]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
block: switch to per-cpu in-flight counters
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
45 {
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59 }
60
61 /*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65 {
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69 }
70
71 /*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76 {
77 const int bit = ctx->index_hw[hctx->type];
78
79 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 sbitmap_set_bit(&hctx->ctx_map, bit);
81 }
82
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85 {
86 const int bit = ctx->index_hw[hctx->type];
87
88 sbitmap_clear_bit(&hctx->ctx_map, bit);
89 }
90
91 struct mq_inflight {
92 struct hd_struct *part;
93 unsigned int *inflight;
94 };
95
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97 struct request *rq, void *priv,
98 bool reserved)
99 {
100 struct mq_inflight *mi = priv;
101
102 /*
103 * index[0] counts the specific partition that was asked for. index[1]
104 * counts the ones that are active on the whole device, so increment
105 * that if mi->part is indeed a partition, and not a whole device.
106 */
107 if (rq->part == mi->part)
108 mi->inflight[0]++;
109 if (mi->part->partno)
110 mi->inflight[1]++;
111
112 return true;
113 }
114
115 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
116 unsigned int inflight[2])
117 {
118 struct mq_inflight mi = { .part = part, .inflight = inflight, };
119
120 inflight[0] = inflight[1] = 0;
121 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
122 }
123
124 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
125 struct request *rq, void *priv,
126 bool reserved)
127 {
128 struct mq_inflight *mi = priv;
129
130 if (rq->part == mi->part)
131 mi->inflight[rq_data_dir(rq)]++;
132
133 return true;
134 }
135
136 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
137 unsigned int inflight[2])
138 {
139 struct mq_inflight mi = { .part = part, .inflight = inflight, };
140
141 inflight[0] = inflight[1] = 0;
142 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 }
144
145 void blk_freeze_queue_start(struct request_queue *q)
146 {
147 int freeze_depth;
148
149 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
150 if (freeze_depth == 1) {
151 percpu_ref_kill(&q->q_usage_counter);
152 if (queue_is_mq(q))
153 blk_mq_run_hw_queues(q, false);
154 }
155 }
156 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
157
158 void blk_mq_freeze_queue_wait(struct request_queue *q)
159 {
160 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
161 }
162 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
163
164 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
165 unsigned long timeout)
166 {
167 return wait_event_timeout(q->mq_freeze_wq,
168 percpu_ref_is_zero(&q->q_usage_counter),
169 timeout);
170 }
171 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
172
173 /*
174 * Guarantee no request is in use, so we can change any data structure of
175 * the queue afterward.
176 */
177 void blk_freeze_queue(struct request_queue *q)
178 {
179 /*
180 * In the !blk_mq case we are only calling this to kill the
181 * q_usage_counter, otherwise this increases the freeze depth
182 * and waits for it to return to zero. For this reason there is
183 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
184 * exported to drivers as the only user for unfreeze is blk_mq.
185 */
186 blk_freeze_queue_start(q);
187 blk_mq_freeze_queue_wait(q);
188 }
189
190 void blk_mq_freeze_queue(struct request_queue *q)
191 {
192 /*
193 * ...just an alias to keep freeze and unfreeze actions balanced
194 * in the blk_mq_* namespace
195 */
196 blk_freeze_queue(q);
197 }
198 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
199
200 void blk_mq_unfreeze_queue(struct request_queue *q)
201 {
202 int freeze_depth;
203
204 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
205 WARN_ON_ONCE(freeze_depth < 0);
206 if (!freeze_depth) {
207 percpu_ref_resurrect(&q->q_usage_counter);
208 wake_up_all(&q->mq_freeze_wq);
209 }
210 }
211 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
212
213 /*
214 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
215 * mpt3sas driver such that this function can be removed.
216 */
217 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
218 {
219 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
220 }
221 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
222
223 /**
224 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
225 * @q: request queue.
226 *
227 * Note: this function does not prevent that the struct request end_io()
228 * callback function is invoked. Once this function is returned, we make
229 * sure no dispatch can happen until the queue is unquiesced via
230 * blk_mq_unquiesce_queue().
231 */
232 void blk_mq_quiesce_queue(struct request_queue *q)
233 {
234 struct blk_mq_hw_ctx *hctx;
235 unsigned int i;
236 bool rcu = false;
237
238 blk_mq_quiesce_queue_nowait(q);
239
240 queue_for_each_hw_ctx(q, hctx, i) {
241 if (hctx->flags & BLK_MQ_F_BLOCKING)
242 synchronize_srcu(hctx->srcu);
243 else
244 rcu = true;
245 }
246 if (rcu)
247 synchronize_rcu();
248 }
249 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250
251 /*
252 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
253 * @q: request queue.
254 *
255 * This function recovers queue into the state before quiescing
256 * which is done by blk_mq_quiesce_queue.
257 */
258 void blk_mq_unquiesce_queue(struct request_queue *q)
259 {
260 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
261
262 /* dispatch requests which are inserted during quiescing */
263 blk_mq_run_hw_queues(q, true);
264 }
265 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
266
267 void blk_mq_wake_waiters(struct request_queue *q)
268 {
269 struct blk_mq_hw_ctx *hctx;
270 unsigned int i;
271
272 queue_for_each_hw_ctx(q, hctx, i)
273 if (blk_mq_hw_queue_mapped(hctx))
274 blk_mq_tag_wakeup_all(hctx->tags, true);
275 }
276
277 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
278 {
279 return blk_mq_has_free_tags(hctx->tags);
280 }
281 EXPORT_SYMBOL(blk_mq_can_queue);
282
283 /*
284 * Only need start/end time stamping if we have stats enabled, or using
285 * an IO scheduler.
286 */
287 static inline bool blk_mq_need_time_stamp(struct request *rq)
288 {
289 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
290 }
291
292 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293 unsigned int tag, unsigned int op)
294 {
295 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296 struct request *rq = tags->static_rqs[tag];
297 req_flags_t rq_flags = 0;
298
299 if (data->flags & BLK_MQ_REQ_INTERNAL) {
300 rq->tag = -1;
301 rq->internal_tag = tag;
302 } else {
303 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
304 rq_flags = RQF_MQ_INFLIGHT;
305 atomic_inc(&data->hctx->nr_active);
306 }
307 rq->tag = tag;
308 rq->internal_tag = -1;
309 data->hctx->tags->rqs[rq->tag] = rq;
310 }
311
312 /* csd/requeue_work/fifo_time is initialized before use */
313 rq->q = data->q;
314 rq->mq_ctx = data->ctx;
315 rq->mq_hctx = data->hctx;
316 rq->rq_flags = rq_flags;
317 rq->cmd_flags = op;
318 if (data->flags & BLK_MQ_REQ_PREEMPT)
319 rq->rq_flags |= RQF_PREEMPT;
320 if (blk_queue_io_stat(data->q))
321 rq->rq_flags |= RQF_IO_STAT;
322 INIT_LIST_HEAD(&rq->queuelist);
323 INIT_HLIST_NODE(&rq->hash);
324 RB_CLEAR_NODE(&rq->rb_node);
325 rq->rq_disk = NULL;
326 rq->part = NULL;
327 if (blk_mq_need_time_stamp(rq))
328 rq->start_time_ns = ktime_get_ns();
329 else
330 rq->start_time_ns = 0;
331 rq->io_start_time_ns = 0;
332 rq->nr_phys_segments = 0;
333 #if defined(CONFIG_BLK_DEV_INTEGRITY)
334 rq->nr_integrity_segments = 0;
335 #endif
336 rq->special = NULL;
337 /* tag was already set */
338 rq->extra_len = 0;
339 WRITE_ONCE(rq->deadline, 0);
340
341 rq->timeout = 0;
342
343 rq->end_io = NULL;
344 rq->end_io_data = NULL;
345 rq->next_rq = NULL;
346
347 data->ctx->rq_dispatched[op_is_sync(op)]++;
348 refcount_set(&rq->ref, 1);
349 return rq;
350 }
351
352 static struct request *blk_mq_get_request(struct request_queue *q,
353 struct bio *bio,
354 struct blk_mq_alloc_data *data)
355 {
356 struct elevator_queue *e = q->elevator;
357 struct request *rq;
358 unsigned int tag;
359 bool put_ctx_on_error = false;
360
361 blk_queue_enter_live(q);
362 data->q = q;
363 if (likely(!data->ctx)) {
364 data->ctx = blk_mq_get_ctx(q);
365 put_ctx_on_error = true;
366 }
367 if (likely(!data->hctx))
368 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
369 data->ctx->cpu);
370 if (data->cmd_flags & REQ_NOWAIT)
371 data->flags |= BLK_MQ_REQ_NOWAIT;
372
373 if (e) {
374 data->flags |= BLK_MQ_REQ_INTERNAL;
375
376 /*
377 * Flush requests are special and go directly to the
378 * dispatch list. Don't include reserved tags in the
379 * limiting, as it isn't useful.
380 */
381 if (!op_is_flush(data->cmd_flags) &&
382 e->type->ops.limit_depth &&
383 !(data->flags & BLK_MQ_REQ_RESERVED))
384 e->type->ops.limit_depth(data->cmd_flags, data);
385 } else {
386 blk_mq_tag_busy(data->hctx);
387 }
388
389 tag = blk_mq_get_tag(data);
390 if (tag == BLK_MQ_TAG_FAIL) {
391 if (put_ctx_on_error) {
392 blk_mq_put_ctx(data->ctx);
393 data->ctx = NULL;
394 }
395 blk_queue_exit(q);
396 return NULL;
397 }
398
399 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
400 if (!op_is_flush(data->cmd_flags)) {
401 rq->elv.icq = NULL;
402 if (e && e->type->ops.prepare_request) {
403 if (e->type->icq_cache)
404 blk_mq_sched_assign_ioc(rq);
405
406 e->type->ops.prepare_request(rq, bio);
407 rq->rq_flags |= RQF_ELVPRIV;
408 }
409 }
410 data->hctx->queued++;
411 return rq;
412 }
413
414 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
415 blk_mq_req_flags_t flags)
416 {
417 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
418 struct request *rq;
419 int ret;
420
421 ret = blk_queue_enter(q, flags);
422 if (ret)
423 return ERR_PTR(ret);
424
425 rq = blk_mq_get_request(q, NULL, &alloc_data);
426 blk_queue_exit(q);
427
428 if (!rq)
429 return ERR_PTR(-EWOULDBLOCK);
430
431 blk_mq_put_ctx(alloc_data.ctx);
432
433 rq->__data_len = 0;
434 rq->__sector = (sector_t) -1;
435 rq->bio = rq->biotail = NULL;
436 return rq;
437 }
438 EXPORT_SYMBOL(blk_mq_alloc_request);
439
440 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
441 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
442 {
443 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
444 struct request *rq;
445 unsigned int cpu;
446 int ret;
447
448 /*
449 * If the tag allocator sleeps we could get an allocation for a
450 * different hardware context. No need to complicate the low level
451 * allocator for this for the rare use case of a command tied to
452 * a specific queue.
453 */
454 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
455 return ERR_PTR(-EINVAL);
456
457 if (hctx_idx >= q->nr_hw_queues)
458 return ERR_PTR(-EIO);
459
460 ret = blk_queue_enter(q, flags);
461 if (ret)
462 return ERR_PTR(ret);
463
464 /*
465 * Check if the hardware context is actually mapped to anything.
466 * If not tell the caller that it should skip this queue.
