]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
bcache: panic fix for making cache device
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 int ddir, bytes, bucket;
48
49 ddir = rq_data_dir(rq);
50 bytes = blk_rq_bytes(rq);
51
52 bucket = ddir + 2*(ilog2(bytes) - 9);
53
54 if (bucket < 0)
55 return -1;
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59 return bucket;
60 }
61
62 /*
63 * Check if any of the ctx's have pending work in this hardware queue
64 */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67 return !list_empty_careful(&hctx->dispatch) ||
68 sbitmap_any_bit_set(&hctx->ctx_map) ||
69 blk_mq_sched_has_work(hctx);
70 }
71
72 /*
73 * Mark this ctx as having pending work in this hardware queue
74 */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 struct blk_mq_ctx *ctx)
77 {
78 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 }
81
82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83 struct blk_mq_ctx *ctx)
84 {
85 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 }
87
88 struct mq_inflight {
89 struct hd_struct *part;
90 unsigned int *inflight;
91 };
92
93 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
94 struct request *rq, void *priv,
95 bool reserved)
96 {
97 struct mq_inflight *mi = priv;
98
99 /*
100 * index[0] counts the specific partition that was asked for. index[1]
101 * counts the ones that are active on the whole device, so increment
102 * that if mi->part is indeed a partition, and not a whole device.
103 */
104 if (rq->part == mi->part)
105 mi->inflight[0]++;
106 if (mi->part->partno)
107 mi->inflight[1]++;
108 }
109
110 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
111 unsigned int inflight[2])
112 {
113 struct mq_inflight mi = { .part = part, .inflight = inflight, };
114
115 inflight[0] = inflight[1] = 0;
116 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117 }
118
119 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
120 struct request *rq, void *priv,
121 bool reserved)
122 {
123 struct mq_inflight *mi = priv;
124
125 if (rq->part == mi->part)
126 mi->inflight[rq_data_dir(rq)]++;
127 }
128
129 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
130 unsigned int inflight[2])
131 {
132 struct mq_inflight mi = { .part = part, .inflight = inflight, };
133
134 inflight[0] = inflight[1] = 0;
135 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
136 }
137
138 void blk_freeze_queue_start(struct request_queue *q)
139 {
140 int freeze_depth;
141
142 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
143 if (freeze_depth == 1) {
144 percpu_ref_kill(&q->q_usage_counter);
145 if (q->mq_ops)
146 blk_mq_run_hw_queues(q, false);
147 }
148 }
149 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150
151 void blk_mq_freeze_queue_wait(struct request_queue *q)
152 {
153 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156
157 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
158 unsigned long timeout)
159 {
160 return wait_event_timeout(q->mq_freeze_wq,
161 percpu_ref_is_zero(&q->q_usage_counter),
162 timeout);
163 }
164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
165
166 /*
167 * Guarantee no request is in use, so we can change any data structure of
168 * the queue afterward.
169 */
170 void blk_freeze_queue(struct request_queue *q)
171 {
172 /*
173 * In the !blk_mq case we are only calling this to kill the
174 * q_usage_counter, otherwise this increases the freeze depth
175 * and waits for it to return to zero. For this reason there is
176 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
177 * exported to drivers as the only user for unfreeze is blk_mq.
178 */
179 blk_freeze_queue_start(q);
180 if (!q->mq_ops)
181 blk_drain_queue(q);
182 blk_mq_freeze_queue_wait(q);
183 }
184
185 void blk_mq_freeze_queue(struct request_queue *q)
186 {
187 /*
188 * ...just an alias to keep freeze and unfreeze actions balanced
189 * in the blk_mq_* namespace
190 */
191 blk_freeze_queue(q);
192 }
193 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
194
195 void blk_mq_unfreeze_queue(struct request_queue *q)
196 {
197 int freeze_depth;
198
199 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
200 WARN_ON_ONCE(freeze_depth < 0);
201 if (!freeze_depth) {
202 percpu_ref_resurrect(&q->q_usage_counter);
203 wake_up_all(&q->mq_freeze_wq);
204 }
205 }
206 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
207
208 /*
209 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
210 * mpt3sas driver such that this function can be removed.
211 */
212 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 {
214 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217
218 /**
219 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220 * @q: request queue.
221 *
222 * Note: this function does not prevent that the struct request end_io()
223 * callback function is invoked. Once this function is returned, we make
224 * sure no dispatch can happen until the queue is unquiesced via
225 * blk_mq_unquiesce_queue().
226 */
227 void blk_mq_quiesce_queue(struct request_queue *q)
228 {
229 struct blk_mq_hw_ctx *hctx;
230 unsigned int i;
231 bool rcu = false;
232
233 blk_mq_quiesce_queue_nowait(q);
234
235 queue_for_each_hw_ctx(q, hctx, i) {
236 if (hctx->flags & BLK_MQ_F_BLOCKING)
237 synchronize_srcu(hctx->srcu);
238 else
239 rcu = true;
240 }
241 if (rcu)
242 synchronize_rcu();
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245
246 /*
247 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248 * @q: request queue.
249 *
250 * This function recovers queue into the state before quiescing
251 * which is done by blk_mq_quiesce_queue.
252 */
253 void blk_mq_unquiesce_queue(struct request_queue *q)
254 {
255 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
256
257 /* dispatch requests which are inserted during quiescing */
258 blk_mq_run_hw_queues(q, true);
259 }
260 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
261
262 void blk_mq_wake_waiters(struct request_queue *q)
263 {
264 struct blk_mq_hw_ctx *hctx;
265 unsigned int i;
266
267 queue_for_each_hw_ctx(q, hctx, i)
268 if (blk_mq_hw_queue_mapped(hctx))
269 blk_mq_tag_wakeup_all(hctx->tags, true);
270 }
271
272 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
273 {
274 return blk_mq_has_free_tags(hctx->tags);
275 }
276 EXPORT_SYMBOL(blk_mq_can_queue);
277
278 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
279 unsigned int tag, unsigned int op)
280 {
281 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
282 struct request *rq = tags->static_rqs[tag];
283 req_flags_t rq_flags = 0;
284
285 if (data->flags & BLK_MQ_REQ_INTERNAL) {
286 rq->tag = -1;
287 rq->internal_tag = tag;
288 } else {
289 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
290 rq_flags = RQF_MQ_INFLIGHT;
291 atomic_inc(&data->hctx->nr_active);
292 }
293 rq->tag = tag;
294 rq->internal_tag = -1;
295 data->hctx->tags->rqs[rq->tag] = rq;
296 }
297
298 /* csd/requeue_work/fifo_time is initialized before use */
299 rq->q = data->q;
300 rq->mq_ctx = data->ctx;
301 rq->rq_flags = rq_flags;
302 rq->cpu = -1;
303 rq->cmd_flags = op;
304 if (data->flags & BLK_MQ_REQ_PREEMPT)
305 rq->rq_flags |= RQF_PREEMPT;
306 if (blk_queue_io_stat(data->q))
307 rq->rq_flags |= RQF_IO_STAT;
308 INIT_LIST_HEAD(&rq->queuelist);
309 INIT_HLIST_NODE(&rq->hash);
310 RB_CLEAR_NODE(&rq->rb_node);
311 rq->rq_disk = NULL;
312 rq->part = NULL;
313 rq->start_time_ns = ktime_get_ns();
314 rq->io_start_time_ns = 0;
315 rq->nr_phys_segments = 0;
316 #if defined(CONFIG_BLK_DEV_INTEGRITY)
317 rq->nr_integrity_segments = 0;
318 #endif
319 rq->special = NULL;
320 /* tag was already set */
321 rq->extra_len = 0;
322 rq->__deadline = 0;
323
324 INIT_LIST_HEAD(&rq->timeout_list);
325 rq->timeout = 0;
326
327 rq->end_io = NULL;
328 rq->end_io_data = NULL;
329 rq->next_rq = NULL;
330
331 #ifdef CONFIG_BLK_CGROUP
332 rq->rl = NULL;
333 #endif
334
335 data->ctx->rq_dispatched[op_is_sync(op)]++;
336 refcount_set(&rq->ref, 1);
337 return rq;
338 }
339
340 static struct request *blk_mq_get_request(struct request_queue *q,
341 struct bio *bio, unsigned int op,
342 struct blk_mq_alloc_data *data)
343 {
344 struct elevator_queue *e = q->elevator;
345 struct request *rq;
346 unsigned int tag;
347 bool put_ctx_on_error = false;
348
349 blk_queue_enter_live(q);
350 data->q = q;
351 if (likely(!data->ctx)) {
352 data->ctx = blk_mq_get_ctx(q);
353 put_ctx_on_error = true;
354 }
355 if (likely(!data->hctx))
356 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
357 if (op & REQ_NOWAIT)
358 data->flags |= BLK_MQ_REQ_NOWAIT;
359
360 if (e) {
361 data->flags |= BLK_MQ_REQ_INTERNAL;
362
363 /*
364 * Flush requests are special and go directly to the
365 * dispatch list. Don't include reserved tags in the
366 * limiting, as it isn't useful.
