]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
blk-mq: remove the error argument to blk_mq_complete_request
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 /*
46 * Check if any of the ctx's have pending work in this hardware queue
47 */
48 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49 {
50 return sbitmap_any_bit_set(&hctx->ctx_map) ||
51 !list_empty_careful(&hctx->dispatch) ||
52 blk_mq_sched_has_work(hctx);
53 }
54
55 /*
56 * Mark this ctx as having pending work in this hardware queue
57 */
58 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59 struct blk_mq_ctx *ctx)
60 {
61 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 }
64
65 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66 struct blk_mq_ctx *ctx)
67 {
68 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 }
70
71 void blk_freeze_queue_start(struct request_queue *q)
72 {
73 int freeze_depth;
74
75 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76 if (freeze_depth == 1) {
77 percpu_ref_kill(&q->q_usage_counter);
78 blk_mq_run_hw_queues(q, false);
79 }
80 }
81 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82
83 void blk_mq_freeze_queue_wait(struct request_queue *q)
84 {
85 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86 }
87 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88
89 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90 unsigned long timeout)
91 {
92 return wait_event_timeout(q->mq_freeze_wq,
93 percpu_ref_is_zero(&q->q_usage_counter),
94 timeout);
95 }
96 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97
98 /*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 /**
139 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140 * @q: request queue.
141 *
142 * Note: this function does not prevent that the struct request end_io()
143 * callback function is invoked. Additionally, it is not prevented that
144 * new queue_rq() calls occur unless the queue has been stopped first.
145 */
146 void blk_mq_quiesce_queue(struct request_queue *q)
147 {
148 struct blk_mq_hw_ctx *hctx;
149 unsigned int i;
150 bool rcu = false;
151
152 blk_mq_stop_hw_queues(q);
153
154 queue_for_each_hw_ctx(q, hctx, i) {
155 if (hctx->flags & BLK_MQ_F_BLOCKING)
156 synchronize_srcu(&hctx->queue_rq_srcu);
157 else
158 rcu = true;
159 }
160 if (rcu)
161 synchronize_rcu();
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
165 void blk_mq_wake_waiters(struct request_queue *q)
166 {
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169
170 queue_for_each_hw_ctx(q, hctx, i)
171 if (blk_mq_hw_queue_mapped(hctx))
172 blk_mq_tag_wakeup_all(hctx->tags, true);
173
174 /*
175 * If we are called because the queue has now been marked as
176 * dying, we need to ensure that processes currently waiting on
177 * the queue are notified as well.
178 */
179 wake_up_all(&q->mq_freeze_wq);
180 }
181
182 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183 {
184 return blk_mq_has_free_tags(hctx->tags);
185 }
186 EXPORT_SYMBOL(blk_mq_can_queue);
187
188 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189 struct request *rq, unsigned int op)
190 {
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
194 rq->mq_ctx = ctx;
195 rq->cmd_flags = op;
196 if (blk_queue_io_stat(q))
197 rq->rq_flags |= RQF_IO_STAT;
198 /* do not touch atomic flags, it needs atomic ops against the timer */
199 rq->cpu = -1;
200 INIT_HLIST_NODE(&rq->hash);
201 RB_CLEAR_NODE(&rq->rb_node);
202 rq->rq_disk = NULL;
203 rq->part = NULL;
204 rq->start_time = jiffies;
205 #ifdef CONFIG_BLK_CGROUP
206 rq->rl = NULL;
207 set_start_time_ns(rq);
208 rq->io_start_time_ns = 0;
209 #endif
210 rq->nr_phys_segments = 0;
211 #if defined(CONFIG_BLK_DEV_INTEGRITY)
212 rq->nr_integrity_segments = 0;
213 #endif
214 rq->special = NULL;
215 /* tag was already set */
216 rq->errors = 0;
217 rq->extra_len = 0;
218
219 INIT_LIST_HEAD(&rq->timeout_list);
220 rq->timeout = 0;
221
222 rq->end_io = NULL;
223 rq->end_io_data = NULL;
224 rq->next_rq = NULL;
225
226 ctx->rq_dispatched[op_is_sync(op)]++;
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229
230 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231 unsigned int op)
232 {
233 struct request *rq;
234 unsigned int tag;
235
236 tag = blk_mq_get_tag(data);
237 if (tag != BLK_MQ_TAG_FAIL) {
238 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240 rq = tags->static_rqs[tag];
241
242 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243 rq->tag = -1;
244 rq->internal_tag = tag;
245 } else {
246 if (blk_mq_tag_busy(data->hctx)) {
247 rq->rq_flags = RQF_MQ_INFLIGHT;
248 atomic_inc(&data->hctx->nr_active);
249 }
250 rq->tag = tag;
251 rq->internal_tag = -1;
252 data->hctx->tags->rqs[rq->tag] = rq;
253 }
254
255 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 return rq;
257 }
258
259 return NULL;
260 }
261 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262
263 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264 unsigned int flags)
265 {
266 struct blk_mq_alloc_data alloc_data = { .flags = flags };
267 struct request *rq;
268 int ret;
269
270 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 if (ret)
272 return ERR_PTR(ret);
273
274 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275
276 blk_mq_put_ctx(alloc_data.ctx);
277 blk_queue_exit(q);
278
279 if (!rq)
280 return ERR_PTR(-EWOULDBLOCK);
281
282 rq->__data_len = 0;
283 rq->__sector = (sector_t) -1;
284 rq->bio = rq->biotail = NULL;
285 return rq;
286 }
287 EXPORT_SYMBOL(blk_mq_alloc_request);
288
289 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290 unsigned int flags, unsigned int hctx_idx)
291 {
292 struct blk_mq_alloc_data alloc_data = { .flags = flags };
293 struct request *rq;
294 unsigned int cpu;
295 int ret;
296
297 /*
298 * If the tag allocator sleeps we could get an allocation for a
299 * different hardware context. No need to complicate the low level
300 * allocator for this for the rare use case of a command tied to
301 * a specific queue.
302 */
303 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304 return ERR_PTR(-EINVAL);
305
306 if (hctx_idx >= q->nr_hw_queues)
307 return ERR_PTR(-EIO);
308
309 ret = blk_queue_enter(q, true);
310 if (ret)
311 return ERR_PTR(ret);
312
313 /*
314 * Check if the hardware context is actually mapped to anything.
315 * If not tell the caller that it should skip this queue.
316 */
317 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319 blk_queue_exit(q);
320 return ERR_PTR(-EXDEV);
321 }
322 cpu = cpumask_first(alloc_data.hctx->cpumask);
323 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
324
325 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326
327 blk_queue_exit(q);
328
329 if (!rq)
330 return ERR_PTR(-EWOULDBLOCK);
331
332 return rq;
333 }
334 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
335
336 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
337 struct request *rq)
338 {
339 const int sched_tag = rq->internal_tag;
340 struct request_queue *q = rq->q;
341
342 if (rq->rq_flags & RQF_MQ_INFLIGHT)
343 atomic_dec(&hctx->nr_active);
344
345 wbt_done(q->rq_wb, &rq->issue_stat);
346 rq->rq_flags = 0;
347
348 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350 if (rq->tag != -1)
351 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
352 if (sched_tag != -1)
353 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
354 blk_mq_sched_restart(hctx);
355 blk_queue_exit(q);
356 }
357
358 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359 struct request *rq)
360 {
361 struct blk_mq_ctx *ctx = rq->mq_ctx;
362
363 ctx->rq_completed[rq_is_sync(rq)]++;
364 __blk_mq_finish_request(hctx, ctx, rq);
365 }
366
367 void blk_mq_finish_request(struct request *rq)
368 {
369 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370 }
371 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
372
373 void blk_mq_free_request(struct request *rq)
374 {
375 blk_mq_sched_put_request(rq);
376 }
377 EXPORT_SYMBOL_GPL(blk_mq_free_request);
378
379 inline void __blk_mq_end_request(struct request *rq, int error)
380 {
381 blk_account_io_done(rq);
382
383 if (rq->end_io) {
384 wbt_done(rq->q->rq_wb, &rq->issue_stat);
385 rq->end_io(rq, error);
386 } else {
387 if (unlikely(blk_bidi_rq(rq)))
388 blk_mq_free_request(rq->next_rq);
389 blk_mq_free_request(rq);
390 }
391 }
392 EXPORT_SYMBOL(__blk_mq_end_request);
393
394 void blk_mq_end_request(struct request *rq, int error)
395 {
396 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397 BUG();
398 __blk_mq_end_request(rq, error);
399 }
400 EXPORT_SYMBOL(blk_mq_end_request);
401
402 static void __blk_mq_complete_request_remote(void *data)
403 {
404 struct request *rq = data;
405
406 rq->q->softirq_done_fn(rq);
407 }
408
409 static void blk_mq_ipi_complete_request(struct request *rq)
410 {
411 struct blk_mq_ctx *ctx = rq->mq_ctx;
412 bool shared = false;
413 int cpu;
414
415 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416 rq->q->softirq_done_fn(rq);
417 return;
418 }
419
420 cpu = get_cpu();
421 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
422 shared = cpus_share_cache(cpu, ctx->cpu);
423
424 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425 rq->csd.func = __blk_mq_complete_request_remote;
426 rq->csd.info = rq;
427 rq->csd.flags = 0;
428 smp_call_function_single_async(ctx->cpu, &rq->csd);
429 } else {
430 rq->q->softirq_done_fn(rq);
431 }
432 put_cpu();
433 }
434
435 static void blk_mq_stat_add(struct request *rq)
436 {
437 if (rq->rq_flags & RQF_STATS) {
438 blk_mq_poll_stats_start(rq->q);
439 blk_stat_add(rq);
440 }
441 }
442
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445 if (rq->internal_tag != -1)
446 blk_mq_sched_completed_request(rq);
447 blk_mq_stat_add(rq);
448 blk_mq_ipi_complete_request(rq);
449 }
450
451 /**
452 * blk_mq_complete_request - end I/O on a request
453 * @rq: the request being processed
454 *
455 * Description:
456 * Ends all I/O on a request. It does not handle partial completions.