467 */
468 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
469 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
470 blk_queue_exit(q);
471 return ERR_PTR(-EXDEV);
472 }
473 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
474 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
475
476 rq = blk_mq_get_request(q, NULL, &alloc_data);
477 blk_queue_exit(q);
478
479 if (!rq)
480 return ERR_PTR(-EWOULDBLOCK);
481
482 return rq;
483 }
484 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
485
486 static void __blk_mq_free_request(struct request *rq)
487 {
488 struct request_queue *q = rq->q;
489 struct blk_mq_ctx *ctx = rq->mq_ctx;
490 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
491 const int sched_tag = rq->internal_tag;
492
493 blk_pm_mark_last_busy(rq);
494 rq->mq_hctx = NULL;
495 if (rq->tag != -1)
496 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
497 if (sched_tag != -1)
498 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
499 blk_mq_sched_restart(hctx);
500 blk_queue_exit(q);
501 }
502
503 void blk_mq_free_request(struct request *rq)
504 {
505 struct request_queue *q = rq->q;
506 struct elevator_queue *e = q->elevator;
507 struct blk_mq_ctx *ctx = rq->mq_ctx;
508 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
509
510 if (rq->rq_flags & RQF_ELVPRIV) {
511 if (e && e->type->ops.finish_request)
512 e->type->ops.finish_request(rq);
513 if (rq->elv.icq) {
514 put_io_context(rq->elv.icq->ioc);
515 rq->elv.icq = NULL;
516 }
517 }
518
519 ctx->rq_completed[rq_is_sync(rq)]++;
520 if (rq->rq_flags & RQF_MQ_INFLIGHT)
521 atomic_dec(&hctx->nr_active);
522
523 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
524 laptop_io_completion(q->backing_dev_info);
525
526 rq_qos_done(q, rq);
527
528 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
529 if (refcount_dec_and_test(&rq->ref))
530 __blk_mq_free_request(rq);
531 }
532 EXPORT_SYMBOL_GPL(blk_mq_free_request);
533
534 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
535 {
536 u64 now = 0;
537
538 if (blk_mq_need_time_stamp(rq))
539 now = ktime_get_ns();
540
541 if (rq->rq_flags & RQF_STATS) {
542 blk_mq_poll_stats_start(rq->q);
543 blk_stat_add(rq, now);
544 }
545
546 if (rq->internal_tag != -1)
547 blk_mq_sched_completed_request(rq, now);
548
549 blk_account_io_done(rq, now);
550
551 if (rq->end_io) {
552 rq_qos_done(rq->q, rq);
553 rq->end_io(rq, error);
554 } else {
555 if (unlikely(blk_bidi_rq(rq)))
556 blk_mq_free_request(rq->next_rq);
557 blk_mq_free_request(rq);
558 }
559 }
560 EXPORT_SYMBOL(__blk_mq_end_request);
561
562 void blk_mq_end_request(struct request *rq, blk_status_t error)
563 {
564 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
565 BUG();
566 __blk_mq_end_request(rq, error);
567 }
568 EXPORT_SYMBOL(blk_mq_end_request);
569
570 static void __blk_mq_complete_request_remote(void *data)
571 {
572 struct request *rq = data;
573 struct request_queue *q = rq->q;
574
575 q->mq_ops->complete(rq);
576 }
577
578 static void __blk_mq_complete_request(struct request *rq)
579 {
580 struct blk_mq_ctx *ctx = rq->mq_ctx;
581 struct request_queue *q = rq->q;
582 bool shared = false;
583 int cpu;
584
585 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
586 /*
587 * Most of single queue controllers, there is only one irq vector
588 * for handling IO completion, and the only irq's affinity is set
589 * as all possible CPUs. On most of ARCHs, this affinity means the
590 * irq is handled on one specific CPU.
591 *
592 * So complete IO reqeust in softirq context in case of single queue
593 * for not degrading IO performance by irqsoff latency.
594 */
595 if (q->nr_hw_queues == 1) {
596 __blk_complete_request(rq);
597 return;
598 }
599
600 /*
601 * For a polled request, always complete locallly, it's pointless
602 * to redirect the completion.
603 */
604 if ((rq->cmd_flags & REQ_HIPRI) ||
605 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
606 q->mq_ops->complete(rq);
607 return;
608 }
609
610 cpu = get_cpu();
611 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
612 shared = cpus_share_cache(cpu, ctx->cpu);
613
614 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
615 rq->csd.func = __blk_mq_complete_request_remote;
616 rq->csd.info = rq;
617 rq->csd.flags = 0;
618 smp_call_function_single_async(ctx->cpu, &rq->csd);
619 } else {
620 q->mq_ops->complete(rq);
621 }
622 put_cpu();
623 }
624
625 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
626 __releases(hctx->srcu)
627 {
628 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
629 rcu_read_unlock();
630 else
631 srcu_read_unlock(hctx->srcu, srcu_idx);
632 }
633
634 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
635 __acquires(hctx->srcu)
636 {
637 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
638 /* shut up gcc false positive */
639 *srcu_idx = 0;
640 rcu_read_lock();
641 } else
642 *srcu_idx = srcu_read_lock(hctx->srcu);
643 }
644
645 /**
646 * blk_mq_complete_request - end I/O on a request
647 * @rq: the request being processed
648 *
649 * Description:
650 * Ends all I/O on a request. It does not handle partial completions.
651 * The actual completion happens out-of-order, through a IPI handler.
652 **/
653 bool blk_mq_complete_request(struct request *rq)
654 {
655 if (unlikely(blk_should_fake_timeout(rq->q)))
656 return false;
657 __blk_mq_complete_request(rq);
658 return true;
659 }
660 EXPORT_SYMBOL(blk_mq_complete_request);
661
662 int blk_mq_request_started(struct request *rq)
663 {
664 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
665 }
666 EXPORT_SYMBOL_GPL(blk_mq_request_started);
667
668 void blk_mq_start_request(struct request *rq)
669 {
670 struct request_queue *q = rq->q;
671
672 blk_mq_sched_started_request(rq);
673
674 trace_block_rq_issue(q, rq);
675
676 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
677 rq->io_start_time_ns = ktime_get_ns();
678 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
679 rq->throtl_size = blk_rq_sectors(rq);
680 #endif
681 rq->rq_flags |= RQF_STATS;
682 rq_qos_issue(q, rq);
683 }
684
685 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
686
687 blk_add_timer(rq);
688 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
689
690 if (q->dma_drain_size && blk_rq_bytes(rq)) {
691 /*
692 * Make sure space for the drain appears. We know we can do
693 * this because max_hw_segments has been adjusted to be one
694 * fewer than the device can handle.
695 */
696 rq->nr_phys_segments++;
697 }
698 }
699 EXPORT_SYMBOL(blk_mq_start_request);
700
701 static void __blk_mq_requeue_request(struct request *rq)
702 {
703 struct request_queue *q = rq->q;
704
705 blk_mq_put_driver_tag(rq);
706
707 trace_block_rq_requeue(q, rq);
708 rq_qos_requeue(q, rq);
709
710 if (blk_mq_request_started(rq)) {
711 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
712 rq->rq_flags &= ~RQF_TIMED_OUT;
713 if (q->dma_drain_size && blk_rq_bytes(rq))
714 rq->nr_phys_segments--;
715 }
716 }
717
718 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
719 {
720 __blk_mq_requeue_request(rq);
721
722 /* this request will be re-inserted to io scheduler queue */
723 blk_mq_sched_requeue_request(rq);
724
725 BUG_ON(!list_empty(&rq->queuelist));
726 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
727 }
728 EXPORT_SYMBOL(blk_mq_requeue_request);
729
730 static void blk_mq_requeue_work(struct work_struct *work)
731 {
732 struct request_queue *q =
733 container_of(work, struct request_queue, requeue_work.work);
734 LIST_HEAD(rq_list);
735 struct request *rq, *next;
736
737 spin_lock_irq(&q->requeue_lock);
738 list_splice_init(&q->requeue_list, &rq_list);
739 spin_unlock_irq(&q->requeue_lock);
740
741 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
742 if (!(rq->rq_flags & RQF_SOFTBARRIER))
743 continue;
744
745 rq->rq_flags &= ~RQF_SOFTBARRIER;
746 list_del_init(&rq->queuelist);
747 blk_mq_sched_insert_request(rq, true, false, false);
748 }
749
750 while (!list_empty(&rq_list)) {
751 rq = list_entry(rq_list.next, struct request, queuelist);
752 list_del_init(&rq->queuelist);
753 blk_mq_sched_insert_request(rq, false, false, false);
754 }
755
756 blk_mq_run_hw_queues(q, false);
757 }
758
759 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
760 bool kick_requeue_list)
761 {
762 struct request_queue *q = rq->q;
763 unsigned long flags;
764
765 /*
766 * We abuse this flag that is otherwise used by the I/O scheduler to
767 * request head insertion from the workqueue.
768 */
769 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
770
771 spin_lock_irqsave(&q->requeue_lock, flags);
772 if (at_head) {
773 rq->rq_flags |= RQF_SOFTBARRIER;
774 list_add(&rq->queuelist, &q->requeue_list);
775 } else {
776 list_add_tail(&rq->queuelist, &q->requeue_list);
777 }
778 spin_unlock_irqrestore(&q->requeue_lock, flags);
779
780 if (kick_requeue_list)
781 blk_mq_kick_requeue_list(q);
782 }
783 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
784
785 void blk_mq_kick_requeue_list(struct request_queue *q)
786 {
787 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
788 }
789 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
790
791 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
792 unsigned long msecs)
793 {
794 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
795 msecs_to_jiffies(msecs));
796 }
797 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
798
799 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
800 {
801 if (tag < tags->nr_tags) {
802 prefetch(tags->rqs[tag]);
803 return tags->rqs[tag];
804 }
805
806 return NULL;
807 }
808 EXPORT_SYMBOL(blk_mq_tag_to_rq);
809
810 static bool blk_mq_check_busy(struct blk_mq_hw_ctx *hctx, struct request *rq,
811 void *priv, bool reserved)
812 {
813 /*
814 * If we find a request, we know the queue is busy. Return false
815 * to stop the iteration.
816 */
817 if (rq->q == hctx->queue) {
818 bool *busy = priv;
819
820 *busy = true;
821 return false;
822 }
823
824 return true;
825 }
826
827 bool blk_mq_queue_busy(struct request_queue *q)
828 {
829 bool busy = false;
830
831 blk_mq_queue_tag_busy_iter(q, blk_mq_check_busy, &busy);
832 return busy;
833 }
834 EXPORT_SYMBOL_GPL(blk_mq_queue_busy);
835
836 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
837 {
838 req->rq_flags |= RQF_TIMED_OUT;
839 if (req->q->mq_ops->timeout) {
840 enum blk_eh_timer_return ret;
841
842 ret = req->q->mq_ops->timeout(req, reserved);
843 if (ret == BLK_EH_DONE)
844 return;
845 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
846 }
847
848 blk_add_timer(req);
849 }
850
851 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
852 {
853 unsigned long deadline;
854
855 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
856 return false;
857 if (rq->rq_flags & RQF_TIMED_OUT)
858 return false;
859
860 deadline = READ_ONCE(rq->deadline);
861 if (time_after_eq(jiffies, deadline))
862 return true;
863
864 if (*next == 0)
865 *next = deadline;
866 else if (time_after(*next, deadline))
867 *next = deadline;
868 return false;
869 }
870
871 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
872 struct request *rq, void *priv, bool reserved)
873 {
874 unsigned long *next = priv;
875
876 /*
877 * Just do a quick check if it is expired before locking the request in
878 * so we're not unnecessarilly synchronizing across CPUs.
879 */
880 if (!blk_mq_req_expired(rq, next))
881 return true;
882
883 /*
884 * We have reason to believe the request may be expired. Take a
885 * reference on the request to lock this request lifetime into its
886 * currently allocated context to prevent it from being reallocated in
887 * the event the completion by-passes this timeout handler.
888 *
889 * If the reference was already released, then the driver beat the
890 * timeout handler to posting a natural completion.
891 */
892 if (!refcount_inc_not_zero(&rq->ref))
893 return true;
894
895 /*
896 * The request is now locked and cannot be reallocated underneath the
897 * timeout handler's processing. Re-verify this exact request is truly
898 * expired; if it is not expired, then the request was completed and
899 * reallocated as a new request.
900 */
901 if (blk_mq_req_expired(rq, next))
902 blk_mq_rq_timed_out(rq, reserved);
903 if (refcount_dec_and_test(&rq->ref))
904 __blk_mq_free_request(rq);
905
906 return true;
907 }
908
909 static void blk_mq_timeout_work(struct work_struct *work)
910 {
911 struct request_queue *q =
912 container_of(work, struct request_queue, timeout_work);
913 unsigned long next = 0;
914 struct blk_mq_hw_ctx *hctx;
915 int i;
916
917 /* A deadlock might occur if a request is stuck requiring a
918 * timeout at the same time a queue freeze is waiting
919 * completion, since the timeout code would not be able to
920 * acquire the queue reference here.
921 *
922 * That's why we don't use blk_queue_enter here; instead, we use
923 * percpu_ref_tryget directly, because we need to be able to
924 * obtain a reference even in the short window between the queue
925 * starting to freeze, by dropping the first reference in
926 * blk_freeze_queue_start, and the moment the last request is
927 * consumed, marked by the instant q_usage_counter reaches
928 * zero.