367 */
368 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
369 !(data->flags & BLK_MQ_REQ_RESERVED))
370 e->type->ops.mq.limit_depth(op, data);
371 } else {
372 blk_mq_tag_busy(data->hctx);
373 }
374
375 tag = blk_mq_get_tag(data);
376 if (tag == BLK_MQ_TAG_FAIL) {
377 if (put_ctx_on_error) {
378 blk_mq_put_ctx(data->ctx);
379 data->ctx = NULL;
380 }
381 blk_queue_exit(q);
382 return NULL;
383 }
384
385 rq = blk_mq_rq_ctx_init(data, tag, op);
386 if (!op_is_flush(op)) {
387 rq->elv.icq = NULL;
388 if (e && e->type->ops.mq.prepare_request) {
389 if (e->type->icq_cache && rq_ioc(bio))
390 blk_mq_sched_assign_ioc(rq, bio);
391
392 e->type->ops.mq.prepare_request(rq, bio);
393 rq->rq_flags |= RQF_ELVPRIV;
394 }
395 }
396 data->hctx->queued++;
397 return rq;
398 }
399
400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
401 blk_mq_req_flags_t flags)
402 {
403 struct blk_mq_alloc_data alloc_data = { .flags = flags };
404 struct request *rq;
405 int ret;
406
407 ret = blk_queue_enter(q, flags);
408 if (ret)
409 return ERR_PTR(ret);
410
411 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
412 blk_queue_exit(q);
413
414 if (!rq)
415 return ERR_PTR(-EWOULDBLOCK);
416
417 blk_mq_put_ctx(alloc_data.ctx);
418
419 rq->__data_len = 0;
420 rq->__sector = (sector_t) -1;
421 rq->bio = rq->biotail = NULL;
422 return rq;
423 }
424 EXPORT_SYMBOL(blk_mq_alloc_request);
425
426 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
427 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
428 {
429 struct blk_mq_alloc_data alloc_data = { .flags = flags };
430 struct request *rq;
431 unsigned int cpu;
432 int ret;
433
434 /*
435 * If the tag allocator sleeps we could get an allocation for a
436 * different hardware context. No need to complicate the low level
437 * allocator for this for the rare use case of a command tied to
438 * a specific queue.
439 */
440 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
441 return ERR_PTR(-EINVAL);
442
443 if (hctx_idx >= q->nr_hw_queues)
444 return ERR_PTR(-EIO);
445
446 ret = blk_queue_enter(q, flags);
447 if (ret)
448 return ERR_PTR(ret);
449
450 /*
451 * Check if the hardware context is actually mapped to anything.
452 * If not tell the caller that it should skip this queue.
453 */
454 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
455 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
456 blk_queue_exit(q);
457 return ERR_PTR(-EXDEV);
458 }
459 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
460 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
461
462 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
463 blk_queue_exit(q);
464
465 if (!rq)
466 return ERR_PTR(-EWOULDBLOCK);
467
468 return rq;
469 }
470 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
471
472 static void __blk_mq_free_request(struct request *rq)
473 {
474 struct request_queue *q = rq->q;
475 struct blk_mq_ctx *ctx = rq->mq_ctx;
476 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
477 const int sched_tag = rq->internal_tag;
478
479 blk_pm_mark_last_busy(rq);
480 if (rq->tag != -1)
481 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
482 if (sched_tag != -1)
483 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
484 blk_mq_sched_restart(hctx);
485 blk_queue_exit(q);
486 }
487
488 void blk_mq_free_request(struct request *rq)
489 {
490 struct request_queue *q = rq->q;
491 struct elevator_queue *e = q->elevator;
492 struct blk_mq_ctx *ctx = rq->mq_ctx;
493 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
494
495 if (rq->rq_flags & RQF_ELVPRIV) {
496 if (e && e->type->ops.mq.finish_request)
497 e->type->ops.mq.finish_request(rq);
498 if (rq->elv.icq) {
499 put_io_context(rq->elv.icq->ioc);
500 rq->elv.icq = NULL;
501 }
502 }
503
504 ctx->rq_completed[rq_is_sync(rq)]++;
505 if (rq->rq_flags & RQF_MQ_INFLIGHT)
506 atomic_dec(&hctx->nr_active);
507
508 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
509 laptop_io_completion(q->backing_dev_info);
510
511 rq_qos_done(q, rq);
512
513 if (blk_rq_rl(rq))
514 blk_put_rl(blk_rq_rl(rq));
515
516 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
517 if (refcount_dec_and_test(&rq->ref))
518 __blk_mq_free_request(rq);
519 }
520 EXPORT_SYMBOL_GPL(blk_mq_free_request);
521
522 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
523 {
524 u64 now = ktime_get_ns();
525
526 if (rq->rq_flags & RQF_STATS) {
527 blk_mq_poll_stats_start(rq->q);
528 blk_stat_add(rq, now);
529 }
530
531 if (rq->internal_tag != -1)
532 blk_mq_sched_completed_request(rq, now);
533
534 blk_account_io_done(rq, now);
535
536 if (rq->end_io) {
537 rq_qos_done(rq->q, rq);
538 rq->end_io(rq, error);
539 } else {
540 if (unlikely(blk_bidi_rq(rq)))
541 blk_mq_free_request(rq->next_rq);
542 blk_mq_free_request(rq);
543 }
544 }
545 EXPORT_SYMBOL(__blk_mq_end_request);
546
547 void blk_mq_end_request(struct request *rq, blk_status_t error)
548 {
549 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
550 BUG();
551 __blk_mq_end_request(rq, error);
552 }
553 EXPORT_SYMBOL(blk_mq_end_request);
554
555 static void __blk_mq_complete_request_remote(void *data)
556 {
557 struct request *rq = data;
558
559 rq->q->softirq_done_fn(rq);
560 }
561
562 static void __blk_mq_complete_request(struct request *rq)
563 {
564 struct blk_mq_ctx *ctx = rq->mq_ctx;
565 bool shared = false;
566 int cpu;
567
568 if (!blk_mq_mark_complete(rq))
569 return;
570
571 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
572 rq->q->softirq_done_fn(rq);
573 return;
574 }
575
576 cpu = get_cpu();
577 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
578 shared = cpus_share_cache(cpu, ctx->cpu);
579
580 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
581 rq->csd.func = __blk_mq_complete_request_remote;
582 rq->csd.info = rq;
583 rq->csd.flags = 0;
584 smp_call_function_single_async(ctx->cpu, &rq->csd);
585 } else {
586 rq->q->softirq_done_fn(rq);
587 }
588 put_cpu();
589 }
590
591 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
592 __releases(hctx->srcu)
593 {
594 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
595 rcu_read_unlock();
596 else
597 srcu_read_unlock(hctx->srcu, srcu_idx);
598 }
599
600 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
601 __acquires(hctx->srcu)
602 {
603 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
604 /* shut up gcc false positive */
605 *srcu_idx = 0;
606 rcu_read_lock();
607 } else
608 *srcu_idx = srcu_read_lock(hctx->srcu);
609 }
610
611 /**
612 * blk_mq_complete_request - end I/O on a request
613 * @rq: the request being processed
614 *
615 * Description:
616 * Ends all I/O on a request. It does not handle partial completions.
617 * The actual completion happens out-of-order, through a IPI handler.
618 **/
619 void blk_mq_complete_request(struct request *rq)
620 {
621 if (unlikely(blk_should_fake_timeout(rq->q)))
622 return;
623 __blk_mq_complete_request(rq);
624 }
625 EXPORT_SYMBOL(blk_mq_complete_request);
626
627 int blk_mq_request_started(struct request *rq)
628 {
629 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
630 }
631 EXPORT_SYMBOL_GPL(blk_mq_request_started);
632
633 void blk_mq_start_request(struct request *rq)
634 {
635 struct request_queue *q = rq->q;
636
637 blk_mq_sched_started_request(rq);
638
639 trace_block_rq_issue(q, rq);
640
641 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
642 rq->io_start_time_ns = ktime_get_ns();
643 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
644 rq->throtl_size = blk_rq_sectors(rq);
645 #endif
646 rq->rq_flags |= RQF_STATS;
647 rq_qos_issue(q, rq);
648 }
649
650 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
651
652 blk_add_timer(rq);
653 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
654
655 if (q->dma_drain_size && blk_rq_bytes(rq)) {
656 /*
657 * Make sure space for the drain appears. We know we can do
658 * this because max_hw_segments has been adjusted to be one
659 * fewer than the device can handle.
660 */
661 rq->nr_phys_segments++;
662 }
663 }
664 EXPORT_SYMBOL(blk_mq_start_request);
665
666 static void __blk_mq_requeue_request(struct request *rq)
667 {
668 struct request_queue *q = rq->q;
669
670 blk_mq_put_driver_tag(rq);
671
672 trace_block_rq_requeue(q, rq);
673 rq_qos_requeue(q, rq);
674
675 if (blk_mq_request_started(rq)) {
676 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
677 rq->rq_flags &= ~RQF_TIMED_OUT;
678 if (q->dma_drain_size && blk_rq_bytes(rq))
679 rq->nr_phys_segments--;
680 }
681 }
682
683 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
684 {
685 __blk_mq_requeue_request(rq);
686
687 /* this request will be re-inserted to io scheduler queue */
688 blk_mq_sched_requeue_request(rq);
689
690 BUG_ON(blk_queued_rq(rq));
691 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
692 }
693 EXPORT_SYMBOL(blk_mq_requeue_request);
694
695 static void blk_mq_requeue_work(struct work_struct *work)
696 {
697 struct request_queue *q =
698 container_of(work, struct request_queue, requeue_work.work);
699 LIST_HEAD(rq_list);
700 struct request *rq, *next;
701
702 spin_lock_irq(&q->requeue_lock);
703 list_splice_init(&q->requeue_list, &rq_list);
704 spin_unlock_irq(&q->requeue_lock);
705
706 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
707 if (!(rq->rq_flags & RQF_SOFTBARRIER))
708 continue;
709
710 rq->rq_flags &= ~RQF_SOFTBARRIER;
711 list_del_init(&rq->queuelist);
712 blk_mq_sched_insert_request(rq, true, false, false);
713 }
714
715 while (!list_empty(&rq_list)) {
716 rq = list_entry(rq_list.next, struct request, queuelist);
717 list_del_init(&rq->queuelist);
718 blk_mq_sched_insert_request(rq, false, false, false);
719 }
720
721 blk_mq_run_hw_queues(q, false);
722 }
723
724 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
725 bool kick_requeue_list)
726 {
727 struct request_queue *q = rq->q;
728 unsigned long flags;
729
730 /*
731 * We abuse this flag that is otherwise used by the I/O scheduler to
732 * request head insertion from the workqueue.