457 * The actual completion happens out-of-order, through a IPI handler.
458 **/
459 void blk_mq_complete_request(struct request *rq)
460 {
461 struct request_queue *q = rq->q;
462
463 if (unlikely(blk_should_fake_timeout(q)))
464 return;
465 if (!blk_mark_rq_complete(rq))
466 __blk_mq_complete_request(rq);
467 }
468 EXPORT_SYMBOL(blk_mq_complete_request);
469
470 int blk_mq_request_started(struct request *rq)
471 {
472 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
473 }
474 EXPORT_SYMBOL_GPL(blk_mq_request_started);
475
476 void blk_mq_start_request(struct request *rq)
477 {
478 struct request_queue *q = rq->q;
479
480 blk_mq_sched_started_request(rq);
481
482 trace_block_rq_issue(q, rq);
483
484 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
485 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
486 rq->rq_flags |= RQF_STATS;
487 wbt_issue(q->rq_wb, &rq->issue_stat);
488 }
489
490 blk_add_timer(rq);
491
492 /*
493 * Ensure that ->deadline is visible before set the started
494 * flag and clear the completed flag.
495 */
496 smp_mb__before_atomic();
497
498 /*
499 * Mark us as started and clear complete. Complete might have been
500 * set if requeue raced with timeout, which then marked it as
501 * complete. So be sure to clear complete again when we start
502 * the request, otherwise we'll ignore the completion event.
503 */
504 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
505 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
506 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
507 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
508
509 if (q->dma_drain_size && blk_rq_bytes(rq)) {
510 /*
511 * Make sure space for the drain appears. We know we can do
512 * this because max_hw_segments has been adjusted to be one
513 * fewer than the device can handle.
514 */
515 rq->nr_phys_segments++;
516 }
517 }
518 EXPORT_SYMBOL(blk_mq_start_request);
519
520 /*
521 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
522 * flag isn't set yet, so there may be race with timeout handler,
523 * but given rq->deadline is just set in .queue_rq() under
524 * this situation, the race won't be possible in reality because
525 * rq->timeout should be set as big enough to cover the window
526 * between blk_mq_start_request() called from .queue_rq() and
527 * clearing REQ_ATOM_STARTED here.
528 */
529 static void __blk_mq_requeue_request(struct request *rq)
530 {
531 struct request_queue *q = rq->q;
532
533 trace_block_rq_requeue(q, rq);
534 wbt_requeue(q->rq_wb, &rq->issue_stat);
535 blk_mq_sched_requeue_request(rq);
536
537 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
538 if (q->dma_drain_size && blk_rq_bytes(rq))
539 rq->nr_phys_segments--;
540 }
541 }
542
543 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
544 {
545 __blk_mq_requeue_request(rq);
546
547 BUG_ON(blk_queued_rq(rq));
548 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
549 }
550 EXPORT_SYMBOL(blk_mq_requeue_request);
551
552 static void blk_mq_requeue_work(struct work_struct *work)
553 {
554 struct request_queue *q =
555 container_of(work, struct request_queue, requeue_work.work);
556 LIST_HEAD(rq_list);
557 struct request *rq, *next;
558 unsigned long flags;
559
560 spin_lock_irqsave(&q->requeue_lock, flags);
561 list_splice_init(&q->requeue_list, &rq_list);
562 spin_unlock_irqrestore(&q->requeue_lock, flags);
563
564 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
565 if (!(rq->rq_flags & RQF_SOFTBARRIER))
566 continue;
567
568 rq->rq_flags &= ~RQF_SOFTBARRIER;
569 list_del_init(&rq->queuelist);
570 blk_mq_sched_insert_request(rq, true, false, false, true);
571 }
572
573 while (!list_empty(&rq_list)) {
574 rq = list_entry(rq_list.next, struct request, queuelist);
575 list_del_init(&rq->queuelist);
576 blk_mq_sched_insert_request(rq, false, false, false, true);
577 }
578
579 blk_mq_run_hw_queues(q, false);
580 }
581
582 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
583 bool kick_requeue_list)
584 {
585 struct request_queue *q = rq->q;
586 unsigned long flags;
587
588 /*
589 * We abuse this flag that is otherwise used by the I/O scheduler to
590 * request head insertation from the workqueue.
591 */
592 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
593
594 spin_lock_irqsave(&q->requeue_lock, flags);
595 if (at_head) {
596 rq->rq_flags |= RQF_SOFTBARRIER;
597 list_add(&rq->queuelist, &q->requeue_list);
598 } else {
599 list_add_tail(&rq->queuelist, &q->requeue_list);
600 }
601 spin_unlock_irqrestore(&q->requeue_lock, flags);
602
603 if (kick_requeue_list)
604 blk_mq_kick_requeue_list(q);
605 }
606 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
607
608 void blk_mq_kick_requeue_list(struct request_queue *q)
609 {
610 kblockd_schedule_delayed_work(&q->requeue_work, 0);
611 }
612 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
613
614 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
615 unsigned long msecs)
616 {
617 kblockd_schedule_delayed_work(&q->requeue_work,
618 msecs_to_jiffies(msecs));
619 }
620 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
621
622 void blk_mq_abort_requeue_list(struct request_queue *q)
623 {
624 unsigned long flags;
625 LIST_HEAD(rq_list);
626
627 spin_lock_irqsave(&q->requeue_lock, flags);
628 list_splice_init(&q->requeue_list, &rq_list);
629 spin_unlock_irqrestore(&q->requeue_lock, flags);
630
631 while (!list_empty(&rq_list)) {
632 struct request *rq;
633
634 rq = list_first_entry(&rq_list, struct request, queuelist);
635 list_del_init(&rq->queuelist);
636 rq->errors = -EIO;
637 blk_mq_end_request(rq, rq->errors);
638 }
639 }
640 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
641
642 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
643 {
644 if (tag < tags->nr_tags) {
645 prefetch(tags->rqs[tag]);
646 return tags->rqs[tag];
647 }
648
649 return NULL;
650 }
651 EXPORT_SYMBOL(blk_mq_tag_to_rq);
652
653 struct blk_mq_timeout_data {
654 unsigned long next;
655 unsigned int next_set;
656 };
657
658 void blk_mq_rq_timed_out(struct request *req, bool reserved)
659 {
660 const struct blk_mq_ops *ops = req->q->mq_ops;
661 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
662
663 /*
664 * We know that complete is set at this point. If STARTED isn't set
665 * anymore, then the request isn't active and the "timeout" should
666 * just be ignored. This can happen due to the bitflag ordering.
667 * Timeout first checks if STARTED is set, and if it is, assumes
668 * the request is active. But if we race with completion, then
669 * both flags will get cleared. So check here again, and ignore
670 * a timeout event with a request that isn't active.
671 */
672 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
673 return;
674
675 if (ops->timeout)
676 ret = ops->timeout(req, reserved);
677
678 switch (ret) {
679 case BLK_EH_HANDLED:
680 __blk_mq_complete_request(req);
681 break;
682 case BLK_EH_RESET_TIMER:
683 blk_add_timer(req);
684 blk_clear_rq_complete(req);
685 break;
686 case BLK_EH_NOT_HANDLED:
687 break;
688 default:
689 printk(KERN_ERR "block: bad eh return: %d\n", ret);
690 break;
691 }
692 }
693
694 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
695 struct request *rq, void *priv, bool reserved)
696 {
697 struct blk_mq_timeout_data *data = priv;
698
699 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
700 return;
701
702 /*
703 * The rq being checked may have been freed and reallocated
704 * out already here, we avoid this race by checking rq->deadline
705 * and REQ_ATOM_COMPLETE flag together:
706 *
707 * - if rq->deadline is observed as new value because of
708 * reusing, the rq won't be timed out because of timing.
709 * - if rq->deadline is observed as previous value,
710 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
711 * because we put a barrier between setting rq->deadline
712 * and clearing the flag in blk_mq_start_request(), so
713 * this rq won't be timed out too.
714 */
715 if (time_after_eq(jiffies, rq->deadline)) {
716 if (!blk_mark_rq_complete(rq))
717 blk_mq_rq_timed_out(rq, reserved);
718 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
719 data->next = rq->deadline;
720 data->next_set = 1;
721 }
722 }
723
724 static void blk_mq_timeout_work(struct work_struct *work)
725 {
726 struct request_queue *q =
727 container_of(work, struct request_queue, timeout_work);
728 struct blk_mq_timeout_data data = {
729 .next = 0,
730 .next_set = 0,
731 };
732 int i;
733
734 /* A deadlock might occur if a request is stuck requiring a
735 * timeout at the same time a queue freeze is waiting
736 * completion, since the timeout code would not be able to
737 * acquire the queue reference here.
738 *
739 * That's why we don't use blk_queue_enter here; instead, we use
740 * percpu_ref_tryget directly, because we need to be able to
741 * obtain a reference even in the short window between the queue
742 * starting to freeze, by dropping the first reference in
743 * blk_freeze_queue_start, and the moment the last request is
744 * consumed, marked by the instant q_usage_counter reaches
745 * zero.
746 */
747 if (!percpu_ref_tryget(&q->q_usage_counter))
748 return;
749
750 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
751
752 if (data.next_set) {
753 data.next = blk_rq_timeout(round_jiffies_up(data.next));
754 mod_timer(&q->timeout, data.next);
755 } else {
756 struct blk_mq_hw_ctx *hctx;
757
758 queue_for_each_hw_ctx(q, hctx, i) {
759 /* the hctx may be unmapped, so check it here */
760 if (blk_mq_hw_queue_mapped(hctx))
761 blk_mq_tag_idle(hctx);
762 }
763 }
764 blk_queue_exit(q);
765 }
766
767 /*
768 * Reverse check our software queue for entries that we could potentially
769 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
770 * too much time checking for merges.
