]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
blk-mq: separate number of hardware queues from nr_cpu_ids
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 int ddir, bytes, bucket;
48
49 ddir = rq_data_dir(rq);
50 bytes = blk_rq_bytes(rq);
51
52 bucket = ddir + 2*(ilog2(bytes) - 9);
53
54 if (bucket < 0)
55 return -1;
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59 return bucket;
60 }
61
62 /*
63 * Check if any of the ctx's have pending work in this hardware queue
64 */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67 return !list_empty_careful(&hctx->dispatch) ||
68 sbitmap_any_bit_set(&hctx->ctx_map) ||
69 blk_mq_sched_has_work(hctx);
70 }
71
72 /*
73 * Mark this ctx as having pending work in this hardware queue
74 */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 struct blk_mq_ctx *ctx)
77 {
78 const int bit = ctx->index_hw[hctx->type];
79
80 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
81 sbitmap_set_bit(&hctx->ctx_map, bit);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86 {
87 const int bit = ctx->index_hw[hctx->type];
88
89 sbitmap_clear_bit(&hctx->ctx_map, bit);
90 }
91
92 struct mq_inflight {
93 struct hd_struct *part;
94 unsigned int *inflight;
95 };
96
97 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
98 struct request *rq, void *priv,
99 bool reserved)
100 {
101 struct mq_inflight *mi = priv;
102
103 /*
104 * index[0] counts the specific partition that was asked for. index[1]
105 * counts the ones that are active on the whole device, so increment
106 * that if mi->part is indeed a partition, and not a whole device.
107 */
108 if (rq->part == mi->part)
109 mi->inflight[0]++;
110 if (mi->part->partno)
111 mi->inflight[1]++;
112 }
113
114 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
115 unsigned int inflight[2])
116 {
117 struct mq_inflight mi = { .part = part, .inflight = inflight, };
118
119 inflight[0] = inflight[1] = 0;
120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
121 }
122
123 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
124 struct request *rq, void *priv,
125 bool reserved)
126 {
127 struct mq_inflight *mi = priv;
128
129 if (rq->part == mi->part)
130 mi->inflight[rq_data_dir(rq)]++;
131 }
132
133 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
134 unsigned int inflight[2])
135 {
136 struct mq_inflight mi = { .part = part, .inflight = inflight, };
137
138 inflight[0] = inflight[1] = 0;
139 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
140 }
141
142 void blk_freeze_queue_start(struct request_queue *q)
143 {
144 int freeze_depth;
145
146 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
147 if (freeze_depth == 1) {
148 percpu_ref_kill(&q->q_usage_counter);
149 if (q->mq_ops)
150 blk_mq_run_hw_queues(q, false);
151 }
152 }
153 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
154
155 void blk_mq_freeze_queue_wait(struct request_queue *q)
156 {
157 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
158 }
159 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
160
161 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
162 unsigned long timeout)
163 {
164 return wait_event_timeout(q->mq_freeze_wq,
165 percpu_ref_is_zero(&q->q_usage_counter),
166 timeout);
167 }
168 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
169
170 /*
171 * Guarantee no request is in use, so we can change any data structure of
172 * the queue afterward.
173 */
174 void blk_freeze_queue(struct request_queue *q)
175 {
176 /*
177 * In the !blk_mq case we are only calling this to kill the
178 * q_usage_counter, otherwise this increases the freeze depth
179 * and waits for it to return to zero. For this reason there is
180 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
181 * exported to drivers as the only user for unfreeze is blk_mq.
182 */
183 blk_freeze_queue_start(q);
184 blk_mq_freeze_queue_wait(q);
185 }
186
187 void blk_mq_freeze_queue(struct request_queue *q)
188 {
189 /*
190 * ...just an alias to keep freeze and unfreeze actions balanced
191 * in the blk_mq_* namespace
192 */
193 blk_freeze_queue(q);
194 }
195 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
196
197 void blk_mq_unfreeze_queue(struct request_queue *q)
198 {
199 int freeze_depth;
200
201 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
202 WARN_ON_ONCE(freeze_depth < 0);
203 if (!freeze_depth) {
204 percpu_ref_resurrect(&q->q_usage_counter);
205 wake_up_all(&q->mq_freeze_wq);
206 }
207 }
208 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
209
210 /*
211 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
212 * mpt3sas driver such that this function can be removed.
213 */
214 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
215 {
216 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
219
220 /**
221 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
222 * @q: request queue.
223 *
224 * Note: this function does not prevent that the struct request end_io()
225 * callback function is invoked. Once this function is returned, we make
226 * sure no dispatch can happen until the queue is unquiesced via
227 * blk_mq_unquiesce_queue().
228 */
229 void blk_mq_quiesce_queue(struct request_queue *q)
230 {
231 struct blk_mq_hw_ctx *hctx;
232 unsigned int i;
233 bool rcu = false;
234
235 blk_mq_quiesce_queue_nowait(q);
236
237 queue_for_each_hw_ctx(q, hctx, i) {
238 if (hctx->flags & BLK_MQ_F_BLOCKING)
239 synchronize_srcu(hctx->srcu);
240 else
241 rcu = true;
242 }
243 if (rcu)
244 synchronize_rcu();
245 }
246 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
247
248 /*
249 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
250 * @q: request queue.
251 *
252 * This function recovers queue into the state before quiescing
253 * which is done by blk_mq_quiesce_queue.
254 */
255 void blk_mq_unquiesce_queue(struct request_queue *q)
256 {
257 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
258
259 /* dispatch requests which are inserted during quiescing */
260 blk_mq_run_hw_queues(q, true);
261 }
262 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
263
264 void blk_mq_wake_waiters(struct request_queue *q)
265 {
266 struct blk_mq_hw_ctx *hctx;
267 unsigned int i;
268
269 queue_for_each_hw_ctx(q, hctx, i)
270 if (blk_mq_hw_queue_mapped(hctx))
271 blk_mq_tag_wakeup_all(hctx->tags, true);
272 }
273
274 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
275 {
276 return blk_mq_has_free_tags(hctx->tags);
277 }
278 EXPORT_SYMBOL(blk_mq_can_queue);
279
280 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
281 unsigned int tag, unsigned int op)
282 {
283 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
284 struct request *rq = tags->static_rqs[tag];
285 req_flags_t rq_flags = 0;
286
287 if (data->flags & BLK_MQ_REQ_INTERNAL) {
288 rq->tag = -1;
289 rq->internal_tag = tag;
290 } else {
291 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
292 rq_flags = RQF_MQ_INFLIGHT;
293 atomic_inc(&data->hctx->nr_active);
294 }
295 rq->tag = tag;
296 rq->internal_tag = -1;
297 data->hctx->tags->rqs[rq->tag] = rq;
298 }
299
300 /* csd/requeue_work/fifo_time is initialized before use */
301 rq->q = data->q;
302 rq->mq_ctx = data->ctx;
303 rq->rq_flags = rq_flags;
304 rq->cmd_flags = op;
305 if (data->flags & BLK_MQ_REQ_PREEMPT)
306 rq->rq_flags |= RQF_PREEMPT;
307 if (blk_queue_io_stat(data->q))
308 rq->rq_flags |= RQF_IO_STAT;
309 INIT_LIST_HEAD(&rq->queuelist);
310 INIT_HLIST_NODE(&rq->hash);
311 RB_CLEAR_NODE(&rq->rb_node);
312 rq->rq_disk = NULL;
313 rq->part = NULL;
314 rq->start_time_ns = ktime_get_ns();
315 rq->io_start_time_ns = 0;
316 rq->nr_phys_segments = 0;
317 #if defined(CONFIG_BLK_DEV_INTEGRITY)
318 rq->nr_integrity_segments = 0;
319 #endif
320 rq->special = NULL;
321 /* tag was already set */
322 rq->extra_len = 0;
323 rq->__deadline = 0;
324
325 INIT_LIST_HEAD(&rq->timeout_list);
326 rq->timeout = 0;
327
328 rq->end_io = NULL;
329 rq->end_io_data = NULL;
330 rq->next_rq = NULL;
331
332 data->ctx->rq_dispatched[op_is_sync(op)]++;
333 refcount_set(&rq->ref, 1);
334 return rq;
335 }
336
337 static struct request *blk_mq_get_request(struct request_queue *q,
338 struct bio *bio,
339 struct blk_mq_alloc_data *data)
340 {
341 struct elevator_queue *e = q->elevator;
342 struct request *rq;
343 unsigned int tag;
344 bool put_ctx_on_error = false;
345
346 blk_queue_enter_live(q);
347 data->q = q;
348 if (likely(!data->ctx)) {
349 data->ctx = blk_mq_get_ctx(q);
350 put_ctx_on_error = true;
351 }
352 if (likely(!data->hctx))
353 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
354 data->ctx->cpu);
355 if (data->cmd_flags & REQ_NOWAIT)
356 data->flags |= BLK_MQ_REQ_NOWAIT;
357
358 if (e) {
359 data->flags |= BLK_MQ_REQ_INTERNAL;
360
361 /*
362 * Flush requests are special and go directly to the
363 * dispatch list. Don't include reserved tags in the
364 * limiting, as it isn't useful.
365 */
366 if (!op_is_flush(data->cmd_flags) &&
367 e->type->ops.limit_depth &&
368 !(data->flags & BLK_MQ_REQ_RESERVED))
369 e->type->ops.limit_depth(data->cmd_flags, data);
370 } else {
371 blk_mq_tag_busy(data->hctx);
372 }
373
374 tag = blk_mq_get_tag(data);
375 if (tag == BLK_MQ_TAG_FAIL) {
376 if (put_ctx_on_error) {
377 blk_mq_put_ctx(data->ctx);
378 data->ctx = NULL;
379 }
380 blk_queue_exit(q);
381 return NULL;
382 }
383
384 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
385 if (!op_is_flush(data->cmd_flags)) {
386 rq->elv.icq = NULL;
387 if (e && e->type->ops.prepare_request) {
388 if (e->type->icq_cache && rq_ioc(bio))
389 blk_mq_sched_assign_ioc(rq, bio);
390
391 e->type->ops.prepare_request(rq, bio);
392 rq->rq_flags |= RQF_ELVPRIV;
393 }
394 }
395 data->hctx->queued++;
396 return rq;
397 }
398
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 blk_mq_req_flags_t flags)
401 {
402 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
403 struct request *rq;
404 int ret;
405
406 ret = blk_queue_enter(q, flags);
407 if (ret)
408 return ERR_PTR(ret);
409
410 rq = blk_mq_get_request(q, NULL, &alloc_data);
411 blk_queue_exit(q);
412
413 if (!rq)
414 return ERR_PTR(-EWOULDBLOCK);
415
416 blk_mq_put_ctx(alloc_data.ctx);
417
418 rq->__data_len = 0;
419 rq->__sector = (sector_t) -1;
420 rq->bio = rq->biotail = NULL;
421 return rq;
422 }
423 EXPORT_SYMBOL(blk_mq_alloc_request);
424
425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
427 {
428 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
429 struct request *rq;
430 unsigned int cpu;
431 int ret;
432
433 /*
434 * If the tag allocator sleeps we could get an allocation for a
435 * different hardware context. No need to complicate the low level
436 * allocator for this for the rare use case of a command tied to
437 * a specific queue.
438 */
439 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440 return ERR_PTR(-EINVAL);
441
442 if (hctx_idx >= q->nr_hw_queues)
443 return ERR_PTR(-EIO);
444
445 ret = blk_queue_enter(q, flags);
446 if (ret)
447 return ERR_PTR(ret);
448
449 /*
450 * Check if the hardware context is actually mapped to anything.
451 * If not tell the caller that it should skip this queue.