929 */
930 if (!percpu_ref_tryget(&q->q_usage_counter))
931 return;
932
933 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
934
935 if (next != 0) {
936 mod_timer(&q->timeout, next);
937 } else {
938 /*
939 * Request timeouts are handled as a forward rolling timer. If
940 * we end up here it means that no requests are pending and
941 * also that no request has been pending for a while. Mark
942 * each hctx as idle.
943 */
944 queue_for_each_hw_ctx(q, hctx, i) {
945 /* the hctx may be unmapped, so check it here */
946 if (blk_mq_hw_queue_mapped(hctx))
947 blk_mq_tag_idle(hctx);
948 }
949 }
950 blk_queue_exit(q);
951 }
952
953 struct flush_busy_ctx_data {
954 struct blk_mq_hw_ctx *hctx;
955 struct list_head *list;
956 };
957
958 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
959 {
960 struct flush_busy_ctx_data *flush_data = data;
961 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
962 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
963
964 spin_lock(&ctx->lock);
965 list_splice_tail_init(&ctx->rq_list, flush_data->list);
966 sbitmap_clear_bit(sb, bitnr);
967 spin_unlock(&ctx->lock);
968 return true;
969 }
970
971 /*
972 * Process software queues that have been marked busy, splicing them
973 * to the for-dispatch
974 */
975 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
976 {
977 struct flush_busy_ctx_data data = {
978 .hctx = hctx,
979 .list = list,
980 };
981
982 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
983 }
984 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
985
986 struct dispatch_rq_data {
987 struct blk_mq_hw_ctx *hctx;
988 struct request *rq;
989 };
990
991 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
992 void *data)
993 {
994 struct dispatch_rq_data *dispatch_data = data;
995 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
996 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
997
998 spin_lock(&ctx->lock);
999 if (!list_empty(&ctx->rq_list)) {
1000 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
1001 list_del_init(&dispatch_data->rq->queuelist);
1002 if (list_empty(&ctx->rq_list))
1003 sbitmap_clear_bit(sb, bitnr);
1004 }
1005 spin_unlock(&ctx->lock);
1006
1007 return !dispatch_data->rq;
1008 }
1009
1010 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1011 struct blk_mq_ctx *start)
1012 {
1013 unsigned off = start ? start->index_hw[hctx->type] : 0;
1014 struct dispatch_rq_data data = {
1015 .hctx = hctx,
1016 .rq = NULL,
1017 };
1018
1019 __sbitmap_for_each_set(&hctx->ctx_map, off,
1020 dispatch_rq_from_ctx, &data);
1021
1022 return data.rq;
1023 }
1024
1025 static inline unsigned int queued_to_index(unsigned int queued)
1026 {
1027 if (!queued)
1028 return 0;
1029
1030 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1031 }
1032
1033 bool blk_mq_get_driver_tag(struct request *rq)
1034 {
1035 struct blk_mq_alloc_data data = {
1036 .q = rq->q,
1037 .hctx = rq->mq_hctx,
1038 .flags = BLK_MQ_REQ_NOWAIT,
1039 .cmd_flags = rq->cmd_flags,
1040 };
1041 bool shared;
1042
1043 if (rq->tag != -1)
1044 goto done;
1045
1046 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1047 data.flags |= BLK_MQ_REQ_RESERVED;
1048
1049 shared = blk_mq_tag_busy(data.hctx);
1050 rq->tag = blk_mq_get_tag(&data);
1051 if (rq->tag >= 0) {
1052 if (shared) {
1053 rq->rq_flags |= RQF_MQ_INFLIGHT;
1054 atomic_inc(&data.hctx->nr_active);
1055 }
1056 data.hctx->tags->rqs[rq->tag] = rq;
1057 }
1058
1059 done:
1060 return rq->tag != -1;
1061 }
1062
1063 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1064 int flags, void *key)
1065 {
1066 struct blk_mq_hw_ctx *hctx;
1067
1068 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1069
1070 spin_lock(&hctx->dispatch_wait_lock);
1071 list_del_init(&wait->entry);
1072 spin_unlock(&hctx->dispatch_wait_lock);
1073
1074 blk_mq_run_hw_queue(hctx, true);
1075 return 1;
1076 }
1077
1078 /*
1079 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1080 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1081 * restart. For both cases, take care to check the condition again after
1082 * marking us as waiting.
1083 */
1084 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1085 struct request *rq)
1086 {
1087 struct wait_queue_head *wq;
1088 wait_queue_entry_t *wait;
1089 bool ret;
1090
1091 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1092 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1093 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1094
1095 /*
1096 * It's possible that a tag was freed in the window between the
1097 * allocation failure and adding the hardware queue to the wait
1098 * queue.
1099 *
1100 * Don't clear RESTART here, someone else could have set it.
1101 * At most this will cost an extra queue run.
1102 */
1103 return blk_mq_get_driver_tag(rq);
1104 }
1105
1106 wait = &hctx->dispatch_wait;
1107 if (!list_empty_careful(&wait->entry))
1108 return false;
1109
1110 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1111
1112 spin_lock_irq(&wq->lock);
1113 spin_lock(&hctx->dispatch_wait_lock);
1114 if (!list_empty(&wait->entry)) {
1115 spin_unlock(&hctx->dispatch_wait_lock);
1116 spin_unlock_irq(&wq->lock);
1117 return false;
1118 }
1119
1120 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1121 __add_wait_queue(wq, wait);
1122
1123 /*
1124 * It's possible that a tag was freed in the window between the
1125 * allocation failure and adding the hardware queue to the wait
1126 * queue.
1127 */
1128 ret = blk_mq_get_driver_tag(rq);
1129 if (!ret) {
1130 spin_unlock(&hctx->dispatch_wait_lock);
1131 spin_unlock_irq(&wq->lock);
1132 return false;
1133 }
1134
1135 /*
1136 * We got a tag, remove ourselves from the wait queue to ensure
1137 * someone else gets the wakeup.
1138 */
1139 list_del_init(&wait->entry);
1140 spin_unlock(&hctx->dispatch_wait_lock);
1141 spin_unlock_irq(&wq->lock);
1142
1143 return true;
1144 }
1145
1146 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1147 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1148 /*
1149 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1150 * - EWMA is one simple way to compute running average value
1151 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1152 * - take 4 as factor for avoiding to get too small(0) result, and this
1153 * factor doesn't matter because EWMA decreases exponentially
1154 */
1155 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1156 {
1157 unsigned int ewma;
1158
1159 if (hctx->queue->elevator)
1160 return;
1161
1162 ewma = hctx->dispatch_busy;
1163
1164 if (!ewma && !busy)
1165 return;
1166
1167 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1168 if (busy)
1169 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1170 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1171
1172 hctx->dispatch_busy = ewma;
1173 }
1174
1175 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1176
1177 /*
1178 * Returns true if we did some work AND can potentially do more.
1179 */
1180 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1181 bool got_budget)
1182 {
1183 struct blk_mq_hw_ctx *hctx;
1184 struct request *rq, *nxt;
1185 bool no_tag = false;
1186 int errors, queued;
1187 blk_status_t ret = BLK_STS_OK;
1188
1189 if (list_empty(list))
1190 return false;
1191
1192 WARN_ON(!list_is_singular(list) && got_budget);
1193
1194 /*
1195 * Now process all the entries, sending them to the driver.
1196 */
1197 errors = queued = 0;
1198 do {
1199 struct blk_mq_queue_data bd;
1200
1201 rq = list_first_entry(list, struct request, queuelist);
1202
1203 hctx = rq->mq_hctx;
1204 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1205 break;
1206
1207 if (!blk_mq_get_driver_tag(rq)) {
1208 /*
1209 * The initial allocation attempt failed, so we need to
1210 * rerun the hardware queue when a tag is freed. The
1211 * waitqueue takes care of that. If the queue is run
1212 * before we add this entry back on the dispatch list,
1213 * we'll re-run it below.
1214 */
1215 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1216 blk_mq_put_dispatch_budget(hctx);
1217 /*
1218 * For non-shared tags, the RESTART check
1219 * will suffice.
1220 */
1221 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1222 no_tag = true;
1223 break;
1224 }
1225 }
1226
1227 list_del_init(&rq->queuelist);
1228
1229 bd.rq = rq;
1230
1231 /*
1232 * Flag last if we have no more requests, or if we have more
1233 * but can't assign a driver tag to it.
1234 */
1235 if (list_empty(list))
1236 bd.last = true;
1237 else {
1238 nxt = list_first_entry(list, struct request, queuelist);
1239 bd.last = !blk_mq_get_driver_tag(nxt);
1240 }
1241
1242 ret = q->mq_ops->queue_rq(hctx, &bd);
1243 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1244 /*
1245 * If an I/O scheduler has been configured and we got a
1246 * driver tag for the next request already, free it
1247 * again.
1248 */
1249 if (!list_empty(list)) {
1250 nxt = list_first_entry(list, struct request, queuelist);
1251 blk_mq_put_driver_tag(nxt);
1252 }
1253 list_add(&rq->queuelist, list);
1254 __blk_mq_requeue_request(rq);
1255 break;
1256 }
1257
1258 if (unlikely(ret != BLK_STS_OK)) {
1259 errors++;
1260 blk_mq_end_request(rq, BLK_STS_IOERR);
1261 continue;
1262 }
1263
1264 queued++;
1265 } while (!list_empty(list));
1266
1267 hctx->dispatched[queued_to_index(queued)]++;
1268
1269 /*
1270 * Any items that need requeuing? Stuff them into hctx->dispatch,
1271 * that is where we will continue on next queue run.
1272 */
1273 if (!list_empty(list)) {
1274 bool needs_restart;
1275
1276 /*
1277 * If we didn't flush the entire list, we could have told
1278 * the driver there was more coming, but that turned out to
1279 * be a lie.
1280 */
1281 if (q->mq_ops->commit_rqs)
1282 q->mq_ops->commit_rqs(hctx);
1283
1284 spin_lock(&hctx->lock);
1285 list_splice_init(list, &hctx->dispatch);
1286 spin_unlock(&hctx->lock);
1287
1288 /*
1289 * If SCHED_RESTART was set by the caller of this function and
1290 * it is no longer set that means that it was cleared by another
1291 * thread and hence that a queue rerun is needed.
1292 *
1293 * If 'no_tag' is set, that means that we failed getting
1294 * a driver tag with an I/O scheduler attached. If our dispatch
1295 * waitqueue is no longer active, ensure that we run the queue
1296 * AFTER adding our entries back to the list.
1297 *
1298 * If no I/O scheduler has been configured it is possible that
1299 * the hardware queue got stopped and restarted before requests
1300 * were pushed back onto the dispatch list. Rerun the queue to
1301 * avoid starvation. Notes:
1302 * - blk_mq_run_hw_queue() checks whether or not a queue has
1303 * been stopped before rerunning a queue.
1304 * - Some but not all block drivers stop a queue before
1305 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1306 * and dm-rq.
1307 *
1308 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1309 * bit is set, run queue after a delay to avoid IO stalls
1310 * that could otherwise occur if the queue is idle.
1311 */
1312 needs_restart = blk_mq_sched_needs_restart(hctx);
1313 if (!needs_restart ||
1314 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1315 blk_mq_run_hw_queue(hctx, true);
1316 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1317 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1318
1319 blk_mq_update_dispatch_busy(hctx, true);
1320 return false;
1321 } else
1322 blk_mq_update_dispatch_busy(hctx, false);
1323
1324 /*
1325 * If the host/device is unable to accept more work, inform the
1326 * caller of that.
1327 */
1328 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1329 return false;
1330
1331 return (queued + errors) != 0;
1332 }
1333
1334 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1335 {
1336 int srcu_idx;
1337
1338 /*
1339 * We should be running this queue from one of the CPUs that
1340 * are mapped to it.
1341 *
1342 * There are at least two related races now between setting
1343 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1344 * __blk_mq_run_hw_queue():
1345 *
1346 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1347 * but later it becomes online, then this warning is harmless
1348 * at all
1349 *
1350 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1351 * but later it becomes offline, then the warning can't be
1352 * triggered, and we depend on blk-mq timeout handler to
1353 * handle dispatched requests to this hctx
1354 */
1355 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1356 cpu_online(hctx->next_cpu)) {
1357 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1358 raw_smp_processor_id(),
1359 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1360 dump_stack();
1361 }
1362
1363 /*
1364 * We can't run the queue inline with ints disabled. Ensure that
1365 * we catch bad users of this early.