733 */
734 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
735
736 spin_lock_irqsave(&q->requeue_lock, flags);
737 if (at_head) {
738 rq->rq_flags |= RQF_SOFTBARRIER;
739 list_add(&rq->queuelist, &q->requeue_list);
740 } else {
741 list_add_tail(&rq->queuelist, &q->requeue_list);
742 }
743 spin_unlock_irqrestore(&q->requeue_lock, flags);
744
745 if (kick_requeue_list)
746 blk_mq_kick_requeue_list(q);
747 }
748 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
749
750 void blk_mq_kick_requeue_list(struct request_queue *q)
751 {
752 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
753 }
754 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
755
756 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
757 unsigned long msecs)
758 {
759 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
760 msecs_to_jiffies(msecs));
761 }
762 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
763
764 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
765 {
766 if (tag < tags->nr_tags) {
767 prefetch(tags->rqs[tag]);
768 return tags->rqs[tag];
769 }
770
771 return NULL;
772 }
773 EXPORT_SYMBOL(blk_mq_tag_to_rq);
774
775 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
776 {
777 req->rq_flags |= RQF_TIMED_OUT;
778 if (req->q->mq_ops->timeout) {
779 enum blk_eh_timer_return ret;
780
781 ret = req->q->mq_ops->timeout(req, reserved);
782 if (ret == BLK_EH_DONE)
783 return;
784 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
785 }
786
787 blk_add_timer(req);
788 }
789
790 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
791 {
792 unsigned long deadline;
793
794 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
795 return false;
796 if (rq->rq_flags & RQF_TIMED_OUT)
797 return false;
798
799 deadline = blk_rq_deadline(rq);
800 if (time_after_eq(jiffies, deadline))
801 return true;
802
803 if (*next == 0)
804 *next = deadline;
805 else if (time_after(*next, deadline))
806 *next = deadline;
807 return false;
808 }
809
810 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
811 struct request *rq, void *priv, bool reserved)
812 {
813 unsigned long *next = priv;
814
815 /*
816 * Just do a quick check if it is expired before locking the request in
817 * so we're not unnecessarilly synchronizing across CPUs.
818 */
819 if (!blk_mq_req_expired(rq, next))
820 return;
821
822 /*
823 * We have reason to believe the request may be expired. Take a
824 * reference on the request to lock this request lifetime into its
825 * currently allocated context to prevent it from being reallocated in
826 * the event the completion by-passes this timeout handler.
827 *
828 * If the reference was already released, then the driver beat the
829 * timeout handler to posting a natural completion.
830 */
831 if (!refcount_inc_not_zero(&rq->ref))
832 return;
833
834 /*
835 * The request is now locked and cannot be reallocated underneath the
836 * timeout handler's processing. Re-verify this exact request is truly
837 * expired; if it is not expired, then the request was completed and
838 * reallocated as a new request.
839 */
840 if (blk_mq_req_expired(rq, next))
841 blk_mq_rq_timed_out(rq, reserved);
842 if (refcount_dec_and_test(&rq->ref))
843 __blk_mq_free_request(rq);
844 }
845
846 static void blk_mq_timeout_work(struct work_struct *work)
847 {
848 struct request_queue *q =
849 container_of(work, struct request_queue, timeout_work);
850 unsigned long next = 0;
851 struct blk_mq_hw_ctx *hctx;
852 int i;
853
854 /* A deadlock might occur if a request is stuck requiring a
855 * timeout at the same time a queue freeze is waiting
856 * completion, since the timeout code would not be able to
857 * acquire the queue reference here.
858 *
859 * That's why we don't use blk_queue_enter here; instead, we use
860 * percpu_ref_tryget directly, because we need to be able to
861 * obtain a reference even in the short window between the queue
862 * starting to freeze, by dropping the first reference in
863 * blk_freeze_queue_start, and the moment the last request is
864 * consumed, marked by the instant q_usage_counter reaches
865 * zero.
866 */
867 if (!percpu_ref_tryget(&q->q_usage_counter))
868 return;
869
870 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
871
872 if (next != 0) {
873 mod_timer(&q->timeout, next);
874 } else {
875 /*
876 * Request timeouts are handled as a forward rolling timer. If
877 * we end up here it means that no requests are pending and
878 * also that no request has been pending for a while. Mark
879 * each hctx as idle.
880 */
881 queue_for_each_hw_ctx(q, hctx, i) {
882 /* the hctx may be unmapped, so check it here */
883 if (blk_mq_hw_queue_mapped(hctx))
884 blk_mq_tag_idle(hctx);
885 }
886 }
887 blk_queue_exit(q);
888 }
889
890 struct flush_busy_ctx_data {
891 struct blk_mq_hw_ctx *hctx;
892 struct list_head *list;
893 };
894
895 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
896 {
897 struct flush_busy_ctx_data *flush_data = data;
898 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
899 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
900
901 spin_lock(&ctx->lock);
902 list_splice_tail_init(&ctx->rq_list, flush_data->list);
903 sbitmap_clear_bit(sb, bitnr);
904 spin_unlock(&ctx->lock);
905 return true;
906 }
907
908 /*
909 * Process software queues that have been marked busy, splicing them
910 * to the for-dispatch
911 */
912 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
913 {
914 struct flush_busy_ctx_data data = {
915 .hctx = hctx,
916 .list = list,
917 };
918
919 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
920 }
921 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
922
923 struct dispatch_rq_data {
924 struct blk_mq_hw_ctx *hctx;
925 struct request *rq;
926 };
927
928 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
929 void *data)
930 {
931 struct dispatch_rq_data *dispatch_data = data;
932 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
933 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
934
935 spin_lock(&ctx->lock);
936 if (!list_empty(&ctx->rq_list)) {
937 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
938 list_del_init(&dispatch_data->rq->queuelist);
939 if (list_empty(&ctx->rq_list))
940 sbitmap_clear_bit(sb, bitnr);
941 }
942 spin_unlock(&ctx->lock);
943
944 return !dispatch_data->rq;
945 }
946
947 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
948 struct blk_mq_ctx *start)
949 {
950 unsigned off = start ? start->index_hw : 0;
951 struct dispatch_rq_data data = {
952 .hctx = hctx,
953 .rq = NULL,
954 };
955
956 __sbitmap_for_each_set(&hctx->ctx_map, off,
957 dispatch_rq_from_ctx, &data);
958
959 return data.rq;
960 }
961
962 static inline unsigned int queued_to_index(unsigned int queued)
963 {
964 if (!queued)
965 return 0;
966
967 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
968 }
969
970 bool blk_mq_get_driver_tag(struct request *rq)
971 {
972 struct blk_mq_alloc_data data = {
973 .q = rq->q,
974 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
975 .flags = BLK_MQ_REQ_NOWAIT,
976 };
977 bool shared;
978
979 if (rq->tag != -1)
980 goto done;
981
982 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
983 data.flags |= BLK_MQ_REQ_RESERVED;
984
985 shared = blk_mq_tag_busy(data.hctx);
986 rq->tag = blk_mq_get_tag(&data);
987 if (rq->tag >= 0) {
988 if (shared) {
989 rq->rq_flags |= RQF_MQ_INFLIGHT;
990 atomic_inc(&data.hctx->nr_active);
991 }
992 data.hctx->tags->rqs[rq->tag] = rq;
993 }
994
995 done:
996 return rq->tag != -1;
997 }
998
999 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1000 int flags, void *key)
1001 {
1002 struct blk_mq_hw_ctx *hctx;
1003
1004 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1005
1006 spin_lock(&hctx->dispatch_wait_lock);
1007 list_del_init(&wait->entry);
1008 spin_unlock(&hctx->dispatch_wait_lock);
1009
1010 blk_mq_run_hw_queue(hctx, true);
1011 return 1;
1012 }
1013
1014 /*
1015 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1016 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1017 * restart. For both cases, take care to check the condition again after
1018 * marking us as waiting.
1019 */
1020 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1021 struct request *rq)
1022 {
1023 struct wait_queue_head *wq;
1024 wait_queue_entry_t *wait;
1025 bool ret;
1026
1027 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1028 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1029 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1030
1031 /*
1032 * It's possible that a tag was freed in the window between the
1033 * allocation failure and adding the hardware queue to the wait
1034 * queue.
1035 *
1036 * Don't clear RESTART here, someone else could have set it.
1037 * At most this will cost an extra queue run.
1038 */
1039 return blk_mq_get_driver_tag(rq);
1040 }
1041
1042 wait = &hctx->dispatch_wait;
1043 if (!list_empty_careful(&wait->entry))
1044 return false;
1045
1046 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1047
1048 spin_lock_irq(&wq->lock);
1049 spin_lock(&hctx->dispatch_wait_lock);
1050 if (!list_empty(&wait->entry)) {
1051 spin_unlock(&hctx->dispatch_wait_lock);
1052 spin_unlock_irq(&wq->lock);
1053 return false;
1054 }
1055
1056 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1057 __add_wait_queue(wq, wait);
1058
1059 /*
1060 * It's possible that a tag was freed in the window between the
1061 * allocation failure and adding the hardware queue to the wait
1062 * queue.