452 */
453 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455 blk_queue_exit(q);
456 return ERR_PTR(-EXDEV);
457 }
458 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
460
461 rq = blk_mq_get_request(q, NULL, &alloc_data);
462 blk_queue_exit(q);
463
464 if (!rq)
465 return ERR_PTR(-EWOULDBLOCK);
466
467 return rq;
468 }
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
470
471 static void __blk_mq_free_request(struct request *rq)
472 {
473 struct request_queue *q = rq->q;
474 struct blk_mq_ctx *ctx = rq->mq_ctx;
475 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->cmd_flags, ctx->cpu);
476 const int sched_tag = rq->internal_tag;
477
478 blk_pm_mark_last_busy(rq);
479 if (rq->tag != -1)
480 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
481 if (sched_tag != -1)
482 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
483 blk_mq_sched_restart(hctx);
484 blk_queue_exit(q);
485 }
486
487 void blk_mq_free_request(struct request *rq)
488 {
489 struct request_queue *q = rq->q;
490 struct elevator_queue *e = q->elevator;
491 struct blk_mq_ctx *ctx = rq->mq_ctx;
492 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->cmd_flags, ctx->cpu);
493
494 if (rq->rq_flags & RQF_ELVPRIV) {
495 if (e && e->type->ops.finish_request)
496 e->type->ops.finish_request(rq);
497 if (rq->elv.icq) {
498 put_io_context(rq->elv.icq->ioc);
499 rq->elv.icq = NULL;
500 }
501 }
502
503 ctx->rq_completed[rq_is_sync(rq)]++;
504 if (rq->rq_flags & RQF_MQ_INFLIGHT)
505 atomic_dec(&hctx->nr_active);
506
507 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
508 laptop_io_completion(q->backing_dev_info);
509
510 rq_qos_done(q, rq);
511
512 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
513 if (refcount_dec_and_test(&rq->ref))
514 __blk_mq_free_request(rq);
515 }
516 EXPORT_SYMBOL_GPL(blk_mq_free_request);
517
518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
519 {
520 u64 now = ktime_get_ns();
521
522 if (rq->rq_flags & RQF_STATS) {
523 blk_mq_poll_stats_start(rq->q);
524 blk_stat_add(rq, now);
525 }
526
527 if (rq->internal_tag != -1)
528 blk_mq_sched_completed_request(rq, now);
529
530 blk_account_io_done(rq, now);
531
532 if (rq->end_io) {
533 rq_qos_done(rq->q, rq);
534 rq->end_io(rq, error);
535 } else {
536 if (unlikely(blk_bidi_rq(rq)))
537 blk_mq_free_request(rq->next_rq);
538 blk_mq_free_request(rq);
539 }
540 }
541 EXPORT_SYMBOL(__blk_mq_end_request);
542
543 void blk_mq_end_request(struct request *rq, blk_status_t error)
544 {
545 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
546 BUG();
547 __blk_mq_end_request(rq, error);
548 }
549 EXPORT_SYMBOL(blk_mq_end_request);
550
551 static void __blk_mq_complete_request_remote(void *data)
552 {
553 struct request *rq = data;
554 struct request_queue *q = rq->q;
555
556 q->mq_ops->complete(rq);
557 }
558
559 static void __blk_mq_complete_request(struct request *rq)
560 {
561 struct blk_mq_ctx *ctx = rq->mq_ctx;
562 struct request_queue *q = rq->q;
563 bool shared = false;
564 int cpu;
565
566 if (!blk_mq_mark_complete(rq))
567 return;
568
569 /*
570 * Most of single queue controllers, there is only one irq vector
571 * for handling IO completion, and the only irq's affinity is set
572 * as all possible CPUs. On most of ARCHs, this affinity means the
573 * irq is handled on one specific CPU.
574 *
575 * So complete IO reqeust in softirq context in case of single queue
576 * for not degrading IO performance by irqsoff latency.
577 */
578 if (q->nr_hw_queues == 1) {
579 __blk_complete_request(rq);
580 return;
581 }
582
583 if (!test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
584 q->mq_ops->complete(rq);
585 return;
586 }
587
588 cpu = get_cpu();
589 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
590 shared = cpus_share_cache(cpu, ctx->cpu);
591
592 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
593 rq->csd.func = __blk_mq_complete_request_remote;
594 rq->csd.info = rq;
595 rq->csd.flags = 0;
596 smp_call_function_single_async(ctx->cpu, &rq->csd);
597 } else {
598 q->mq_ops->complete(rq);
599 }
600 put_cpu();
601 }
602
603 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
604 __releases(hctx->srcu)
605 {
606 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
607 rcu_read_unlock();
608 else
609 srcu_read_unlock(hctx->srcu, srcu_idx);
610 }
611
612 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
613 __acquires(hctx->srcu)
614 {
615 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
616 /* shut up gcc false positive */
617 *srcu_idx = 0;
618 rcu_read_lock();
619 } else
620 *srcu_idx = srcu_read_lock(hctx->srcu);
621 }
622
623 /**
624 * blk_mq_complete_request - end I/O on a request
625 * @rq: the request being processed
626 *
627 * Description:
628 * Ends all I/O on a request. It does not handle partial completions.
629 * The actual completion happens out-of-order, through a IPI handler.
630 **/
631 void blk_mq_complete_request(struct request *rq)
632 {
633 if (unlikely(blk_should_fake_timeout(rq->q)))
634 return;
635 __blk_mq_complete_request(rq);
636 }
637 EXPORT_SYMBOL(blk_mq_complete_request);
638
639 int blk_mq_request_started(struct request *rq)
640 {
641 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
642 }
643 EXPORT_SYMBOL_GPL(blk_mq_request_started);
644
645 void blk_mq_start_request(struct request *rq)
646 {
647 struct request_queue *q = rq->q;
648
649 blk_mq_sched_started_request(rq);
650
651 trace_block_rq_issue(q, rq);
652
653 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
654 rq->io_start_time_ns = ktime_get_ns();
655 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
656 rq->throtl_size = blk_rq_sectors(rq);
657 #endif
658 rq->rq_flags |= RQF_STATS;
659 rq_qos_issue(q, rq);
660 }
661
662 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
663
664 blk_add_timer(rq);
665 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
666
667 if (q->dma_drain_size && blk_rq_bytes(rq)) {
668 /*
669 * Make sure space for the drain appears. We know we can do
670 * this because max_hw_segments has been adjusted to be one
671 * fewer than the device can handle.
672 */
673 rq->nr_phys_segments++;
674 }
675 }
676 EXPORT_SYMBOL(blk_mq_start_request);
677
678 static void __blk_mq_requeue_request(struct request *rq)
679 {
680 struct request_queue *q = rq->q;
681
682 blk_mq_put_driver_tag(rq);
683
684 trace_block_rq_requeue(q, rq);
685 rq_qos_requeue(q, rq);
686
687 if (blk_mq_request_started(rq)) {
688 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
689 rq->rq_flags &= ~RQF_TIMED_OUT;
690 if (q->dma_drain_size && blk_rq_bytes(rq))
691 rq->nr_phys_segments--;
692 }
693 }
694
695 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
696 {
697 __blk_mq_requeue_request(rq);
698
699 /* this request will be re-inserted to io scheduler queue */
700 blk_mq_sched_requeue_request(rq);
701
702 BUG_ON(!list_empty(&rq->queuelist));
703 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
704 }
705 EXPORT_SYMBOL(blk_mq_requeue_request);
706
707 static void blk_mq_requeue_work(struct work_struct *work)
708 {
709 struct request_queue *q =
710 container_of(work, struct request_queue, requeue_work.work);
711 LIST_HEAD(rq_list);
712 struct request *rq, *next;
713
714 spin_lock_irq(&q->requeue_lock);
715 list_splice_init(&q->requeue_list, &rq_list);
716 spin_unlock_irq(&q->requeue_lock);
717
718 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
719 if (!(rq->rq_flags & RQF_SOFTBARRIER))
720 continue;
721
722 rq->rq_flags &= ~RQF_SOFTBARRIER;
723 list_del_init(&rq->queuelist);
724 blk_mq_sched_insert_request(rq, true, false, false);
725 }
726
727 while (!list_empty(&rq_list)) {
728 rq = list_entry(rq_list.next, struct request, queuelist);
729 list_del_init(&rq->queuelist);
730 blk_mq_sched_insert_request(rq, false, false, false);
731 }
732
733 blk_mq_run_hw_queues(q, false);
734 }
735
736 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
737 bool kick_requeue_list)
738 {
739 struct request_queue *q = rq->q;
740 unsigned long flags;
741
742 /*
743 * We abuse this flag that is otherwise used by the I/O scheduler to
744 * request head insertion from the workqueue.
745 */
746 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
747
748 spin_lock_irqsave(&q->requeue_lock, flags);
749 if (at_head) {
750 rq->rq_flags |= RQF_SOFTBARRIER;
751 list_add(&rq->queuelist, &q->requeue_list);
752 } else {
753 list_add_tail(&rq->queuelist, &q->requeue_list);
754 }
755 spin_unlock_irqrestore(&q->requeue_lock, flags);
756
757 if (kick_requeue_list)
758 blk_mq_kick_requeue_list(q);
759 }
760 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
761
762 void blk_mq_kick_requeue_list(struct request_queue *q)
763 {
764 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
765 }
766 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
767
768 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
769 unsigned long msecs)
770 {
771 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
772 msecs_to_jiffies(msecs));
773 }
774 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
775
776 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
777 {
778 if (tag < tags->nr_tags) {
779 prefetch(tags->rqs[tag]);
780 return tags->rqs[tag];
781 }
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(blk_mq_tag_to_rq);
786
787 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
788 {
789 req->rq_flags |= RQF_TIMED_OUT;
790 if (req->q->mq_ops->timeout) {
791 enum blk_eh_timer_return ret;
792
793 ret = req->q->mq_ops->timeout(req, reserved);
794 if (ret == BLK_EH_DONE)
795 return;
796 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
797 }
798
799 blk_add_timer(req);
800 }
801
802 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
803 {
804 unsigned long deadline;
805
806 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
807 return false;
808 if (rq->rq_flags & RQF_TIMED_OUT)
809 return false;
810
811 deadline = blk_rq_deadline(rq);
812 if (time_after_eq(jiffies, deadline))
813 return true;
814
815 if (*next == 0)
816 *next = deadline;
817 else if (time_after(*next, deadline))
818 *next = deadline;
819 return false;
820 }
821
822 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
823 struct request *rq, void *priv, bool reserved)
824 {
825 unsigned long *next = priv;
826
827 /*
828 * Just do a quick check if it is expired before locking the request in
829 * so we're not unnecessarilly synchronizing across CPUs.
830 */
831 if (!blk_mq_req_expired(rq, next))
832 return;
833
834 /*
835 * We have reason to believe the request may be expired. Take a
836 * reference on the request to lock this request lifetime into its
837 * currently allocated context to prevent it from being reallocated in
838 * the event the completion by-passes this timeout handler.
839 *
840 * If the reference was already released, then the driver beat the
841 * timeout handler to posting a natural completion.
842 */
843 if (!refcount_inc_not_zero(&rq->ref))
844 return;
845
846 /*
847 * The request is now locked and cannot be reallocated underneath the
848 * timeout handler's processing. Re-verify this exact request is truly
849 * expired; if it is not expired, then the request was completed and
850 * reallocated as a new request.
851 */
852 if (blk_mq_req_expired(rq, next))
853 blk_mq_rq_timed_out(rq, reserved);
854 if (refcount_dec_and_test(&rq->ref))
855 __blk_mq_free_request(rq);
856 }
857
858 static void blk_mq_timeout_work(struct work_struct *work)
859 {
860 struct request_queue *q =
861 container_of(work, struct request_queue, timeout_work);
862 unsigned long next = 0;
863 struct blk_mq_hw_ctx *hctx;
864 int i;
865
866 /* A deadlock might occur if a request is stuck requiring a
867 * timeout at the same time a queue freeze is waiting
868 * completion, since the timeout code would not be able to
869 * acquire the queue reference here.
870 *
871 * That's why we don't use blk_queue_enter here; instead, we use
872 * percpu_ref_tryget directly, because we need to be able to
873 * obtain a reference even in the short window between the queue
874 * starting to freeze, by dropping the first reference in
875 * blk_freeze_queue_start, and the moment the last request is
876 * consumed, marked by the instant q_usage_counter reaches
877 * zero.
