489 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3490 {
3491 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3492 struct blk_mq_hw_ctx, cpuhp_online);
3493
3494 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3495 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3496 return 0;
3497
3498 /*
3499 * Prevent new request from being allocated on the current hctx.
3500 *
3501 * The smp_mb__after_atomic() Pairs with the implied barrier in
3502 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3503 * seen once we return from the tag allocator.
3504 */
3505 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3506 smp_mb__after_atomic();
3507
3508 /*
3509 * Try to grab a reference to the queue and wait for any outstanding
3510 * requests. If we could not grab a reference the queue has been
3511 * frozen and there are no requests.
3512 */
3513 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3514 while (blk_mq_hctx_has_requests(hctx))
3515 msleep(5);
3516 percpu_ref_put(&hctx->queue->q_usage_counter);
3517 }
3518
3519 return 0;
3520 }
3521
3522 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3523 {
3524 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3525 struct blk_mq_hw_ctx, cpuhp_online);
3526
3527 if (cpumask_test_cpu(cpu, hctx->cpumask))
3528 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3529 return 0;
3530 }
3531
3532 /*
3533 * 'cpu' is going away. splice any existing rq_list entries from this
3534 * software queue to the hw queue dispatch list, and ensure that it
3535 * gets run.
3536 */
3537 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3538 {
3539 struct blk_mq_hw_ctx *hctx;
3540 struct blk_mq_ctx *ctx;
3541 LIST_HEAD(tmp);
3542 enum hctx_type type;
3543
3544 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3545 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3546 return 0;
3547
3548 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3549 type = hctx->type;
3550
3551 spin_lock(&ctx->lock);
3552 if (!list_empty(&ctx->rq_lists[type])) {
3553 list_splice_init(&ctx->rq_lists[type], &tmp);
3554 blk_mq_hctx_clear_pending(hctx, ctx);
3555 }
3556 spin_unlock(&ctx->lock);
3557
3558 if (list_empty(&tmp))
3559 return 0;
3560
3561 spin_lock(&hctx->lock);
3562 list_splice_tail_init(&tmp, &hctx->dispatch);
3563 spin_unlock(&hctx->lock);
3564
3565 blk_mq_run_hw_queue(hctx, true);
3566 return 0;
3567 }
3568
3569 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3570 {
3571 if (!(hctx->flags & BLK_MQ_F_STACKING))
3572 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3573 &hctx->cpuhp_online);
3574 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3575 &hctx->cpuhp_dead);
3576 }
3577
3578 /*
3579 * Before freeing hw queue, clearing the flush request reference in
3580 * tags->rqs[] for avoiding potential UAF.
3581 */
3582 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3583 unsigned int queue_depth, struct request *flush_rq)
3584 {
3585 int i;
3586 unsigned long flags;
3587
3588 /* The hw queue may not be mapped yet */
3589 if (!tags)
3590 return;
3591
3592 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3593
3594 for (i = 0; i < queue_depth; i++)
3595 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3596
3597 /*
3598 * Wait until all pending iteration is done.
3599 *
3600 * Request reference is cleared and it is guaranteed to be observed
3601 * after the ->lock is released.
3602 */
3603 spin_lock_irqsave(&tags->lock, flags);
3604 spin_unlock_irqrestore(&tags->lock, flags);
3605 }
3606
3607 /* hctx->ctxs will be freed in queue's release handler */
3608 static void blk_mq_exit_hctx(struct request_queue *q,
3609 struct blk_mq_tag_set *set,
3610 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3611 {
3612 struct request *flush_rq = hctx->fq->flush_rq;
3613
3614 if (blk_mq_hw_queue_mapped(hctx))
3615 blk_mq_tag_idle(hctx);
3616
3617 if (blk_queue_init_done(q))
3618 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3619 set->queue_depth, flush_rq);
3620 if (set->ops->exit_request)
3621 set->ops->exit_request(set, flush_rq, hctx_idx);
3622
3623 if (set->ops->exit_hctx)
3624 set->ops->exit_hctx(hctx, hctx_idx);
3625
3626 blk_mq_remove_cpuhp(hctx);
3627
3628 xa_erase(&q->hctx_table, hctx_idx);
3629
3630 spin_lock(&q->unused_hctx_lock);
3631 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3632 spin_unlock(&q->unused_hctx_lock);
3633 }
3634
3635 static void blk_mq_exit_hw_queues(struct request_queue *q,
3636 struct blk_mq_tag_set *set, int nr_queue)
3637 {
3638 struct blk_mq_hw_ctx *hctx;
3639 unsigned long i;
3640
3641 queue_for_each_hw_ctx(q, hctx, i) {
3642 if (i == nr_queue)
3643 break;
3644 blk_mq_exit_hctx(q, set, hctx, i);
3645 }
3646 }
3647
3648 static int blk_mq_init_hctx(struct request_queue *q,
3649 struct blk_mq_tag_set *set,
3650 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3651 {
3652 hctx->queue_num = hctx_idx;
3653
3654 if (!(hctx->flags & BLK_MQ_F_STACKING))
3655 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3656 &hctx->cpuhp_online);