771 */
772 static bool blk_mq_attempt_merge(struct request_queue *q,
773 struct blk_mq_ctx *ctx, struct bio *bio)
774 {
775 struct request *rq;
776 int checked = 8;
777
778 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
779 bool merged = false;
780
781 if (!checked--)
782 break;
783
784 if (!blk_rq_merge_ok(rq, bio))
785 continue;
786
787 switch (blk_try_merge(rq, bio)) {
788 case ELEVATOR_BACK_MERGE:
789 if (blk_mq_sched_allow_merge(q, rq, bio))
790 merged = bio_attempt_back_merge(q, rq, bio);
791 break;
792 case ELEVATOR_FRONT_MERGE:
793 if (blk_mq_sched_allow_merge(q, rq, bio))
794 merged = bio_attempt_front_merge(q, rq, bio);
795 break;
796 case ELEVATOR_DISCARD_MERGE:
797 merged = bio_attempt_discard_merge(q, rq, bio);
798 break;
799 default:
800 continue;
801 }
802
803 if (merged)
804 ctx->rq_merged++;
805 return merged;
806 }
807
808 return false;
809 }
810
811 struct flush_busy_ctx_data {
812 struct blk_mq_hw_ctx *hctx;
813 struct list_head *list;
814 };
815
816 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
817 {
818 struct flush_busy_ctx_data *flush_data = data;
819 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
820 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
821
822 sbitmap_clear_bit(sb, bitnr);
823 spin_lock(&ctx->lock);
824 list_splice_tail_init(&ctx->rq_list, flush_data->list);
825 spin_unlock(&ctx->lock);
826 return true;
827 }
828
829 /*
830 * Process software queues that have been marked busy, splicing them
831 * to the for-dispatch
832 */
833 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
834 {
835 struct flush_busy_ctx_data data = {
836 .hctx = hctx,
837 .list = list,
838 };
839
840 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
841 }
842 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
843
844 static inline unsigned int queued_to_index(unsigned int queued)
845 {
846 if (!queued)
847 return 0;
848
849 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
850 }
851
852 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
853 bool wait)
854 {
855 struct blk_mq_alloc_data data = {
856 .q = rq->q,
857 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
858 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
859 };
860
861 if (rq->tag != -1)
862 goto done;
863
864 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
865 data.flags |= BLK_MQ_REQ_RESERVED;
866
867 rq->tag = blk_mq_get_tag(&data);
868 if (rq->tag >= 0) {
869 if (blk_mq_tag_busy(data.hctx)) {
870 rq->rq_flags |= RQF_MQ_INFLIGHT;
871 atomic_inc(&data.hctx->nr_active);
872 }
873 data.hctx->tags->rqs[rq->tag] = rq;
874 }
875
876 done:
877 if (hctx)
878 *hctx = data.hctx;
879 return rq->tag != -1;
880 }
881
882 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
883 struct request *rq)
884 {
885 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
886 rq->tag = -1;
887
888 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
889 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
890 atomic_dec(&hctx->nr_active);
891 }
892 }
893
894 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
895 struct request *rq)
896 {
897 if (rq->tag == -1 || rq->internal_tag == -1)
898 return;
899
900 __blk_mq_put_driver_tag(hctx, rq);
901 }
902
903 static void blk_mq_put_driver_tag(struct request *rq)
904 {
905 struct blk_mq_hw_ctx *hctx;
906
907 if (rq->tag == -1 || rq->internal_tag == -1)
908 return;
909
910 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
911 __blk_mq_put_driver_tag(hctx, rq);
912 }
913
914 /*
915 * If we fail getting a driver tag because all the driver tags are already
916 * assigned and on the dispatch list, BUT the first entry does not have a
917 * tag, then we could deadlock. For that case, move entries with assigned
918 * driver tags to the front, leaving the set of tagged requests in the
919 * same order, and the untagged set in the same order.
920 */
921 static bool reorder_tags_to_front(struct list_head *list)
922 {
923 struct request *rq, *tmp, *first = NULL;
924
925 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
926 if (rq == first)
927 break;
928 if (rq->tag != -1) {
929 list_move(&rq->queuelist, list);
930 if (!first)
931 first = rq;
932 }
933 }
934
935 return first != NULL;
936 }
937
938 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
939 void *key)
940 {
941 struct blk_mq_hw_ctx *hctx;
942
943 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
944
945 list_del(&wait->task_list);
946 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
947 blk_mq_run_hw_queue(hctx, true);
948 return 1;
949 }
950
951 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
952 {
953 struct sbq_wait_state *ws;
954
955 /*
956 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
957 * The thread which wins the race to grab this bit adds the hardware
958 * queue to the wait queue.
959 */
960 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
961 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
962 return false;
963
964 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
965 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
966
967 /*
968 * As soon as this returns, it's no longer safe to fiddle with
969 * hctx->dispatch_wait, since a completion can wake up the wait queue
970 * and unlock the bit.
971 */
972 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
973 return true;
974 }
975
976 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
977 {
978 struct blk_mq_hw_ctx *hctx;
979 struct request *rq;
980 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
981
982 if (list_empty(list))
983 return false;
984
985 /*
986 * Now process all the entries, sending them to the driver.
987 */
988 errors = queued = 0;
989 do {
990 struct blk_mq_queue_data bd;
991
992 rq = list_first_entry(list, struct request, queuelist);
993 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
994 if (!queued && reorder_tags_to_front(list))
995 continue;
996
997 /*
998 * The initial allocation attempt failed, so we need to
999 * rerun the hardware queue when a tag is freed.
1000 */
1001 if (!blk_mq_dispatch_wait_add(hctx))
1002 break;
1003
1004 /*
1005 * It's possible that a tag was freed in the window
1006 * between the allocation failure and adding the
1007 * hardware queue to the wait queue.
1008 */
1009 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1010 break;
1011 }
1012
1013 list_del_init(&rq->queuelist);
1014
1015 bd.rq = rq;
1016
1017 /*
1018 * Flag last if we have no more requests, or if we have more
1019 * but can't assign a driver tag to it.
1020 */
1021 if (list_empty(list))
1022 bd.last = true;
1023 else {
1024 struct request *nxt;
1025
1026 nxt = list_first_entry(list, struct request, queuelist);
1027 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1028 }
1029
1030 ret = q->mq_ops->queue_rq(hctx, &bd);
1031 switch (ret) {
1032 case BLK_MQ_RQ_QUEUE_OK:
1033 queued++;
1034 break;
1035 case BLK_MQ_RQ_QUEUE_BUSY:
1036 blk_mq_put_driver_tag_hctx(hctx, rq);
1037 list_add(&rq->queuelist, list);
1038 __blk_mq_requeue_request(rq);
1039 break;
1040 default:
1041 pr_err("blk-mq: bad return on queue: %d\n", ret);
1042 case BLK_MQ_RQ_QUEUE_ERROR:
1043 errors++;
1044 rq->errors = -EIO;
1045 blk_mq_end_request(rq, rq->errors);
1046 break;
1047 }
1048
1049 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1050 break;
1051 } while (!list_empty(list));
1052
1053 hctx->dispatched[queued_to_index(queued)]++;
1054
1055 /*
1056 * Any items that need requeuing? Stuff them into hctx->dispatch,
1057 * that is where we will continue on next queue run.
1058 */
1059 if (!list_empty(list)) {
1060 /*
1061 * If an I/O scheduler has been configured and we got a driver
1062 * tag for the next request already, free it again.
1063 */
1064 rq = list_first_entry(list, struct request, queuelist);
1065 blk_mq_put_driver_tag(rq);
1066
1067 spin_lock(&hctx->lock);
1068 list_splice_init(list, &hctx->dispatch);
1069 spin_unlock(&hctx->lock);
1070
1071 /*
1072 * If SCHED_RESTART was set by the caller of this function and
1073 * it is no longer set that means that it was cleared by another
1074 * thread and hence that a queue rerun is needed.
1075 *
1076 * If TAG_WAITING is set that means that an I/O scheduler has
1077 * been configured and another thread is waiting for a driver
1078 * tag. To guarantee fairness, do not rerun this hardware queue
1079 * but let the other thread grab the driver tag.
1080 *
1081 * If no I/O scheduler has been configured it is possible that
1082 * the hardware queue got stopped and restarted before requests
1083 * were pushed back onto the dispatch list. Rerun the queue to
1084 * avoid starvation. Notes:
1085 * - blk_mq_run_hw_queue() checks whether or not a queue has
1086 * been stopped before rerunning a queue.
1087 * - Some but not all block drivers stop a queue before
1088 * returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1089 * and dm-rq.
1090 */
1091 if (!blk_mq_sched_needs_restart(hctx) &&
1092 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1093 blk_mq_run_hw_queue(hctx, true);
1094 }
1095
1096 return (queued + errors) != 0;
1097 }
1098
1099 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1100 {
1101 int srcu_idx;
1102
1103 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1104 cpu_online(hctx->next_cpu));
1105
1106 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1107 rcu_read_lock();
1108 blk_mq_sched_dispatch_requests(hctx);
1109 rcu_read_unlock();
1110 } else {
1111 might_sleep();
1112
1113 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1114 blk_mq_sched_dispatch_requests(hctx);
1115 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1116 }
1117 }
1118
1119 /*
1120 * It'd be great if the workqueue API had a way to pass
1121 * in a mask and had some smarts for more clever placement.
1122 * For now we just round-robin here, switching for every
1123 * BLK_MQ_CPU_WORK_BATCH queued items.