1366 */
1367 WARN_ON_ONCE(in_interrupt());
1368
1369 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1370
1371 hctx_lock(hctx, &srcu_idx);
1372 blk_mq_sched_dispatch_requests(hctx);
1373 hctx_unlock(hctx, srcu_idx);
1374 }
1375
1376 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1377 {
1378 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1379
1380 if (cpu >= nr_cpu_ids)
1381 cpu = cpumask_first(hctx->cpumask);
1382 return cpu;
1383 }
1384
1385 /*
1386 * It'd be great if the workqueue API had a way to pass
1387 * in a mask and had some smarts for more clever placement.
1388 * For now we just round-robin here, switching for every
1389 * BLK_MQ_CPU_WORK_BATCH queued items.
1390 */
1391 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1392 {
1393 bool tried = false;
1394 int next_cpu = hctx->next_cpu;
1395
1396 if (hctx->queue->nr_hw_queues == 1)
1397 return WORK_CPU_UNBOUND;
1398
1399 if (--hctx->next_cpu_batch <= 0) {
1400 select_cpu:
1401 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1402 cpu_online_mask);
1403 if (next_cpu >= nr_cpu_ids)
1404 next_cpu = blk_mq_first_mapped_cpu(hctx);
1405 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1406 }
1407
1408 /*
1409 * Do unbound schedule if we can't find a online CPU for this hctx,
1410 * and it should only happen in the path of handling CPU DEAD.
1411 */
1412 if (!cpu_online(next_cpu)) {
1413 if (!tried) {
1414 tried = true;
1415 goto select_cpu;
1416 }
1417
1418 /*
1419 * Make sure to re-select CPU next time once after CPUs
1420 * in hctx->cpumask become online again.
1421 */
1422 hctx->next_cpu = next_cpu;
1423 hctx->next_cpu_batch = 1;
1424 return WORK_CPU_UNBOUND;
1425 }
1426
1427 hctx->next_cpu = next_cpu;
1428 return next_cpu;
1429 }
1430
1431 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1432 unsigned long msecs)
1433 {
1434 if (unlikely(blk_mq_hctx_stopped(hctx)))
1435 return;
1436
1437 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1438 int cpu = get_cpu();
1439 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1440 __blk_mq_run_hw_queue(hctx);
1441 put_cpu();
1442 return;
1443 }
1444
1445 put_cpu();
1446 }
1447
1448 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1449 msecs_to_jiffies(msecs));
1450 }
1451
1452 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1453 {
1454 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1455 }
1456 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1457
1458 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1459 {
1460 int srcu_idx;
1461 bool need_run;
1462
1463 /*
1464 * When queue is quiesced, we may be switching io scheduler, or
1465 * updating nr_hw_queues, or other things, and we can't run queue
1466 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1467 *
1468 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1469 * quiesced.
1470 */
1471 hctx_lock(hctx, &srcu_idx);
1472 need_run = !blk_queue_quiesced(hctx->queue) &&
1473 blk_mq_hctx_has_pending(hctx);
1474 hctx_unlock(hctx, srcu_idx);
1475
1476 if (need_run) {
1477 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1478 return true;
1479 }
1480
1481 return false;
1482 }
1483 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1484
1485 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1486 {
1487 struct blk_mq_hw_ctx *hctx;
1488 int i;
1489
1490 queue_for_each_hw_ctx(q, hctx, i) {
1491 if (blk_mq_hctx_stopped(hctx))
1492 continue;
1493
1494 blk_mq_run_hw_queue(hctx, async);
1495 }
1496 }
1497 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1498
1499 /**
1500 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1501 * @q: request queue.
1502 *
1503 * The caller is responsible for serializing this function against
1504 * blk_mq_{start,stop}_hw_queue().
1505 */
1506 bool blk_mq_queue_stopped(struct request_queue *q)
1507 {
1508 struct blk_mq_hw_ctx *hctx;
1509 int i;
1510
1511 queue_for_each_hw_ctx(q, hctx, i)
1512 if (blk_mq_hctx_stopped(hctx))
1513 return true;
1514
1515 return false;
1516 }
1517 EXPORT_SYMBOL(blk_mq_queue_stopped);
1518
1519 /*
1520 * This function is often used for pausing .queue_rq() by driver when
1521 * there isn't enough resource or some conditions aren't satisfied, and
1522 * BLK_STS_RESOURCE is usually returned.
1523 *
1524 * We do not guarantee that dispatch can be drained or blocked
1525 * after blk_mq_stop_hw_queue() returns. Please use
1526 * blk_mq_quiesce_queue() for that requirement.
1527 */
1528 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1529 {
1530 cancel_delayed_work(&hctx->run_work);
1531
1532 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1533 }
1534 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1535
1536 /*
1537 * This function is often used for pausing .queue_rq() by driver when
1538 * there isn't enough resource or some conditions aren't satisfied, and
1539 * BLK_STS_RESOURCE is usually returned.
1540 *
1541 * We do not guarantee that dispatch can be drained or blocked
1542 * after blk_mq_stop_hw_queues() returns. Please use
1543 * blk_mq_quiesce_queue() for that requirement.
1544 */
1545 void blk_mq_stop_hw_queues(struct request_queue *q)
1546 {
1547 struct blk_mq_hw_ctx *hctx;
1548 int i;
1549
1550 queue_for_each_hw_ctx(q, hctx, i)
1551 blk_mq_stop_hw_queue(hctx);
1552 }
1553 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1554
1555 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1556 {
1557 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1558
1559 blk_mq_run_hw_queue(hctx, false);
1560 }
1561 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1562
1563 void blk_mq_start_hw_queues(struct request_queue *q)
1564 {
1565 struct blk_mq_hw_ctx *hctx;
1566 int i;
1567
1568 queue_for_each_hw_ctx(q, hctx, i)
1569 blk_mq_start_hw_queue(hctx);
1570 }
1571 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1572
1573 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1574 {
1575 if (!blk_mq_hctx_stopped(hctx))
1576 return;
1577
1578 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1579 blk_mq_run_hw_queue(hctx, async);
1580 }
1581 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1582
1583 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1584 {
1585 struct blk_mq_hw_ctx *hctx;
1586 int i;
1587
1588 queue_for_each_hw_ctx(q, hctx, i)
1589 blk_mq_start_stopped_hw_queue(hctx, async);
1590 }
1591 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1592
1593 static void blk_mq_run_work_fn(struct work_struct *work)
1594 {
1595 struct blk_mq_hw_ctx *hctx;
1596
1597 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1598
1599 /*
1600 * If we are stopped, don't run the queue.
1601 */
1602 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1603 return;
1604
1605 __blk_mq_run_hw_queue(hctx);
1606 }
1607
1608 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1609 struct request *rq,
1610 bool at_head)
1611 {
1612 struct blk_mq_ctx *ctx = rq->mq_ctx;
1613
1614 lockdep_assert_held(&ctx->lock);
1615
1616 trace_block_rq_insert(hctx->queue, rq);
1617
1618 if (at_head)
1619 list_add(&rq->queuelist, &ctx->rq_list);
1620 else
1621 list_add_tail(&rq->queuelist, &ctx->rq_list);
1622 }
1623
1624 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1625 bool at_head)
1626 {
1627 struct blk_mq_ctx *ctx = rq->mq_ctx;
1628
1629 lockdep_assert_held(&ctx->lock);
1630
1631 __blk_mq_insert_req_list(hctx, rq, at_head);
1632 blk_mq_hctx_mark_pending(hctx, ctx);
1633 }
1634
1635 /*
1636 * Should only be used carefully, when the caller knows we want to
1637 * bypass a potential IO scheduler on the target device.
1638 */
1639 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1640 {
1641 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1642
1643 spin_lock(&hctx->lock);
1644 list_add_tail(&rq->queuelist, &hctx->dispatch);
1645 spin_unlock(&hctx->lock);
1646
1647 if (run_queue)
1648 blk_mq_run_hw_queue(hctx, false);
1649 }
1650
1651 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1652 struct list_head *list)
1653
1654 {
1655 struct request *rq;
1656
1657 /*
1658 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1659 * offline now
1660 */
1661 list_for_each_entry(rq, list, queuelist) {
1662 BUG_ON(rq->mq_ctx != ctx);
1663 trace_block_rq_insert(hctx->queue, rq);
1664 }
1665
1666 spin_lock(&ctx->lock);
1667 list_splice_tail_init(list, &ctx->rq_list);
1668 blk_mq_hctx_mark_pending(hctx, ctx);
1669 spin_unlock(&ctx->lock);
1670 }
1671
1672 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1673 {
1674 struct request *rqa = container_of(a, struct request, queuelist);
1675 struct request *rqb = container_of(b, struct request, queuelist);
1676
1677 if (rqa->mq_ctx < rqb->mq_ctx)
1678 return -1;
1679 else if (rqa->mq_ctx > rqb->mq_ctx)
1680 return 1;
1681 else if (rqa->mq_hctx < rqb->mq_hctx)
1682 return -1;
1683 else if (rqa->mq_hctx > rqb->mq_hctx)
1684 return 1;
1685
1686 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1687 }
1688
1689 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1690 {
1691 struct blk_mq_hw_ctx *this_hctx;
1692 struct blk_mq_ctx *this_ctx;
1693 struct request_queue *this_q;
1694 struct request *rq;
1695 LIST_HEAD(list);
1696 LIST_HEAD(rq_list);
1697 unsigned int depth;
1698
1699 list_splice_init(&plug->mq_list, &list);
1700 plug->rq_count = 0;
1701
1702 if (plug->rq_count > 2 && plug->multiple_queues)
1703 list_sort(NULL, &list, plug_rq_cmp);
1704
1705 this_q = NULL;
1706 this_hctx = NULL;
1707 this_ctx = NULL;
1708 depth = 0;
1709
1710 while (!list_empty(&list)) {
1711 rq = list_entry_rq(list.next);
1712 list_del_init(&rq->queuelist);
1713 BUG_ON(!rq->q);
1714 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1715 if (this_hctx) {
1716 trace_block_unplug(this_q, depth, !from_schedule);
1717 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1718 &rq_list,
1719 from_schedule);
1720 }
1721
1722 this_q = rq->q;
1723 this_ctx = rq->mq_ctx;
1724 this_hctx = rq->mq_hctx;
1725 depth = 0;
1726 }
1727
1728 depth++;
1729 list_add_tail(&rq->queuelist, &rq_list);
1730 }
1731
1732 /*
1733 * If 'this_hctx' is set, we know we have entries to complete
1734 * on 'rq_list'. Do those.
1735 */
1736 if (this_hctx) {
1737 trace_block_unplug(this_q, depth, !from_schedule);
1738 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1739 from_schedule);
1740 }
1741 }
1742
1743 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1744 {
1745 blk_init_request_from_bio(rq, bio);
1746
1747 blk_account_io_start(rq, true);
1748 }
1749
1750 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1751 {
1752 if (rq->tag != -1)
1753 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1754
1755 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1756 }
1757
1758 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1759 struct request *rq,
1760 blk_qc_t *cookie, bool last)
1761 {
1762 struct request_queue *q = rq->q;
1763 struct blk_mq_queue_data bd = {
1764 .rq = rq,
1765 .last = last,
1766 };
1767 blk_qc_t new_cookie;
1768 blk_status_t ret;
1769
1770 new_cookie = request_to_qc_t(hctx, rq);
1771
1772 /*
1773 * For OK queue, we are done. For error, caller may kill it.
1774 * Any other error (busy), just add it to our list as we
1775 * previously would have done.
1776 */
1777 ret = q->mq_ops->queue_rq(hctx, &bd);
1778 switch (ret) {
1779 case BLK_STS_OK:
1780 blk_mq_update_dispatch_busy(hctx, false);
1781 *cookie = new_cookie;
1782 break;
1783 case BLK_STS_RESOURCE:
1784 case BLK_STS_DEV_RESOURCE:
1785 blk_mq_update_dispatch_busy(hctx, true);
1786 __blk_mq_requeue_request(rq);
1787 break;
1788 default:
1789 blk_mq_update_dispatch_busy(hctx, false);
1790 *cookie = BLK_QC_T_NONE;
1791 break;
1792 }
1793
1794 return ret;
1795 }
1796
1797 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1798 struct request *rq,
1799 blk_qc_t *cookie,
1800 bool bypass_insert, bool last)
1801 {
1802 struct request_queue *q = rq->q;
1803 bool run_queue = true;
1804
1805 /*
1806 * RCU or SRCU read lock is needed before checking quiesced flag.