3657 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3658
3659 hctx->tags = set->tags[hctx_idx];
3660
3661 if (set->ops->init_hctx &&
3662 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3663 goto unregister_cpu_notifier;
3664
3665 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3666 hctx->numa_node))
3667 goto exit_hctx;
3668
3669 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3670 goto exit_flush_rq;
3671
3672 return 0;
3673
3674 exit_flush_rq:
3675 if (set->ops->exit_request)
3676 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3677 exit_hctx:
3678 if (set->ops->exit_hctx)
3679 set->ops->exit_hctx(hctx, hctx_idx);
3680 unregister_cpu_notifier:
3681 blk_mq_remove_cpuhp(hctx);
3682 return -1;
3683 }
3684
3685 static struct blk_mq_hw_ctx *
3686 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3687 int node)
3688 {
3689 struct blk_mq_hw_ctx *hctx;
3690 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3691
3692 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3693 if (!hctx)
3694 goto fail_alloc_hctx;
3695
3696 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3697 goto free_hctx;
3698
3699 atomic_set(&hctx->nr_active, 0);
3700 if (node == NUMA_NO_NODE)
3701 node = set->numa_node;
3702 hctx->numa_node = node;
3703
3704 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3705 spin_lock_init(&hctx->lock);
3706 INIT_LIST_HEAD(&hctx->dispatch);
3707 hctx->queue = q;
3708 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3709
3710 INIT_LIST_HEAD(&hctx->hctx_list);
3711
3712 /*
3713 * Allocate space for all possible cpus to avoid allocation at
3714 * runtime
3715 */
3716 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3717 gfp, node);
3718 if (!hctx->ctxs)
3719 goto free_cpumask;
3720
3721 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3722 gfp, node, false, false))
3723 goto free_ctxs;
3724 hctx->nr_ctx = 0;
3725
3726 spin_lock_init(&hctx->dispatch_wait_lock);
3727 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3728 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3729
3730 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3731 if (!hctx->fq)
3732 goto free_bitmap;
3733
3734 blk_mq_hctx_kobj_init(hctx);
3735
3736 return hctx;
3737
3738 free_bitmap:
3739 sbitmap_free(&hctx->ctx_map);
3740 free_ctxs:
3741 kfree(hctx->ctxs);
3742 free_cpumask:
3743 free_cpumask_var(hctx->cpumask);
3744 free_hctx:
3745 kfree(hctx);
3746 fail_alloc_hctx:
3747 return NULL;
3748 }
3749
3750 static void blk_mq_init_cpu_queues(struct request_queue *q,
3751 unsigned int nr_hw_queues)
3752 {
3753 struct blk_mq_tag_set *set = q->tag_set;
3754 unsigned int i, j;
3755
3756 for_each_possible_cpu(i) {
3757 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3758 struct blk_mq_hw_ctx *hctx;
3759 int k;
3760
3761 __ctx->cpu = i;
3762 spin_lock_init(&__ctx->lock);
3763 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3764 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3765
3766 __ctx->queue = q;
3767
3768 /*
3769 * Set local node, IFF we have more than one hw queue. If
3770 * not, we remain on the home node of the device
3771 */
3772 for (j = 0; j < set->nr_maps; j++) {
3773 hctx = blk_mq_map_queue_type(q, j, i);
3774 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3775 hctx->numa_node = cpu_to_node(i);
3776 }
3777 }
3778 }
3779
3780 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3781 unsigned int hctx_idx,
3782 unsigned int depth)
3783 {
3784 struct blk_mq_tags *tags;
3785 int ret;
3786
3787 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3788 if (!tags)
3789 return NULL;
3790
3791 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3792 if (ret) {
3793 blk_mq_free_rq_map(tags);
3794 return NULL;
3795 }
3796
3797 return tags;
3798 }
3799
3800 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3801 int hctx_idx)
3802 {
3803 if (blk_mq_is_shared_tags(set->flags)) {
3804 set->tags[hctx_idx] = set->shared_tags;
3805
3806 return true;
3807 }
3808
3809 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3810 set->queue_depth);
3811
3812 return set->tags[hctx_idx];
3813 }
3814
3815 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3816 struct blk_mq_tags *tags,
3817 unsigned int hctx_idx)
3818 {
3819 if (tags) {
3820 blk_mq_free_rqs(set, tags, hctx_idx);
3821 blk_mq_free_rq_map(tags);
3822 }
3823 }
3824
3825 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3826 unsigned int hctx_idx)
3827 {
3828 if (!blk_mq_is_shared_tags(set->flags))
3829 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3830
3831 set->tags[hctx_idx] = NULL;
3832 }
3833
3834 static void blk_mq_map_swqueue(struct request_queue *q)
3835 {
3836 unsigned int j, hctx_idx;
3837 unsigned long i;
3838 struct blk_mq_hw_ctx *hctx;
3839 struct blk_mq_ctx *ctx;
3840 struct blk_mq_tag_set *set = q->tag_set;
3841
3842 queue_for_each_hw_ctx(q, hctx, i) {
3843 cpumask_clear(hctx->cpumask);
3844 hctx->nr_ctx = 0;
3845 hctx->dispatch_from = NULL;
3846 }
3847
3848 /*
3849 * Map software to hardware queues.
3850 *
3851 * If the cpu isn't present, the cpu is mapped to first hctx.