878 */
879 if (!percpu_ref_tryget(&q->q_usage_counter))
880 return;
881
882 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
883
884 if (next != 0) {
885 mod_timer(&q->timeout, next);
886 } else {
887 /*
888 * Request timeouts are handled as a forward rolling timer. If
889 * we end up here it means that no requests are pending and
890 * also that no request has been pending for a while. Mark
891 * each hctx as idle.
892 */
893 queue_for_each_hw_ctx(q, hctx, i) {
894 /* the hctx may be unmapped, so check it here */
895 if (blk_mq_hw_queue_mapped(hctx))
896 blk_mq_tag_idle(hctx);
897 }
898 }
899 blk_queue_exit(q);
900 }
901
902 struct flush_busy_ctx_data {
903 struct blk_mq_hw_ctx *hctx;
904 struct list_head *list;
905 };
906
907 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
908 {
909 struct flush_busy_ctx_data *flush_data = data;
910 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
911 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
912
913 spin_lock(&ctx->lock);
914 list_splice_tail_init(&ctx->rq_list, flush_data->list);
915 sbitmap_clear_bit(sb, bitnr);
916 spin_unlock(&ctx->lock);
917 return true;
918 }
919
920 /*
921 * Process software queues that have been marked busy, splicing them
922 * to the for-dispatch
923 */
924 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
925 {
926 struct flush_busy_ctx_data data = {
927 .hctx = hctx,
928 .list = list,
929 };
930
931 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
932 }
933 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
934
935 struct dispatch_rq_data {
936 struct blk_mq_hw_ctx *hctx;
937 struct request *rq;
938 };
939
940 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
941 void *data)
942 {
943 struct dispatch_rq_data *dispatch_data = data;
944 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
945 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
946
947 spin_lock(&ctx->lock);
948 if (!list_empty(&ctx->rq_list)) {
949 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
950 list_del_init(&dispatch_data->rq->queuelist);
951 if (list_empty(&ctx->rq_list))
952 sbitmap_clear_bit(sb, bitnr);
953 }
954 spin_unlock(&ctx->lock);
955
956 return !dispatch_data->rq;
957 }
958
959 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
960 struct blk_mq_ctx *start)
961 {
962 unsigned off = start ? start->index_hw[hctx->type] : 0;
963 struct dispatch_rq_data data = {
964 .hctx = hctx,
965 .rq = NULL,
966 };
967
968 __sbitmap_for_each_set(&hctx->ctx_map, off,
969 dispatch_rq_from_ctx, &data);
970
971 return data.rq;
972 }
973
974 static inline unsigned int queued_to_index(unsigned int queued)
975 {
976 if (!queued)
977 return 0;
978
979 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
980 }
981
982 bool blk_mq_get_driver_tag(struct request *rq)
983 {
984 struct blk_mq_alloc_data data = {
985 .q = rq->q,
986 .hctx = blk_mq_map_queue(rq->q, rq->cmd_flags, rq->mq_ctx->cpu),
987 .flags = BLK_MQ_REQ_NOWAIT,
988 .cmd_flags = rq->cmd_flags,
989 };
990 bool shared;
991
992 if (rq->tag != -1)
993 goto done;
994
995 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
996 data.flags |= BLK_MQ_REQ_RESERVED;
997
998 shared = blk_mq_tag_busy(data.hctx);
999 rq->tag = blk_mq_get_tag(&data);
1000 if (rq->tag >= 0) {
1001 if (shared) {
1002 rq->rq_flags |= RQF_MQ_INFLIGHT;
1003 atomic_inc(&data.hctx->nr_active);
1004 }
1005 data.hctx->tags->rqs[rq->tag] = rq;
1006 }
1007
1008 done:
1009 return rq->tag != -1;
1010 }
1011
1012 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1013 int flags, void *key)
1014 {
1015 struct blk_mq_hw_ctx *hctx;
1016
1017 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1018
1019 spin_lock(&hctx->dispatch_wait_lock);
1020 list_del_init(&wait->entry);
1021 spin_unlock(&hctx->dispatch_wait_lock);
1022
1023 blk_mq_run_hw_queue(hctx, true);
1024 return 1;
1025 }
1026
1027 /*
1028 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1029 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1030 * restart. For both cases, take care to check the condition again after
1031 * marking us as waiting.
1032 */
1033 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1034 struct request *rq)
1035 {
1036 struct wait_queue_head *wq;
1037 wait_queue_entry_t *wait;
1038 bool ret;
1039
1040 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1041 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1042 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1043
1044 /*
1045 * It's possible that a tag was freed in the window between the
1046 * allocation failure and adding the hardware queue to the wait
1047 * queue.
1048 *
1049 * Don't clear RESTART here, someone else could have set it.
1050 * At most this will cost an extra queue run.
1051 */
1052 return blk_mq_get_driver_tag(rq);
1053 }
1054
1055 wait = &hctx->dispatch_wait;
1056 if (!list_empty_careful(&wait->entry))
1057 return false;
1058
1059 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1060
1061 spin_lock_irq(&wq->lock);
1062 spin_lock(&hctx->dispatch_wait_lock);
1063 if (!list_empty(&wait->entry)) {
1064 spin_unlock(&hctx->dispatch_wait_lock);
1065 spin_unlock_irq(&wq->lock);
1066 return false;
1067 }
1068
1069 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1070 __add_wait_queue(wq, wait);
1071
1072 /*
1073 * It's possible that a tag was freed in the window between the
1074 * allocation failure and adding the hardware queue to the wait
1075 * queue.
1076 */
1077 ret = blk_mq_get_driver_tag(rq);
1078 if (!ret) {
1079 spin_unlock(&hctx->dispatch_wait_lock);
1080 spin_unlock_irq(&wq->lock);
1081 return false;
1082 }
1083
1084 /*
1085 * We got a tag, remove ourselves from the wait queue to ensure
1086 * someone else gets the wakeup.
1087 */
1088 list_del_init(&wait->entry);
1089 spin_unlock(&hctx->dispatch_wait_lock);
1090 spin_unlock_irq(&wq->lock);
1091
1092 return true;
1093 }
1094
1095 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1096 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1097 /*
1098 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1099 * - EWMA is one simple way to compute running average value
1100 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1101 * - take 4 as factor for avoiding to get too small(0) result, and this
1102 * factor doesn't matter because EWMA decreases exponentially
1103 */
1104 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1105 {
1106 unsigned int ewma;
1107
1108 if (hctx->queue->elevator)
1109 return;
1110
1111 ewma = hctx->dispatch_busy;
1112
1113 if (!ewma && !busy)
1114 return;
1115
1116 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1117 if (busy)
1118 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1119 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1120
1121 hctx->dispatch_busy = ewma;
1122 }
1123
1124 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1125
1126 /*
1127 * Returns true if we did some work AND can potentially do more.
1128 */
1129 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1130 bool got_budget)
1131 {
1132 struct blk_mq_hw_ctx *hctx;
1133 struct request *rq, *nxt;
1134 bool no_tag = false;
1135 int errors, queued;
1136 blk_status_t ret = BLK_STS_OK;
1137
1138 if (list_empty(list))
1139 return false;
1140
1141 WARN_ON(!list_is_singular(list) && got_budget);
1142
1143 /*
1144 * Now process all the entries, sending them to the driver.
1145 */
1146 errors = queued = 0;
1147 do {
1148 struct blk_mq_queue_data bd;
1149
1150 rq = list_first_entry(list, struct request, queuelist);
1151
1152 hctx = blk_mq_map_queue(rq->q, rq->cmd_flags, rq->mq_ctx->cpu);
1153 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1154 break;
1155
1156 if (!blk_mq_get_driver_tag(rq)) {
1157 /*
1158 * The initial allocation attempt failed, so we need to
1159 * rerun the hardware queue when a tag is freed. The
1160 * waitqueue takes care of that. If the queue is run
1161 * before we add this entry back on the dispatch list,
1162 * we'll re-run it below.
1163 */
1164 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1165 blk_mq_put_dispatch_budget(hctx);
1166 /*
1167 * For non-shared tags, the RESTART check
1168 * will suffice.
1169 */
1170 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1171 no_tag = true;
1172 break;
1173 }
1174 }
1175
1176 list_del_init(&rq->queuelist);
1177
1178 bd.rq = rq;
1179
1180 /*
1181 * Flag last if we have no more requests, or if we have more
1182 * but can't assign a driver tag to it.
1183 */
1184 if (list_empty(list))
1185 bd.last = true;
1186 else {
1187 nxt = list_first_entry(list, struct request, queuelist);
1188 bd.last = !blk_mq_get_driver_tag(nxt);
1189 }
1190
1191 ret = q->mq_ops->queue_rq(hctx, &bd);
1192 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1193 /*
1194 * If an I/O scheduler has been configured and we got a
1195 * driver tag for the next request already, free it
1196 * again.
1197 */
1198 if (!list_empty(list)) {
1199 nxt = list_first_entry(list, struct request, queuelist);
1200 blk_mq_put_driver_tag(nxt);
1201 }
1202 list_add(&rq->queuelist, list);
1203 __blk_mq_requeue_request(rq);
1204 break;
1205 }
1206
1207 if (unlikely(ret != BLK_STS_OK)) {
1208 errors++;
1209 blk_mq_end_request(rq, BLK_STS_IOERR);
1210 continue;
1211 }
1212
1213 queued++;
1214 } while (!list_empty(list));
1215
1216 hctx->dispatched[queued_to_index(queued)]++;
1217
1218 /*
1219 * Any items that need requeuing? Stuff them into hctx->dispatch,
1220 * that is where we will continue on next queue run.
1221 */
1222 if (!list_empty(list)) {
1223 bool needs_restart;
1224
1225 spin_lock(&hctx->lock);
1226 list_splice_init(list, &hctx->dispatch);
1227 spin_unlock(&hctx->lock);
1228
1229 /*
1230 * If SCHED_RESTART was set by the caller of this function and
1231 * it is no longer set that means that it was cleared by another
1232 * thread and hence that a queue rerun is needed.
1233 *
1234 * If 'no_tag' is set, that means that we failed getting
1235 * a driver tag with an I/O scheduler attached. If our dispatch
1236 * waitqueue is no longer active, ensure that we run the queue
1237 * AFTER adding our entries back to the list.
1238 *
1239 * If no I/O scheduler has been configured it is possible that
1240 * the hardware queue got stopped and restarted before requests
1241 * were pushed back onto the dispatch list. Rerun the queue to
1242 * avoid starvation. Notes:
1243 * - blk_mq_run_hw_queue() checks whether or not a queue has
1244 * been stopped before rerunning a queue.
1245 * - Some but not all block drivers stop a queue before
1246 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1247 * and dm-rq.
1248 *
1249 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1250 * bit is set, run queue after a delay to avoid IO stalls
1251 * that could otherwise occur if the queue is idle.
1252 */
1253 needs_restart = blk_mq_sched_needs_restart(hctx);
1254 if (!needs_restart ||
1255 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1256 blk_mq_run_hw_queue(hctx, true);
1257 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1258 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1259
1260 blk_mq_update_dispatch_busy(hctx, true);
1261 return false;
1262 } else
1263 blk_mq_update_dispatch_busy(hctx, false);
1264
1265 /*
1266 * If the host/device is unable to accept more work, inform the
1267 * caller of that.
1268 */
1269 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1270 return false;
1271
1272 return (queued + errors) != 0;
1273 }
1274
1275 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1276 {
1277 int srcu_idx;
1278
1279 /*
1280 * We should be running this queue from one of the CPUs that
1281 * are mapped to it.
1282 *
1283 * There are at least two related races now between setting
1284 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1285 * __blk_mq_run_hw_queue():
1286 *
1287 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1288 * but later it becomes online, then this warning is harmless
1289 * at all
1290 *
1291 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1292 * but later it becomes offline, then the warning can't be
1293 * triggered, and we depend on blk-mq timeout handler to
1294 * handle dispatched requests to this hctx
1295 */
1296 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1297 cpu_online(hctx->next_cpu)) {
1298 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1299 raw_smp_processor_id(),
1300 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1301 dump_stack();
1302 }
1303
1304 /*
1305 * We can't run the queue inline with ints disabled. Ensure that
1306 * we catch bad users of this early.