1807 *
1808 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1809 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1810 * and avoid driver to try to dispatch again.
1811 */
1812 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1813 run_queue = false;
1814 bypass_insert = false;
1815 goto insert;
1816 }
1817
1818 if (q->elevator && !bypass_insert)
1819 goto insert;
1820
1821 if (!blk_mq_get_dispatch_budget(hctx))
1822 goto insert;
1823
1824 if (!blk_mq_get_driver_tag(rq)) {
1825 blk_mq_put_dispatch_budget(hctx);
1826 goto insert;
1827 }
1828
1829 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1830 insert:
1831 if (bypass_insert)
1832 return BLK_STS_RESOURCE;
1833
1834 blk_mq_request_bypass_insert(rq, run_queue);
1835 return BLK_STS_OK;
1836 }
1837
1838 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1839 struct request *rq, blk_qc_t *cookie)
1840 {
1841 blk_status_t ret;
1842 int srcu_idx;
1843
1844 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1845
1846 hctx_lock(hctx, &srcu_idx);
1847
1848 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1849 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1850 blk_mq_request_bypass_insert(rq, true);
1851 else if (ret != BLK_STS_OK)
1852 blk_mq_end_request(rq, ret);
1853
1854 hctx_unlock(hctx, srcu_idx);
1855 }
1856
1857 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1858 {
1859 blk_status_t ret;
1860 int srcu_idx;
1861 blk_qc_t unused_cookie;
1862 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1863
1864 hctx_lock(hctx, &srcu_idx);
1865 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
1866 hctx_unlock(hctx, srcu_idx);
1867
1868 return ret;
1869 }
1870
1871 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1872 struct list_head *list)
1873 {
1874 while (!list_empty(list)) {
1875 blk_status_t ret;
1876 struct request *rq = list_first_entry(list, struct request,
1877 queuelist);
1878
1879 list_del_init(&rq->queuelist);
1880 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1881 if (ret != BLK_STS_OK) {
1882 if (ret == BLK_STS_RESOURCE ||
1883 ret == BLK_STS_DEV_RESOURCE) {
1884 blk_mq_request_bypass_insert(rq,
1885 list_empty(list));
1886 break;
1887 }
1888 blk_mq_end_request(rq, ret);
1889 }
1890 }
1891
1892 /*
1893 * If we didn't flush the entire list, we could have told
1894 * the driver there was more coming, but that turned out to
1895 * be a lie.
1896 */
1897 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
1898 hctx->queue->mq_ops->commit_rqs(hctx);
1899 }
1900
1901 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1902 {
1903 list_add_tail(&rq->queuelist, &plug->mq_list);
1904 plug->rq_count++;
1905 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1906 struct request *tmp;
1907
1908 tmp = list_first_entry(&plug->mq_list, struct request,
1909 queuelist);
1910 if (tmp->q != rq->q)
1911 plug->multiple_queues = true;
1912 }
1913 }
1914
1915 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1916 {
1917 const int is_sync = op_is_sync(bio->bi_opf);
1918 const int is_flush_fua = op_is_flush(bio->bi_opf);
1919 struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
1920 struct request *rq;
1921 struct blk_plug *plug;
1922 struct request *same_queue_rq = NULL;
1923 blk_qc_t cookie;
1924
1925 blk_queue_bounce(q, &bio);
1926
1927 blk_queue_split(q, &bio);
1928
1929 if (!bio_integrity_prep(bio))
1930 return BLK_QC_T_NONE;
1931
1932 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1933 blk_attempt_plug_merge(q, bio, &same_queue_rq))
1934 return BLK_QC_T_NONE;
1935
1936 if (blk_mq_sched_bio_merge(q, bio))
1937 return BLK_QC_T_NONE;
1938
1939 rq_qos_throttle(q, bio);
1940
1941 rq = blk_mq_get_request(q, bio, &data);
1942 if (unlikely(!rq)) {
1943 rq_qos_cleanup(q, bio);
1944 if (bio->bi_opf & REQ_NOWAIT)
1945 bio_wouldblock_error(bio);
1946 return BLK_QC_T_NONE;
1947 }
1948
1949 trace_block_getrq(q, bio, bio->bi_opf);
1950
1951 rq_qos_track(q, rq, bio);
1952
1953 cookie = request_to_qc_t(data.hctx, rq);
1954
1955 plug = current->plug;
1956 if (unlikely(is_flush_fua)) {
1957 blk_mq_put_ctx(data.ctx);
1958 blk_mq_bio_to_request(rq, bio);
1959
1960 /* bypass scheduler for flush rq */
1961 blk_insert_flush(rq);
1962 blk_mq_run_hw_queue(data.hctx, true);
1963 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1964 /*
1965 * Use plugging if we have a ->commit_rqs() hook as well, as
1966 * we know the driver uses bd->last in a smart fashion.
1967 */
1968 unsigned int request_count = plug->rq_count;
1969 struct request *last = NULL;
1970
1971 blk_mq_put_ctx(data.ctx);
1972 blk_mq_bio_to_request(rq, bio);
1973
1974 if (!request_count)
1975 trace_block_plug(q);
1976 else
1977 last = list_entry_rq(plug->mq_list.prev);
1978
1979 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1980 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1981 blk_flush_plug_list(plug, false);
1982 trace_block_plug(q);
1983 }
1984
1985 blk_add_rq_to_plug(plug, rq);
1986 } else if (plug && !blk_queue_nomerges(q)) {
1987 blk_mq_bio_to_request(rq, bio);
1988
1989 /*
1990 * We do limited plugging. If the bio can be merged, do that.
1991 * Otherwise the existing request in the plug list will be
1992 * issued. So the plug list will have one request at most
1993 * The plug list might get flushed before this. If that happens,
1994 * the plug list is empty, and same_queue_rq is invalid.
1995 */
1996 if (list_empty(&plug->mq_list))
1997 same_queue_rq = NULL;
1998 if (same_queue_rq) {
1999 list_del_init(&same_queue_rq->queuelist);
2000 plug->rq_count--;
2001 }
2002 blk_add_rq_to_plug(plug, rq);
2003
2004 blk_mq_put_ctx(data.ctx);
2005
2006 if (same_queue_rq) {
2007 data.hctx = same_queue_rq->mq_hctx;
2008 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2009 &cookie);
2010 }
2011 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2012 !data.hctx->dispatch_busy)) {
2013 blk_mq_put_ctx(data.ctx);
2014 blk_mq_bio_to_request(rq, bio);
2015 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2016 } else {
2017 blk_mq_put_ctx(data.ctx);
2018 blk_mq_bio_to_request(rq, bio);
2019 blk_mq_sched_insert_request(rq, false, true, true);
2020 }
2021
2022 return cookie;
2023 }
2024
2025 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2026 unsigned int hctx_idx)
2027 {
2028 struct page *page;
2029
2030 if (tags->rqs && set->ops->exit_request) {
2031 int i;
2032
2033 for (i = 0; i < tags->nr_tags; i++) {
2034 struct request *rq = tags->static_rqs[i];
2035
2036 if (!rq)
2037 continue;
2038 set->ops->exit_request(set, rq, hctx_idx);
2039 tags->static_rqs[i] = NULL;
2040 }
2041 }
2042
2043 while (!list_empty(&tags->page_list)) {
2044 page = list_first_entry(&tags->page_list, struct page, lru);
2045 list_del_init(&page->lru);
2046 /*
2047 * Remove kmemleak object previously allocated in
2048 * blk_mq_init_rq_map().
2049 */
2050 kmemleak_free(page_address(page));
2051 __free_pages(page, page->private);
2052 }
2053 }
2054
2055 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2056 {
2057 kfree(tags->rqs);
2058 tags->rqs = NULL;
2059 kfree(tags->static_rqs);
2060 tags->static_rqs = NULL;
2061
2062 blk_mq_free_tags(tags);
2063 }
2064
2065 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2066 unsigned int hctx_idx,
2067 unsigned int nr_tags,
2068 unsigned int reserved_tags)
2069 {
2070 struct blk_mq_tags *tags;
2071 int node;
2072
2073 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2074 if (node == NUMA_NO_NODE)
2075 node = set->numa_node;
2076
2077 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2078 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2079 if (!tags)
2080 return NULL;
2081
2082 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2083 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2084 node);
2085 if (!tags->rqs) {
2086 blk_mq_free_tags(tags);
2087 return NULL;
2088 }
2089
2090 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2091 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2092 node);
2093 if (!tags->static_rqs) {
2094 kfree(tags->rqs);
2095 blk_mq_free_tags(tags);
2096 return NULL;
2097 }
2098
2099 return tags;
2100 }
2101
2102 static size_t order_to_size(unsigned int order)
2103 {
2104 return (size_t)PAGE_SIZE << order;
2105 }
2106
2107 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2108 unsigned int hctx_idx, int node)
2109 {
2110 int ret;
2111
2112 if (set->ops->init_request) {
2113 ret = set->ops->init_request(set, rq, hctx_idx, node);
2114 if (ret)
2115 return ret;
2116 }
2117
2118 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2119 return 0;
2120 }
2121
2122 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2123 unsigned int hctx_idx, unsigned int depth)
2124 {
2125 unsigned int i, j, entries_per_page, max_order = 4;
2126 size_t rq_size, left;
2127 int node;
2128
2129 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2130 if (node == NUMA_NO_NODE)
2131 node = set->numa_node;
2132
2133 INIT_LIST_HEAD(&tags->page_list);
2134
2135 /*
2136 * rq_size is the size of the request plus driver payload, rounded
2137 * to the cacheline size
2138 */
2139 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2140 cache_line_size());
2141 left = rq_size * depth;
2142
2143 for (i = 0; i < depth; ) {
2144 int this_order = max_order;
2145 struct page *page;
2146 int to_do;
2147 void *p;
2148
2149 while (this_order && left < order_to_size(this_order - 1))
2150 this_order--;
2151
2152 do {
2153 page = alloc_pages_node(node,
2154 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2155 this_order);
2156 if (page)
2157 break;
2158 if (!this_order--)
2159 break;
2160 if (order_to_size(this_order) < rq_size)
2161 break;
2162 } while (1);
2163
2164 if (!page)
2165 goto fail;
2166
2167 page->private = this_order;
2168 list_add_tail(&page->lru, &tags->page_list);
2169
2170 p = page_address(page);
2171 /*
2172 * Allow kmemleak to scan these pages as they contain pointers
2173 * to additional allocations like via ops->init_request().
2174 */
2175 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2176 entries_per_page = order_to_size(this_order) / rq_size;
2177 to_do = min(entries_per_page, depth - i);
2178 left -= to_do * rq_size;
2179 for (j = 0; j < to_do; j++) {
2180 struct request *rq = p;
2181
2182 tags->static_rqs[i] = rq;
2183 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2184 tags->static_rqs[i] = NULL;
2185 goto fail;
2186 }
2187
2188 p += rq_size;
2189 i++;
2190 }
2191 }
2192 return 0;
2193
2194 fail:
2195 blk_mq_free_rqs(set, tags, hctx_idx);
2196 return -ENOMEM;
2197 }
2198
2199 /*
2200 * 'cpu' is going away. splice any existing rq_list entries from this
2201 * software queue to the hw queue dispatch list, and ensure that it
2202 * gets run.