3852 */
3853 for_each_possible_cpu(i) {
3854
3855 ctx = per_cpu_ptr(q->queue_ctx, i);
3856 for (j = 0; j < set->nr_maps; j++) {
3857 if (!set->map[j].nr_queues) {
3858 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3859 HCTX_TYPE_DEFAULT, i);
3860 continue;
3861 }
3862 hctx_idx = set->map[j].mq_map[i];
3863 /* unmapped hw queue can be remapped after CPU topo changed */
3864 if (!set->tags[hctx_idx] &&
3865 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3866 /*
3867 * If tags initialization fail for some hctx,
3868 * that hctx won't be brought online. In this
3869 * case, remap the current ctx to hctx[0] which
3870 * is guaranteed to always have tags allocated
3871 */
3872 set->map[j].mq_map[i] = 0;
3873 }
3874
3875 hctx = blk_mq_map_queue_type(q, j, i);
3876 ctx->hctxs[j] = hctx;
3877 /*
3878 * If the CPU is already set in the mask, then we've
3879 * mapped this one already. This can happen if
3880 * devices share queues across queue maps.
3881 */
3882 if (cpumask_test_cpu(i, hctx->cpumask))
3883 continue;
3884
3885 cpumask_set_cpu(i, hctx->cpumask);
3886 hctx->type = j;
3887 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3888 hctx->ctxs[hctx->nr_ctx++] = ctx;
3889
3890 /*
3891 * If the nr_ctx type overflows, we have exceeded the
3892 * amount of sw queues we can support.
3893 */
3894 BUG_ON(!hctx->nr_ctx);
3895 }
3896
3897 for (; j < HCTX_MAX_TYPES; j++)
3898 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3899 HCTX_TYPE_DEFAULT, i);
3900 }
3901
3902 queue_for_each_hw_ctx(q, hctx, i) {
3903 /*
3904 * If no software queues are mapped to this hardware queue,
3905 * disable it and free the request entries.
3906 */
3907 if (!hctx->nr_ctx) {
3908 /* Never unmap queue 0. We need it as a
3909 * fallback in case of a new remap fails
3910 * allocation
3911 */
3912 if (i)
3913 __blk_mq_free_map_and_rqs(set, i);
3914
3915 hctx->tags = NULL;
3916 continue;
3917 }
3918
3919 hctx->tags = set->tags[i];
3920 WARN_ON(!hctx->tags);
3921
3922 /*
3923 * Set the map size to the number of mapped software queues.
3924 * This is more accurate and more efficient than looping
3925 * over all possibly mapped software queues.
3926 */
3927 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3928
3929 /*
3930 * Initialize batch roundrobin counts
3931 */
3932 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3933 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3934 }
3935 }
3936
3937 /*
3938 * Caller needs to ensure that we're either frozen/quiesced, or that
3939 * the queue isn't live yet.
3940 */
3941 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3942 {
3943 struct blk_mq_hw_ctx *hctx;
3944 unsigned long i;
3945
3946 queue_for_each_hw_ctx(q, hctx, i) {
3947 if (shared) {
3948 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3949 } else {
3950 blk_mq_tag_idle(hctx);
3951 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3952 }
3953 }
3954 }
3955
3956 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3957 bool shared)
3958 {
3959 struct request_queue *q;
3960
3961 lockdep_assert_held(&set->tag_list_lock);
3962
3963 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3964 blk_mq_freeze_queue(q);
3965 queue_set_hctx_shared(q, shared);
3966 blk_mq_unfreeze_queue(q);
3967 }
3968 }
3969
3970 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3971 {
3972 struct blk_mq_tag_set *set = q->tag_set;
3973
3974 mutex_lock(&set->tag_list_lock);
3975 list_del(&q->tag_set_list);
3976 if (list_is_singular(&set->tag_list)) {
3977 /* just transitioned to unshared */
3978 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3979 /* update existing queue */
3980 blk_mq_update_tag_set_shared(set, false);
3981 }
3982 mutex_unlock(&set->tag_list_lock);
3983 INIT_LIST_HEAD(&q->tag_set_list);
3984 }
3985
3986 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3987 struct request_queue *q)
3988 {
3989 mutex_lock(&set->tag_list_lock);
3990
3991 /*
3992 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3993 */
3994 if (!list_empty(&set->tag_list) &&
3995 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3996 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3997 /* update existing queue */
3998 blk_mq_update_tag_set_shared(set, true);
3999 }
4000 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4001 queue_set_hctx_shared(q, true);
4002 list_add_tail(&q->tag_set_list, &set->tag_list);
4003
4004 mutex_unlock(&set->tag_list_lock);
4005 }
4006
4007 /* All allocations will be freed in release handler of q->mq_kobj */
4008 static int blk_mq_alloc_ctxs(struct request_queue *q)
4009 {
4010 struct blk_mq_ctxs *ctxs;
4011 int cpu;
4012
4013 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4014 if (!ctxs)
4015 return -ENOMEM;
4016
4017 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4018 if (!ctxs->queue_ctx)
4019 goto fail;
4020
4021 for_each_possible_cpu(cpu) {
4022 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4023 ctx->ctxs = ctxs;
4024 }
4025
4026 q->mq_kobj = &ctxs->kobj;
4027 q->queue_ctx = ctxs->queue_ctx;
4028
4029 return 0;
4030 fail:
4031 kfree(ctxs);
4032 return -ENOMEM;
4033 }
4034
4035 /*
4036 * It is the actual release handler for mq, but we do it from
4037 * request queue's release handler for avoiding use-after-free
4038 * and headache because q->mq_kobj shouldn't have been introduced,
4039 * but we can't group ctx/kctx kobj without it.