1307 */
1308 WARN_ON_ONCE(in_interrupt());
1309
1310 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1311
1312 hctx_lock(hctx, &srcu_idx);
1313 blk_mq_sched_dispatch_requests(hctx);
1314 hctx_unlock(hctx, srcu_idx);
1315 }
1316
1317 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1318 {
1319 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1320
1321 if (cpu >= nr_cpu_ids)
1322 cpu = cpumask_first(hctx->cpumask);
1323 return cpu;
1324 }
1325
1326 /*
1327 * It'd be great if the workqueue API had a way to pass
1328 * in a mask and had some smarts for more clever placement.
1329 * For now we just round-robin here, switching for every
1330 * BLK_MQ_CPU_WORK_BATCH queued items.
1331 */
1332 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1333 {
1334 bool tried = false;
1335 int next_cpu = hctx->next_cpu;
1336
1337 if (hctx->queue->nr_hw_queues == 1)
1338 return WORK_CPU_UNBOUND;
1339
1340 if (--hctx->next_cpu_batch <= 0) {
1341 select_cpu:
1342 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1343 cpu_online_mask);
1344 if (next_cpu >= nr_cpu_ids)
1345 next_cpu = blk_mq_first_mapped_cpu(hctx);
1346 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1347 }
1348
1349 /*
1350 * Do unbound schedule if we can't find a online CPU for this hctx,
1351 * and it should only happen in the path of handling CPU DEAD.
1352 */
1353 if (!cpu_online(next_cpu)) {
1354 if (!tried) {
1355 tried = true;
1356 goto select_cpu;
1357 }
1358
1359 /*
1360 * Make sure to re-select CPU next time once after CPUs
1361 * in hctx->cpumask become online again.
1362 */
1363 hctx->next_cpu = next_cpu;
1364 hctx->next_cpu_batch = 1;
1365 return WORK_CPU_UNBOUND;
1366 }
1367
1368 hctx->next_cpu = next_cpu;
1369 return next_cpu;
1370 }
1371
1372 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1373 unsigned long msecs)
1374 {
1375 if (unlikely(blk_mq_hctx_stopped(hctx)))
1376 return;
1377
1378 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1379 int cpu = get_cpu();
1380 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1381 __blk_mq_run_hw_queue(hctx);
1382 put_cpu();
1383 return;
1384 }
1385
1386 put_cpu();
1387 }
1388
1389 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1390 msecs_to_jiffies(msecs));
1391 }
1392
1393 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1394 {
1395 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1396 }
1397 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1398
1399 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1400 {
1401 int srcu_idx;
1402 bool need_run;
1403
1404 /*
1405 * When queue is quiesced, we may be switching io scheduler, or
1406 * updating nr_hw_queues, or other things, and we can't run queue
1407 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1408 *
1409 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1410 * quiesced.
1411 */
1412 hctx_lock(hctx, &srcu_idx);
1413 need_run = !blk_queue_quiesced(hctx->queue) &&
1414 blk_mq_hctx_has_pending(hctx);
1415 hctx_unlock(hctx, srcu_idx);
1416
1417 if (need_run) {
1418 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1419 return true;
1420 }
1421
1422 return false;
1423 }
1424 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1425
1426 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1427 {
1428 struct blk_mq_hw_ctx *hctx;
1429 int i;
1430
1431 queue_for_each_hw_ctx(q, hctx, i) {
1432 if (blk_mq_hctx_stopped(hctx))
1433 continue;
1434
1435 blk_mq_run_hw_queue(hctx, async);
1436 }
1437 }
1438 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1439
1440 /**
1441 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1442 * @q: request queue.
1443 *
1444 * The caller is responsible for serializing this function against
1445 * blk_mq_{start,stop}_hw_queue().
1446 */
1447 bool blk_mq_queue_stopped(struct request_queue *q)
1448 {
1449 struct blk_mq_hw_ctx *hctx;
1450 int i;
1451
1452 queue_for_each_hw_ctx(q, hctx, i)
1453 if (blk_mq_hctx_stopped(hctx))
1454 return true;
1455
1456 return false;
1457 }
1458 EXPORT_SYMBOL(blk_mq_queue_stopped);
1459
1460 /*
1461 * This function is often used for pausing .queue_rq() by driver when
1462 * there isn't enough resource or some conditions aren't satisfied, and
1463 * BLK_STS_RESOURCE is usually returned.
1464 *
1465 * We do not guarantee that dispatch can be drained or blocked
1466 * after blk_mq_stop_hw_queue() returns. Please use
1467 * blk_mq_quiesce_queue() for that requirement.
1468 */
1469 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1470 {
1471 cancel_delayed_work(&hctx->run_work);
1472
1473 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1474 }
1475 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1476
1477 /*
1478 * This function is often used for pausing .queue_rq() by driver when
1479 * there isn't enough resource or some conditions aren't satisfied, and
1480 * BLK_STS_RESOURCE is usually returned.
1481 *
1482 * We do not guarantee that dispatch can be drained or blocked
1483 * after blk_mq_stop_hw_queues() returns. Please use
1484 * blk_mq_quiesce_queue() for that requirement.
1485 */
1486 void blk_mq_stop_hw_queues(struct request_queue *q)
1487 {
1488 struct blk_mq_hw_ctx *hctx;
1489 int i;
1490
1491 queue_for_each_hw_ctx(q, hctx, i)
1492 blk_mq_stop_hw_queue(hctx);
1493 }
1494 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1495
1496 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1497 {
1498 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1499
1500 blk_mq_run_hw_queue(hctx, false);
1501 }
1502 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1503
1504 void blk_mq_start_hw_queues(struct request_queue *q)
1505 {
1506 struct blk_mq_hw_ctx *hctx;
1507 int i;
1508
1509 queue_for_each_hw_ctx(q, hctx, i)
1510 blk_mq_start_hw_queue(hctx);
1511 }
1512 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1513
1514 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1515 {
1516 if (!blk_mq_hctx_stopped(hctx))
1517 return;
1518
1519 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1520 blk_mq_run_hw_queue(hctx, async);
1521 }
1522 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1523
1524 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1525 {
1526 struct blk_mq_hw_ctx *hctx;
1527 int i;
1528
1529 queue_for_each_hw_ctx(q, hctx, i)
1530 blk_mq_start_stopped_hw_queue(hctx, async);
1531 }
1532 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1533
1534 static void blk_mq_run_work_fn(struct work_struct *work)
1535 {
1536 struct blk_mq_hw_ctx *hctx;
1537
1538 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1539
1540 /*
1541 * If we are stopped, don't run the queue.
1542 */
1543 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1544 return;
1545
1546 __blk_mq_run_hw_queue(hctx);
1547 }
1548
1549 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1550 struct request *rq,
1551 bool at_head)
1552 {
1553 struct blk_mq_ctx *ctx = rq->mq_ctx;
1554
1555 lockdep_assert_held(&ctx->lock);
1556
1557 trace_block_rq_insert(hctx->queue, rq);
1558
1559 if (at_head)
1560 list_add(&rq->queuelist, &ctx->rq_list);
1561 else
1562 list_add_tail(&rq->queuelist, &ctx->rq_list);
1563 }
1564
1565 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1566 bool at_head)
1567 {
1568 struct blk_mq_ctx *ctx = rq->mq_ctx;
1569
1570 lockdep_assert_held(&ctx->lock);
1571
1572 __blk_mq_insert_req_list(hctx, rq, at_head);
1573 blk_mq_hctx_mark_pending(hctx, ctx);
1574 }
1575
1576 /*
1577 * Should only be used carefully, when the caller knows we want to
1578 * bypass a potential IO scheduler on the target device.
1579 */
1580 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1581 {
1582 struct blk_mq_ctx *ctx = rq->mq_ctx;
1583 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, rq->cmd_flags,
1584 ctx->cpu);
1585
1586 spin_lock(&hctx->lock);
1587 list_add_tail(&rq->queuelist, &hctx->dispatch);
1588 spin_unlock(&hctx->lock);
1589
1590 if (run_queue)
1591 blk_mq_run_hw_queue(hctx, false);
1592 }
1593
1594 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1595 struct list_head *list)
1596
1597 {
1598 struct request *rq;
1599
1600 /*
1601 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1602 * offline now
1603 */
1604 list_for_each_entry(rq, list, queuelist) {
1605 BUG_ON(rq->mq_ctx != ctx);
1606 trace_block_rq_insert(hctx->queue, rq);
1607 }
1608
1609 spin_lock(&ctx->lock);
1610 list_splice_tail_init(list, &ctx->rq_list);
1611 blk_mq_hctx_mark_pending(hctx, ctx);
1612 spin_unlock(&ctx->lock);
1613 }
1614
1615 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1616 {
1617 struct request *rqa = container_of(a, struct request, queuelist);
1618 struct request *rqb = container_of(b, struct request, queuelist);
1619
1620 return !(rqa->mq_ctx < rqb->mq_ctx ||
1621 (rqa->mq_ctx == rqb->mq_ctx &&
1622 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1623 }
1624
1625 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1626 {
1627 struct blk_mq_ctx *this_ctx;
1628 struct request_queue *this_q;
1629 struct request *rq;
1630 LIST_HEAD(list);
1631 LIST_HEAD(ctx_list);
1632 unsigned int depth;
1633
1634 list_splice_init(&plug->mq_list, &list);
1635
1636 list_sort(NULL, &list, plug_ctx_cmp);
1637
1638 this_q = NULL;
1639 this_ctx = NULL;
1640 depth = 0;
1641
1642 while (!list_empty(&list)) {
1643 rq = list_entry_rq(list.next);
1644 list_del_init(&rq->queuelist);
1645 BUG_ON(!rq->q);
1646 if (rq->mq_ctx != this_ctx) {
1647 if (this_ctx) {
1648 trace_block_unplug(this_q, depth, !from_schedule);
1649 blk_mq_sched_insert_requests(this_q, this_ctx,
1650 &ctx_list,
1651 from_schedule);
1652 }
1653
1654 this_ctx = rq->mq_ctx;
1655 this_q = rq->q;
1656 depth = 0;
1657 }
1658
1659 depth++;
1660 list_add_tail(&rq->queuelist, &ctx_list);
1661 }
1662
1663 /*
1664 * If 'this_ctx' is set, we know we have entries to complete
1665 * on 'ctx_list'. Do those.
1666 */
1667 if (this_ctx) {
1668 trace_block_unplug(this_q, depth, !from_schedule);
1669 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1670 from_schedule);
1671 }
1672 }
1673
1674 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1675 {
1676 blk_init_request_from_bio(rq, bio);
1677
1678 blk_account_io_start(rq, true);
1679 }
1680
1681 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1682 {
1683 if (rq->tag != -1)
1684 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1685
1686 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1687 }
1688
1689 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1690 struct request *rq,
1691 blk_qc_t *cookie)
1692 {
1693 struct request_queue *q = rq->q;
1694 struct blk_mq_queue_data bd = {
1695 .rq = rq,
1696 .last = true,
1697 };
1698 blk_qc_t new_cookie;
1699 blk_status_t ret;
1700
1701 new_cookie = request_to_qc_t(hctx, rq);
1702
1703 /*
1704 * For OK queue, we are done. For error, caller may kill it.
1705 * Any other error (busy), just add it to our list as we
1706 * previously would have done.