2203 */
2204 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2205 {
2206 struct blk_mq_hw_ctx *hctx;
2207 struct blk_mq_ctx *ctx;
2208 LIST_HEAD(tmp);
2209
2210 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2211 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2212
2213 spin_lock(&ctx->lock);
2214 if (!list_empty(&ctx->rq_list)) {
2215 list_splice_init(&ctx->rq_list, &tmp);
2216 blk_mq_hctx_clear_pending(hctx, ctx);
2217 }
2218 spin_unlock(&ctx->lock);
2219
2220 if (list_empty(&tmp))
2221 return 0;
2222
2223 spin_lock(&hctx->lock);
2224 list_splice_tail_init(&tmp, &hctx->dispatch);
2225 spin_unlock(&hctx->lock);
2226
2227 blk_mq_run_hw_queue(hctx, true);
2228 return 0;
2229 }
2230
2231 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2232 {
2233 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2234 &hctx->cpuhp_dead);
2235 }
2236
2237 /* hctx->ctxs will be freed in queue's release handler */
2238 static void blk_mq_exit_hctx(struct request_queue *q,
2239 struct blk_mq_tag_set *set,
2240 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2241 {
2242 if (blk_mq_hw_queue_mapped(hctx))
2243 blk_mq_tag_idle(hctx);
2244
2245 if (set->ops->exit_request)
2246 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2247
2248 if (set->ops->exit_hctx)
2249 set->ops->exit_hctx(hctx, hctx_idx);
2250
2251 if (hctx->flags & BLK_MQ_F_BLOCKING)
2252 cleanup_srcu_struct(hctx->srcu);
2253
2254 blk_mq_remove_cpuhp(hctx);
2255 blk_free_flush_queue(hctx->fq);
2256 sbitmap_free(&hctx->ctx_map);
2257 }
2258
2259 static void blk_mq_exit_hw_queues(struct request_queue *q,
2260 struct blk_mq_tag_set *set, int nr_queue)
2261 {
2262 struct blk_mq_hw_ctx *hctx;
2263 unsigned int i;
2264
2265 queue_for_each_hw_ctx(q, hctx, i) {
2266 if (i == nr_queue)
2267 break;
2268 blk_mq_debugfs_unregister_hctx(hctx);
2269 blk_mq_exit_hctx(q, set, hctx, i);
2270 }
2271 }
2272
2273 static int blk_mq_init_hctx(struct request_queue *q,
2274 struct blk_mq_tag_set *set,
2275 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2276 {
2277 int node;
2278
2279 node = hctx->numa_node;
2280 if (node == NUMA_NO_NODE)
2281 node = hctx->numa_node = set->numa_node;
2282
2283 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2284 spin_lock_init(&hctx->lock);
2285 INIT_LIST_HEAD(&hctx->dispatch);
2286 hctx->queue = q;
2287 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2288
2289 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2290
2291 hctx->tags = set->tags[hctx_idx];
2292
2293 /*
2294 * Allocate space for all possible cpus to avoid allocation at
2295 * runtime
2296 */
2297 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2298 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2299 if (!hctx->ctxs)
2300 goto unregister_cpu_notifier;
2301
2302 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2303 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2304 goto free_ctxs;
2305
2306 hctx->nr_ctx = 0;
2307
2308 spin_lock_init(&hctx->dispatch_wait_lock);
2309 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2310 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2311
2312 if (set->ops->init_hctx &&
2313 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2314 goto free_bitmap;
2315
2316 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2317 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2318 if (!hctx->fq)
2319 goto exit_hctx;
2320
2321 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2322 goto free_fq;
2323
2324 if (hctx->flags & BLK_MQ_F_BLOCKING)
2325 init_srcu_struct(hctx->srcu);
2326
2327 return 0;
2328
2329 free_fq:
2330 kfree(hctx->fq);
2331 exit_hctx:
2332 if (set->ops->exit_hctx)
2333 set->ops->exit_hctx(hctx, hctx_idx);
2334 free_bitmap:
2335 sbitmap_free(&hctx->ctx_map);
2336 free_ctxs:
2337 kfree(hctx->ctxs);
2338 unregister_cpu_notifier:
2339 blk_mq_remove_cpuhp(hctx);
2340 return -1;
2341 }
2342
2343 static void blk_mq_init_cpu_queues(struct request_queue *q,
2344 unsigned int nr_hw_queues)
2345 {
2346 struct blk_mq_tag_set *set = q->tag_set;
2347 unsigned int i, j;
2348
2349 for_each_possible_cpu(i) {
2350 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2351 struct blk_mq_hw_ctx *hctx;
2352
2353 __ctx->cpu = i;
2354 spin_lock_init(&__ctx->lock);
2355 INIT_LIST_HEAD(&__ctx->rq_list);
2356 __ctx->queue = q;
2357
2358 /*
2359 * Set local node, IFF we have more than one hw queue. If
2360 * not, we remain on the home node of the device
2361 */
2362 for (j = 0; j < set->nr_maps; j++) {
2363 hctx = blk_mq_map_queue_type(q, j, i);
2364 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2365 hctx->numa_node = local_memory_node(cpu_to_node(i));
2366 }
2367 }
2368 }
2369
2370 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2371 {
2372 int ret = 0;
2373
2374 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2375 set->queue_depth, set->reserved_tags);
2376 if (!set->tags[hctx_idx])
2377 return false;
2378
2379 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2380 set->queue_depth);
2381 if (!ret)
2382 return true;
2383
2384 blk_mq_free_rq_map(set->tags[hctx_idx]);
2385 set->tags[hctx_idx] = NULL;
2386 return false;
2387 }
2388
2389 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2390 unsigned int hctx_idx)
2391 {
2392 if (set->tags && set->tags[hctx_idx]) {
2393 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2394 blk_mq_free_rq_map(set->tags[hctx_idx]);
2395 set->tags[hctx_idx] = NULL;
2396 }
2397 }
2398
2399 static void blk_mq_map_swqueue(struct request_queue *q)
2400 {
2401 unsigned int i, j, hctx_idx;
2402 struct blk_mq_hw_ctx *hctx;
2403 struct blk_mq_ctx *ctx;
2404 struct blk_mq_tag_set *set = q->tag_set;
2405
2406 /*
2407 * Avoid others reading imcomplete hctx->cpumask through sysfs
2408 */
2409 mutex_lock(&q->sysfs_lock);
2410
2411 queue_for_each_hw_ctx(q, hctx, i) {
2412 cpumask_clear(hctx->cpumask);
2413 hctx->nr_ctx = 0;
2414 hctx->dispatch_from = NULL;
2415 }
2416
2417 /*
2418 * Map software to hardware queues.
2419 *
2420 * If the cpu isn't present, the cpu is mapped to first hctx.
2421 */
2422 for_each_possible_cpu(i) {
2423 hctx_idx = set->map[0].mq_map[i];
2424 /* unmapped hw queue can be remapped after CPU topo changed */
2425 if (!set->tags[hctx_idx] &&
2426 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2427 /*
2428 * If tags initialization fail for some hctx,
2429 * that hctx won't be brought online. In this
2430 * case, remap the current ctx to hctx[0] which
2431 * is guaranteed to always have tags allocated
2432 */
2433 set->map[0].mq_map[i] = 0;
2434 }
2435
2436 ctx = per_cpu_ptr(q->queue_ctx, i);
2437 for (j = 0; j < set->nr_maps; j++) {
2438 hctx = blk_mq_map_queue_type(q, j, i);
2439
2440 /*
2441 * If the CPU is already set in the mask, then we've
2442 * mapped this one already. This can happen if
2443 * devices share queues across queue maps.
2444 */
2445 if (cpumask_test_cpu(i, hctx->cpumask))
2446 continue;
2447
2448 cpumask_set_cpu(i, hctx->cpumask);
2449 hctx->type = j;
2450 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2451 hctx->ctxs[hctx->nr_ctx++] = ctx;
2452
2453 /*
2454 * If the nr_ctx type overflows, we have exceeded the
2455 * amount of sw queues we can support.
2456 */
2457 BUG_ON(!hctx->nr_ctx);
2458 }
2459 }
2460
2461 mutex_unlock(&q->sysfs_lock);
2462
2463 queue_for_each_hw_ctx(q, hctx, i) {
2464 /*
2465 * If no software queues are mapped to this hardware queue,
2466 * disable it and free the request entries.
2467 */
2468 if (!hctx->nr_ctx) {
2469 /* Never unmap queue 0. We need it as a
2470 * fallback in case of a new remap fails
2471 * allocation
2472 */
2473 if (i && set->tags[i])
2474 blk_mq_free_map_and_requests(set, i);
2475
2476 hctx->tags = NULL;
2477 continue;
2478 }
2479
2480 hctx->tags = set->tags[i];
2481 WARN_ON(!hctx->tags);
2482
2483 /*
2484 * Set the map size to the number of mapped software queues.
2485 * This is more accurate and more efficient than looping
2486 * over all possibly mapped software queues.
2487 */
2488 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2489
2490 /*
2491 * Initialize batch roundrobin counts
2492 */
2493 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2494 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2495 }
2496 }
2497
2498 /*
2499 * Caller needs to ensure that we're either frozen/quiesced, or that
2500 * the queue isn't live yet.
2501 */
2502 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2503 {
2504 struct blk_mq_hw_ctx *hctx;
2505 int i;
2506
2507 queue_for_each_hw_ctx(q, hctx, i) {
2508 if (shared)
2509 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2510 else
2511 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2512 }
2513 }
2514
2515 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2516 bool shared)
2517 {
2518 struct request_queue *q;
2519
2520 lockdep_assert_held(&set->tag_list_lock);
2521
2522 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2523 blk_mq_freeze_queue(q);
2524 queue_set_hctx_shared(q, shared);
2525 blk_mq_unfreeze_queue(q);
2526 }
2527 }
2528
2529 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2530 {
2531 struct blk_mq_tag_set *set = q->tag_set;
2532
2533 mutex_lock(&set->tag_list_lock);
2534 list_del_rcu(&q->tag_set_list);
2535 if (list_is_singular(&set->tag_list)) {
2536 /* just transitioned to unshared */
2537 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2538 /* update existing queue */
2539 blk_mq_update_tag_set_depth(set, false);
2540 }
2541 mutex_unlock(&set->tag_list_lock);
2542 INIT_LIST_HEAD(&q->tag_set_list);
2543 }
2544
2545 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2546 struct request_queue *q)
2547 {
2548 mutex_lock(&set->tag_list_lock);
2549
2550 /*
2551 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2552 */
2553 if (!list_empty(&set->tag_list) &&
2554 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2555 set->flags |= BLK_MQ_F_TAG_SHARED;
2556 /* update existing queue */
2557 blk_mq_update_tag_set_depth(set, true);
2558 }
2559 if (set->flags & BLK_MQ_F_TAG_SHARED)
2560 queue_set_hctx_shared(q, true);
2561 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2562
2563 mutex_unlock(&set->tag_list_lock);
2564 }
2565
2566 /* All allocations will be freed in release handler of q->mq_kobj */
2567 static int blk_mq_alloc_ctxs(struct request_queue *q)
2568 {
2569 struct blk_mq_ctxs *ctxs;
2570 int cpu;
2571
2572 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2573 if (!ctxs)
2574 return -ENOMEM;
2575
2576 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2577 if (!ctxs->queue_ctx)
2578 goto fail;
2579
2580 for_each_possible_cpu(cpu) {
2581 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2582 ctx->ctxs = ctxs;
2583 }
2584
2585 q->mq_kobj = &ctxs->kobj;
2586 q->queue_ctx = ctxs->queue_ctx;
2587
2588 return 0;
2589 fail:
2590 kfree(ctxs);
2591 return -ENOMEM;
2592 }
2593
2594 /*
2595 * It is the actual release handler for mq, but we do it from
2596 * request queue's release handler for avoiding use-after-free
2597 * and headache because q->mq_kobj shouldn't have been introduced,
2598 * but we can't group ctx/kctx kobj without it.
2599 */
2600 void blk_mq_release(struct request_queue *q)
2601 {
2602 struct blk_mq_hw_ctx *hctx;
2603 unsigned int i;
2604
2605 /* hctx kobj stays in hctx */
2606 queue_for_each_hw_ctx(q, hctx, i) {
2607 if (!hctx)
2608 continue;
2609 kobject_put(&hctx->kobj);
2610 }
2611
2612 kfree(q->queue_hw_ctx);
2613
2614 /*
2615 * release .mq_kobj and sw queue's kobject now because
2616 * both share lifetime with request queue.
2617 */
2618 blk_mq_sysfs_deinit(q);
2619 }
2620
2621 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2622 {
2623 struct request_queue *uninit_q, *q;
2624
2625 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2626 if (!uninit_q)
2627 return ERR_PTR(-ENOMEM);
2628
2629 q = blk_mq_init_allocated_queue(set, uninit_q);
2630 if (IS_ERR(q))
2631 blk_cleanup_queue(uninit_q);
2632
2633 return q;
2634 }
2635 EXPORT_SYMBOL(blk_mq_init_queue);
2636
2637 /*
2638 * Helper for setting up a queue with mq ops, given queue depth, and
2639 * the passed in mq ops flags.