1124 */
1125 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1126 {
1127 if (hctx->queue->nr_hw_queues == 1)
1128 return WORK_CPU_UNBOUND;
1129
1130 if (--hctx->next_cpu_batch <= 0) {
1131 int next_cpu;
1132
1133 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1134 if (next_cpu >= nr_cpu_ids)
1135 next_cpu = cpumask_first(hctx->cpumask);
1136
1137 hctx->next_cpu = next_cpu;
1138 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1139 }
1140
1141 return hctx->next_cpu;
1142 }
1143
1144 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1145 unsigned long msecs)
1146 {
1147 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1148 !blk_mq_hw_queue_mapped(hctx)))
1149 return;
1150
1151 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1152 int cpu = get_cpu();
1153 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1154 __blk_mq_run_hw_queue(hctx);
1155 put_cpu();
1156 return;
1157 }
1158
1159 put_cpu();
1160 }
1161
1162 if (msecs == 0)
1163 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1164 &hctx->run_work);
1165 else
1166 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1167 &hctx->delayed_run_work,
1168 msecs_to_jiffies(msecs));
1169 }
1170
1171 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1172 {
1173 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1174 }
1175 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1176
1177 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1178 {
1179 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1180 }
1181 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1182
1183 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1184 {
1185 struct blk_mq_hw_ctx *hctx;
1186 int i;
1187
1188 queue_for_each_hw_ctx(q, hctx, i) {
1189 if (!blk_mq_hctx_has_pending(hctx) ||
1190 blk_mq_hctx_stopped(hctx))
1191 continue;
1192
1193 blk_mq_run_hw_queue(hctx, async);
1194 }
1195 }
1196 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1197
1198 /**
1199 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1200 * @q: request queue.
1201 *
1202 * The caller is responsible for serializing this function against
1203 * blk_mq_{start,stop}_hw_queue().
1204 */
1205 bool blk_mq_queue_stopped(struct request_queue *q)
1206 {
1207 struct blk_mq_hw_ctx *hctx;
1208 int i;
1209
1210 queue_for_each_hw_ctx(q, hctx, i)
1211 if (blk_mq_hctx_stopped(hctx))
1212 return true;
1213
1214 return false;
1215 }
1216 EXPORT_SYMBOL(blk_mq_queue_stopped);
1217
1218 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1219 {
1220 cancel_work(&hctx->run_work);
1221 cancel_delayed_work(&hctx->delay_work);
1222 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1223 }
1224 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1225
1226 void blk_mq_stop_hw_queues(struct request_queue *q)
1227 {
1228 struct blk_mq_hw_ctx *hctx;
1229 int i;
1230
1231 queue_for_each_hw_ctx(q, hctx, i)
1232 blk_mq_stop_hw_queue(hctx);
1233 }
1234 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1235
1236 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1237 {
1238 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1239
1240 blk_mq_run_hw_queue(hctx, false);
1241 }
1242 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1243
1244 void blk_mq_start_hw_queues(struct request_queue *q)
1245 {
1246 struct blk_mq_hw_ctx *hctx;
1247 int i;
1248
1249 queue_for_each_hw_ctx(q, hctx, i)
1250 blk_mq_start_hw_queue(hctx);
1251 }
1252 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1253
1254 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1255 {
1256 if (!blk_mq_hctx_stopped(hctx))
1257 return;
1258
1259 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1260 blk_mq_run_hw_queue(hctx, async);
1261 }
1262 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1263
1264 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1265 {
1266 struct blk_mq_hw_ctx *hctx;
1267 int i;
1268
1269 queue_for_each_hw_ctx(q, hctx, i)
1270 blk_mq_start_stopped_hw_queue(hctx, async);
1271 }
1272 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1273
1274 static void blk_mq_run_work_fn(struct work_struct *work)
1275 {
1276 struct blk_mq_hw_ctx *hctx;
1277
1278 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1279
1280 __blk_mq_run_hw_queue(hctx);
1281 }
1282
1283 static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1284 {
1285 struct blk_mq_hw_ctx *hctx;
1286
1287 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1288
1289 __blk_mq_run_hw_queue(hctx);
1290 }
1291
1292 static void blk_mq_delay_work_fn(struct work_struct *work)
1293 {
1294 struct blk_mq_hw_ctx *hctx;
1295
1296 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1297
1298 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1299 __blk_mq_run_hw_queue(hctx);
1300 }
1301
1302 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1303 {
1304 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1305 return;
1306
1307 blk_mq_stop_hw_queue(hctx);
1308 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1309 &hctx->delay_work, msecs_to_jiffies(msecs));
1310 }
1311 EXPORT_SYMBOL(blk_mq_delay_queue);
1312
1313 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1314 struct request *rq,
1315 bool at_head)
1316 {
1317 struct blk_mq_ctx *ctx = rq->mq_ctx;
1318
1319 trace_block_rq_insert(hctx->queue, rq);
1320
1321 if (at_head)
1322 list_add(&rq->queuelist, &ctx->rq_list);
1323 else
1324 list_add_tail(&rq->queuelist, &ctx->rq_list);
1325 }
1326
1327 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1328 bool at_head)
1329 {
1330 struct blk_mq_ctx *ctx = rq->mq_ctx;
1331
1332 __blk_mq_insert_req_list(hctx, rq, at_head);
1333 blk_mq_hctx_mark_pending(hctx, ctx);
1334 }
1335
1336 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1337 struct list_head *list)
1338
1339 {
1340 /*
1341 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1342 * offline now
1343 */
1344 spin_lock(&ctx->lock);
1345 while (!list_empty(list)) {
1346 struct request *rq;
1347
1348 rq = list_first_entry(list, struct request, queuelist);
1349 BUG_ON(rq->mq_ctx != ctx);
1350 list_del_init(&rq->queuelist);
1351 __blk_mq_insert_req_list(hctx, rq, false);
1352 }
1353 blk_mq_hctx_mark_pending(hctx, ctx);
1354 spin_unlock(&ctx->lock);
1355 }
1356
1357 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1358 {
1359 struct request *rqa = container_of(a, struct request, queuelist);
1360 struct request *rqb = container_of(b, struct request, queuelist);
1361
1362 return !(rqa->mq_ctx < rqb->mq_ctx ||
1363 (rqa->mq_ctx == rqb->mq_ctx &&
1364 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1365 }
1366
1367 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1368 {
1369 struct blk_mq_ctx *this_ctx;
1370 struct request_queue *this_q;
1371 struct request *rq;
1372 LIST_HEAD(list);
1373 LIST_HEAD(ctx_list);
1374 unsigned int depth;
1375
1376 list_splice_init(&plug->mq_list, &list);
1377
1378 list_sort(NULL, &list, plug_ctx_cmp);
1379
1380 this_q = NULL;
1381 this_ctx = NULL;
1382 depth = 0;
1383
1384 while (!list_empty(&list)) {
1385 rq = list_entry_rq(list.next);
1386 list_del_init(&rq->queuelist);
1387 BUG_ON(!rq->q);
1388 if (rq->mq_ctx != this_ctx) {
1389 if (this_ctx) {
1390 trace_block_unplug(this_q, depth, from_schedule);
1391 blk_mq_sched_insert_requests(this_q, this_ctx,
1392 &ctx_list,
1393 from_schedule);
1394 }
1395
1396 this_ctx = rq->mq_ctx;
1397 this_q = rq->q;
1398 depth = 0;
1399 }
1400
1401 depth++;
1402 list_add_tail(&rq->queuelist, &ctx_list);
1403 }
1404
1405 /*
1406 * If 'this_ctx' is set, we know we have entries to complete
1407 * on 'ctx_list'. Do those.
1408 */
1409 if (this_ctx) {
1410 trace_block_unplug(this_q, depth, from_schedule);
1411 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1412 from_schedule);
1413 }
1414 }
1415
1416 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1417 {
1418 blk_init_request_from_bio(rq, bio);
1419
1420 blk_account_io_start(rq, true);
1421 }
1422
1423 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1424 {
1425 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1426 !blk_queue_nomerges(hctx->queue);
1427 }
1428
1429 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1430 struct blk_mq_ctx *ctx,
1431 struct request *rq, struct bio *bio)
1432 {
1433 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1434 blk_mq_bio_to_request(rq, bio);
1435 spin_lock(&ctx->lock);
1436 insert_rq:
1437 __blk_mq_insert_request(hctx, rq, false);
1438 spin_unlock(&ctx->lock);
1439 return false;
1440 } else {
1441 struct request_queue *q = hctx->queue;
1442
1443 spin_lock(&ctx->lock);
1444 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1445 blk_mq_bio_to_request(rq, bio);
1446 goto insert_rq;
1447 }
1448
1449 spin_unlock(&ctx->lock);
1450 __blk_mq_finish_request(hctx, ctx, rq);
1451 return true;
1452 }
1453 }
1454
1455 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1456 {
1457 if (rq->tag != -1)
1458 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1459
1460 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1461 }
1462
1463 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1464 bool may_sleep)
1465 {
1466 struct request_queue *q = rq->q;
1467 struct blk_mq_queue_data bd = {
1468 .rq = rq,
1469 .last = true,
1470 };
1471 struct blk_mq_hw_ctx *hctx;
1472 blk_qc_t new_cookie;
1473 int ret;
1474
1475 if (q->elevator)
1476 goto insert;
1477
1478 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1479 goto insert;
1480
1481 new_cookie = request_to_qc_t(hctx, rq);
1482
1483 /*
1484 * For OK queue, we are done. For error, kill it. Any other
1485 * error (busy), just add it to our list as we previously
1486 * would have done
1487 */
1488 ret = q->mq_ops->queue_rq(hctx, &bd);
1489 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1490 *cookie = new_cookie;
1491 return;
1492 }
1493
1494 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1495 *cookie = BLK_QC_T_NONE;
1496 rq->errors = -EIO;
1497 blk_mq_end_request(rq, rq->errors);
1498 return;
1499 }
1500
1501 __blk_mq_requeue_request(rq);
1502 insert:
1503 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1504 }
1505
1506 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1507 struct request *rq, blk_qc_t *cookie)
1508 {
1509 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1510 rcu_read_lock();
1511 __blk_mq_try_issue_directly(rq, cookie, false);
1512 rcu_read_unlock();
1513 } else {
1514 unsigned int srcu_idx;
1515
1516 might_sleep();
1517
1518 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1519 __blk_mq_try_issue_directly(rq, cookie, true);
1520 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1521 }
1522 }
1523
1524 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1525 {
1526 const int is_sync = op_is_sync(bio->bi_opf);
1527 const int is_flush_fua = op_is_flush(bio->bi_opf);
1528 struct blk_mq_alloc_data data = { .flags = 0 };
1529 struct request *rq;
1530 unsigned int request_count = 0;
1531 struct blk_plug *plug;
1532 struct request *same_queue_rq = NULL;
1533 blk_qc_t cookie;
1534 unsigned int wb_acct;
1535
1536 blk_queue_bounce(q, &bio);
1537
1538 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1539 bio_io_error(bio);
1540 return BLK_QC_T_NONE;
1541 }
1542
1543 blk_queue_split(q, &bio, q->bio_split);
1544
1545 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1546 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1547 return BLK_QC_T_NONE;
1548
1549 if (blk_mq_sched_bio_merge(q, bio))
1550 return BLK_QC_T_NONE;
1551
1552 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1553
1554 trace_block_getrq(q, bio, bio->bi_opf);
1555
1556 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1557 if (unlikely(!rq)) {
1558 __wbt_done(q->rq_wb, wb_acct);
1559 return BLK_QC_T_NONE;
1560 }
1561
1562 wbt_track(&rq->issue_stat, wb_acct);
1563
1564 cookie = request_to_qc_t(data.hctx, rq);
1565
1566 plug = current->plug;
1567 if (unlikely(is_flush_fua)) {
1568 blk_mq_bio_to_request(rq, bio);
1569 if (q->elevator) {
1570 blk_mq_sched_insert_request(rq, false, true, true,
1571 true);
1572 } else {
1573 blk_insert_flush(rq);
1574 blk_mq_run_hw_queue(data.hctx, true);
1575 }
1576 } else if (plug && q->nr_hw_queues == 1) {
1577 struct request *last = NULL;
1578
1579 blk_mq_bio_to_request(rq, bio);
1580
1581 /*
1582 * @request_count may become stale because of schedule
1583 * out, so check the list again.