4040 */
4041 void blk_mq_release(struct request_queue *q)
4042 {
4043 struct blk_mq_hw_ctx *hctx, *next;
4044 unsigned long i;
4045
4046 queue_for_each_hw_ctx(q, hctx, i)
4047 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4048
4049 /* all hctx are in .unused_hctx_list now */
4050 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4051 list_del_init(&hctx->hctx_list);
4052 kobject_put(&hctx->kobj);
4053 }
4054
4055 xa_destroy(&q->hctx_table);
4056
4057 /*
4058 * release .mq_kobj and sw queue's kobject now because
4059 * both share lifetime with request queue.
4060 */
4061 blk_mq_sysfs_deinit(q);
4062 }
4063
4064 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4065 void *queuedata)
4066 {
4067 struct request_queue *q;
4068 int ret;
4069
4070 q = blk_alloc_queue(set->numa_node);
4071 if (!q)
4072 return ERR_PTR(-ENOMEM);
4073 q->queuedata = queuedata;
4074 ret = blk_mq_init_allocated_queue(set, q);
4075 if (ret) {
4076 blk_put_queue(q);
4077 return ERR_PTR(ret);
4078 }
4079 return q;
4080 }
4081
4082 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4083 {
4084 return blk_mq_init_queue_data(set, NULL);
4085 }
4086 EXPORT_SYMBOL(blk_mq_init_queue);
4087
4088 /**
4089 * blk_mq_destroy_queue - shutdown a request queue
4090 * @q: request queue to shutdown
4091 *
4092 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4093 * requests will be failed with -ENODEV. The caller is responsible for dropping
4094 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4095 *
4096 * Context: can sleep
4097 */
4098 void blk_mq_destroy_queue(struct request_queue *q)
4099 {
4100 WARN_ON_ONCE(!queue_is_mq(q));
4101 WARN_ON_ONCE(blk_queue_registered(q));
4102
4103 might_sleep();
4104
4105 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4106 blk_queue_start_drain(q);
4107 blk_mq_freeze_queue_wait(q);
4108
4109 blk_sync_queue(q);
4110 blk_mq_cancel_work_sync(q);
4111 blk_mq_exit_queue(q);
4112 }
4113 EXPORT_SYMBOL(blk_mq_destroy_queue);
4114
4115 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4116 struct lock_class_key *lkclass)
4117 {
4118 struct request_queue *q;
4119 struct gendisk *disk;
4120
4121 q = blk_mq_init_queue_data(set, queuedata);
4122 if (IS_ERR(q))
4123 return ERR_CAST(q);
4124
4125 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4126 if (!disk) {
4127 blk_mq_destroy_queue(q);
4128 blk_put_queue(q);
4129 return ERR_PTR(-ENOMEM);
4130 }
4131 set_bit(GD_OWNS_QUEUE, &disk->state);
4132 return disk;
4133 }
4134 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4135
4136 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4137 struct lock_class_key *lkclass)
4138 {
4139 struct gendisk *disk;
4140
4141 if (!blk_get_queue(q))
4142 return NULL;
4143 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4144 if (!disk)
4145 blk_put_queue(q);
4146 return disk;
4147 }
4148 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4149
4150 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4151 struct blk_mq_tag_set *set, struct request_queue *q,
4152 int hctx_idx, int node)
4153 {
4154 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4155
4156 /* reuse dead hctx first */
4157 spin_lock(&q->unused_hctx_lock);
4158 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4159 if (tmp->numa_node == node) {
4160 hctx = tmp;
4161 break;
4162 }
4163 }
4164 if (hctx)
4165 list_del_init(&hctx->hctx_list);
4166 spin_unlock(&q->unused_hctx_lock);
4167
4168 if (!hctx)
4169 hctx = blk_mq_alloc_hctx(q, set, node);
4170 if (!hctx)
4171 goto fail;
4172
4173 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4174 goto free_hctx;
4175
4176 return hctx;
4177
4178 free_hctx:
4179 kobject_put(&hctx->kobj);
4180 fail:
4181 return NULL;
4182 }
4183
4184 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4185 struct request_queue *q)
4186 {
4187 struct blk_mq_hw_ctx *hctx;
4188 unsigned long i, j;
4189
4190 /* protect against switching io scheduler */
4191 mutex_lock(&q->sysfs_lock);
4192 for (i = 0; i < set->nr_hw_queues; i++) {
4193 int old_node;
4194 int node = blk_mq_get_hctx_node(set, i);
4195 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4196
4197 if (old_hctx) {
4198 old_node = old_hctx->numa_node;
4199 blk_mq_exit_hctx(q, set, old_hctx, i);
4200 }
4201
4202 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4203 if (!old_hctx)
4204 break;
4205 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4206 node, old_node);
4207 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4208 WARN_ON_ONCE(!hctx);
4209 }
4210 }
4211 /*
4212 * Increasing nr_hw_queues fails. Free the newly allocated
4213 * hctxs and keep the previous q->nr_hw_queues.