1707 */
1708 ret = q->mq_ops->queue_rq(hctx, &bd);
1709 switch (ret) {
1710 case BLK_STS_OK:
1711 blk_mq_update_dispatch_busy(hctx, false);
1712 *cookie = new_cookie;
1713 break;
1714 case BLK_STS_RESOURCE:
1715 case BLK_STS_DEV_RESOURCE:
1716 blk_mq_update_dispatch_busy(hctx, true);
1717 __blk_mq_requeue_request(rq);
1718 break;
1719 default:
1720 blk_mq_update_dispatch_busy(hctx, false);
1721 *cookie = BLK_QC_T_NONE;
1722 break;
1723 }
1724
1725 return ret;
1726 }
1727
1728 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1729 struct request *rq,
1730 blk_qc_t *cookie,
1731 bool bypass_insert)
1732 {
1733 struct request_queue *q = rq->q;
1734 bool run_queue = true;
1735
1736 /*
1737 * RCU or SRCU read lock is needed before checking quiesced flag.
1738 *
1739 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1740 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1741 * and avoid driver to try to dispatch again.
1742 */
1743 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1744 run_queue = false;
1745 bypass_insert = false;
1746 goto insert;
1747 }
1748
1749 if (q->elevator && !bypass_insert)
1750 goto insert;
1751
1752 if (!blk_mq_get_dispatch_budget(hctx))
1753 goto insert;
1754
1755 if (!blk_mq_get_driver_tag(rq)) {
1756 blk_mq_put_dispatch_budget(hctx);
1757 goto insert;
1758 }
1759
1760 return __blk_mq_issue_directly(hctx, rq, cookie);
1761 insert:
1762 if (bypass_insert)
1763 return BLK_STS_RESOURCE;
1764
1765 blk_mq_sched_insert_request(rq, false, run_queue, false);
1766 return BLK_STS_OK;
1767 }
1768
1769 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1770 struct request *rq, blk_qc_t *cookie)
1771 {
1772 blk_status_t ret;
1773 int srcu_idx;
1774
1775 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1776
1777 hctx_lock(hctx, &srcu_idx);
1778
1779 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1780 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1781 blk_mq_sched_insert_request(rq, false, true, false);
1782 else if (ret != BLK_STS_OK)
1783 blk_mq_end_request(rq, ret);
1784
1785 hctx_unlock(hctx, srcu_idx);
1786 }
1787
1788 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1789 {
1790 blk_status_t ret;
1791 int srcu_idx;
1792 blk_qc_t unused_cookie;
1793 struct blk_mq_ctx *ctx = rq->mq_ctx;
1794 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, rq->cmd_flags,
1795 ctx->cpu);
1796
1797 hctx_lock(hctx, &srcu_idx);
1798 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1799 hctx_unlock(hctx, srcu_idx);
1800
1801 return ret;
1802 }
1803
1804 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1805 struct list_head *list)
1806 {
1807 while (!list_empty(list)) {
1808 blk_status_t ret;
1809 struct request *rq = list_first_entry(list, struct request,
1810 queuelist);
1811
1812 list_del_init(&rq->queuelist);
1813 ret = blk_mq_request_issue_directly(rq);
1814 if (ret != BLK_STS_OK) {
1815 if (ret == BLK_STS_RESOURCE ||
1816 ret == BLK_STS_DEV_RESOURCE) {
1817 list_add(&rq->queuelist, list);
1818 break;
1819 }
1820 blk_mq_end_request(rq, ret);
1821 }
1822 }
1823 }
1824
1825 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1826 {
1827 const int is_sync = op_is_sync(bio->bi_opf);
1828 const int is_flush_fua = op_is_flush(bio->bi_opf);
1829 struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
1830 struct request *rq;
1831 unsigned int request_count = 0;
1832 struct blk_plug *plug;
1833 struct request *same_queue_rq = NULL;
1834 blk_qc_t cookie;
1835
1836 blk_queue_bounce(q, &bio);
1837
1838 blk_queue_split(q, &bio);
1839
1840 if (!bio_integrity_prep(bio))
1841 return BLK_QC_T_NONE;
1842
1843 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1844 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1845 return BLK_QC_T_NONE;
1846
1847 if (blk_mq_sched_bio_merge(q, bio))
1848 return BLK_QC_T_NONE;
1849
1850 rq_qos_throttle(q, bio, NULL);
1851
1852 rq = blk_mq_get_request(q, bio, &data);
1853 if (unlikely(!rq)) {
1854 rq_qos_cleanup(q, bio);
1855 if (bio->bi_opf & REQ_NOWAIT)
1856 bio_wouldblock_error(bio);
1857 return BLK_QC_T_NONE;
1858 }
1859
1860 trace_block_getrq(q, bio, bio->bi_opf);
1861
1862 rq_qos_track(q, rq, bio);
1863
1864 cookie = request_to_qc_t(data.hctx, rq);
1865
1866 plug = current->plug;
1867 if (unlikely(is_flush_fua)) {
1868 blk_mq_put_ctx(data.ctx);
1869 blk_mq_bio_to_request(rq, bio);
1870
1871 /* bypass scheduler for flush rq */
1872 blk_insert_flush(rq);
1873 blk_mq_run_hw_queue(data.hctx, true);
1874 } else if (plug && q->nr_hw_queues == 1) {
1875 struct request *last = NULL;
1876
1877 blk_mq_put_ctx(data.ctx);
1878 blk_mq_bio_to_request(rq, bio);
1879
1880 /*
1881 * @request_count may become stale because of schedule
1882 * out, so check the list again.
1883 */
1884 if (list_empty(&plug->mq_list))
1885 request_count = 0;
1886 else if (blk_queue_nomerges(q))
1887 request_count = blk_plug_queued_count(q);
1888
1889 if (!request_count)
1890 trace_block_plug(q);
1891 else
1892 last = list_entry_rq(plug->mq_list.prev);
1893
1894 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1895 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1896 blk_flush_plug_list(plug, false);
1897 trace_block_plug(q);
1898 }
1899
1900 list_add_tail(&rq->queuelist, &plug->mq_list);
1901 } else if (plug && !blk_queue_nomerges(q)) {
1902 blk_mq_bio_to_request(rq, bio);
1903
1904 /*
1905 * We do limited plugging. If the bio can be merged, do that.
1906 * Otherwise the existing request in the plug list will be
1907 * issued. So the plug list will have one request at most
1908 * The plug list might get flushed before this. If that happens,
1909 * the plug list is empty, and same_queue_rq is invalid.
1910 */
1911 if (list_empty(&plug->mq_list))
1912 same_queue_rq = NULL;
1913 if (same_queue_rq)
1914 list_del_init(&same_queue_rq->queuelist);
1915 list_add_tail(&rq->queuelist, &plug->mq_list);
1916
1917 blk_mq_put_ctx(data.ctx);
1918
1919 if (same_queue_rq) {
1920 data.hctx = blk_mq_map_queue(q,
1921 same_queue_rq->cmd_flags,
1922 same_queue_rq->mq_ctx->cpu);
1923 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1924 &cookie);
1925 }
1926 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1927 !data.hctx->dispatch_busy)) {
1928 blk_mq_put_ctx(data.ctx);
1929 blk_mq_bio_to_request(rq, bio);
1930 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1931 } else {
1932 blk_mq_put_ctx(data.ctx);
1933 blk_mq_bio_to_request(rq, bio);
1934 blk_mq_sched_insert_request(rq, false, true, true);
1935 }
1936
1937 return cookie;
1938 }
1939
1940 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1941 unsigned int hctx_idx)
1942 {
1943 struct page *page;
1944
1945 if (tags->rqs && set->ops->exit_request) {
1946 int i;
1947
1948 for (i = 0; i < tags->nr_tags; i++) {
1949 struct request *rq = tags->static_rqs[i];
1950
1951 if (!rq)
1952 continue;
1953 set->ops->exit_request(set, rq, hctx_idx);
1954 tags->static_rqs[i] = NULL;
1955 }
1956 }
1957
1958 while (!list_empty(&tags->page_list)) {
1959 page = list_first_entry(&tags->page_list, struct page, lru);
1960 list_del_init(&page->lru);
1961 /*
1962 * Remove kmemleak object previously allocated in
1963 * blk_mq_init_rq_map().
1964 */
1965 kmemleak_free(page_address(page));
1966 __free_pages(page, page->private);
1967 }
1968 }
1969
1970 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1971 {
1972 kfree(tags->rqs);
1973 tags->rqs = NULL;
1974 kfree(tags->static_rqs);
1975 tags->static_rqs = NULL;
1976
1977 blk_mq_free_tags(tags);
1978 }
1979
1980 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1981 unsigned int hctx_idx,
1982 unsigned int nr_tags,
1983 unsigned int reserved_tags)
1984 {
1985 struct blk_mq_tags *tags;
1986 int node;
1987
1988 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
1989 if (node == NUMA_NO_NODE)
1990 node = set->numa_node;
1991
1992 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1993 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1994 if (!tags)
1995 return NULL;
1996
1997 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1998 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1999 node);
2000 if (!tags->rqs) {
2001 blk_mq_free_tags(tags);
2002 return NULL;
2003 }
2004
2005 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2006 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2007 node);
2008 if (!tags->static_rqs) {
2009 kfree(tags->rqs);
2010 blk_mq_free_tags(tags);
2011 return NULL;
2012 }
2013
2014 return tags;
2015 }
2016
2017 static size_t order_to_size(unsigned int order)
2018 {
2019 return (size_t)PAGE_SIZE << order;
2020 }
2021
2022 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2023 unsigned int hctx_idx, int node)
2024 {
2025 int ret;
2026
2027 if (set->ops->init_request) {
2028 ret = set->ops->init_request(set, rq, hctx_idx, node);
2029 if (ret)
2030 return ret;
2031 }
2032
2033 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2034 return 0;
2035 }
2036
2037 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2038 unsigned int hctx_idx, unsigned int depth)
2039 {
2040 unsigned int i, j, entries_per_page, max_order = 4;
2041 size_t rq_size, left;
2042 int node;
2043
2044 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2045 if (node == NUMA_NO_NODE)
2046 node = set->numa_node;
2047
2048 INIT_LIST_HEAD(&tags->page_list);
2049
2050 /*
2051 * rq_size is the size of the request plus driver payload, rounded
2052 * to the cacheline size
2053 */
2054 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2055 cache_line_size());
2056 left = rq_size * depth;
2057
2058 for (i = 0; i < depth; ) {
2059 int this_order = max_order;
2060 struct page *page;
2061 int to_do;
2062 void *p;
2063
2064 while (this_order && left < order_to_size(this_order - 1))
2065 this_order--;
2066
2067 do {
2068 page = alloc_pages_node(node,
2069 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2070 this_order);
2071 if (page)
2072 break;
2073 if (!this_order--)
2074 break;
2075 if (order_to_size(this_order) < rq_size)
2076 break;
2077 } while (1);
2078
2079 if (!page)
2080 goto fail;
2081
2082 page->private = this_order;
2083 list_add_tail(&page->lru, &tags->page_list);
2084
2085 p = page_address(page);
2086 /*
2087 * Allow kmemleak to scan these pages as they contain pointers
2088 * to additional allocations like via ops->init_request().
2089 */
2090 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2091 entries_per_page = order_to_size(this_order) / rq_size;
2092 to_do = min(entries_per_page, depth - i);
2093 left -= to_do * rq_size;
2094 for (j = 0; j < to_do; j++) {
2095 struct request *rq = p;
2096
2097 tags->static_rqs[i] = rq;
2098 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2099 tags->static_rqs[i] = NULL;
2100 goto fail;
2101 }
2102
2103 p += rq_size;
2104 i++;
2105 }
2106 }
2107 return 0;
2108
2109 fail:
2110 blk_mq_free_rqs(set, tags, hctx_idx);
2111 return -ENOMEM;
2112 }
2113
2114 /*
2115 * 'cpu' is going away. splice any existing rq_list entries from this
2116 * software queue to the hw queue dispatch list, and ensure that it
2117 * gets run.