1063 */
1064 ret = blk_mq_get_driver_tag(rq);
1065 if (!ret) {
1066 spin_unlock(&hctx->dispatch_wait_lock);
1067 spin_unlock_irq(&wq->lock);
1068 return false;
1069 }
1070
1071 /*
1072 * We got a tag, remove ourselves from the wait queue to ensure
1073 * someone else gets the wakeup.
1074 */
1075 list_del_init(&wait->entry);
1076 spin_unlock(&hctx->dispatch_wait_lock);
1077 spin_unlock_irq(&wq->lock);
1078
1079 return true;
1080 }
1081
1082 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1083 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1084 /*
1085 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1086 * - EWMA is one simple way to compute running average value
1087 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1088 * - take 4 as factor for avoiding to get too small(0) result, and this
1089 * factor doesn't matter because EWMA decreases exponentially
1090 */
1091 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1092 {
1093 unsigned int ewma;
1094
1095 if (hctx->queue->elevator)
1096 return;
1097
1098 ewma = hctx->dispatch_busy;
1099
1100 if (!ewma && !busy)
1101 return;
1102
1103 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1104 if (busy)
1105 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1106 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1107
1108 hctx->dispatch_busy = ewma;
1109 }
1110
1111 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1112
1113 /*
1114 * Returns true if we did some work AND can potentially do more.
1115 */
1116 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1117 bool got_budget)
1118 {
1119 struct blk_mq_hw_ctx *hctx;
1120 struct request *rq, *nxt;
1121 bool no_tag = false;
1122 int errors, queued;
1123 blk_status_t ret = BLK_STS_OK;
1124
1125 if (list_empty(list))
1126 return false;
1127
1128 WARN_ON(!list_is_singular(list) && got_budget);
1129
1130 /*
1131 * Now process all the entries, sending them to the driver.
1132 */
1133 errors = queued = 0;
1134 do {
1135 struct blk_mq_queue_data bd;
1136
1137 rq = list_first_entry(list, struct request, queuelist);
1138
1139 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1140 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1141 break;
1142
1143 if (!blk_mq_get_driver_tag(rq)) {
1144 /*
1145 * The initial allocation attempt failed, so we need to
1146 * rerun the hardware queue when a tag is freed. The
1147 * waitqueue takes care of that. If the queue is run
1148 * before we add this entry back on the dispatch list,
1149 * we'll re-run it below.
1150 */
1151 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1152 blk_mq_put_dispatch_budget(hctx);
1153 /*
1154 * For non-shared tags, the RESTART check
1155 * will suffice.
1156 */
1157 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1158 no_tag = true;
1159 break;
1160 }
1161 }
1162
1163 list_del_init(&rq->queuelist);
1164
1165 bd.rq = rq;
1166
1167 /*
1168 * Flag last if we have no more requests, or if we have more
1169 * but can't assign a driver tag to it.
1170 */
1171 if (list_empty(list))
1172 bd.last = true;
1173 else {
1174 nxt = list_first_entry(list, struct request, queuelist);
1175 bd.last = !blk_mq_get_driver_tag(nxt);
1176 }
1177
1178 ret = q->mq_ops->queue_rq(hctx, &bd);
1179 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1180 /*
1181 * If an I/O scheduler has been configured and we got a
1182 * driver tag for the next request already, free it
1183 * again.
1184 */
1185 if (!list_empty(list)) {
1186 nxt = list_first_entry(list, struct request, queuelist);
1187 blk_mq_put_driver_tag(nxt);
1188 }
1189 list_add(&rq->queuelist, list);
1190 __blk_mq_requeue_request(rq);
1191 break;
1192 }
1193
1194 if (unlikely(ret != BLK_STS_OK)) {
1195 errors++;
1196 blk_mq_end_request(rq, BLK_STS_IOERR);
1197 continue;
1198 }
1199
1200 queued++;
1201 } while (!list_empty(list));
1202
1203 hctx->dispatched[queued_to_index(queued)]++;
1204
1205 /*
1206 * Any items that need requeuing? Stuff them into hctx->dispatch,
1207 * that is where we will continue on next queue run.
1208 */
1209 if (!list_empty(list)) {
1210 bool needs_restart;
1211
1212 spin_lock(&hctx->lock);
1213 list_splice_init(list, &hctx->dispatch);
1214 spin_unlock(&hctx->lock);
1215
1216 /*
1217 * If SCHED_RESTART was set by the caller of this function and
1218 * it is no longer set that means that it was cleared by another
1219 * thread and hence that a queue rerun is needed.
1220 *
1221 * If 'no_tag' is set, that means that we failed getting
1222 * a driver tag with an I/O scheduler attached. If our dispatch
1223 * waitqueue is no longer active, ensure that we run the queue
1224 * AFTER adding our entries back to the list.
1225 *
1226 * If no I/O scheduler has been configured it is possible that
1227 * the hardware queue got stopped and restarted before requests
1228 * were pushed back onto the dispatch list. Rerun the queue to
1229 * avoid starvation. Notes:
1230 * - blk_mq_run_hw_queue() checks whether or not a queue has
1231 * been stopped before rerunning a queue.
1232 * - Some but not all block drivers stop a queue before
1233 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1234 * and dm-rq.
1235 *
1236 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1237 * bit is set, run queue after a delay to avoid IO stalls
1238 * that could otherwise occur if the queue is idle.
1239 */
1240 needs_restart = blk_mq_sched_needs_restart(hctx);
1241 if (!needs_restart ||
1242 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1243 blk_mq_run_hw_queue(hctx, true);
1244 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1245 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1246
1247 blk_mq_update_dispatch_busy(hctx, true);
1248 return false;
1249 } else
1250 blk_mq_update_dispatch_busy(hctx, false);
1251
1252 /*
1253 * If the host/device is unable to accept more work, inform the
1254 * caller of that.
1255 */
1256 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1257 return false;
1258
1259 return (queued + errors) != 0;
1260 }
1261
1262 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1263 {
1264 int srcu_idx;
1265
1266 /*
1267 * We should be running this queue from one of the CPUs that
1268 * are mapped to it.
1269 *
1270 * There are at least two related races now between setting
1271 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1272 * __blk_mq_run_hw_queue():
1273 *
1274 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1275 * but later it becomes online, then this warning is harmless
1276 * at all
1277 *
1278 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1279 * but later it becomes offline, then the warning can't be
1280 * triggered, and we depend on blk-mq timeout handler to
1281 * handle dispatched requests to this hctx
1282 */
1283 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1284 cpu_online(hctx->next_cpu)) {
1285 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1286 raw_smp_processor_id(),
1287 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1288 dump_stack();
1289 }
1290
1291 /*
1292 * We can't run the queue inline with ints disabled. Ensure that
1293 * we catch bad users of this early.
1294 */
1295 WARN_ON_ONCE(in_interrupt());
1296
1297 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1298
1299 hctx_lock(hctx, &srcu_idx);
1300 blk_mq_sched_dispatch_requests(hctx);
1301 hctx_unlock(hctx, srcu_idx);
1302 }
1303
1304 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1305 {
1306 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1307
1308 if (cpu >= nr_cpu_ids)
1309 cpu = cpumask_first(hctx->cpumask);
1310 return cpu;
1311 }
1312
1313 /*
1314 * It'd be great if the workqueue API had a way to pass
1315 * in a mask and had some smarts for more clever placement.
1316 * For now we just round-robin here, switching for every
1317 * BLK_MQ_CPU_WORK_BATCH queued items.
1318 */
1319 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1320 {
1321 bool tried = false;
1322 int next_cpu = hctx->next_cpu;
1323
1324 if (hctx->queue->nr_hw_queues == 1)
1325 return WORK_CPU_UNBOUND;
1326
1327 if (--hctx->next_cpu_batch <= 0) {
1328 select_cpu:
1329 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1330 cpu_online_mask);
1331 if (next_cpu >= nr_cpu_ids)
1332 next_cpu = blk_mq_first_mapped_cpu(hctx);
1333 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1334 }
1335
1336 /*
1337 * Do unbound schedule if we can't find a online CPU for this hctx,
1338 * and it should only happen in the path of handling CPU DEAD.
1339 */
1340 if (!cpu_online(next_cpu)) {
1341 if (!tried) {
1342 tried = true;
1343 goto select_cpu;
1344 }
1345
1346 /*
1347 * Make sure to re-select CPU next time once after CPUs
1348 * in hctx->cpumask become online again.
1349 */
1350 hctx->next_cpu = next_cpu;
1351 hctx->next_cpu_batch = 1;
1352 return WORK_CPU_UNBOUND;
1353 }
1354
1355 hctx->next_cpu = next_cpu;
1356 return next_cpu;
1357 }
1358
1359 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1360 unsigned long msecs)
1361 {
1362 if (unlikely(blk_mq_hctx_stopped(hctx)))
1363 return;
1364
1365 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1366 int cpu = get_cpu();
1367 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1368 __blk_mq_run_hw_queue(hctx);
1369 put_cpu();
1370 return;
1371 }
1372
1373 put_cpu();
1374 }
1375
1376 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1377 msecs_to_jiffies(msecs));
1378 }
1379
1380 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1381 {
1382 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1383 }
1384 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1385
1386 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1387 {
1388 int srcu_idx;
1389 bool need_run;
1390
1391 /*
1392 * When queue is quiesced, we may be switching io scheduler, or
1393 * updating nr_hw_queues, or other things, and we can't run queue
1394 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1395 *
1396 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1397 * quiesced.