4214 */
4215 if (i != set->nr_hw_queues) {
4216 j = q->nr_hw_queues;
4217 } else {
4218 j = i;
4219 q->nr_hw_queues = set->nr_hw_queues;
4220 }
4221
4222 xa_for_each_start(&q->hctx_table, j, hctx, j)
4223 blk_mq_exit_hctx(q, set, hctx, j);
4224 mutex_unlock(&q->sysfs_lock);
4225 }
4226
4227 static void blk_mq_update_poll_flag(struct request_queue *q)
4228 {
4229 struct blk_mq_tag_set *set = q->tag_set;
4230
4231 if (set->nr_maps > HCTX_TYPE_POLL &&
4232 set->map[HCTX_TYPE_POLL].nr_queues)
4233 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4234 else
4235 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4236 }
4237
4238 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4239 struct request_queue *q)
4240 {
4241 /* mark the queue as mq asap */
4242 q->mq_ops = set->ops;
4243
4244 if (blk_mq_alloc_ctxs(q))
4245 goto err_exit;
4246
4247 /* init q->mq_kobj and sw queues' kobjects */
4248 blk_mq_sysfs_init(q);
4249
4250 INIT_LIST_HEAD(&q->unused_hctx_list);
4251 spin_lock_init(&q->unused_hctx_lock);
4252
4253 xa_init(&q->hctx_table);
4254
4255 blk_mq_realloc_hw_ctxs(set, q);
4256 if (!q->nr_hw_queues)
4257 goto err_hctxs;
4258
4259 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4260 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4261
4262 q->tag_set = set;
4263
4264 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4265 blk_mq_update_poll_flag(q);
4266
4267 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4268 INIT_LIST_HEAD(&q->flush_list);
4269 INIT_LIST_HEAD(&q->requeue_list);
4270 spin_lock_init(&q->requeue_lock);
4271
4272 q->nr_requests = set->queue_depth;
4273
4274 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4275 blk_mq_add_queue_tag_set(set, q);
4276 blk_mq_map_swqueue(q);
4277 return 0;
4278
4279 err_hctxs:
4280 blk_mq_release(q);
4281 err_exit:
4282 q->mq_ops = NULL;
4283 return -ENOMEM;
4284 }
4285 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4286
4287 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4288 void blk_mq_exit_queue(struct request_queue *q)
4289 {
4290 struct blk_mq_tag_set *set = q->tag_set;
4291
4292 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4293 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4294 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4295 blk_mq_del_queue_tag_set(q);
4296 }
4297
4298 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4299 {
4300 int i;
4301
4302 if (blk_mq_is_shared_tags(set->flags)) {
4303 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4304 BLK_MQ_NO_HCTX_IDX,
4305 set->queue_depth);
4306 if (!set->shared_tags)
4307 return -ENOMEM;
4308 }
4309
4310 for (i = 0; i < set->nr_hw_queues; i++) {
4311 if (!__blk_mq_alloc_map_and_rqs(set, i))
4312 goto out_unwind;
4313 cond_resched();
4314 }
4315
4316 return 0;
4317
4318 out_unwind:
4319 while (--i >= 0)
4320 __blk_mq_free_map_and_rqs(set, i);
4321
4322 if (blk_mq_is_shared_tags(set->flags)) {
4323 blk_mq_free_map_and_rqs(set, set->shared_tags,
4324 BLK_MQ_NO_HCTX_IDX);
4325 }
4326
4327 return -ENOMEM;
4328 }
4329
4330 /*
4331 * Allocate the request maps associated with this tag_set. Note that this
4332 * may reduce the depth asked for, if memory is tight. set->queue_depth
4333 * will be updated to reflect the allocated depth.
4334 */
4335 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4336 {
4337 unsigned int depth;
4338 int err;
4339
4340 depth = set->queue_depth;
4341 do {
4342 err = __blk_mq_alloc_rq_maps(set);
4343 if (!err)
4344 break;
4345
4346 set->queue_depth >>= 1;
4347 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4348 err = -ENOMEM;
4349 break;
4350 }
4351 } while (set->queue_depth);
4352
4353 if (!set->queue_depth || err) {
4354 pr_err("blk-mq: failed to allocate request map\n");
4355 return -ENOMEM;
4356 }
4357
4358 if (depth != set->queue_depth)
4359 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4360 depth, set->queue_depth);
4361
4362 return 0;
4363 }
4364
4365 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4366 {
4367 /*
4368 * blk_mq_map_queues() and multiple .map_queues() implementations
4369 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4370 * number of hardware queues.
4371 */
4372 if (set->nr_maps == 1)
4373 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4374
4375 if (set->ops->map_queues && !is_kdump_kernel()) {
4376 int i;
4377
4378 /*
4379 * transport .map_queues is usually done in the following
4380 * way:
4381 *
4382 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4383 * mask = get_cpu_mask(queue)
4384 * for_each_cpu(cpu, mask)
4385 * set->map[x].mq_map[cpu] = queue;
4386 * }
4387 *
4388 * When we need to remap, the table has to be cleared for
4389 * killing stale mapping since one CPU may not be mapped
4390 * to any hw queue.