2118 */
2119 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2120 {
2121 struct blk_mq_hw_ctx *hctx;
2122 struct blk_mq_ctx *ctx;
2123 LIST_HEAD(tmp);
2124
2125 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2126 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2127
2128 spin_lock(&ctx->lock);
2129 if (!list_empty(&ctx->rq_list)) {
2130 list_splice_init(&ctx->rq_list, &tmp);
2131 blk_mq_hctx_clear_pending(hctx, ctx);
2132 }
2133 spin_unlock(&ctx->lock);
2134
2135 if (list_empty(&tmp))
2136 return 0;
2137
2138 spin_lock(&hctx->lock);
2139 list_splice_tail_init(&tmp, &hctx->dispatch);
2140 spin_unlock(&hctx->lock);
2141
2142 blk_mq_run_hw_queue(hctx, true);
2143 return 0;
2144 }
2145
2146 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2147 {
2148 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2149 &hctx->cpuhp_dead);
2150 }
2151
2152 /* hctx->ctxs will be freed in queue's release handler */
2153 static void blk_mq_exit_hctx(struct request_queue *q,
2154 struct blk_mq_tag_set *set,
2155 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2156 {
2157 if (blk_mq_hw_queue_mapped(hctx))
2158 blk_mq_tag_idle(hctx);
2159
2160 if (set->ops->exit_request)
2161 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2162
2163 if (set->ops->exit_hctx)
2164 set->ops->exit_hctx(hctx, hctx_idx);
2165
2166 if (hctx->flags & BLK_MQ_F_BLOCKING)
2167 cleanup_srcu_struct(hctx->srcu);
2168
2169 blk_mq_remove_cpuhp(hctx);
2170 blk_free_flush_queue(hctx->fq);
2171 sbitmap_free(&hctx->ctx_map);
2172 }
2173
2174 static void blk_mq_exit_hw_queues(struct request_queue *q,
2175 struct blk_mq_tag_set *set, int nr_queue)
2176 {
2177 struct blk_mq_hw_ctx *hctx;
2178 unsigned int i;
2179
2180 queue_for_each_hw_ctx(q, hctx, i) {
2181 if (i == nr_queue)
2182 break;
2183 blk_mq_debugfs_unregister_hctx(hctx);
2184 blk_mq_exit_hctx(q, set, hctx, i);
2185 }
2186 }
2187
2188 static int blk_mq_init_hctx(struct request_queue *q,
2189 struct blk_mq_tag_set *set,
2190 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2191 {
2192 int node;
2193
2194 node = hctx->numa_node;
2195 if (node == NUMA_NO_NODE)
2196 node = hctx->numa_node = set->numa_node;
2197
2198 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2199 spin_lock_init(&hctx->lock);
2200 INIT_LIST_HEAD(&hctx->dispatch);
2201 hctx->queue = q;
2202 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2203
2204 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2205
2206 hctx->tags = set->tags[hctx_idx];
2207
2208 /*
2209 * Allocate space for all possible cpus to avoid allocation at
2210 * runtime
2211 */
2212 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2213 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2214 if (!hctx->ctxs)
2215 goto unregister_cpu_notifier;
2216
2217 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2218 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2219 goto free_ctxs;
2220
2221 hctx->nr_ctx = 0;
2222
2223 spin_lock_init(&hctx->dispatch_wait_lock);
2224 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2225 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2226
2227 if (set->ops->init_hctx &&
2228 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2229 goto free_bitmap;
2230
2231 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2232 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2233 if (!hctx->fq)
2234 goto exit_hctx;
2235
2236 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2237 goto free_fq;
2238
2239 if (hctx->flags & BLK_MQ_F_BLOCKING)
2240 init_srcu_struct(hctx->srcu);
2241
2242 return 0;
2243
2244 free_fq:
2245 kfree(hctx->fq);
2246 exit_hctx:
2247 if (set->ops->exit_hctx)
2248 set->ops->exit_hctx(hctx, hctx_idx);
2249 free_bitmap:
2250 sbitmap_free(&hctx->ctx_map);
2251 free_ctxs:
2252 kfree(hctx->ctxs);
2253 unregister_cpu_notifier:
2254 blk_mq_remove_cpuhp(hctx);
2255 return -1;
2256 }
2257
2258 static void blk_mq_init_cpu_queues(struct request_queue *q,
2259 unsigned int nr_hw_queues)
2260 {
2261 struct blk_mq_tag_set *set = q->tag_set;
2262 unsigned int i, j;
2263
2264 for_each_possible_cpu(i) {
2265 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2266 struct blk_mq_hw_ctx *hctx;
2267
2268 __ctx->cpu = i;
2269 spin_lock_init(&__ctx->lock);
2270 INIT_LIST_HEAD(&__ctx->rq_list);
2271 __ctx->queue = q;
2272
2273 /*
2274 * Set local node, IFF we have more than one hw queue. If
2275 * not, we remain on the home node of the device
2276 */
2277 for (j = 0; j < set->nr_maps; j++) {
2278 hctx = blk_mq_map_queue_type(q, j, i);
2279 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2280 hctx->numa_node = local_memory_node(cpu_to_node(i));
2281 }
2282 }
2283 }
2284
2285 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2286 {
2287 int ret = 0;
2288
2289 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2290 set->queue_depth, set->reserved_tags);
2291 if (!set->tags[hctx_idx])
2292 return false;
2293
2294 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2295 set->queue_depth);
2296 if (!ret)
2297 return true;
2298
2299 blk_mq_free_rq_map(set->tags[hctx_idx]);
2300 set->tags[hctx_idx] = NULL;
2301 return false;
2302 }
2303
2304 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2305 unsigned int hctx_idx)
2306 {
2307 if (set->tags[hctx_idx]) {
2308 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2309 blk_mq_free_rq_map(set->tags[hctx_idx]);
2310 set->tags[hctx_idx] = NULL;
2311 }
2312 }
2313
2314 static void blk_mq_map_swqueue(struct request_queue *q)
2315 {
2316 unsigned int i, j, hctx_idx;
2317 struct blk_mq_hw_ctx *hctx;
2318 struct blk_mq_ctx *ctx;
2319 struct blk_mq_tag_set *set = q->tag_set;
2320
2321 /*
2322 * Avoid others reading imcomplete hctx->cpumask through sysfs
2323 */
2324 mutex_lock(&q->sysfs_lock);
2325
2326 queue_for_each_hw_ctx(q, hctx, i) {
2327 cpumask_clear(hctx->cpumask);
2328 hctx->nr_ctx = 0;
2329 hctx->dispatch_from = NULL;
2330 }
2331
2332 /*
2333 * Map software to hardware queues.
2334 *
2335 * If the cpu isn't present, the cpu is mapped to first hctx.
2336 */
2337 for_each_possible_cpu(i) {
2338 hctx_idx = set->map[0].mq_map[i];
2339 /* unmapped hw queue can be remapped after CPU topo changed */
2340 if (!set->tags[hctx_idx] &&
2341 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2342 /*
2343 * If tags initialization fail for some hctx,
2344 * that hctx won't be brought online. In this
2345 * case, remap the current ctx to hctx[0] which
2346 * is guaranteed to always have tags allocated
2347 */
2348 set->map[0].mq_map[i] = 0;
2349 }
2350
2351 ctx = per_cpu_ptr(q->queue_ctx, i);
2352 for (j = 0; j < set->nr_maps; j++) {
2353 hctx = blk_mq_map_queue_type(q, j, i);
2354
2355 /*
2356 * If the CPU is already set in the mask, then we've
2357 * mapped this one already. This can happen if
2358 * devices share queues across queue maps.
2359 */
2360 if (cpumask_test_cpu(i, hctx->cpumask))
2361 continue;
2362
2363 cpumask_set_cpu(i, hctx->cpumask);
2364 hctx->type = j;
2365 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2366 hctx->ctxs[hctx->nr_ctx++] = ctx;
2367
2368 /*
2369 * If the nr_ctx type overflows, we have exceeded the
2370 * amount of sw queues we can support.
2371 */
2372 BUG_ON(!hctx->nr_ctx);
2373 }
2374 }
2375
2376 mutex_unlock(&q->sysfs_lock);
2377
2378 queue_for_each_hw_ctx(q, hctx, i) {
2379 /*
2380 * If no software queues are mapped to this hardware queue,
2381 * disable it and free the request entries.
2382 */
2383 if (!hctx->nr_ctx) {
2384 /* Never unmap queue 0. We need it as a
2385 * fallback in case of a new remap fails
2386 * allocation
2387 */
2388 if (i && set->tags[i])
2389 blk_mq_free_map_and_requests(set, i);
2390
2391 hctx->tags = NULL;
2392 continue;
2393 }
2394
2395 hctx->tags = set->tags[i];
2396 WARN_ON(!hctx->tags);
2397
2398 /*
2399 * Set the map size to the number of mapped software queues.
2400 * This is more accurate and more efficient than looping
2401 * over all possibly mapped software queues.
2402 */
2403 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2404
2405 /*
2406 * Initialize batch roundrobin counts
2407 */
2408 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2409 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2410 }
2411 }
2412
2413 /*
2414 * Caller needs to ensure that we're either frozen/quiesced, or that
2415 * the queue isn't live yet.
2416 */
2417 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2418 {
2419 struct blk_mq_hw_ctx *hctx;
2420 int i;
2421
2422 queue_for_each_hw_ctx(q, hctx, i) {
2423 if (shared)
2424 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2425 else
2426 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2427 }
2428 }
2429
2430 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2431 bool shared)
2432 {
2433 struct request_queue *q;
2434
2435 lockdep_assert_held(&set->tag_list_lock);
2436
2437 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2438 blk_mq_freeze_queue(q);
2439 queue_set_hctx_shared(q, shared);
2440 blk_mq_unfreeze_queue(q);
2441 }
2442 }
2443
2444 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2445 {
2446 struct blk_mq_tag_set *set = q->tag_set;
2447
2448 mutex_lock(&set->tag_list_lock);
2449 list_del_rcu(&q->tag_set_list);
2450 if (list_is_singular(&set->tag_list)) {
2451 /* just transitioned to unshared */
2452 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2453 /* update existing queue */
2454 blk_mq_update_tag_set_depth(set, false);
2455 }
2456 mutex_unlock(&set->tag_list_lock);
2457 INIT_LIST_HEAD(&q->tag_set_list);
2458 }
2459
2460 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2461 struct request_queue *q)
2462 {
2463 mutex_lock(&set->tag_list_lock);
2464
2465 /*
2466 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2467 */
2468 if (!list_empty(&set->tag_list) &&
2469 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2470 set->flags |= BLK_MQ_F_TAG_SHARED;
2471 /* update existing queue */
2472 blk_mq_update_tag_set_depth(set, true);
2473 }
2474 if (set->flags & BLK_MQ_F_TAG_SHARED)
2475 queue_set_hctx_shared(q, true);
2476 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2477
2478 mutex_unlock(&set->tag_list_lock);
2479 }
2480
2481 /*
2482 * It is the actual release handler for mq, but we do it from
2483 * request queue's release handler for avoiding use-after-free
2484 * and headache because q->mq_kobj shouldn't have been introduced,
2485 * but we can't group ctx/kctx kobj without it.
2486 */
2487 void blk_mq_release(struct request_queue *q)
2488 {
2489 struct blk_mq_hw_ctx *hctx;
2490 unsigned int i;
2491
2492 /* hctx kobj stays in hctx */
2493 queue_for_each_hw_ctx(q, hctx, i) {
2494 if (!hctx)
2495 continue;
2496 kobject_put(&hctx->kobj);
2497 }
2498
2499 kfree(q->queue_hw_ctx);
2500
2501 /*
2502 * release .mq_kobj and sw queue's kobject now because
2503 * both share lifetime with request queue.
2504 */
2505 blk_mq_sysfs_deinit(q);
2506
2507 free_percpu(q->queue_ctx);
2508 }
2509
2510 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2511 {
2512 struct request_queue *uninit_q, *q;
2513
2514 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2515 if (!uninit_q)
2516 return ERR_PTR(-ENOMEM);
2517
2518 q = blk_mq_init_allocated_queue(set, uninit_q);
2519 if (IS_ERR(q))
2520 blk_cleanup_queue(uninit_q);
2521
2522 return q;
2523 }
2524 EXPORT_SYMBOL(blk_mq_init_queue);
2525
2526 /*
2527 * Helper for setting up a queue with mq ops, given queue depth, and
2528 * the passed in mq ops flags.