1584 */
1585 if (list_empty(&plug->mq_list))
1586 request_count = 0;
1587 else if (blk_queue_nomerges(q))
1588 request_count = blk_plug_queued_count(q);
1589
1590 if (!request_count)
1591 trace_block_plug(q);
1592 else
1593 last = list_entry_rq(plug->mq_list.prev);
1594
1595 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1596 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1597 blk_flush_plug_list(plug, false);
1598 trace_block_plug(q);
1599 }
1600
1601 list_add_tail(&rq->queuelist, &plug->mq_list);
1602 } else if (plug && !blk_queue_nomerges(q)) {
1603 blk_mq_bio_to_request(rq, bio);
1604
1605 /*
1606 * We do limited plugging. If the bio can be merged, do that.
1607 * Otherwise the existing request in the plug list will be
1608 * issued. So the plug list will have one request at most
1609 * The plug list might get flushed before this. If that happens,
1610 * the plug list is empty, and same_queue_rq is invalid.
1611 */
1612 if (list_empty(&plug->mq_list))
1613 same_queue_rq = NULL;
1614 if (same_queue_rq)
1615 list_del_init(&same_queue_rq->queuelist);
1616 list_add_tail(&rq->queuelist, &plug->mq_list);
1617
1618 blk_mq_put_ctx(data.ctx);
1619
1620 if (same_queue_rq)
1621 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1622 &cookie);
1623
1624 return cookie;
1625 } else if (q->nr_hw_queues > 1 && is_sync) {
1626 blk_mq_put_ctx(data.ctx);
1627 blk_mq_bio_to_request(rq, bio);
1628 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1629 return cookie;
1630 } else if (q->elevator) {
1631 blk_mq_bio_to_request(rq, bio);
1632 blk_mq_sched_insert_request(rq, false, true, true, true);
1633 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1634 blk_mq_run_hw_queue(data.hctx, true);
1635
1636 blk_mq_put_ctx(data.ctx);
1637 return cookie;
1638 }
1639
1640 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1641 unsigned int hctx_idx)
1642 {
1643 struct page *page;
1644
1645 if (tags->rqs && set->ops->exit_request) {
1646 int i;
1647
1648 for (i = 0; i < tags->nr_tags; i++) {
1649 struct request *rq = tags->static_rqs[i];
1650
1651 if (!rq)
1652 continue;
1653 set->ops->exit_request(set->driver_data, rq,
1654 hctx_idx, i);
1655 tags->static_rqs[i] = NULL;
1656 }
1657 }
1658
1659 while (!list_empty(&tags->page_list)) {
1660 page = list_first_entry(&tags->page_list, struct page, lru);
1661 list_del_init(&page->lru);
1662 /*
1663 * Remove kmemleak object previously allocated in
1664 * blk_mq_init_rq_map().
1665 */
1666 kmemleak_free(page_address(page));
1667 __free_pages(page, page->private);
1668 }
1669 }
1670
1671 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1672 {
1673 kfree(tags->rqs);
1674 tags->rqs = NULL;
1675 kfree(tags->static_rqs);
1676 tags->static_rqs = NULL;
1677
1678 blk_mq_free_tags(tags);
1679 }
1680
1681 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1682 unsigned int hctx_idx,
1683 unsigned int nr_tags,
1684 unsigned int reserved_tags)
1685 {
1686 struct blk_mq_tags *tags;
1687 int node;
1688
1689 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1690 if (node == NUMA_NO_NODE)
1691 node = set->numa_node;
1692
1693 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1694 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1695 if (!tags)
1696 return NULL;
1697
1698 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1699 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1700 node);
1701 if (!tags->rqs) {
1702 blk_mq_free_tags(tags);
1703 return NULL;
1704 }
1705
1706 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1707 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1708 node);
1709 if (!tags->static_rqs) {
1710 kfree(tags->rqs);
1711 blk_mq_free_tags(tags);
1712 return NULL;
1713 }
1714
1715 return tags;
1716 }
1717
1718 static size_t order_to_size(unsigned int order)
1719 {
1720 return (size_t)PAGE_SIZE << order;
1721 }
1722
1723 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1724 unsigned int hctx_idx, unsigned int depth)
1725 {
1726 unsigned int i, j, entries_per_page, max_order = 4;
1727 size_t rq_size, left;
1728 int node;
1729
1730 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1731 if (node == NUMA_NO_NODE)
1732 node = set->numa_node;
1733
1734 INIT_LIST_HEAD(&tags->page_list);
1735
1736 /*
1737 * rq_size is the size of the request plus driver payload, rounded
1738 * to the cacheline size
1739 */
1740 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1741 cache_line_size());
1742 left = rq_size * depth;
1743
1744 for (i = 0; i < depth; ) {
1745 int this_order = max_order;
1746 struct page *page;
1747 int to_do;
1748 void *p;
1749
1750 while (this_order && left < order_to_size(this_order - 1))
1751 this_order--;
1752
1753 do {
1754 page = alloc_pages_node(node,
1755 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1756 this_order);
1757 if (page)
1758 break;
1759 if (!this_order--)
1760 break;
1761 if (order_to_size(this_order) < rq_size)
1762 break;
1763 } while (1);
1764
1765 if (!page)
1766 goto fail;
1767
1768 page->private = this_order;
1769 list_add_tail(&page->lru, &tags->page_list);
1770
1771 p = page_address(page);
1772 /*
1773 * Allow kmemleak to scan these pages as they contain pointers
1774 * to additional allocations like via ops->init_request().
1775 */
1776 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1777 entries_per_page = order_to_size(this_order) / rq_size;
1778 to_do = min(entries_per_page, depth - i);
1779 left -= to_do * rq_size;
1780 for (j = 0; j < to_do; j++) {
1781 struct request *rq = p;
1782
1783 tags->static_rqs[i] = rq;
1784 if (set->ops->init_request) {
1785 if (set->ops->init_request(set->driver_data,
1786 rq, hctx_idx, i,
1787 node)) {
1788 tags->static_rqs[i] = NULL;
1789 goto fail;
1790 }
1791 }
1792
1793 p += rq_size;
1794 i++;
1795 }
1796 }
1797 return 0;
1798
1799 fail:
1800 blk_mq_free_rqs(set, tags, hctx_idx);
1801 return -ENOMEM;
1802 }
1803
1804 /*
1805 * 'cpu' is going away. splice any existing rq_list entries from this
1806 * software queue to the hw queue dispatch list, and ensure that it
1807 * gets run.