4391 */
4392 for (i = 0; i < set->nr_maps; i++)
4393 blk_mq_clear_mq_map(&set->map[i]);
4394
4395 set->ops->map_queues(set);
4396 } else {
4397 BUG_ON(set->nr_maps > 1);
4398 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4399 }
4400 }
4401
4402 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4403 int new_nr_hw_queues)
4404 {
4405 struct blk_mq_tags **new_tags;
4406 int i;
4407
4408 if (set->nr_hw_queues >= new_nr_hw_queues) {
4409 for (i = new_nr_hw_queues; i < set->nr_hw_queues; i++)
4410 __blk_mq_free_map_and_rqs(set, i);
4411 goto done;
4412 }
4413
4414 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4415 GFP_KERNEL, set->numa_node);
4416 if (!new_tags)
4417 return -ENOMEM;
4418
4419 if (set->tags)
4420 memcpy(new_tags, set->tags, set->nr_hw_queues *
4421 sizeof(*set->tags));
4422 kfree(set->tags);
4423 set->tags = new_tags;
4424
4425 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4426 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4427 while (--i >= set->nr_hw_queues)
4428 __blk_mq_free_map_and_rqs(set, i);
4429 return -ENOMEM;
4430 }
4431 cond_resched();
4432 }
4433
4434 done:
4435 set->nr_hw_queues = new_nr_hw_queues;
4436 return 0;
4437 }
4438
4439 /*
4440 * Alloc a tag set to be associated with one or more request queues.
4441 * May fail with EINVAL for various error conditions. May adjust the
4442 * requested depth down, if it's too large. In that case, the set
4443 * value will be stored in set->queue_depth.
4444 */
4445 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4446 {
4447 int i, ret;
4448
4449 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4450
4451 if (!set->nr_hw_queues)
4452 return -EINVAL;
4453 if (!set->queue_depth)
4454 return -EINVAL;
4455 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4456 return -EINVAL;
4457
4458 if (!set->ops->queue_rq)
4459 return -EINVAL;
4460
4461 if (!set->ops->get_budget ^ !set->ops->put_budget)
4462 return -EINVAL;
4463
4464 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4465 pr_info("blk-mq: reduced tag depth to %u\n",
4466 BLK_MQ_MAX_DEPTH);
4467 set->queue_depth = BLK_MQ_MAX_DEPTH;
4468 }
4469
4470 if (!set->nr_maps)
4471 set->nr_maps = 1;
4472 else if (set->nr_maps > HCTX_MAX_TYPES)
4473 return -EINVAL;
4474
4475 /*
4476 * If a crashdump is active, then we are potentially in a very
4477 * memory constrained environment. Limit us to 1 queue and
4478 * 64 tags to prevent using too much memory.
4479 */
4480 if (is_kdump_kernel()) {
4481 set->nr_hw_queues = 1;
4482 set->nr_maps = 1;
4483 set->queue_depth = min(64U, set->queue_depth);
4484 }
4485 /*
4486 * There is no use for more h/w queues than cpus if we just have
4487 * a single map
4488 */
4489 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4490 set->nr_hw_queues = nr_cpu_ids;
4491
4492 if (set->flags & BLK_MQ_F_BLOCKING) {
4493 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4494 if (!set->srcu)
4495 return -ENOMEM;
4496 ret = init_srcu_struct(set->srcu);
4497 if (ret)
4498 goto out_free_srcu;
4499 }
4500
4501 ret = -ENOMEM;
4502 set->tags = kcalloc_node(set->nr_hw_queues,
4503 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4504 set->numa_node);
4505 if (!set->tags)
4506 goto out_cleanup_srcu;
4507
4508 for (i = 0; i < set->nr_maps; i++) {
4509 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4510 sizeof(set->map[i].mq_map[0]),
4511 GFP_KERNEL, set->numa_node);
4512 if (!set->map[i].mq_map)
4513 goto out_free_mq_map;
4514 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4515 }
4516
4517 blk_mq_update_queue_map(set);
4518
4519 ret = blk_mq_alloc_set_map_and_rqs(set);
4520 if (ret)
4521 goto out_free_mq_map;
4522
4523 mutex_init(&set->tag_list_lock);
4524 INIT_LIST_HEAD(&set->tag_list);
4525
4526 return 0;
4527
4528 out_free_mq_map:
4529 for (i = 0; i < set->nr_maps; i++) {
4530 kfree(set->map[i].mq_map);
4531 set->map[i].mq_map = NULL;
4532 }
4533 kfree(set->tags);
4534 set->tags = NULL;
4535 out_cleanup_srcu:
4536 if (set->flags & BLK_MQ_F_BLOCKING)
4537 cleanup_srcu_struct(set->srcu);
4538 out_free_srcu:
4539 if (set->flags & BLK_MQ_F_BLOCKING)
4540 kfree(set->srcu);
4541 return ret;
4542 }
4543 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4544
4545 /* allocate and initialize a tagset for a simple single-queue device */
4546 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4547 const struct blk_mq_ops *ops, unsigned int queue_depth,
4548 unsigned int set_flags)
4549 {
4550 memset(set, 0, sizeof(*set));
4551 set->ops = ops;
4552 set->nr_hw_queues = 1;
4553 set->nr_maps = 1;
4554 set->queue_depth = queue_depth;
4555 set->numa_node = NUMA_NO_NODE;
4556 set->flags = set_flags;