1398 */
1399 hctx_lock(hctx, &srcu_idx);
1400 need_run = !blk_queue_quiesced(hctx->queue) &&
1401 blk_mq_hctx_has_pending(hctx);
1402 hctx_unlock(hctx, srcu_idx);
1403
1404 if (need_run) {
1405 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1406 return true;
1407 }
1408
1409 return false;
1410 }
1411 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1412
1413 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1414 {
1415 struct blk_mq_hw_ctx *hctx;
1416 int i;
1417
1418 queue_for_each_hw_ctx(q, hctx, i) {
1419 if (blk_mq_hctx_stopped(hctx))
1420 continue;
1421
1422 blk_mq_run_hw_queue(hctx, async);
1423 }
1424 }
1425 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1426
1427 /**
1428 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1429 * @q: request queue.
1430 *
1431 * The caller is responsible for serializing this function against
1432 * blk_mq_{start,stop}_hw_queue().
1433 */
1434 bool blk_mq_queue_stopped(struct request_queue *q)
1435 {
1436 struct blk_mq_hw_ctx *hctx;
1437 int i;
1438
1439 queue_for_each_hw_ctx(q, hctx, i)
1440 if (blk_mq_hctx_stopped(hctx))
1441 return true;
1442
1443 return false;
1444 }
1445 EXPORT_SYMBOL(blk_mq_queue_stopped);
1446
1447 /*
1448 * This function is often used for pausing .queue_rq() by driver when
1449 * there isn't enough resource or some conditions aren't satisfied, and
1450 * BLK_STS_RESOURCE is usually returned.
1451 *
1452 * We do not guarantee that dispatch can be drained or blocked
1453 * after blk_mq_stop_hw_queue() returns. Please use
1454 * blk_mq_quiesce_queue() for that requirement.
1455 */
1456 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1457 {
1458 cancel_delayed_work(&hctx->run_work);
1459
1460 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1461 }
1462 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1463
1464 /*
1465 * This function is often used for pausing .queue_rq() by driver when
1466 * there isn't enough resource or some conditions aren't satisfied, and
1467 * BLK_STS_RESOURCE is usually returned.
1468 *
1469 * We do not guarantee that dispatch can be drained or blocked
1470 * after blk_mq_stop_hw_queues() returns. Please use
1471 * blk_mq_quiesce_queue() for that requirement.
1472 */
1473 void blk_mq_stop_hw_queues(struct request_queue *q)
1474 {
1475 struct blk_mq_hw_ctx *hctx;
1476 int i;
1477
1478 queue_for_each_hw_ctx(q, hctx, i)
1479 blk_mq_stop_hw_queue(hctx);
1480 }
1481 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1482
1483 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1484 {
1485 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1486
1487 blk_mq_run_hw_queue(hctx, false);
1488 }
1489 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1490
1491 void blk_mq_start_hw_queues(struct request_queue *q)
1492 {
1493 struct blk_mq_hw_ctx *hctx;
1494 int i;
1495
1496 queue_for_each_hw_ctx(q, hctx, i)
1497 blk_mq_start_hw_queue(hctx);
1498 }
1499 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1500
1501 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1502 {
1503 if (!blk_mq_hctx_stopped(hctx))
1504 return;
1505
1506 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1507 blk_mq_run_hw_queue(hctx, async);
1508 }
1509 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1510
1511 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1512 {
1513 struct blk_mq_hw_ctx *hctx;
1514 int i;
1515
1516 queue_for_each_hw_ctx(q, hctx, i)
1517 blk_mq_start_stopped_hw_queue(hctx, async);
1518 }
1519 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1520
1521 static void blk_mq_run_work_fn(struct work_struct *work)
1522 {
1523 struct blk_mq_hw_ctx *hctx;
1524
1525 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1526
1527 /*
1528 * If we are stopped, don't run the queue.
1529 */
1530 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1531 return;
1532
1533 __blk_mq_run_hw_queue(hctx);
1534 }
1535
1536 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1537 struct request *rq,
1538 bool at_head)
1539 {
1540 struct blk_mq_ctx *ctx = rq->mq_ctx;
1541
1542 lockdep_assert_held(&ctx->lock);
1543
1544 trace_block_rq_insert(hctx->queue, rq);
1545
1546 if (at_head)
1547 list_add(&rq->queuelist, &ctx->rq_list);
1548 else
1549 list_add_tail(&rq->queuelist, &ctx->rq_list);
1550 }
1551
1552 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1553 bool at_head)
1554 {
1555 struct blk_mq_ctx *ctx = rq->mq_ctx;
1556
1557 lockdep_assert_held(&ctx->lock);
1558
1559 __blk_mq_insert_req_list(hctx, rq, at_head);
1560 blk_mq_hctx_mark_pending(hctx, ctx);
1561 }
1562
1563 /*
1564 * Should only be used carefully, when the caller knows we want to
1565 * bypass a potential IO scheduler on the target device.
1566 */
1567 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1568 {
1569 struct blk_mq_ctx *ctx = rq->mq_ctx;
1570 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1571
1572 spin_lock(&hctx->lock);
1573 list_add_tail(&rq->queuelist, &hctx->dispatch);
1574 spin_unlock(&hctx->lock);
1575
1576 if (run_queue)
1577 blk_mq_run_hw_queue(hctx, false);
1578 }
1579
1580 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1581 struct list_head *list)
1582
1583 {
1584 struct request *rq;
1585
1586 /*
1587 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1588 * offline now
1589 */
1590 list_for_each_entry(rq, list, queuelist) {
1591 BUG_ON(rq->mq_ctx != ctx);
1592 trace_block_rq_insert(hctx->queue, rq);
1593 }
1594
1595 spin_lock(&ctx->lock);
1596 list_splice_tail_init(list, &ctx->rq_list);
1597 blk_mq_hctx_mark_pending(hctx, ctx);
1598 spin_unlock(&ctx->lock);
1599 }
1600
1601 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1602 {
1603 struct request *rqa = container_of(a, struct request, queuelist);
1604 struct request *rqb = container_of(b, struct request, queuelist);
1605
1606 return !(rqa->mq_ctx < rqb->mq_ctx ||
1607 (rqa->mq_ctx == rqb->mq_ctx &&
1608 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1609 }
1610
1611 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1612 {
1613 struct blk_mq_ctx *this_ctx;
1614 struct request_queue *this_q;
1615 struct request *rq;
1616 LIST_HEAD(list);
1617 LIST_HEAD(ctx_list);
1618 unsigned int depth;
1619
1620 list_splice_init(&plug->mq_list, &list);
1621
1622 list_sort(NULL, &list, plug_ctx_cmp);
1623
1624 this_q = NULL;
1625 this_ctx = NULL;
1626 depth = 0;
1627
1628 while (!list_empty(&list)) {
1629 rq = list_entry_rq(list.next);
1630 list_del_init(&rq->queuelist);
1631 BUG_ON(!rq->q);
1632 if (rq->mq_ctx != this_ctx) {
1633 if (this_ctx) {
1634 trace_block_unplug(this_q, depth, !from_schedule);
1635 blk_mq_sched_insert_requests(this_q, this_ctx,
1636 &ctx_list,
1637 from_schedule);
1638 }
1639
1640 this_ctx = rq->mq_ctx;
1641 this_q = rq->q;
1642 depth = 0;
1643 }
1644
1645 depth++;
1646 list_add_tail(&rq->queuelist, &ctx_list);
1647 }
1648
1649 /*
1650 * If 'this_ctx' is set, we know we have entries to complete
1651 * on 'ctx_list'. Do those.
1652 */
1653 if (this_ctx) {
1654 trace_block_unplug(this_q, depth, !from_schedule);
1655 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1656 from_schedule);
1657 }
1658 }
1659
1660 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1661 {
1662 blk_init_request_from_bio(rq, bio);
1663
1664 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1665
1666 blk_account_io_start(rq, true);
1667 }
1668
1669 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1670 {
1671 if (rq->tag != -1)
1672 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1673
1674 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1675 }
1676
1677 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1678 struct request *rq,
1679 blk_qc_t *cookie)
1680 {
1681 struct request_queue *q = rq->q;
1682 struct blk_mq_queue_data bd = {
1683 .rq = rq,
1684 .last = true,
1685 };
1686 blk_qc_t new_cookie;
1687 blk_status_t ret;
1688
1689 new_cookie = request_to_qc_t(hctx, rq);
1690
1691 /*
1692 * For OK queue, we are done. For error, caller may kill it.
1693 * Any other error (busy), just add it to our list as we
1694 * previously would have done.
1695 */
1696 ret = q->mq_ops->queue_rq(hctx, &bd);
1697 switch (ret) {
1698 case BLK_STS_OK:
1699 blk_mq_update_dispatch_busy(hctx, false);
1700 *cookie = new_cookie;
1701 break;
1702 case BLK_STS_RESOURCE:
1703 case BLK_STS_DEV_RESOURCE:
1704 blk_mq_update_dispatch_busy(hctx, true);
1705 __blk_mq_requeue_request(rq);
1706 break;
1707 default:
1708 blk_mq_update_dispatch_busy(hctx, false);
1709 *cookie = BLK_QC_T_NONE;
1710 break;
1711 }
1712
1713 return ret;
1714 }
1715
1716 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1717 struct request *rq,
1718 blk_qc_t *cookie,
1719 bool bypass_insert)
1720 {
1721 struct request_queue *q = rq->q;
1722 bool run_queue = true;
1723
1724 /*
1725 * RCU or SRCU read lock is needed before checking quiesced flag.