1808 */
1809 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1810 {
1811 struct blk_mq_hw_ctx *hctx;
1812 struct blk_mq_ctx *ctx;
1813 LIST_HEAD(tmp);
1814
1815 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1816 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1817
1818 spin_lock(&ctx->lock);
1819 if (!list_empty(&ctx->rq_list)) {
1820 list_splice_init(&ctx->rq_list, &tmp);
1821 blk_mq_hctx_clear_pending(hctx, ctx);
1822 }
1823 spin_unlock(&ctx->lock);
1824
1825 if (list_empty(&tmp))
1826 return 0;
1827
1828 spin_lock(&hctx->lock);
1829 list_splice_tail_init(&tmp, &hctx->dispatch);
1830 spin_unlock(&hctx->lock);
1831
1832 blk_mq_run_hw_queue(hctx, true);
1833 return 0;
1834 }
1835
1836 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1837 {
1838 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1839 &hctx->cpuhp_dead);
1840 }
1841
1842 /* hctx->ctxs will be freed in queue's release handler */
1843 static void blk_mq_exit_hctx(struct request_queue *q,
1844 struct blk_mq_tag_set *set,
1845 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1846 {
1847 unsigned flush_start_tag = set->queue_depth;
1848
1849 blk_mq_tag_idle(hctx);
1850
1851 if (set->ops->exit_request)
1852 set->ops->exit_request(set->driver_data,
1853 hctx->fq->flush_rq, hctx_idx,
1854 flush_start_tag + hctx_idx);
1855
1856 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1857
1858 if (set->ops->exit_hctx)
1859 set->ops->exit_hctx(hctx, hctx_idx);
1860
1861 if (hctx->flags & BLK_MQ_F_BLOCKING)
1862 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1863
1864 blk_mq_remove_cpuhp(hctx);
1865 blk_free_flush_queue(hctx->fq);
1866 sbitmap_free(&hctx->ctx_map);
1867 }
1868
1869 static void blk_mq_exit_hw_queues(struct request_queue *q,
1870 struct blk_mq_tag_set *set, int nr_queue)
1871 {
1872 struct blk_mq_hw_ctx *hctx;
1873 unsigned int i;
1874
1875 queue_for_each_hw_ctx(q, hctx, i) {
1876 if (i == nr_queue)
1877 break;
1878 blk_mq_exit_hctx(q, set, hctx, i);
1879 }
1880 }
1881
1882 static int blk_mq_init_hctx(struct request_queue *q,
1883 struct blk_mq_tag_set *set,
1884 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1885 {
1886 int node;
1887 unsigned flush_start_tag = set->queue_depth;
1888
1889 node = hctx->numa_node;
1890 if (node == NUMA_NO_NODE)
1891 node = hctx->numa_node = set->numa_node;
1892
1893 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1894 INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1895 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1896 spin_lock_init(&hctx->lock);
1897 INIT_LIST_HEAD(&hctx->dispatch);
1898 hctx->queue = q;
1899 hctx->queue_num = hctx_idx;
1900 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1901
1902 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1903
1904 hctx->tags = set->tags[hctx_idx];
1905
1906 /*
1907 * Allocate space for all possible cpus to avoid allocation at
1908 * runtime
1909 */
1910 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1911 GFP_KERNEL, node);
1912 if (!hctx->ctxs)
1913 goto unregister_cpu_notifier;
1914
1915 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1916 node))
1917 goto free_ctxs;
1918
1919 hctx->nr_ctx = 0;
1920
1921 if (set->ops->init_hctx &&
1922 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1923 goto free_bitmap;
1924
1925 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1926 goto exit_hctx;
1927
1928 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1929 if (!hctx->fq)
1930 goto sched_exit_hctx;
1931
1932 if (set->ops->init_request &&
1933 set->ops->init_request(set->driver_data,
1934 hctx->fq->flush_rq, hctx_idx,
1935 flush_start_tag + hctx_idx, node))
1936 goto free_fq;
1937
1938 if (hctx->flags & BLK_MQ_F_BLOCKING)
1939 init_srcu_struct(&hctx->queue_rq_srcu);
1940
1941 return 0;
1942
1943 free_fq:
1944 kfree(hctx->fq);
1945 sched_exit_hctx:
1946 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1947 exit_hctx:
1948 if (set->ops->exit_hctx)
1949 set->ops->exit_hctx(hctx, hctx_idx);
1950 free_bitmap:
1951 sbitmap_free(&hctx->ctx_map);
1952 free_ctxs:
1953 kfree(hctx->ctxs);
1954 unregister_cpu_notifier:
1955 blk_mq_remove_cpuhp(hctx);
1956 return -1;
1957 }
1958
1959 static void blk_mq_init_cpu_queues(struct request_queue *q,
1960 unsigned int nr_hw_queues)
1961 {
1962 unsigned int i;
1963
1964 for_each_possible_cpu(i) {
1965 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1966 struct blk_mq_hw_ctx *hctx;
1967
1968 __ctx->cpu = i;
1969 spin_lock_init(&__ctx->lock);
1970 INIT_LIST_HEAD(&__ctx->rq_list);
1971 __ctx->queue = q;
1972
1973 /* If the cpu isn't online, the cpu is mapped to first hctx */
1974 if (!cpu_online(i))
1975 continue;
1976
1977 hctx = blk_mq_map_queue(q, i);
1978
1979 /*
1980 * Set local node, IFF we have more than one hw queue. If
1981 * not, we remain on the home node of the device
1982 */
1983 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1984 hctx->numa_node = local_memory_node(cpu_to_node(i));
1985 }
1986 }
1987
1988 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1989 {
1990 int ret = 0;
1991
1992 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1993 set->queue_depth, set->reserved_tags);
1994 if (!set->tags[hctx_idx])
1995 return false;
1996
1997 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1998 set->queue_depth);
1999 if (!ret)
2000 return true;
2001
2002 blk_mq_free_rq_map(set->tags[hctx_idx]);
2003 set->tags[hctx_idx] = NULL;
2004 return false;
2005 }
2006
2007 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2008 unsigned int hctx_idx)
2009 {
2010 if (set->tags[hctx_idx]) {
2011 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2012 blk_mq_free_rq_map(set->tags[hctx_idx]);
2013 set->tags[hctx_idx] = NULL;
2014 }
2015 }
2016
2017 static void blk_mq_map_swqueue(struct request_queue *q,
2018 const struct cpumask *online_mask)
2019 {
2020 unsigned int i, hctx_idx;
2021 struct blk_mq_hw_ctx *hctx;
2022 struct blk_mq_ctx *ctx;
2023 struct blk_mq_tag_set *set = q->tag_set;
2024
2025 /*
2026 * Avoid others reading imcomplete hctx->cpumask through sysfs
2027 */
2028 mutex_lock(&q->sysfs_lock);
2029
2030 queue_for_each_hw_ctx(q, hctx, i) {
2031 cpumask_clear(hctx->cpumask);
2032 hctx->nr_ctx = 0;
2033 }
2034
2035 /*
2036 * Map software to hardware queues
2037 */
2038 for_each_possible_cpu(i) {
2039 /* If the cpu isn't online, the cpu is mapped to first hctx */
2040 if (!cpumask_test_cpu(i, online_mask))
2041 continue;
2042
2043 hctx_idx = q->mq_map[i];
2044 /* unmapped hw queue can be remapped after CPU topo changed */
2045 if (!set->tags[hctx_idx] &&
2046 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2047 /*
2048 * If tags initialization fail for some hctx,
2049 * that hctx won't be brought online. In this
2050 * case, remap the current ctx to hctx[0] which
2051 * is guaranteed to always have tags allocated
2052 */
2053 q->mq_map[i] = 0;
2054 }
2055
2056 ctx = per_cpu_ptr(q->queue_ctx, i);
2057 hctx = blk_mq_map_queue(q, i);
2058
2059 cpumask_set_cpu(i, hctx->cpumask);
2060 ctx->index_hw = hctx->nr_ctx;
2061 hctx->ctxs[hctx->nr_ctx++] = ctx;
2062 }
2063
2064 mutex_unlock(&q->sysfs_lock);
2065
2066 queue_for_each_hw_ctx(q, hctx, i) {
2067 /*
2068 * If no software queues are mapped to this hardware queue,
2069 * disable it and free the request entries.
2070 */
2071 if (!hctx->nr_ctx) {
2072 /* Never unmap queue 0. We need it as a
2073 * fallback in case of a new remap fails
2074 * allocation
2075 */
2076 if (i && set->tags[i])
2077 blk_mq_free_map_and_requests(set, i);
2078
2079 hctx->tags = NULL;
2080 continue;
2081 }
2082
2083 hctx->tags = set->tags[i];
2084 WARN_ON(!hctx->tags);
2085
2086 /*
2087 * Set the map size to the number of mapped software queues.
2088 * This is more accurate and more efficient than looping
2089 * over all possibly mapped software queues.
2090 */
2091 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2092
2093 /*
2094 * Initialize batch roundrobin counts
2095 */
2096 hctx->next_cpu = cpumask_first(hctx->cpumask);
2097 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2098 }
2099 }
2100
2101 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2102 {
2103 struct blk_mq_hw_ctx *hctx;
2104 int i;
2105
2106 queue_for_each_hw_ctx(q, hctx, i) {
2107 if (shared)
2108 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2109 else
2110 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2111 }
2112 }
2113
2114 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2115 {
2116 struct request_queue *q;
2117
2118 lockdep_assert_held(&set->tag_list_lock);
2119
2120 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2121 blk_mq_freeze_queue(q);
2122 queue_set_hctx_shared(q, shared);
2123 blk_mq_unfreeze_queue(q);
2124 }
2125 }
2126
2127 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2128 {
2129 struct blk_mq_tag_set *set = q->tag_set;
2130
2131 mutex_lock(&set->tag_list_lock);
2132 list_del_rcu(&q->tag_set_list);
2133 INIT_LIST_HEAD(&q->tag_set_list);
2134 if (list_is_singular(&set->tag_list)) {
2135 /* just transitioned to unshared */
2136 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2137 /* update existing queue */
2138 blk_mq_update_tag_set_depth(set, false);
2139 }
2140 mutex_unlock(&set->tag_list_lock);
2141
2142 synchronize_rcu();
2143 }
2144
2145 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2146 struct request_queue *q)
2147 {
2148 q->tag_set = set;
2149
2150 mutex_lock(&set->tag_list_lock);
2151
2152 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2153 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2154 set->flags |= BLK_MQ_F_TAG_SHARED;
2155 /* update existing queue */
2156 blk_mq_update_tag_set_depth(set, true);
2157 }
2158 if (set->flags & BLK_MQ_F_TAG_SHARED)
2159 queue_set_hctx_shared(q, true);
2160 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2161
2162 mutex_unlock(&set->tag_list_lock);
2163 }
2164
2165 /*
2166 * It is the actual release handler for mq, but we do it from
2167 * request queue's release handler for avoiding use-after-free
2168 * and headache because q->mq_kobj shouldn't have been introduced,
2169 * but we can't group ctx/kctx kobj without it.