2529 */
2530 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2531 const struct blk_mq_ops *ops,
2532 unsigned int queue_depth,
2533 unsigned int set_flags)
2534 {
2535 struct request_queue *q;
2536 int ret;
2537
2538 memset(set, 0, sizeof(*set));
2539 set->ops = ops;
2540 set->nr_hw_queues = 1;
2541 set->nr_maps = 1;
2542 set->queue_depth = queue_depth;
2543 set->numa_node = NUMA_NO_NODE;
2544 set->flags = set_flags;
2545
2546 ret = blk_mq_alloc_tag_set(set);
2547 if (ret)
2548 return ERR_PTR(ret);
2549
2550 q = blk_mq_init_queue(set);
2551 if (IS_ERR(q)) {
2552 blk_mq_free_tag_set(set);
2553 return q;
2554 }
2555
2556 return q;
2557 }
2558 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2559
2560 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2561 {
2562 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2563
2564 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2565 __alignof__(struct blk_mq_hw_ctx)) !=
2566 sizeof(struct blk_mq_hw_ctx));
2567
2568 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2569 hw_ctx_size += sizeof(struct srcu_struct);
2570
2571 return hw_ctx_size;
2572 }
2573
2574 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2575 struct blk_mq_tag_set *set, struct request_queue *q,
2576 int hctx_idx, int node)
2577 {
2578 struct blk_mq_hw_ctx *hctx;
2579
2580 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2581 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2582 node);
2583 if (!hctx)
2584 return NULL;
2585
2586 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2587 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2588 node)) {
2589 kfree(hctx);
2590 return NULL;
2591 }
2592
2593 atomic_set(&hctx->nr_active, 0);
2594 hctx->numa_node = node;
2595 hctx->queue_num = hctx_idx;
2596
2597 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2598 free_cpumask_var(hctx->cpumask);
2599 kfree(hctx);
2600 return NULL;
2601 }
2602 blk_mq_hctx_kobj_init(hctx);
2603
2604 return hctx;
2605 }
2606
2607 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2608 struct request_queue *q)
2609 {
2610 int i, j, end;
2611 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2612
2613 /* protect against switching io scheduler */
2614 mutex_lock(&q->sysfs_lock);
2615 for (i = 0; i < set->nr_hw_queues; i++) {
2616 int node;
2617 struct blk_mq_hw_ctx *hctx;
2618
2619 node = blk_mq_hw_queue_to_node(&set->map[0], i);
2620 /*
2621 * If the hw queue has been mapped to another numa node,
2622 * we need to realloc the hctx. If allocation fails, fallback
2623 * to use the previous one.
2624 */
2625 if (hctxs[i] && (hctxs[i]->numa_node == node))
2626 continue;
2627
2628 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2629 if (hctx) {
2630 if (hctxs[i]) {
2631 blk_mq_exit_hctx(q, set, hctxs[i], i);
2632 kobject_put(&hctxs[i]->kobj);
2633 }
2634 hctxs[i] = hctx;
2635 } else {
2636 if (hctxs[i])
2637 pr_warn("Allocate new hctx on node %d fails,\
2638 fallback to previous one on node %d\n",
2639 node, hctxs[i]->numa_node);
2640 else
2641 break;
2642 }
2643 }
2644 /*
2645 * Increasing nr_hw_queues fails. Free the newly allocated
2646 * hctxs and keep the previous q->nr_hw_queues.
2647 */
2648 if (i != set->nr_hw_queues) {
2649 j = q->nr_hw_queues;
2650 end = i;
2651 } else {
2652 j = i;
2653 end = q->nr_hw_queues;
2654 q->nr_hw_queues = set->nr_hw_queues;
2655 }
2656
2657 for (; j < end; j++) {
2658 struct blk_mq_hw_ctx *hctx = hctxs[j];
2659
2660 if (hctx) {
2661 if (hctx->tags)
2662 blk_mq_free_map_and_requests(set, j);
2663 blk_mq_exit_hctx(q, set, hctx, j);
2664 kobject_put(&hctx->kobj);
2665 hctxs[j] = NULL;
2666
2667 }
2668 }
2669 mutex_unlock(&q->sysfs_lock);
2670 }
2671
2672 /*
2673 * Maximum number of hardware queues we support. For single sets, we'll never
2674 * have more than the CPUs (software queues). For multiple sets, the tag_set
2675 * user may have set ->nr_hw_queues larger.
2676 */
2677 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2678 {
2679 if (set->nr_maps == 1)
2680 return nr_cpu_ids;
2681
2682 return max(set->nr_hw_queues, nr_cpu_ids);
2683 }
2684
2685 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2686 struct request_queue *q)
2687 {
2688 /* mark the queue as mq asap */
2689 q->mq_ops = set->ops;
2690
2691 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2692 blk_mq_poll_stats_bkt,
2693 BLK_MQ_POLL_STATS_BKTS, q);
2694 if (!q->poll_cb)
2695 goto err_exit;
2696
2697 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2698 if (!q->queue_ctx)
2699 goto err_exit;
2700
2701 /* init q->mq_kobj and sw queues' kobjects */
2702 blk_mq_sysfs_init(q);
2703
2704 q->nr_queues = nr_hw_queues(set);
2705 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2706 GFP_KERNEL, set->numa_node);
2707 if (!q->queue_hw_ctx)
2708 goto err_percpu;
2709
2710 blk_mq_realloc_hw_ctxs(set, q);
2711 if (!q->nr_hw_queues)
2712 goto err_hctxs;
2713
2714 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2715 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2716
2717 q->tag_set = set;
2718
2719 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2720
2721 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2722 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2723
2724 q->sg_reserved_size = INT_MAX;
2725
2726 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2727 INIT_LIST_HEAD(&q->requeue_list);
2728 spin_lock_init(&q->requeue_lock);
2729
2730 blk_queue_make_request(q, blk_mq_make_request);
2731 if (q->mq_ops->poll)
2732 q->poll_fn = blk_mq_poll;
2733
2734 /*
2735 * Do this after blk_queue_make_request() overrides it...
2736 */
2737 q->nr_requests = set->queue_depth;
2738
2739 /*
2740 * Default to classic polling
2741 */
2742 q->poll_nsec = -1;
2743
2744 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2745 blk_mq_add_queue_tag_set(set, q);
2746 blk_mq_map_swqueue(q);
2747
2748 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2749 int ret;
2750
2751 ret = elevator_init_mq(q);
2752 if (ret)
2753 return ERR_PTR(ret);
2754 }
2755
2756 return q;
2757
2758 err_hctxs:
2759 kfree(q->queue_hw_ctx);
2760 err_percpu:
2761 free_percpu(q->queue_ctx);
2762 err_exit:
2763 q->mq_ops = NULL;
2764 return ERR_PTR(-ENOMEM);
2765 }
2766 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2767
2768 void blk_mq_free_queue(struct request_queue *q)
2769 {
2770 struct blk_mq_tag_set *set = q->tag_set;
2771
2772 blk_mq_del_queue_tag_set(q);
2773 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2774 }
2775
2776 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2777 {
2778 int i;
2779
2780 for (i = 0; i < set->nr_hw_queues; i++)
2781 if (!__blk_mq_alloc_rq_map(set, i))
2782 goto out_unwind;
2783
2784 return 0;
2785
2786 out_unwind:
2787 while (--i >= 0)
2788 blk_mq_free_rq_map(set->tags[i]);
2789
2790 return -ENOMEM;
2791 }
2792
2793 /*
2794 * Allocate the request maps associated with this tag_set. Note that this
2795 * may reduce the depth asked for, if memory is tight. set->queue_depth
2796 * will be updated to reflect the allocated depth.
2797 */
2798 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2799 {
2800 unsigned int depth;
2801 int err;
2802
2803 depth = set->queue_depth;
2804 do {
2805 err = __blk_mq_alloc_rq_maps(set);
2806 if (!err)
2807 break;
2808
2809 set->queue_depth >>= 1;
2810 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2811 err = -ENOMEM;
2812 break;
2813 }
2814 } while (set->queue_depth);
2815
2816 if (!set->queue_depth || err) {
2817 pr_err("blk-mq: failed to allocate request map\n");
2818 return -ENOMEM;
2819 }
2820
2821 if (depth != set->queue_depth)
2822 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2823 depth, set->queue_depth);
2824
2825 return 0;
2826 }
2827
2828 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2829 {
2830 if (set->ops->map_queues) {
2831 int i;
2832
2833 /*
2834 * transport .map_queues is usually done in the following
2835 * way:
2836 *
2837 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2838 * mask = get_cpu_mask(queue)
2839 * for_each_cpu(cpu, mask)
2840 * set->map[x].mq_map[cpu] = queue;
2841 * }
2842 *
2843 * When we need to remap, the table has to be cleared for
2844 * killing stale mapping since one CPU may not be mapped
2845 * to any hw queue.
2846 */
2847 for (i = 0; i < set->nr_maps; i++)
2848 blk_mq_clear_mq_map(&set->map[i]);
2849
2850 return set->ops->map_queues(set);
2851 } else {
2852 BUG_ON(set->nr_maps > 1);
2853 return blk_mq_map_queues(&set->map[0]);
2854 }
2855 }
2856
2857 /*
2858 * Alloc a tag set to be associated with one or more request queues.
2859 * May fail with EINVAL for various error conditions. May adjust the
2860 * requested depth down, if it's too large. In that case, the set
2861 * value will be stored in set->queue_depth.
2862 */
2863 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2864 {
2865 int i, ret;
2866
2867 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2868
2869 if (!set->nr_hw_queues)
2870 return -EINVAL;
2871 if (!set->queue_depth)
2872 return -EINVAL;
2873 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2874 return -EINVAL;
2875
2876 if (!set->ops->queue_rq)
2877 return -EINVAL;
2878
2879 if (!set->ops->get_budget ^ !set->ops->put_budget)
2880 return -EINVAL;
2881
2882 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2883 pr_info("blk-mq: reduced tag depth to %u\n",
2884 BLK_MQ_MAX_DEPTH);
2885 set->queue_depth = BLK_MQ_MAX_DEPTH;
2886 }
2887
2888 if (!set->nr_maps)
2889 set->nr_maps = 1;
2890 else if (set->nr_maps > HCTX_MAX_TYPES)
2891 return -EINVAL;
2892
2893 /*
2894 * If a crashdump is active, then we are potentially in a very
2895 * memory constrained environment. Limit us to 1 queue and
2896 * 64 tags to prevent using too much memory.
2897 */
2898 if (is_kdump_kernel()) {
2899 set->nr_hw_queues = 1;
2900 set->queue_depth = min(64U, set->queue_depth);
2901 }
2902 /*
2903 * There is no use for more h/w queues than cpus if we just have
2904 * a single map
2905 */
2906 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
2907 set->nr_hw_queues = nr_cpu_ids;
2908
2909 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
2910 GFP_KERNEL, set->numa_node);
2911 if (!set->tags)
2912 return -ENOMEM;
2913
2914 ret = -ENOMEM;
2915 for (i = 0; i < set->nr_maps; i++) {
2916 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
2917 sizeof(struct blk_mq_queue_map),
2918 GFP_KERNEL, set->numa_node);
2919 if (!set->map[i].mq_map)
2920 goto out_free_mq_map;
2921 set->map[i].nr_queues = set->nr_hw_queues;
2922 }
2923
2924 ret = blk_mq_update_queue_map(set);
2925 if (ret)
2926 goto out_free_mq_map;
2927
2928 ret = blk_mq_alloc_rq_maps(set);
2929 if (ret)
2930 goto out_free_mq_map;
2931
2932 mutex_init(&set->tag_list_lock);
2933 INIT_LIST_HEAD(&set->tag_list);
2934
2935 return 0;
2936
2937 out_free_mq_map:
2938 for (i = 0; i < set->nr_maps; i++) {
2939 kfree(set->map[i].mq_map);
2940 set->map[i].mq_map = NULL;
2941 }
2942 kfree(set->tags);
2943 set->tags = NULL;
2944 return ret;
2945 }
2946 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2947
2948 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2949 {
2950 int i, j;
2951
2952 for (i = 0; i < nr_hw_queues(set); i++)
2953 blk_mq_free_map_and_requests(set, i);
2954
2955 for (j = 0; j < set->nr_maps; j++) {
2956 kfree(set->map[j].mq_map);
2957 set->map[j].mq_map = NULL;
2958 }
2959
2960 kfree(set->tags);
2961 set->tags = NULL;
2962 }
2963 EXPORT_SYMBOL(blk_mq_free_tag_set);
2964
2965 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2966 {
2967 struct blk_mq_tag_set *set = q->tag_set;
2968 struct blk_mq_hw_ctx *hctx;
2969 int i, ret;
2970
2971 if (!set)
2972 return -EINVAL;
2973
2974 blk_mq_freeze_queue(q);
2975 blk_mq_quiesce_queue(q);
2976
2977 ret = 0;
2978 queue_for_each_hw_ctx(q, hctx, i) {
2979 if (!hctx->tags)
2980 continue;
2981 /*
2982 * If we're using an MQ scheduler, just update the scheduler
2983 * queue depth. This is similar to what the old code would do.