1726 *
1727 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1728 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1729 * and avoid driver to try to dispatch again.
1730 */
1731 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1732 run_queue = false;
1733 bypass_insert = false;
1734 goto insert;
1735 }
1736
1737 if (q->elevator && !bypass_insert)
1738 goto insert;
1739
1740 if (!blk_mq_get_dispatch_budget(hctx))
1741 goto insert;
1742
1743 if (!blk_mq_get_driver_tag(rq)) {
1744 blk_mq_put_dispatch_budget(hctx);
1745 goto insert;
1746 }
1747
1748 return __blk_mq_issue_directly(hctx, rq, cookie);
1749 insert:
1750 if (bypass_insert)
1751 return BLK_STS_RESOURCE;
1752
1753 blk_mq_sched_insert_request(rq, false, run_queue, false);
1754 return BLK_STS_OK;
1755 }
1756
1757 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1758 struct request *rq, blk_qc_t *cookie)
1759 {
1760 blk_status_t ret;
1761 int srcu_idx;
1762
1763 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1764
1765 hctx_lock(hctx, &srcu_idx);
1766
1767 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1768 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1769 blk_mq_sched_insert_request(rq, false, true, false);
1770 else if (ret != BLK_STS_OK)
1771 blk_mq_end_request(rq, ret);
1772
1773 hctx_unlock(hctx, srcu_idx);
1774 }
1775
1776 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1777 {
1778 blk_status_t ret;
1779 int srcu_idx;
1780 blk_qc_t unused_cookie;
1781 struct blk_mq_ctx *ctx = rq->mq_ctx;
1782 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1783
1784 hctx_lock(hctx, &srcu_idx);
1785 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1786 hctx_unlock(hctx, srcu_idx);
1787
1788 return ret;
1789 }
1790
1791 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1792 struct list_head *list)
1793 {
1794 while (!list_empty(list)) {
1795 blk_status_t ret;
1796 struct request *rq = list_first_entry(list, struct request,
1797 queuelist);
1798
1799 list_del_init(&rq->queuelist);
1800 ret = blk_mq_request_issue_directly(rq);
1801 if (ret != BLK_STS_OK) {
1802 if (ret == BLK_STS_RESOURCE ||
1803 ret == BLK_STS_DEV_RESOURCE) {
1804 list_add(&rq->queuelist, list);
1805 break;
1806 }
1807 blk_mq_end_request(rq, ret);
1808 }
1809 }
1810 }
1811
1812 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1813 {
1814 const int is_sync = op_is_sync(bio->bi_opf);
1815 const int is_flush_fua = op_is_flush(bio->bi_opf);
1816 struct blk_mq_alloc_data data = { .flags = 0 };
1817 struct request *rq;
1818 unsigned int request_count = 0;
1819 struct blk_plug *plug;
1820 struct request *same_queue_rq = NULL;
1821 blk_qc_t cookie;
1822
1823 blk_queue_bounce(q, &bio);
1824
1825 blk_queue_split(q, &bio);
1826
1827 if (!bio_integrity_prep(bio))
1828 return BLK_QC_T_NONE;
1829
1830 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1831 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1832 return BLK_QC_T_NONE;
1833
1834 if (blk_mq_sched_bio_merge(q, bio))
1835 return BLK_QC_T_NONE;
1836
1837 rq_qos_throttle(q, bio, NULL);
1838
1839 trace_block_getrq(q, bio, bio->bi_opf);
1840
1841 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1842 if (unlikely(!rq)) {
1843 rq_qos_cleanup(q, bio);
1844 if (bio->bi_opf & REQ_NOWAIT)
1845 bio_wouldblock_error(bio);
1846 return BLK_QC_T_NONE;
1847 }
1848
1849 rq_qos_track(q, rq, bio);
1850
1851 cookie = request_to_qc_t(data.hctx, rq);
1852
1853 plug = current->plug;
1854 if (unlikely(is_flush_fua)) {
1855 blk_mq_put_ctx(data.ctx);
1856 blk_mq_bio_to_request(rq, bio);
1857
1858 /* bypass scheduler for flush rq */
1859 blk_insert_flush(rq);
1860 blk_mq_run_hw_queue(data.hctx, true);
1861 } else if (plug && q->nr_hw_queues == 1) {
1862 struct request *last = NULL;
1863
1864 blk_mq_put_ctx(data.ctx);
1865 blk_mq_bio_to_request(rq, bio);
1866
1867 /*
1868 * @request_count may become stale because of schedule
1869 * out, so check the list again.
1870 */
1871 if (list_empty(&plug->mq_list))
1872 request_count = 0;
1873 else if (blk_queue_nomerges(q))
1874 request_count = blk_plug_queued_count(q);
1875
1876 if (!request_count)
1877 trace_block_plug(q);
1878 else
1879 last = list_entry_rq(plug->mq_list.prev);
1880
1881 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1882 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1883 blk_flush_plug_list(plug, false);
1884 trace_block_plug(q);
1885 }
1886
1887 list_add_tail(&rq->queuelist, &plug->mq_list);
1888 } else if (plug && !blk_queue_nomerges(q)) {
1889 blk_mq_bio_to_request(rq, bio);
1890
1891 /*
1892 * We do limited plugging. If the bio can be merged, do that.
1893 * Otherwise the existing request in the plug list will be
1894 * issued. So the plug list will have one request at most
1895 * The plug list might get flushed before this. If that happens,
1896 * the plug list is empty, and same_queue_rq is invalid.
1897 */
1898 if (list_empty(&plug->mq_list))
1899 same_queue_rq = NULL;
1900 if (same_queue_rq)
1901 list_del_init(&same_queue_rq->queuelist);
1902 list_add_tail(&rq->queuelist, &plug->mq_list);
1903
1904 blk_mq_put_ctx(data.ctx);
1905
1906 if (same_queue_rq) {
1907 data.hctx = blk_mq_map_queue(q,
1908 same_queue_rq->mq_ctx->cpu);
1909 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1910 &cookie);
1911 }
1912 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1913 !data.hctx->dispatch_busy)) {
1914 blk_mq_put_ctx(data.ctx);
1915 blk_mq_bio_to_request(rq, bio);
1916 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1917 } else {
1918 blk_mq_put_ctx(data.ctx);
1919 blk_mq_bio_to_request(rq, bio);
1920 blk_mq_sched_insert_request(rq, false, true, true);
1921 }
1922
1923 return cookie;
1924 }
1925
1926 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1927 unsigned int hctx_idx)
1928 {
1929 struct page *page;
1930
1931 if (tags->rqs && set->ops->exit_request) {
1932 int i;
1933
1934 for (i = 0; i < tags->nr_tags; i++) {
1935 struct request *rq = tags->static_rqs[i];
1936
1937 if (!rq)
1938 continue;
1939 set->ops->exit_request(set, rq, hctx_idx);
1940 tags->static_rqs[i] = NULL;
1941 }
1942 }
1943
1944 while (!list_empty(&tags->page_list)) {
1945 page = list_first_entry(&tags->page_list, struct page, lru);
1946 list_del_init(&page->lru);
1947 /*
1948 * Remove kmemleak object previously allocated in
1949 * blk_mq_init_rq_map().
1950 */
1951 kmemleak_free(page_address(page));
1952 __free_pages(page, page->private);
1953 }
1954 }
1955
1956 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1957 {
1958 kfree(tags->rqs);
1959 tags->rqs = NULL;
1960 kfree(tags->static_rqs);
1961 tags->static_rqs = NULL;
1962
1963 blk_mq_free_tags(tags);
1964 }
1965
1966 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1967 unsigned int hctx_idx,
1968 unsigned int nr_tags,
1969 unsigned int reserved_tags)
1970 {
1971 struct blk_mq_tags *tags;
1972 int node;
1973
1974 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1975 if (node == NUMA_NO_NODE)
1976 node = set->numa_node;
1977
1978 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1979 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1980 if (!tags)
1981 return NULL;
1982
1983 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1984 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1985 node);
1986 if (!tags->rqs) {
1987 blk_mq_free_tags(tags);
1988 return NULL;
1989 }
1990
1991 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1992 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1993 node);
1994 if (!tags->static_rqs) {
1995 kfree(tags->rqs);
1996 blk_mq_free_tags(tags);
1997 return NULL;
1998 }
1999
2000 return tags;
2001 }
2002
2003 static size_t order_to_size(unsigned int order)
2004 {
2005 return (size_t)PAGE_SIZE << order;
2006 }
2007
2008 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2009 unsigned int hctx_idx, int node)
2010 {
2011 int ret;
2012
2013 if (set->ops->init_request) {
2014 ret = set->ops->init_request(set, rq, hctx_idx, node);
2015 if (ret)
2016 return ret;
2017 }
2018
2019 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2020 return 0;
2021 }
2022
2023 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2024 unsigned int hctx_idx, unsigned int depth)
2025 {
2026 unsigned int i, j, entries_per_page, max_order = 4;
2027 size_t rq_size, left;
2028 int node;
2029
2030 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2031 if (node == NUMA_NO_NODE)
2032 node = set->numa_node;
2033
2034 INIT_LIST_HEAD(&tags->page_list);
2035
2036 /*
2037 * rq_size is the size of the request plus driver payload, rounded
2038 * to the cacheline size
2039 */
2040 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2041 cache_line_size());
2042 left = rq_size * depth;
2043
2044 for (i = 0; i < depth; ) {
2045 int this_order = max_order;
2046 struct page *page;
2047 int to_do;
2048 void *p;
2049
2050 while (this_order && left < order_to_size(this_order - 1))
2051 this_order--;
2052
2053 do {
2054 page = alloc_pages_node(node,
2055 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2056 this_order);
2057 if (page)
2058 break;
2059 if (!this_order--)
2060 break;
2061 if (order_to_size(this_order) < rq_size)
2062 break;
2063 } while (1);
2064
2065 if (!page)
2066 goto fail;
2067
2068 page->private = this_order;
2069 list_add_tail(&page->lru, &tags->page_list);
2070
2071 p = page_address(page);
2072 /*
2073 * Allow kmemleak to scan these pages as they contain pointers
2074 * to additional allocations like via ops->init_request().