2170 */
2171 void blk_mq_release(struct request_queue *q)
2172 {
2173 struct blk_mq_hw_ctx *hctx;
2174 unsigned int i;
2175
2176 /* hctx kobj stays in hctx */
2177 queue_for_each_hw_ctx(q, hctx, i) {
2178 if (!hctx)
2179 continue;
2180 kobject_put(&hctx->kobj);
2181 }
2182
2183 q->mq_map = NULL;
2184
2185 kfree(q->queue_hw_ctx);
2186
2187 /*
2188 * release .mq_kobj and sw queue's kobject now because
2189 * both share lifetime with request queue.
2190 */
2191 blk_mq_sysfs_deinit(q);
2192
2193 free_percpu(q->queue_ctx);
2194 }
2195
2196 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2197 {
2198 struct request_queue *uninit_q, *q;
2199
2200 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2201 if (!uninit_q)
2202 return ERR_PTR(-ENOMEM);
2203
2204 q = blk_mq_init_allocated_queue(set, uninit_q);
2205 if (IS_ERR(q))
2206 blk_cleanup_queue(uninit_q);
2207
2208 return q;
2209 }
2210 EXPORT_SYMBOL(blk_mq_init_queue);
2211
2212 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2213 struct request_queue *q)
2214 {
2215 int i, j;
2216 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2217
2218 blk_mq_sysfs_unregister(q);
2219 for (i = 0; i < set->nr_hw_queues; i++) {
2220 int node;
2221
2222 if (hctxs[i])
2223 continue;
2224
2225 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2226 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2227 GFP_KERNEL, node);
2228 if (!hctxs[i])
2229 break;
2230
2231 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2232 node)) {
2233 kfree(hctxs[i]);
2234 hctxs[i] = NULL;
2235 break;
2236 }
2237
2238 atomic_set(&hctxs[i]->nr_active, 0);
2239 hctxs[i]->numa_node = node;
2240 hctxs[i]->queue_num = i;
2241
2242 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2243 free_cpumask_var(hctxs[i]->cpumask);
2244 kfree(hctxs[i]);
2245 hctxs[i] = NULL;
2246 break;
2247 }
2248 blk_mq_hctx_kobj_init(hctxs[i]);
2249 }
2250 for (j = i; j < q->nr_hw_queues; j++) {
2251 struct blk_mq_hw_ctx *hctx = hctxs[j];
2252
2253 if (hctx) {
2254 if (hctx->tags)
2255 blk_mq_free_map_and_requests(set, j);
2256 blk_mq_exit_hctx(q, set, hctx, j);
2257 kobject_put(&hctx->kobj);
2258 hctxs[j] = NULL;
2259
2260 }
2261 }
2262 q->nr_hw_queues = i;
2263 blk_mq_sysfs_register(q);
2264 }
2265
2266 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2267 struct request_queue *q)
2268 {
2269 /* mark the queue as mq asap */
2270 q->mq_ops = set->ops;
2271
2272 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2273 blk_stat_rq_ddir, 2, q);
2274 if (!q->poll_cb)
2275 goto err_exit;
2276
2277 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2278 if (!q->queue_ctx)
2279 goto err_exit;
2280
2281 /* init q->mq_kobj and sw queues' kobjects */
2282 blk_mq_sysfs_init(q);
2283
2284 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2285 GFP_KERNEL, set->numa_node);
2286 if (!q->queue_hw_ctx)
2287 goto err_percpu;
2288
2289 q->mq_map = set->mq_map;
2290
2291 blk_mq_realloc_hw_ctxs(set, q);
2292 if (!q->nr_hw_queues)
2293 goto err_hctxs;
2294
2295 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2296 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2297
2298 q->nr_queues = nr_cpu_ids;
2299
2300 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2301
2302 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2303 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2304
2305 q->sg_reserved_size = INT_MAX;
2306
2307 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2308 INIT_LIST_HEAD(&q->requeue_list);
2309 spin_lock_init(&q->requeue_lock);
2310
2311 blk_queue_make_request(q, blk_mq_make_request);
2312
2313 /*
2314 * Do this after blk_queue_make_request() overrides it...
2315 */
2316 q->nr_requests = set->queue_depth;
2317
2318 /*
2319 * Default to classic polling
2320 */
2321 q->poll_nsec = -1;
2322
2323 if (set->ops->complete)
2324 blk_queue_softirq_done(q, set->ops->complete);
2325
2326 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2327
2328 get_online_cpus();
2329 mutex_lock(&all_q_mutex);
2330
2331 list_add_tail(&q->all_q_node, &all_q_list);
2332 blk_mq_add_queue_tag_set(set, q);
2333 blk_mq_map_swqueue(q, cpu_online_mask);
2334
2335 mutex_unlock(&all_q_mutex);
2336 put_online_cpus();
2337
2338 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2339 int ret;
2340
2341 ret = blk_mq_sched_init(q);
2342 if (ret)
2343 return ERR_PTR(ret);
2344 }
2345
2346 return q;
2347
2348 err_hctxs:
2349 kfree(q->queue_hw_ctx);
2350 err_percpu:
2351 free_percpu(q->queue_ctx);
2352 err_exit:
2353 q->mq_ops = NULL;
2354 return ERR_PTR(-ENOMEM);
2355 }
2356 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2357
2358 void blk_mq_free_queue(struct request_queue *q)
2359 {
2360 struct blk_mq_tag_set *set = q->tag_set;
2361
2362 mutex_lock(&all_q_mutex);
2363 list_del_init(&q->all_q_node);
2364 mutex_unlock(&all_q_mutex);
2365
2366 blk_mq_del_queue_tag_set(q);
2367
2368 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2369 }
2370
2371 /* Basically redo blk_mq_init_queue with queue frozen */
2372 static void blk_mq_queue_reinit(struct request_queue *q,
2373 const struct cpumask *online_mask)
2374 {
2375 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2376
2377 blk_mq_sysfs_unregister(q);
2378
2379 /*
2380 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2381 * we should change hctx numa_node according to new topology (this
2382 * involves free and re-allocate memory, worthy doing?)
2383 */
2384
2385 blk_mq_map_swqueue(q, online_mask);
2386
2387 blk_mq_sysfs_register(q);
2388 }
2389
2390 /*
2391 * New online cpumask which is going to be set in this hotplug event.
2392 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2393 * one-by-one and dynamically allocating this could result in a failure.
2394 */
2395 static struct cpumask cpuhp_online_new;
2396
2397 static void blk_mq_queue_reinit_work(void)
2398 {
2399 struct request_queue *q;
2400
2401 mutex_lock(&all_q_mutex);
2402 /*
2403 * We need to freeze and reinit all existing queues. Freezing
2404 * involves synchronous wait for an RCU grace period and doing it
2405 * one by one may take a long time. Start freezing all queues in
2406 * one swoop and then wait for the completions so that freezing can
2407 * take place in parallel.
2408 */
2409 list_for_each_entry(q, &all_q_list, all_q_node)
2410 blk_freeze_queue_start(q);
2411 list_for_each_entry(q, &all_q_list, all_q_node)
2412 blk_mq_freeze_queue_wait(q);
2413
2414 list_for_each_entry(q, &all_q_list, all_q_node)
2415 blk_mq_queue_reinit(q, &cpuhp_online_new);
2416
2417 list_for_each_entry(q, &all_q_list, all_q_node)
2418 blk_mq_unfreeze_queue(q);
2419
2420 mutex_unlock(&all_q_mutex);
2421 }
2422
2423 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2424 {
2425 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2426 blk_mq_queue_reinit_work();
2427 return 0;
2428 }
2429
2430 /*
2431 * Before hotadded cpu starts handling requests, new mappings must be
2432 * established. Otherwise, these requests in hw queue might never be
2433 * dispatched.
2434 *
2435 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2436 * for CPU0, and ctx1 for CPU1).
2437 *
2438 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2439 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2440 *
2441 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2442 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2443 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2444 * ignored.
2445 */
2446 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2447 {
2448 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2449 cpumask_set_cpu(cpu, &cpuhp_online_new);
2450 blk_mq_queue_reinit_work();
2451 return 0;
2452 }
2453
2454 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2455 {
2456 int i;
2457
2458 for (i = 0; i < set->nr_hw_queues; i++)
2459 if (!__blk_mq_alloc_rq_map(set, i))
2460 goto out_unwind;
2461
2462 return 0;
2463
2464 out_unwind:
2465 while (--i >= 0)
2466 blk_mq_free_rq_map(set->tags[i]);
2467
2468 return -ENOMEM;
2469 }
2470
2471 /*
2472 * Allocate the request maps associated with this tag_set. Note that this
2473 * may reduce the depth asked for, if memory is tight. set->queue_depth
2474 * will be updated to reflect the allocated depth.
2475 */
2476 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2477 {
2478 unsigned int depth;
2479 int err;
2480
2481 depth = set->queue_depth;
2482 do {
2483 err = __blk_mq_alloc_rq_maps(set);
2484 if (!err)
2485 break;
2486
2487 set->queue_depth >>= 1;
2488 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2489 err = -ENOMEM;
2490 break;
2491 }
2492 } while (set->queue_depth);
2493
2494 if (!set->queue_depth || err) {
2495 pr_err("blk-mq: failed to allocate request map\n");
2496 return -ENOMEM;
2497 }
2498
2499 if (depth != set->queue_depth)
2500 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2501 depth, set->queue_depth);
2502
2503 return 0;
2504 }
2505
2506 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2507 {
2508 if (set->ops->map_queues)
2509 return set->ops->map_queues(set);
2510 else
2511 return blk_mq_map_queues(set);
2512 }
2513
2514 /*
2515 * Alloc a tag set to be associated with one or more request queues.
2516 * May fail with EINVAL for various error conditions. May adjust the
2517 * requested depth down, if if it too large. In that case, the set
2518 * value will be stored in set->queue_depth.