2640 */
2641 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2642 const struct blk_mq_ops *ops,
2643 unsigned int queue_depth,
2644 unsigned int set_flags)
2645 {
2646 struct request_queue *q;
2647 int ret;
2648
2649 memset(set, 0, sizeof(*set));
2650 set->ops = ops;
2651 set->nr_hw_queues = 1;
2652 set->nr_maps = 1;
2653 set->queue_depth = queue_depth;
2654 set->numa_node = NUMA_NO_NODE;
2655 set->flags = set_flags;
2656
2657 ret = blk_mq_alloc_tag_set(set);
2658 if (ret)
2659 return ERR_PTR(ret);
2660
2661 q = blk_mq_init_queue(set);
2662 if (IS_ERR(q)) {
2663 blk_mq_free_tag_set(set);
2664 return q;
2665 }
2666
2667 return q;
2668 }
2669 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2670
2671 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2672 {
2673 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2674
2675 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2676 __alignof__(struct blk_mq_hw_ctx)) !=
2677 sizeof(struct blk_mq_hw_ctx));
2678
2679 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2680 hw_ctx_size += sizeof(struct srcu_struct);
2681
2682 return hw_ctx_size;
2683 }
2684
2685 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2686 struct blk_mq_tag_set *set, struct request_queue *q,
2687 int hctx_idx, int node)
2688 {
2689 struct blk_mq_hw_ctx *hctx;
2690
2691 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2692 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2693 node);
2694 if (!hctx)
2695 return NULL;
2696
2697 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2698 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2699 node)) {
2700 kfree(hctx);
2701 return NULL;
2702 }
2703
2704 atomic_set(&hctx->nr_active, 0);
2705 hctx->numa_node = node;
2706 hctx->queue_num = hctx_idx;
2707
2708 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2709 free_cpumask_var(hctx->cpumask);
2710 kfree(hctx);
2711 return NULL;
2712 }
2713 blk_mq_hctx_kobj_init(hctx);
2714
2715 return hctx;
2716 }
2717
2718 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2719 struct request_queue *q)
2720 {
2721 int i, j, end;
2722 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2723
2724 /* protect against switching io scheduler */
2725 mutex_lock(&q->sysfs_lock);
2726 for (i = 0; i < set->nr_hw_queues; i++) {
2727 int node;
2728 struct blk_mq_hw_ctx *hctx;
2729
2730 node = blk_mq_hw_queue_to_node(&set->map[0], i);
2731 /*
2732 * If the hw queue has been mapped to another numa node,
2733 * we need to realloc the hctx. If allocation fails, fallback
2734 * to use the previous one.
2735 */
2736 if (hctxs[i] && (hctxs[i]->numa_node == node))
2737 continue;
2738
2739 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2740 if (hctx) {
2741 if (hctxs[i]) {
2742 blk_mq_exit_hctx(q, set, hctxs[i], i);
2743 kobject_put(&hctxs[i]->kobj);
2744 }
2745 hctxs[i] = hctx;
2746 } else {
2747 if (hctxs[i])
2748 pr_warn("Allocate new hctx on node %d fails,\
2749 fallback to previous one on node %d\n",
2750 node, hctxs[i]->numa_node);
2751 else
2752 break;
2753 }
2754 }
2755 /*
2756 * Increasing nr_hw_queues fails. Free the newly allocated
2757 * hctxs and keep the previous q->nr_hw_queues.
2758 */
2759 if (i != set->nr_hw_queues) {
2760 j = q->nr_hw_queues;
2761 end = i;
2762 } else {
2763 j = i;
2764 end = q->nr_hw_queues;
2765 q->nr_hw_queues = set->nr_hw_queues;
2766 }
2767
2768 for (; j < end; j++) {
2769 struct blk_mq_hw_ctx *hctx = hctxs[j];
2770
2771 if (hctx) {
2772 if (hctx->tags)
2773 blk_mq_free_map_and_requests(set, j);
2774 blk_mq_exit_hctx(q, set, hctx, j);
2775 kobject_put(&hctx->kobj);
2776 hctxs[j] = NULL;
2777
2778 }
2779 }
2780 mutex_unlock(&q->sysfs_lock);
2781 }
2782
2783 /*
2784 * Maximum number of hardware queues we support. For single sets, we'll never
2785 * have more than the CPUs (software queues). For multiple sets, the tag_set
2786 * user may have set ->nr_hw_queues larger.
2787 */
2788 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2789 {
2790 if (set->nr_maps == 1)
2791 return nr_cpu_ids;
2792
2793 return max(set->nr_hw_queues, nr_cpu_ids);
2794 }
2795
2796 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2797 struct request_queue *q)
2798 {
2799 /* mark the queue as mq asap */
2800 q->mq_ops = set->ops;
2801
2802 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2803 blk_mq_poll_stats_bkt,
2804 BLK_MQ_POLL_STATS_BKTS, q);
2805 if (!q->poll_cb)
2806 goto err_exit;
2807
2808 if (blk_mq_alloc_ctxs(q))
2809 goto err_exit;
2810
2811 /* init q->mq_kobj and sw queues' kobjects */
2812 blk_mq_sysfs_init(q);
2813
2814 q->nr_queues = nr_hw_queues(set);
2815 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2816 GFP_KERNEL, set->numa_node);
2817 if (!q->queue_hw_ctx)
2818 goto err_sys_init;
2819
2820 blk_mq_realloc_hw_ctxs(set, q);
2821 if (!q->nr_hw_queues)
2822 goto err_hctxs;
2823
2824 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2825 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2826
2827 q->tag_set = set;
2828
2829 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2830 if (set->nr_maps > HCTX_TYPE_POLL)
2831 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2832
2833 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2834 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2835
2836 q->sg_reserved_size = INT_MAX;
2837
2838 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2839 INIT_LIST_HEAD(&q->requeue_list);
2840 spin_lock_init(&q->requeue_lock);
2841
2842 blk_queue_make_request(q, blk_mq_make_request);
2843
2844 /*
2845 * Do this after blk_queue_make_request() overrides it...
2846 */
2847 q->nr_requests = set->queue_depth;
2848
2849 /*
2850 * Default to classic polling
2851 */
2852 q->poll_nsec = -1;
2853
2854 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2855 blk_mq_add_queue_tag_set(set, q);
2856 blk_mq_map_swqueue(q);
2857
2858 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2859 int ret;
2860
2861 ret = elevator_init_mq(q);
2862 if (ret)
2863 return ERR_PTR(ret);
2864 }
2865
2866 return q;
2867
2868 err_hctxs:
2869 kfree(q->queue_hw_ctx);
2870 err_sys_init:
2871 blk_mq_sysfs_deinit(q);
2872 err_exit:
2873 q->mq_ops = NULL;
2874 return ERR_PTR(-ENOMEM);
2875 }
2876 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2877
2878 void blk_mq_free_queue(struct request_queue *q)
2879 {
2880 struct blk_mq_tag_set *set = q->tag_set;
2881
2882 blk_mq_del_queue_tag_set(q);
2883 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2884 }
2885
2886 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2887 {
2888 int i;
2889
2890 for (i = 0; i < set->nr_hw_queues; i++)
2891 if (!__blk_mq_alloc_rq_map(set, i))
2892 goto out_unwind;
2893
2894 return 0;
2895
2896 out_unwind:
2897 while (--i >= 0)
2898 blk_mq_free_rq_map(set->tags[i]);
2899
2900 return -ENOMEM;
2901 }
2902
2903 /*
2904 * Allocate the request maps associated with this tag_set. Note that this
2905 * may reduce the depth asked for, if memory is tight. set->queue_depth
2906 * will be updated to reflect the allocated depth.
2907 */
2908 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2909 {
2910 unsigned int depth;
2911 int err;
2912
2913 depth = set->queue_depth;
2914 do {
2915 err = __blk_mq_alloc_rq_maps(set);
2916 if (!err)
2917 break;
2918
2919 set->queue_depth >>= 1;
2920 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2921 err = -ENOMEM;
2922 break;
2923 }
2924 } while (set->queue_depth);
2925
2926 if (!set->queue_depth || err) {
2927 pr_err("blk-mq: failed to allocate request map\n");
2928 return -ENOMEM;
2929 }
2930
2931 if (depth != set->queue_depth)
2932 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2933 depth, set->queue_depth);
2934
2935 return 0;
2936 }
2937
2938 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2939 {
2940 if (set->ops->map_queues && !is_kdump_kernel()) {
2941 int i;
2942
2943 /*
2944 * transport .map_queues is usually done in the following
2945 * way:
2946 *
2947 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2948 * mask = get_cpu_mask(queue)
2949 * for_each_cpu(cpu, mask)
2950 * set->map[x].mq_map[cpu] = queue;
2951 * }
2952 *
2953 * When we need to remap, the table has to be cleared for
2954 * killing stale mapping since one CPU may not be mapped
2955 * to any hw queue.
2956 */
2957 for (i = 0; i < set->nr_maps; i++)
2958 blk_mq_clear_mq_map(&set->map[i]);
2959
2960 return set->ops->map_queues(set);
2961 } else {
2962 BUG_ON(set->nr_maps > 1);
2963 return blk_mq_map_queues(&set->map[0]);
2964 }
2965 }
2966
2967 /*
2968 * Alloc a tag set to be associated with one or more request queues.
2969 * May fail with EINVAL for various error conditions. May adjust the
2970 * requested depth down, if it's too large. In that case, the set
2971 * value will be stored in set->queue_depth.
2972 */
2973 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2974 {
2975 int i, ret;
2976
2977 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2978
2979 if (!set->nr_hw_queues)
2980 return -EINVAL;
2981 if (!set->queue_depth)
2982 return -EINVAL;
2983 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2984 return -EINVAL;
2985
2986 if (!set->ops->queue_rq)
2987 return -EINVAL;
2988
2989 if (!set->ops->get_budget ^ !set->ops->put_budget)
2990 return -EINVAL;
2991
2992 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2993 pr_info("blk-mq: reduced tag depth to %u\n",
2994 BLK_MQ_MAX_DEPTH);
2995 set->queue_depth = BLK_MQ_MAX_DEPTH;
2996 }
2997
2998 if (!set->nr_maps)
2999 set->nr_maps = 1;
3000 else if (set->nr_maps > HCTX_MAX_TYPES)
3001 return -EINVAL;
3002
3003 /*
3004 * If a crashdump is active, then we are potentially in a very
3005 * memory constrained environment. Limit us to 1 queue and
3006 * 64 tags to prevent using too much memory.
3007 */
3008 if (is_kdump_kernel()) {
3009 set->nr_hw_queues = 1;
3010 set->nr_maps = 1;
3011 set->queue_depth = min(64U, set->queue_depth);
3012 }
3013 /*
3014 * There is no use for more h/w queues than cpus if we just have
3015 * a single map
3016 */
3017 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3018 set->nr_hw_queues = nr_cpu_ids;
3019
3020 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3021 GFP_KERNEL, set->numa_node);
3022 if (!set->tags)
3023 return -ENOMEM;
3024
3025 ret = -ENOMEM;
3026 for (i = 0; i < set->nr_maps; i++) {
3027 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3028 sizeof(struct blk_mq_queue_map),
3029 GFP_KERNEL, set->numa_node);
3030 if (!set->map[i].mq_map)
3031 goto out_free_mq_map;
3032 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3033 }
3034
3035 ret = blk_mq_update_queue_map(set);
3036 if (ret)
3037 goto out_free_mq_map;
3038
3039 ret = blk_mq_alloc_rq_maps(set);
3040 if (ret)
3041 goto out_free_mq_map;
3042
3043 mutex_init(&set->tag_list_lock);
3044 INIT_LIST_HEAD(&set->tag_list);
3045
3046 return 0;
3047
3048 out_free_mq_map:
3049 for (i = 0; i < set->nr_maps; i++) {
3050 kfree(set->map[i].mq_map);
3051 set->map[i].mq_map = NULL;
3052 }
3053 kfree(set->tags);
3054 set->tags = NULL;
3055 return ret;
3056 }
3057 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3058
3059 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3060 {
3061 int i, j;
3062
3063 for (i = 0; i < nr_hw_queues(set); i++)
3064 blk_mq_free_map_and_requests(set, i);
3065
3066 for (j = 0; j < set->nr_maps; j++) {
3067 kfree(set->map[j].mq_map);
3068 set->map[j].mq_map = NULL;
3069 }
3070
3071 kfree(set->tags);
3072 set->tags = NULL;
3073 }
3074 EXPORT_SYMBOL(blk_mq_free_tag_set);
3075
3076 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3077 {
3078 struct blk_mq_tag_set *set = q->tag_set;
3079 struct blk_mq_hw_ctx *hctx;
3080 int i, ret;
3081
3082 if (!set)
3083 return -EINVAL;
3084
3085 blk_mq_freeze_queue(q);
3086 blk_mq_quiesce_queue(q);
3087
3088 ret = 0;
3089 queue_for_each_hw_ctx(q, hctx, i) {
3090 if (!hctx->tags)
3091 continue;
3092 /*
3093 * If we're using an MQ scheduler, just update the scheduler
3094 * queue depth. This is similar to what the old code would do.