2075 */
2076 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2077 entries_per_page = order_to_size(this_order) / rq_size;
2078 to_do = min(entries_per_page, depth - i);
2079 left -= to_do * rq_size;
2080 for (j = 0; j < to_do; j++) {
2081 struct request *rq = p;
2082
2083 tags->static_rqs[i] = rq;
2084 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2085 tags->static_rqs[i] = NULL;
2086 goto fail;
2087 }
2088
2089 p += rq_size;
2090 i++;
2091 }
2092 }
2093 return 0;
2094
2095 fail:
2096 blk_mq_free_rqs(set, tags, hctx_idx);
2097 return -ENOMEM;
2098 }
2099
2100 /*
2101 * 'cpu' is going away. splice any existing rq_list entries from this
2102 * software queue to the hw queue dispatch list, and ensure that it
2103 * gets run.
2104 */
2105 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2106 {
2107 struct blk_mq_hw_ctx *hctx;
2108 struct blk_mq_ctx *ctx;
2109 LIST_HEAD(tmp);
2110
2111 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2112 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2113
2114 spin_lock(&ctx->lock);
2115 if (!list_empty(&ctx->rq_list)) {
2116 list_splice_init(&ctx->rq_list, &tmp);
2117 blk_mq_hctx_clear_pending(hctx, ctx);
2118 }
2119 spin_unlock(&ctx->lock);
2120
2121 if (list_empty(&tmp))
2122 return 0;
2123
2124 spin_lock(&hctx->lock);
2125 list_splice_tail_init(&tmp, &hctx->dispatch);
2126 spin_unlock(&hctx->lock);
2127
2128 blk_mq_run_hw_queue(hctx, true);
2129 return 0;
2130 }
2131
2132 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2133 {
2134 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2135 &hctx->cpuhp_dead);
2136 }
2137
2138 /* hctx->ctxs will be freed in queue's release handler */
2139 static void blk_mq_exit_hctx(struct request_queue *q,
2140 struct blk_mq_tag_set *set,
2141 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2142 {
2143 blk_mq_debugfs_unregister_hctx(hctx);
2144
2145 if (blk_mq_hw_queue_mapped(hctx))
2146 blk_mq_tag_idle(hctx);
2147
2148 if (set->ops->exit_request)
2149 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2150
2151 if (set->ops->exit_hctx)
2152 set->ops->exit_hctx(hctx, hctx_idx);
2153
2154 if (hctx->flags & BLK_MQ_F_BLOCKING)
2155 cleanup_srcu_struct(hctx->srcu);
2156
2157 blk_mq_remove_cpuhp(hctx);
2158 blk_free_flush_queue(hctx->fq);
2159 sbitmap_free(&hctx->ctx_map);
2160 }
2161
2162 static void blk_mq_exit_hw_queues(struct request_queue *q,
2163 struct blk_mq_tag_set *set, int nr_queue)
2164 {
2165 struct blk_mq_hw_ctx *hctx;
2166 unsigned int i;
2167
2168 queue_for_each_hw_ctx(q, hctx, i) {
2169 if (i == nr_queue)
2170 break;
2171 blk_mq_exit_hctx(q, set, hctx, i);
2172 }
2173 }
2174
2175 static int blk_mq_init_hctx(struct request_queue *q,
2176 struct blk_mq_tag_set *set,
2177 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2178 {
2179 int node;
2180
2181 node = hctx->numa_node;
2182 if (node == NUMA_NO_NODE)
2183 node = hctx->numa_node = set->numa_node;
2184
2185 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2186 spin_lock_init(&hctx->lock);
2187 INIT_LIST_HEAD(&hctx->dispatch);
2188 hctx->queue = q;
2189 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2190
2191 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2192
2193 hctx->tags = set->tags[hctx_idx];
2194
2195 /*
2196 * Allocate space for all possible cpus to avoid allocation at
2197 * runtime
2198 */
2199 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2200 GFP_KERNEL, node);
2201 if (!hctx->ctxs)
2202 goto unregister_cpu_notifier;
2203
2204 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2205 node))
2206 goto free_ctxs;
2207
2208 hctx->nr_ctx = 0;
2209
2210 spin_lock_init(&hctx->dispatch_wait_lock);
2211 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2212 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2213
2214 if (set->ops->init_hctx &&
2215 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2216 goto free_bitmap;
2217
2218 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2219 if (!hctx->fq)
2220 goto exit_hctx;
2221
2222 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2223 goto free_fq;
2224
2225 if (hctx->flags & BLK_MQ_F_BLOCKING)
2226 init_srcu_struct(hctx->srcu);
2227
2228 blk_mq_debugfs_register_hctx(q, hctx);
2229
2230 return 0;
2231
2232 free_fq:
2233 kfree(hctx->fq);
2234 exit_hctx:
2235 if (set->ops->exit_hctx)
2236 set->ops->exit_hctx(hctx, hctx_idx);
2237 free_bitmap:
2238 sbitmap_free(&hctx->ctx_map);
2239 free_ctxs:
2240 kfree(hctx->ctxs);
2241 unregister_cpu_notifier:
2242 blk_mq_remove_cpuhp(hctx);
2243 return -1;
2244 }
2245
2246 static void blk_mq_init_cpu_queues(struct request_queue *q,
2247 unsigned int nr_hw_queues)
2248 {
2249 unsigned int i;
2250
2251 for_each_possible_cpu(i) {
2252 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2253 struct blk_mq_hw_ctx *hctx;
2254
2255 __ctx->cpu = i;
2256 spin_lock_init(&__ctx->lock);
2257 INIT_LIST_HEAD(&__ctx->rq_list);
2258 __ctx->queue = q;
2259
2260 /*
2261 * Set local node, IFF we have more than one hw queue. If
2262 * not, we remain on the home node of the device
2263 */
2264 hctx = blk_mq_map_queue(q, i);
2265 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2266 hctx->numa_node = local_memory_node(cpu_to_node(i));
2267 }
2268 }
2269
2270 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2271 {
2272 int ret = 0;
2273
2274 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2275 set->queue_depth, set->reserved_tags);
2276 if (!set->tags[hctx_idx])
2277 return false;
2278
2279 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2280 set->queue_depth);
2281 if (!ret)
2282 return true;
2283
2284 blk_mq_free_rq_map(set->tags[hctx_idx]);
2285 set->tags[hctx_idx] = NULL;
2286 return false;
2287 }
2288
2289 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2290 unsigned int hctx_idx)
2291 {
2292 if (set->tags[hctx_idx]) {
2293 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2294 blk_mq_free_rq_map(set->tags[hctx_idx]);
2295 set->tags[hctx_idx] = NULL;
2296 }
2297 }
2298
2299 static void blk_mq_map_swqueue(struct request_queue *q)
2300 {
2301 unsigned int i, hctx_idx;
2302 struct blk_mq_hw_ctx *hctx;
2303 struct blk_mq_ctx *ctx;
2304 struct blk_mq_tag_set *set = q->tag_set;
2305
2306 /*
2307 * Avoid others reading imcomplete hctx->cpumask through sysfs
2308 */
2309 mutex_lock(&q->sysfs_lock);
2310
2311 queue_for_each_hw_ctx(q, hctx, i) {
2312 cpumask_clear(hctx->cpumask);
2313 hctx->nr_ctx = 0;
2314 hctx->dispatch_from = NULL;
2315 }
2316
2317 /*
2318 * Map software to hardware queues.
2319 *
2320 * If the cpu isn't present, the cpu is mapped to first hctx.
2321 */
2322 for_each_possible_cpu(i) {
2323 hctx_idx = q->mq_map[i];
2324 /* unmapped hw queue can be remapped after CPU topo changed */
2325 if (!set->tags[hctx_idx] &&
2326 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2327 /*
2328 * If tags initialization fail for some hctx,
2329 * that hctx won't be brought online. In this
2330 * case, remap the current ctx to hctx[0] which
2331 * is guaranteed to always have tags allocated
2332 */
2333 q->mq_map[i] = 0;
2334 }
2335
2336 ctx = per_cpu_ptr(q->queue_ctx, i);
2337 hctx = blk_mq_map_queue(q, i);
2338
2339 cpumask_set_cpu(i, hctx->cpumask);
2340 ctx->index_hw = hctx->nr_ctx;
2341 hctx->ctxs[hctx->nr_ctx++] = ctx;
2342 }
2343
2344 mutex_unlock(&q->sysfs_lock);
2345
2346 queue_for_each_hw_ctx(q, hctx, i) {
2347 /*
2348 * If no software queues are mapped to this hardware queue,
2349 * disable it and free the request entries.