4557 return blk_mq_alloc_tag_set(set);
4558 }
4559 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4560
4561 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4562 {
4563 int i, j;
4564
4565 for (i = 0; i < set->nr_hw_queues; i++)
4566 __blk_mq_free_map_and_rqs(set, i);
4567
4568 if (blk_mq_is_shared_tags(set->flags)) {
4569 blk_mq_free_map_and_rqs(set, set->shared_tags,
4570 BLK_MQ_NO_HCTX_IDX);
4571 }
4572
4573 for (j = 0; j < set->nr_maps; j++) {
4574 kfree(set->map[j].mq_map);
4575 set->map[j].mq_map = NULL;
4576 }
4577
4578 kfree(set->tags);
4579 set->tags = NULL;
4580 if (set->flags & BLK_MQ_F_BLOCKING) {
4581 cleanup_srcu_struct(set->srcu);
4582 kfree(set->srcu);
4583 }
4584 }
4585 EXPORT_SYMBOL(blk_mq_free_tag_set);
4586
4587 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4588 {
4589 struct blk_mq_tag_set *set = q->tag_set;
4590 struct blk_mq_hw_ctx *hctx;
4591 int ret;
4592 unsigned long i;
4593
4594 if (!set)
4595 return -EINVAL;
4596
4597 if (q->nr_requests == nr)
4598 return 0;
4599
4600 blk_mq_freeze_queue(q);
4601 blk_mq_quiesce_queue(q);
4602
4603 ret = 0;
4604 queue_for_each_hw_ctx(q, hctx, i) {
4605 if (!hctx->tags)
4606 continue;
4607 /*
4608 * If we're using an MQ scheduler, just update the scheduler
4609 * queue depth. This is similar to what the old code would do.
4610 */
4611 if (hctx->sched_tags) {
4612 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4613 nr, true);
4614 } else {
4615 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4616 false);
4617 }
4618 if (ret)
4619 break;
4620 if (q->elevator && q->elevator->type->ops.depth_updated)
4621 q->elevator->type->ops.depth_updated(hctx);
4622 }
4623 if (!ret) {
4624 q->nr_requests = nr;
4625 if (blk_mq_is_shared_tags(set->flags)) {
4626 if (q->elevator)
4627 blk_mq_tag_update_sched_shared_tags(q);
4628 else
4629 blk_mq_tag_resize_shared_tags(set, nr);
4630 }
4631 }
4632
4633 blk_mq_unquiesce_queue(q);
4634 blk_mq_unfreeze_queue(q);
4635
4636 return ret;
4637 }
4638
4639 /*
4640 * request_queue and elevator_type pair.
4641 * It is just used by __blk_mq_update_nr_hw_queues to cache
4642 * the elevator_type associated with a request_queue.
4643 */
4644 struct blk_mq_qe_pair {
4645 struct list_head node;
4646 struct request_queue *q;
4647 struct elevator_type *type;
4648 };
4649
4650 /*
4651 * Cache the elevator_type in qe pair list and switch the
4652 * io scheduler to 'none'
4653 */
4654 static bool blk_mq_elv_switch_none(struct list_head *head,
4655 struct request_queue *q)
4656 {
4657 struct blk_mq_qe_pair *qe;
4658
4659 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4660 if (!qe)
4661 return false;
4662
4663 /* q->elevator needs protection from ->sysfs_lock */
4664 mutex_lock(&q->sysfs_lock);
4665
4666 /* the check has to be done with holding sysfs_lock */
4667 if (!q->elevator) {
4668 kfree(qe);
4669 goto unlock;
4670 }
4671
4672 INIT_LIST_HEAD(&qe->node);
4673 qe->q = q;
4674 qe->type = q->elevator->type;
4675 /* keep a reference to the elevator module as we'll switch back */
4676 __elevator_get(qe->type);
4677 list_add(&qe->node, head);
4678 elevator_disable(q);
4679 unlock:
4680 mutex_unlock(&q->sysfs_lock);
4681
4682 return true;
4683 }
4684
4685 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4686 struct request_queue *q)
4687 {
4688 struct blk_mq_qe_pair *qe;
4689
4690 list_for_each_entry(qe, head, node)
4691 if (qe->q == q)
4692 return qe;
4693
4694 return NULL;
4695 }
4696
4697 static void blk_mq_elv_switch_back(struct list_head *head,
4698 struct request_queue *q)
4699 {
4700 struct blk_mq_qe_pair *qe;
4701 struct elevator_type *t;
4702
4703 qe = blk_lookup_qe_pair(head, q);
4704 if (!qe)
4705 return;
4706 t = qe->type;
4707 list_del(&qe->node);
4708 kfree(qe);
4709
4710 mutex_lock(&q->sysfs_lock);
4711 elevator_switch(q, t);
4712 /* drop the reference acquired in blk_mq_elv_switch_none */
4713 elevator_put(t);
4714 mutex_unlock(&q->sysfs_lock);
4715 }
4716
4717 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4718 int nr_hw_queues)
4719 {
4720 struct request_queue *q;
4721 LIST_HEAD(head);
4722 int prev_nr_hw_queues;
4723
4724 lockdep_assert_held(&set->tag_list_lock);
4725
4726 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4727 nr_hw_queues = nr_cpu_ids;
4728 if (nr_hw_queues < 1)
4729 return;
4730 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4731 return;
4732
4733 list_for_each_entry(q, &set->tag_list, tag_set_list)
4734 blk_mq_freeze_queue(q);
4735 /*
4736 * Switch IO scheduler to 'none', cleaning up the data associated
4737 * with the previous scheduler. We will switch back once we are done
4738 * updating the new sw to hw queue mappings.