2984 */
2985 if (!hctx->sched_tags) {
2986 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2987 false);
2988 } else {
2989 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2990 nr, true);
2991 }
2992 if (ret)
2993 break;
2994 }
2995
2996 if (!ret)
2997 q->nr_requests = nr;
2998
2999 blk_mq_unquiesce_queue(q);
3000 blk_mq_unfreeze_queue(q);
3001
3002 return ret;
3003 }
3004
3005 /*
3006 * request_queue and elevator_type pair.
3007 * It is just used by __blk_mq_update_nr_hw_queues to cache
3008 * the elevator_type associated with a request_queue.
3009 */
3010 struct blk_mq_qe_pair {
3011 struct list_head node;
3012 struct request_queue *q;
3013 struct elevator_type *type;
3014 };
3015
3016 /*
3017 * Cache the elevator_type in qe pair list and switch the
3018 * io scheduler to 'none'
3019 */
3020 static bool blk_mq_elv_switch_none(struct list_head *head,
3021 struct request_queue *q)
3022 {
3023 struct blk_mq_qe_pair *qe;
3024
3025 if (!q->elevator)
3026 return true;
3027
3028 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3029 if (!qe)
3030 return false;
3031
3032 INIT_LIST_HEAD(&qe->node);
3033 qe->q = q;
3034 qe->type = q->elevator->type;
3035 list_add(&qe->node, head);
3036
3037 mutex_lock(&q->sysfs_lock);
3038 /*
3039 * After elevator_switch_mq, the previous elevator_queue will be
3040 * released by elevator_release. The reference of the io scheduler
3041 * module get by elevator_get will also be put. So we need to get
3042 * a reference of the io scheduler module here to prevent it to be
3043 * removed.
3044 */
3045 __module_get(qe->type->elevator_owner);
3046 elevator_switch_mq(q, NULL);
3047 mutex_unlock(&q->sysfs_lock);
3048
3049 return true;
3050 }
3051
3052 static void blk_mq_elv_switch_back(struct list_head *head,
3053 struct request_queue *q)
3054 {
3055 struct blk_mq_qe_pair *qe;
3056 struct elevator_type *t = NULL;
3057
3058 list_for_each_entry(qe, head, node)
3059 if (qe->q == q) {
3060 t = qe->type;
3061 break;
3062 }
3063
3064 if (!t)
3065 return;
3066
3067 list_del(&qe->node);
3068 kfree(qe);
3069
3070 mutex_lock(&q->sysfs_lock);
3071 elevator_switch_mq(q, t);
3072 mutex_unlock(&q->sysfs_lock);
3073 }
3074
3075 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3076 int nr_hw_queues)
3077 {
3078 struct request_queue *q;
3079 LIST_HEAD(head);
3080 int prev_nr_hw_queues;
3081
3082 lockdep_assert_held(&set->tag_list_lock);
3083
3084 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3085 nr_hw_queues = nr_cpu_ids;
3086 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3087 return;
3088
3089 list_for_each_entry(q, &set->tag_list, tag_set_list)
3090 blk_mq_freeze_queue(q);
3091 /*
3092 * Sync with blk_mq_queue_tag_busy_iter.
3093 */
3094 synchronize_rcu();
3095 /*
3096 * Switch IO scheduler to 'none', cleaning up the data associated
3097 * with the previous scheduler. We will switch back once we are done
3098 * updating the new sw to hw queue mappings.
3099 */
3100 list_for_each_entry(q, &set->tag_list, tag_set_list)
3101 if (!blk_mq_elv_switch_none(&head, q))
3102 goto switch_back;
3103
3104 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3105 blk_mq_debugfs_unregister_hctxs(q);
3106 blk_mq_sysfs_unregister(q);
3107 }
3108
3109 prev_nr_hw_queues = set->nr_hw_queues;
3110 set->nr_hw_queues = nr_hw_queues;
3111 blk_mq_update_queue_map(set);
3112 fallback:
3113 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3114 blk_mq_realloc_hw_ctxs(set, q);
3115 if (q->nr_hw_queues != set->nr_hw_queues) {
3116 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3117 nr_hw_queues, prev_nr_hw_queues);
3118 set->nr_hw_queues = prev_nr_hw_queues;
3119 blk_mq_map_queues(&set->map[0]);
3120 goto fallback;
3121 }
3122 blk_mq_map_swqueue(q);
3123 }
3124
3125 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3126 blk_mq_sysfs_register(q);
3127 blk_mq_debugfs_register_hctxs(q);
3128 }
3129
3130 switch_back:
3131 list_for_each_entry(q, &set->tag_list, tag_set_list)
3132 blk_mq_elv_switch_back(&head, q);
3133
3134 list_for_each_entry(q, &set->tag_list, tag_set_list)
3135 blk_mq_unfreeze_queue(q);
3136 }
3137
3138 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3139 {
3140 mutex_lock(&set->tag_list_lock);
3141 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3142 mutex_unlock(&set->tag_list_lock);
3143 }
3144 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3145
3146 /* Enable polling stats and return whether they were already enabled. */
3147 static bool blk_poll_stats_enable(struct request_queue *q)
3148 {
3149 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3150 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3151 return true;
3152 blk_stat_add_callback(q, q->poll_cb);
3153 return false;
3154 }
3155
3156 static void blk_mq_poll_stats_start(struct request_queue *q)
3157 {
3158 /*
3159 * We don't arm the callback if polling stats are not enabled or the
3160 * callback is already active.
3161 */
3162 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3163 blk_stat_is_active(q->poll_cb))
3164 return;
3165
3166 blk_stat_activate_msecs(q->poll_cb, 100);
3167 }
3168
3169 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3170 {
3171 struct request_queue *q = cb->data;
3172 int bucket;
3173
3174 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3175 if (cb->stat[bucket].nr_samples)
3176 q->poll_stat[bucket] = cb->stat[bucket];
3177 }
3178 }
3179
3180 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3181 struct blk_mq_hw_ctx *hctx,
3182 struct request *rq)
3183 {
3184 unsigned long ret = 0;
3185 int bucket;
3186
3187 /*
3188 * If stats collection isn't on, don't sleep but turn it on for
3189 * future users
3190 */
3191 if (!blk_poll_stats_enable(q))
3192 return 0;
3193
3194 /*
3195 * As an optimistic guess, use half of the mean service time
3196 * for this type of request. We can (and should) make this smarter.
3197 * For instance, if the completion latencies are tight, we can
3198 * get closer than just half the mean. This is especially
3199 * important on devices where the completion latencies are longer
3200 * than ~10 usec. We do use the stats for the relevant IO size
3201 * if available which does lead to better estimates.
3202 */
3203 bucket = blk_mq_poll_stats_bkt(rq);
3204 if (bucket < 0)
3205 return ret;
3206
3207 if (q->poll_stat[bucket].nr_samples)
3208 ret = (q->poll_stat[bucket].mean + 1) / 2;
3209
3210 return ret;
3211 }
3212
3213 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3214 struct blk_mq_hw_ctx *hctx,
3215 struct request *rq)
3216 {
3217 struct hrtimer_sleeper hs;
3218 enum hrtimer_mode mode;
3219 unsigned int nsecs;
3220 ktime_t kt;
3221
3222 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3223 return false;
3224
3225 /*
3226 * poll_nsec can be:
3227 *
3228 * -1: don't ever hybrid sleep
3229 * 0: use half of prev avg
3230 * >0: use this specific value
3231 */
3232 if (q->poll_nsec == -1)
3233 return false;
3234 else if (q->poll_nsec > 0)
3235 nsecs = q->poll_nsec;
3236 else
3237 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3238
3239 if (!nsecs)
3240 return false;
3241
3242 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3243
3244 /*
3245 * This will be replaced with the stats tracking code, using
3246 * 'avg_completion_time / 2' as the pre-sleep target.
3247 */
3248 kt = nsecs;
3249
3250 mode = HRTIMER_MODE_REL;
3251 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3252 hrtimer_set_expires(&hs.timer, kt);
3253
3254 hrtimer_init_sleeper(&hs, current);
3255 do {
3256 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3257 break;
3258 set_current_state(TASK_UNINTERRUPTIBLE);
3259 hrtimer_start_expires(&hs.timer, mode);
3260 if (hs.task)
3261 io_schedule();
3262 hrtimer_cancel(&hs.timer);
3263 mode = HRTIMER_MODE_ABS;
3264 } while (hs.task && !signal_pending(current));
3265
3266 __set_current_state(TASK_RUNNING);
3267 destroy_hrtimer_on_stack(&hs.timer);
3268 return true;
3269 }
3270
3271 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3272 {
3273 struct request_queue *q = hctx->queue;
3274 long state;
3275
3276 /*
3277 * If we sleep, have the caller restart the poll loop to reset
3278 * the state. Like for the other success return cases, the
3279 * caller is responsible for checking if the IO completed. If
3280 * the IO isn't complete, we'll get called again and will go
3281 * straight to the busy poll loop.
3282 */
3283 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3284 return true;
3285
3286 hctx->poll_considered++;
3287
3288 state = current->state;
3289 while (!need_resched()) {
3290 int ret;
3291
3292 hctx->poll_invoked++;
3293
3294 ret = q->mq_ops->poll(hctx, rq->tag);
3295 if (ret > 0) {
3296 hctx->poll_success++;
3297 set_current_state(TASK_RUNNING);
3298 return true;
3299 }
3300
3301 if (signal_pending_state(state, current))
3302 set_current_state(TASK_RUNNING);
3303
3304 if (current->state == TASK_RUNNING)
3305 return true;
3306 if (ret < 0)
3307 break;
3308 cpu_relax();
3309 }
3310
3311 __set_current_state(TASK_RUNNING);
3312 return false;
3313 }
3314
3315 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3316 {
3317 struct blk_mq_hw_ctx *hctx;
3318 struct request *rq;
3319
3320 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3321 return false;
3322
3323 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3324 if (!blk_qc_t_is_internal(cookie))
3325 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3326 else {
3327 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3328 /*
3329 * With scheduling, if the request has completed, we'll
3330 * get a NULL return here, as we clear the sched tag when
3331 * that happens. The request still remains valid, like always,
3332 * so we should be safe with just the NULL check.
3333 */
3334 if (!rq)
3335 return false;
3336 }
3337
3338 return __blk_mq_poll(hctx, rq);
3339 }
3340
3341 unsigned int blk_mq_rq_cpu(struct request *rq)
3342 {
3343 return rq->mq_ctx->cpu;
3344 }
3345 EXPORT_SYMBOL(blk_mq_rq_cpu);
3346
3347 static int __init blk_mq_init(void)
3348 {
3349 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3350 blk_mq_hctx_notify_dead);
3351 return 0;
3352 }
3353 subsys_initcall(blk_mq_init);