2519 */
2520 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2521 {
2522 int ret;
2523
2524 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2525
2526 if (!set->nr_hw_queues)
2527 return -EINVAL;
2528 if (!set->queue_depth)
2529 return -EINVAL;
2530 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2531 return -EINVAL;
2532
2533 if (!set->ops->queue_rq)
2534 return -EINVAL;
2535
2536 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2537 pr_info("blk-mq: reduced tag depth to %u\n",
2538 BLK_MQ_MAX_DEPTH);
2539 set->queue_depth = BLK_MQ_MAX_DEPTH;
2540 }
2541
2542 /*
2543 * If a crashdump is active, then we are potentially in a very
2544 * memory constrained environment. Limit us to 1 queue and
2545 * 64 tags to prevent using too much memory.
2546 */
2547 if (is_kdump_kernel()) {
2548 set->nr_hw_queues = 1;
2549 set->queue_depth = min(64U, set->queue_depth);
2550 }
2551 /*
2552 * There is no use for more h/w queues than cpus.
2553 */
2554 if (set->nr_hw_queues > nr_cpu_ids)
2555 set->nr_hw_queues = nr_cpu_ids;
2556
2557 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2558 GFP_KERNEL, set->numa_node);
2559 if (!set->tags)
2560 return -ENOMEM;
2561
2562 ret = -ENOMEM;
2563 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2564 GFP_KERNEL, set->numa_node);
2565 if (!set->mq_map)
2566 goto out_free_tags;
2567
2568 ret = blk_mq_update_queue_map(set);
2569 if (ret)
2570 goto out_free_mq_map;
2571
2572 ret = blk_mq_alloc_rq_maps(set);
2573 if (ret)
2574 goto out_free_mq_map;
2575
2576 mutex_init(&set->tag_list_lock);
2577 INIT_LIST_HEAD(&set->tag_list);
2578
2579 return 0;
2580
2581 out_free_mq_map:
2582 kfree(set->mq_map);
2583 set->mq_map = NULL;
2584 out_free_tags:
2585 kfree(set->tags);
2586 set->tags = NULL;
2587 return ret;
2588 }
2589 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2590
2591 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2592 {
2593 int i;
2594
2595 for (i = 0; i < nr_cpu_ids; i++)
2596 blk_mq_free_map_and_requests(set, i);
2597
2598 kfree(set->mq_map);
2599 set->mq_map = NULL;
2600
2601 kfree(set->tags);
2602 set->tags = NULL;
2603 }
2604 EXPORT_SYMBOL(blk_mq_free_tag_set);
2605
2606 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2607 {
2608 struct blk_mq_tag_set *set = q->tag_set;
2609 struct blk_mq_hw_ctx *hctx;
2610 int i, ret;
2611
2612 if (!set)
2613 return -EINVAL;
2614
2615 blk_mq_freeze_queue(q);
2616 blk_mq_quiesce_queue(q);
2617
2618 ret = 0;
2619 queue_for_each_hw_ctx(q, hctx, i) {
2620 if (!hctx->tags)
2621 continue;
2622 /*
2623 * If we're using an MQ scheduler, just update the scheduler
2624 * queue depth. This is similar to what the old code would do.
2625 */
2626 if (!hctx->sched_tags) {
2627 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2628 min(nr, set->queue_depth),
2629 false);
2630 } else {
2631 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2632 nr, true);
2633 }
2634 if (ret)
2635 break;
2636 }
2637
2638 if (!ret)
2639 q->nr_requests = nr;
2640
2641 blk_mq_unfreeze_queue(q);
2642 blk_mq_start_stopped_hw_queues(q, true);
2643
2644 return ret;
2645 }
2646
2647 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2648 {
2649 struct request_queue *q;
2650
2651 lockdep_assert_held(&set->tag_list_lock);
2652
2653 if (nr_hw_queues > nr_cpu_ids)
2654 nr_hw_queues = nr_cpu_ids;
2655 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2656 return;
2657
2658 list_for_each_entry(q, &set->tag_list, tag_set_list)
2659 blk_mq_freeze_queue(q);
2660
2661 set->nr_hw_queues = nr_hw_queues;
2662 blk_mq_update_queue_map(set);
2663 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2664 blk_mq_realloc_hw_ctxs(set, q);
2665 blk_mq_queue_reinit(q, cpu_online_mask);
2666 }
2667
2668 list_for_each_entry(q, &set->tag_list, tag_set_list)
2669 blk_mq_unfreeze_queue(q);
2670 }
2671 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2672
2673 /* Enable polling stats and return whether they were already enabled. */
2674 static bool blk_poll_stats_enable(struct request_queue *q)
2675 {
2676 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2677 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2678 return true;
2679 blk_stat_add_callback(q, q->poll_cb);
2680 return false;
2681 }
2682
2683 static void blk_mq_poll_stats_start(struct request_queue *q)
2684 {
2685 /*
2686 * We don't arm the callback if polling stats are not enabled or the
2687 * callback is already active.
2688 */
2689 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2690 blk_stat_is_active(q->poll_cb))
2691 return;
2692
2693 blk_stat_activate_msecs(q->poll_cb, 100);
2694 }
2695
2696 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2697 {
2698 struct request_queue *q = cb->data;
2699
2700 if (cb->stat[READ].nr_samples)
2701 q->poll_stat[READ] = cb->stat[READ];
2702 if (cb->stat[WRITE].nr_samples)
2703 q->poll_stat[WRITE] = cb->stat[WRITE];
2704 }
2705
2706 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2707 struct blk_mq_hw_ctx *hctx,
2708 struct request *rq)
2709 {
2710 unsigned long ret = 0;
2711
2712 /*
2713 * If stats collection isn't on, don't sleep but turn it on for
2714 * future users
2715 */
2716 if (!blk_poll_stats_enable(q))
2717 return 0;
2718
2719 /*
2720 * As an optimistic guess, use half of the mean service time
2721 * for this type of request. We can (and should) make this smarter.
2722 * For instance, if the completion latencies are tight, we can
2723 * get closer than just half the mean. This is especially
2724 * important on devices where the completion latencies are longer
2725 * than ~10 usec.
2726 */
2727 if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2728 ret = (q->poll_stat[READ].mean + 1) / 2;
2729 else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2730 ret = (q->poll_stat[WRITE].mean + 1) / 2;
2731
2732 return ret;
2733 }
2734
2735 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2736 struct blk_mq_hw_ctx *hctx,
2737 struct request *rq)
2738 {
2739 struct hrtimer_sleeper hs;
2740 enum hrtimer_mode mode;
2741 unsigned int nsecs;
2742 ktime_t kt;
2743
2744 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2745 return false;
2746
2747 /*
2748 * poll_nsec can be:
2749 *
2750 * -1: don't ever hybrid sleep
2751 * 0: use half of prev avg
2752 * >0: use this specific value
2753 */
2754 if (q->poll_nsec == -1)
2755 return false;
2756 else if (q->poll_nsec > 0)
2757 nsecs = q->poll_nsec;
2758 else
2759 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2760
2761 if (!nsecs)
2762 return false;
2763
2764 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2765
2766 /*
2767 * This will be replaced with the stats tracking code, using
2768 * 'avg_completion_time / 2' as the pre-sleep target.
2769 */
2770 kt = nsecs;
2771
2772 mode = HRTIMER_MODE_REL;
2773 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2774 hrtimer_set_expires(&hs.timer, kt);
2775
2776 hrtimer_init_sleeper(&hs, current);
2777 do {
2778 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2779 break;
2780 set_current_state(TASK_UNINTERRUPTIBLE);
2781 hrtimer_start_expires(&hs.timer, mode);
2782 if (hs.task)
2783 io_schedule();
2784 hrtimer_cancel(&hs.timer);
2785 mode = HRTIMER_MODE_ABS;
2786 } while (hs.task && !signal_pending(current));
2787
2788 __set_current_state(TASK_RUNNING);
2789 destroy_hrtimer_on_stack(&hs.timer);
2790 return true;
2791 }
2792
2793 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2794 {
2795 struct request_queue *q = hctx->queue;
2796 long state;
2797
2798 /*
2799 * If we sleep, have the caller restart the poll loop to reset
2800 * the state. Like for the other success return cases, the
2801 * caller is responsible for checking if the IO completed. If
2802 * the IO isn't complete, we'll get called again and will go
2803 * straight to the busy poll loop.
2804 */
2805 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2806 return true;
2807
2808 hctx->poll_considered++;
2809
2810 state = current->state;
2811 while (!need_resched()) {
2812 int ret;
2813
2814 hctx->poll_invoked++;
2815
2816 ret = q->mq_ops->poll(hctx, rq->tag);
2817 if (ret > 0) {
2818 hctx->poll_success++;
2819 set_current_state(TASK_RUNNING);
2820 return true;
2821 }
2822
2823 if (signal_pending_state(state, current))
2824 set_current_state(TASK_RUNNING);
2825
2826 if (current->state == TASK_RUNNING)
2827 return true;
2828 if (ret < 0)
2829 break;
2830 cpu_relax();
2831 }
2832
2833 return false;
2834 }
2835
2836 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2837 {
2838 struct blk_mq_hw_ctx *hctx;
2839 struct blk_plug *plug;
2840 struct request *rq;
2841
2842 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2843 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2844 return false;
2845
2846 plug = current->plug;
2847 if (plug)
2848 blk_flush_plug_list(plug, false);
2849
2850 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2851 if (!blk_qc_t_is_internal(cookie))
2852 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2853 else
2854 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2855
2856 return __blk_mq_poll(hctx, rq);
2857 }
2858 EXPORT_SYMBOL_GPL(blk_mq_poll);
2859
2860 void blk_mq_disable_hotplug(void)
2861 {
2862 mutex_lock(&all_q_mutex);
2863 }
2864
2865 void blk_mq_enable_hotplug(void)
2866 {
2867 mutex_unlock(&all_q_mutex);
2868 }
2869
2870 static int __init blk_mq_init(void)
2871 {
2872 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2873 blk_mq_hctx_notify_dead);
2874
2875 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2876 blk_mq_queue_reinit_prepare,
2877 blk_mq_queue_reinit_dead);
2878 return 0;
2879 }
2880 subsys_initcall(blk_mq_init);