3095 */
3096 if (!hctx->sched_tags) {
3097 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3098 false);
3099 } else {
3100 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3101 nr, true);
3102 }
3103 if (ret)
3104 break;
3105 }
3106
3107 if (!ret)
3108 q->nr_requests = nr;
3109
3110 blk_mq_unquiesce_queue(q);
3111 blk_mq_unfreeze_queue(q);
3112
3113 return ret;
3114 }
3115
3116 /*
3117 * request_queue and elevator_type pair.
3118 * It is just used by __blk_mq_update_nr_hw_queues to cache
3119 * the elevator_type associated with a request_queue.
3120 */
3121 struct blk_mq_qe_pair {
3122 struct list_head node;
3123 struct request_queue *q;
3124 struct elevator_type *type;
3125 };
3126
3127 /*
3128 * Cache the elevator_type in qe pair list and switch the
3129 * io scheduler to 'none'
3130 */
3131 static bool blk_mq_elv_switch_none(struct list_head *head,
3132 struct request_queue *q)
3133 {
3134 struct blk_mq_qe_pair *qe;
3135
3136 if (!q->elevator)
3137 return true;
3138
3139 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3140 if (!qe)
3141 return false;
3142
3143 INIT_LIST_HEAD(&qe->node);
3144 qe->q = q;
3145 qe->type = q->elevator->type;
3146 list_add(&qe->node, head);
3147
3148 mutex_lock(&q->sysfs_lock);
3149 /*
3150 * After elevator_switch_mq, the previous elevator_queue will be
3151 * released by elevator_release. The reference of the io scheduler
3152 * module get by elevator_get will also be put. So we need to get
3153 * a reference of the io scheduler module here to prevent it to be
3154 * removed.
3155 */
3156 __module_get(qe->type->elevator_owner);
3157 elevator_switch_mq(q, NULL);
3158 mutex_unlock(&q->sysfs_lock);
3159
3160 return true;
3161 }
3162
3163 static void blk_mq_elv_switch_back(struct list_head *head,
3164 struct request_queue *q)
3165 {
3166 struct blk_mq_qe_pair *qe;
3167 struct elevator_type *t = NULL;
3168
3169 list_for_each_entry(qe, head, node)
3170 if (qe->q == q) {
3171 t = qe->type;
3172 break;
3173 }
3174
3175 if (!t)
3176 return;
3177
3178 list_del(&qe->node);
3179 kfree(qe);
3180
3181 mutex_lock(&q->sysfs_lock);
3182 elevator_switch_mq(q, t);
3183 mutex_unlock(&q->sysfs_lock);
3184 }
3185
3186 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3187 int nr_hw_queues)
3188 {
3189 struct request_queue *q;
3190 LIST_HEAD(head);
3191 int prev_nr_hw_queues;
3192
3193 lockdep_assert_held(&set->tag_list_lock);
3194
3195 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3196 nr_hw_queues = nr_cpu_ids;
3197 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3198 return;
3199
3200 list_for_each_entry(q, &set->tag_list, tag_set_list)
3201 blk_mq_freeze_queue(q);
3202 /*
3203 * Sync with blk_mq_queue_tag_busy_iter.
3204 */
3205 synchronize_rcu();
3206 /*
3207 * Switch IO scheduler to 'none', cleaning up the data associated
3208 * with the previous scheduler. We will switch back once we are done
3209 * updating the new sw to hw queue mappings.
3210 */
3211 list_for_each_entry(q, &set->tag_list, tag_set_list)
3212 if (!blk_mq_elv_switch_none(&head, q))
3213 goto switch_back;
3214
3215 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3216 blk_mq_debugfs_unregister_hctxs(q);
3217 blk_mq_sysfs_unregister(q);
3218 }
3219
3220 prev_nr_hw_queues = set->nr_hw_queues;
3221 set->nr_hw_queues = nr_hw_queues;
3222 blk_mq_update_queue_map(set);
3223 fallback:
3224 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3225 blk_mq_realloc_hw_ctxs(set, q);
3226 if (q->nr_hw_queues != set->nr_hw_queues) {
3227 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3228 nr_hw_queues, prev_nr_hw_queues);
3229 set->nr_hw_queues = prev_nr_hw_queues;
3230 blk_mq_map_queues(&set->map[0]);
3231 goto fallback;
3232 }
3233 blk_mq_map_swqueue(q);
3234 }
3235
3236 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3237 blk_mq_sysfs_register(q);
3238 blk_mq_debugfs_register_hctxs(q);
3239 }
3240
3241 switch_back:
3242 list_for_each_entry(q, &set->tag_list, tag_set_list)
3243 blk_mq_elv_switch_back(&head, q);
3244
3245 list_for_each_entry(q, &set->tag_list, tag_set_list)
3246 blk_mq_unfreeze_queue(q);
3247 }
3248
3249 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3250 {
3251 mutex_lock(&set->tag_list_lock);
3252 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3253 mutex_unlock(&set->tag_list_lock);
3254 }
3255 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3256
3257 /* Enable polling stats and return whether they were already enabled. */
3258 static bool blk_poll_stats_enable(struct request_queue *q)
3259 {
3260 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3261 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3262 return true;
3263 blk_stat_add_callback(q, q->poll_cb);
3264 return false;
3265 }
3266
3267 static void blk_mq_poll_stats_start(struct request_queue *q)
3268 {
3269 /*
3270 * We don't arm the callback if polling stats are not enabled or the
3271 * callback is already active.
3272 */
3273 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3274 blk_stat_is_active(q->poll_cb))
3275 return;
3276
3277 blk_stat_activate_msecs(q->poll_cb, 100);
3278 }
3279
3280 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3281 {
3282 struct request_queue *q = cb->data;
3283 int bucket;
3284
3285 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3286 if (cb->stat[bucket].nr_samples)
3287 q->poll_stat[bucket] = cb->stat[bucket];
3288 }
3289 }
3290
3291 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3292 struct blk_mq_hw_ctx *hctx,
3293 struct request *rq)
3294 {
3295 unsigned long ret = 0;
3296 int bucket;
3297
3298 /*
3299 * If stats collection isn't on, don't sleep but turn it on for
3300 * future users
3301 */
3302 if (!blk_poll_stats_enable(q))
3303 return 0;
3304
3305 /*
3306 * As an optimistic guess, use half of the mean service time
3307 * for this type of request. We can (and should) make this smarter.
3308 * For instance, if the completion latencies are tight, we can
3309 * get closer than just half the mean. This is especially
3310 * important on devices where the completion latencies are longer
3311 * than ~10 usec. We do use the stats for the relevant IO size
3312 * if available which does lead to better estimates.
3313 */
3314 bucket = blk_mq_poll_stats_bkt(rq);
3315 if (bucket < 0)
3316 return ret;
3317
3318 if (q->poll_stat[bucket].nr_samples)
3319 ret = (q->poll_stat[bucket].mean + 1) / 2;
3320
3321 return ret;
3322 }
3323
3324 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3325 struct blk_mq_hw_ctx *hctx,
3326 struct request *rq)
3327 {
3328 struct hrtimer_sleeper hs;
3329 enum hrtimer_mode mode;
3330 unsigned int nsecs;
3331 ktime_t kt;
3332
3333 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3334 return false;
3335
3336 /*
3337 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3338 *
3339 * 0: use half of prev avg
3340 * >0: use this specific value
3341 */
3342 if (q->poll_nsec > 0)
3343 nsecs = q->poll_nsec;
3344 else
3345 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3346
3347 if (!nsecs)
3348 return false;
3349
3350 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3351
3352 /*
3353 * This will be replaced with the stats tracking code, using
3354 * 'avg_completion_time / 2' as the pre-sleep target.
3355 */
3356 kt = nsecs;
3357
3358 mode = HRTIMER_MODE_REL;
3359 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3360 hrtimer_set_expires(&hs.timer, kt);
3361
3362 hrtimer_init_sleeper(&hs, current);
3363 do {
3364 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3365 break;
3366 set_current_state(TASK_UNINTERRUPTIBLE);
3367 hrtimer_start_expires(&hs.timer, mode);
3368 if (hs.task)
3369 io_schedule();
3370 hrtimer_cancel(&hs.timer);
3371 mode = HRTIMER_MODE_ABS;
3372 } while (hs.task && !signal_pending(current));
3373
3374 __set_current_state(TASK_RUNNING);
3375 destroy_hrtimer_on_stack(&hs.timer);
3376 return true;
3377 }
3378
3379 static bool blk_mq_poll_hybrid(struct request_queue *q,
3380 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3381 {
3382 struct request *rq;
3383
3384 if (q->poll_nsec == -1)
3385 return false;
3386
3387 if (!blk_qc_t_is_internal(cookie))
3388 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3389 else {
3390 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3391 /*
3392 * With scheduling, if the request has completed, we'll
3393 * get a NULL return here, as we clear the sched tag when
3394 * that happens. The request still remains valid, like always,
3395 * so we should be safe with just the NULL check.
3396 */
3397 if (!rq)
3398 return false;
3399 }
3400
3401 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3402 }
3403
3404 /**
3405 * blk_poll - poll for IO completions
3406 * @q: the queue
3407 * @cookie: cookie passed back at IO submission time
3408 * @spin: whether to spin for completions
3409 *
3410 * Description:
3411 * Poll for completions on the passed in queue. Returns number of
3412 * completed entries found. If @spin is true, then blk_poll will continue
3413 * looping until at least one completion is found, unless the task is
3414 * otherwise marked running (or we need to reschedule).
3415 */
3416 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3417 {
3418 struct blk_mq_hw_ctx *hctx;
3419 long state;
3420
3421 if (!blk_qc_t_valid(cookie) ||
3422 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3423 return 0;
3424
3425 if (current->plug)
3426 blk_flush_plug_list(current->plug, false);
3427
3428 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3429
3430 /*
3431 * If we sleep, have the caller restart the poll loop to reset
3432 * the state. Like for the other success return cases, the
3433 * caller is responsible for checking if the IO completed. If
3434 * the IO isn't complete, we'll get called again and will go
3435 * straight to the busy poll loop.
3436 */
3437 if (blk_mq_poll_hybrid(q, hctx, cookie))
3438 return 1;
3439
3440 hctx->poll_considered++;
3441
3442 state = current->state;
3443 do {
3444 int ret;
3445
3446 hctx->poll_invoked++;
3447
3448 ret = q->mq_ops->poll(hctx);
3449 if (ret > 0) {
3450 hctx->poll_success++;
3451 __set_current_state(TASK_RUNNING);
3452 return ret;
3453 }
3454
3455 if (signal_pending_state(state, current))
3456 __set_current_state(TASK_RUNNING);
3457
3458 if (current->state == TASK_RUNNING)
3459 return 1;
3460 if (ret < 0 || !spin)
3461 break;
3462 cpu_relax();
3463 } while (!need_resched());
3464
3465 __set_current_state(TASK_RUNNING);
3466 return 0;
3467 }
3468 EXPORT_SYMBOL_GPL(blk_poll);
3469
3470 unsigned int blk_mq_rq_cpu(struct request *rq)
3471 {
3472 return rq->mq_ctx->cpu;
3473 }
3474 EXPORT_SYMBOL(blk_mq_rq_cpu);
3475
3476 static int __init blk_mq_init(void)
3477 {
3478 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3479 blk_mq_hctx_notify_dead);
3480 return 0;
3481 }
3482 subsys_initcall(blk_mq_init);