4739 */
4740 list_for_each_entry(q, &set->tag_list, tag_set_list)
4741 if (!blk_mq_elv_switch_none(&head, q))
4742 goto switch_back;
4743
4744 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4745 blk_mq_debugfs_unregister_hctxs(q);
4746 blk_mq_sysfs_unregister_hctxs(q);
4747 }
4748
4749 prev_nr_hw_queues = set->nr_hw_queues;
4750 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4751 goto reregister;
4752
4753 fallback:
4754 blk_mq_update_queue_map(set);
4755 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4756 blk_mq_realloc_hw_ctxs(set, q);
4757 blk_mq_update_poll_flag(q);
4758 if (q->nr_hw_queues != set->nr_hw_queues) {
4759 int i = prev_nr_hw_queues;
4760
4761 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4762 nr_hw_queues, prev_nr_hw_queues);
4763 for (; i < set->nr_hw_queues; i++)
4764 __blk_mq_free_map_and_rqs(set, i);
4765
4766 set->nr_hw_queues = prev_nr_hw_queues;
4767 goto fallback;
4768 }
4769 blk_mq_map_swqueue(q);
4770 }
4771
4772 reregister:
4773 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4774 blk_mq_sysfs_register_hctxs(q);
4775 blk_mq_debugfs_register_hctxs(q);
4776 }
4777
4778 switch_back:
4779 list_for_each_entry(q, &set->tag_list, tag_set_list)
4780 blk_mq_elv_switch_back(&head, q);
4781
4782 list_for_each_entry(q, &set->tag_list, tag_set_list)
4783 blk_mq_unfreeze_queue(q);
4784 }
4785
4786 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4787 {
4788 mutex_lock(&set->tag_list_lock);
4789 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4790 mutex_unlock(&set->tag_list_lock);
4791 }
4792 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4793
4794 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4795 struct io_comp_batch *iob, unsigned int flags)
4796 {
4797 long state = get_current_state();
4798 int ret;
4799
4800 do {
4801 ret = q->mq_ops->poll(hctx, iob);
4802 if (ret > 0) {
4803 __set_current_state(TASK_RUNNING);
4804 return ret;
4805 }
4806
4807 if (signal_pending_state(state, current))
4808 __set_current_state(TASK_RUNNING);
4809 if (task_is_running(current))
4810 return 1;
4811
4812 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4813 break;
4814 cpu_relax();
4815 } while (!need_resched());
4816
4817 __set_current_state(TASK_RUNNING);
4818 return 0;
4819 }
4820
4821 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4822 struct io_comp_batch *iob, unsigned int flags)
4823 {
4824 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4825
4826 return blk_hctx_poll(q, hctx, iob, flags);
4827 }
4828
4829 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4830 unsigned int poll_flags)
4831 {
4832 struct request_queue *q = rq->q;
4833 int ret;
4834
4835 if (!blk_rq_is_poll(rq))
4836 return 0;
4837 if (!percpu_ref_tryget(&q->q_usage_counter))
4838 return 0;
4839
4840 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4841 blk_queue_exit(q);
4842
4843 return ret;
4844 }
4845 EXPORT_SYMBOL_GPL(blk_rq_poll);
4846
4847 unsigned int blk_mq_rq_cpu(struct request *rq)
4848 {
4849 return rq->mq_ctx->cpu;
4850 }
4851 EXPORT_SYMBOL(blk_mq_rq_cpu);
4852
4853 void blk_mq_cancel_work_sync(struct request_queue *q)
4854 {
4855 struct blk_mq_hw_ctx *hctx;
4856 unsigned long i;
4857
4858 cancel_delayed_work_sync(&q->requeue_work);
4859
4860 queue_for_each_hw_ctx(q, hctx, i)
4861 cancel_delayed_work_sync(&hctx->run_work);
4862 }
4863
4864 static int __init blk_mq_init(void)
4865 {
4866 int i;
4867
4868 for_each_possible_cpu(i)
4869 init_llist_head(&per_cpu(blk_cpu_done, i));
4870 for_each_possible_cpu(i)
4871 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4872 __blk_mq_complete_request_remote, NULL);
4873 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4874
4875 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4876 "block/softirq:dead", NULL,
4877 blk_softirq_cpu_dead);
4878 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4879 blk_mq_hctx_notify_dead);
4880 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4881 blk_mq_hctx_notify_online,
4882 blk_mq_hctx_notify_offline);
4883 return 0;
4884 }
4885 subsys_initcall(blk_mq_init);