2350 */
2351 if (!hctx->nr_ctx) {
2352 /* Never unmap queue 0. We need it as a
2353 * fallback in case of a new remap fails
2354 * allocation
2355 */
2356 if (i && set->tags[i])
2357 blk_mq_free_map_and_requests(set, i);
2358
2359 hctx->tags = NULL;
2360 continue;
2361 }
2362
2363 hctx->tags = set->tags[i];
2364 WARN_ON(!hctx->tags);
2365
2366 /*
2367 * Set the map size to the number of mapped software queues.
2368 * This is more accurate and more efficient than looping
2369 * over all possibly mapped software queues.
2370 */
2371 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2372
2373 /*
2374 * Initialize batch roundrobin counts
2375 */
2376 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2377 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2378 }
2379 }
2380
2381 /*
2382 * Caller needs to ensure that we're either frozen/quiesced, or that
2383 * the queue isn't live yet.
2384 */
2385 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2386 {
2387 struct blk_mq_hw_ctx *hctx;
2388 int i;
2389
2390 queue_for_each_hw_ctx(q, hctx, i) {
2391 if (shared)
2392 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2393 else
2394 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2395 }
2396 }
2397
2398 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2399 bool shared)
2400 {
2401 struct request_queue *q;
2402
2403 lockdep_assert_held(&set->tag_list_lock);
2404
2405 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2406 blk_mq_freeze_queue(q);
2407 queue_set_hctx_shared(q, shared);
2408 blk_mq_unfreeze_queue(q);
2409 }
2410 }
2411
2412 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2413 {
2414 struct blk_mq_tag_set *set = q->tag_set;
2415
2416 mutex_lock(&set->tag_list_lock);
2417 list_del_rcu(&q->tag_set_list);
2418 if (list_is_singular(&set->tag_list)) {
2419 /* just transitioned to unshared */
2420 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2421 /* update existing queue */
2422 blk_mq_update_tag_set_depth(set, false);
2423 }
2424 mutex_unlock(&set->tag_list_lock);
2425 INIT_LIST_HEAD(&q->tag_set_list);
2426 }
2427
2428 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2429 struct request_queue *q)
2430 {
2431 q->tag_set = set;
2432
2433 mutex_lock(&set->tag_list_lock);
2434
2435 /*
2436 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2437 */
2438 if (!list_empty(&set->tag_list) &&
2439 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2440 set->flags |= BLK_MQ_F_TAG_SHARED;
2441 /* update existing queue */
2442 blk_mq_update_tag_set_depth(set, true);
2443 }
2444 if (set->flags & BLK_MQ_F_TAG_SHARED)
2445 queue_set_hctx_shared(q, true);
2446 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2447
2448 mutex_unlock(&set->tag_list_lock);
2449 }
2450
2451 /*
2452 * It is the actual release handler for mq, but we do it from
2453 * request queue's release handler for avoiding use-after-free
2454 * and headache because q->mq_kobj shouldn't have been introduced,
2455 * but we can't group ctx/kctx kobj without it.
2456 */
2457 void blk_mq_release(struct request_queue *q)
2458 {
2459 struct blk_mq_hw_ctx *hctx;
2460 unsigned int i;
2461
2462 /* hctx kobj stays in hctx */
2463 queue_for_each_hw_ctx(q, hctx, i) {
2464 if (!hctx)
2465 continue;
2466 kobject_put(&hctx->kobj);
2467 }
2468
2469 q->mq_map = NULL;
2470
2471 kfree(q->queue_hw_ctx);
2472
2473 /*
2474 * release .mq_kobj and sw queue's kobject now because
2475 * both share lifetime with request queue.
2476 */
2477 blk_mq_sysfs_deinit(q);
2478
2479 free_percpu(q->queue_ctx);
2480 }
2481
2482 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2483 {
2484 struct request_queue *uninit_q, *q;
2485
2486 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2487 if (!uninit_q)
2488 return ERR_PTR(-ENOMEM);
2489
2490 q = blk_mq_init_allocated_queue(set, uninit_q);
2491 if (IS_ERR(q))
2492 blk_cleanup_queue(uninit_q);
2493
2494 return q;
2495 }
2496 EXPORT_SYMBOL(blk_mq_init_queue);
2497
2498 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2499 {
2500 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2501
2502 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2503 __alignof__(struct blk_mq_hw_ctx)) !=
2504 sizeof(struct blk_mq_hw_ctx));
2505
2506 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2507 hw_ctx_size += sizeof(struct srcu_struct);
2508
2509 return hw_ctx_size;
2510 }
2511
2512 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2513 struct request_queue *q)
2514 {
2515 int i, j;
2516 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2517
2518 blk_mq_sysfs_unregister(q);
2519
2520 /* protect against switching io scheduler */
2521 mutex_lock(&q->sysfs_lock);
2522 for (i = 0; i < set->nr_hw_queues; i++) {
2523 int node;
2524
2525 if (hctxs[i])
2526 continue;
2527
2528 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2529 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2530 GFP_KERNEL, node);
2531 if (!hctxs[i])
2532 break;
2533
2534 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2535 node)) {
2536 kfree(hctxs[i]);
2537 hctxs[i] = NULL;
2538 break;
2539 }
2540
2541 atomic_set(&hctxs[i]->nr_active, 0);
2542 hctxs[i]->numa_node = node;
2543 hctxs[i]->queue_num = i;
2544
2545 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2546 free_cpumask_var(hctxs[i]->cpumask);
2547 kfree(hctxs[i]);
2548 hctxs[i] = NULL;
2549 break;
2550 }
2551 blk_mq_hctx_kobj_init(hctxs[i]);
2552 }
2553 for (j = i; j < q->nr_hw_queues; j++) {
2554 struct blk_mq_hw_ctx *hctx = hctxs[j];
2555
2556 if (hctx) {
2557 if (hctx->tags)
2558 blk_mq_free_map_and_requests(set, j);
2559 blk_mq_exit_hctx(q, set, hctx, j);
2560 kobject_put(&hctx->kobj);
2561 hctxs[j] = NULL;
2562
2563 }
2564 }
2565 q->nr_hw_queues = i;
2566 mutex_unlock(&q->sysfs_lock);
2567 blk_mq_sysfs_register(q);
2568 }
2569
2570 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2571 struct request_queue *q)
2572 {
2573 /* mark the queue as mq asap */
2574 q->mq_ops = set->ops;
2575
2576 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2577 blk_mq_poll_stats_bkt,
2578 BLK_MQ_POLL_STATS_BKTS, q);
2579 if (!q->poll_cb)
2580 goto err_exit;
2581
2582 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2583 if (!q->queue_ctx)
2584 goto err_exit;
2585
2586 /* init q->mq_kobj and sw queues' kobjects */
2587 blk_mq_sysfs_init(q);
2588
2589 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2590 GFP_KERNEL, set->numa_node);
2591 if (!q->queue_hw_ctx)
2592 goto err_percpu;
2593
2594 q->mq_map = set->mq_map;
2595
2596 blk_mq_realloc_hw_ctxs(set, q);
2597 if (!q->nr_hw_queues)
2598 goto err_hctxs;
2599
2600 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2601 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2602
2603 q->nr_queues = nr_cpu_ids;
2604
2605 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2606
2607 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2608 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2609
2610 q->sg_reserved_size = INT_MAX;
2611
2612 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2613 INIT_LIST_HEAD(&q->requeue_list);
2614 spin_lock_init(&q->requeue_lock);
2615
2616 blk_queue_make_request(q, blk_mq_make_request);
2617 if (q->mq_ops->poll)
2618 q->poll_fn = blk_mq_poll;
2619
2620 /*
2621 * Do this after blk_queue_make_request() overrides it...
2622 */
2623 q->nr_requests = set->queue_depth;
2624
2625 /*
2626 * Default to classic polling
2627 */
2628 q->poll_nsec = -1;
2629
2630 if (set->ops->complete)
2631 blk_queue_softirq_done(q, set->ops->complete);
2632
2633 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2634 blk_mq_add_queue_tag_set(set, q);
2635 blk_mq_map_swqueue(q);
2636
2637 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2638 int ret;
2639
2640 ret = elevator_init_mq(q);
2641 if (ret)
2642 return ERR_PTR(ret);
2643 }
2644
2645 return q;
2646
2647 err_hctxs:
2648 kfree(q->queue_hw_ctx);
2649 err_percpu:
2650 free_percpu(q->queue_ctx);
2651 err_exit:
2652 q->mq_ops = NULL;
2653 return ERR_PTR(-ENOMEM);
2654 }
2655 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2656
2657 void blk_mq_free_queue(struct request_queue *q)
2658 {
2659 struct blk_mq_tag_set *set = q->tag_set;
2660
2661 blk_mq_del_queue_tag_set(q);
2662 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2663 }
2664
2665 /* Basically redo blk_mq_init_queue with queue frozen */
2666 static void blk_mq_queue_reinit(struct request_queue *q)
2667 {
2668 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2669
2670 blk_mq_debugfs_unregister_hctxs(q);
2671 blk_mq_sysfs_unregister(q);
2672
2673 /*
2674 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2675 * we should change hctx numa_node according to the new topology (this
2676 * involves freeing and re-allocating memory, worth doing?)
2677 */
2678 blk_mq_map_swqueue(q);
2679
2680 blk_mq_sysfs_register(q);
2681 blk_mq_debugfs_register_hctxs(q);
2682 }
2683
2684 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2685 {
2686 int i;
2687
2688 for (i = 0; i < set->nr_hw_queues; i++)
2689 if (!__blk_mq_alloc_rq_map(set, i))
2690 goto out_unwind;
2691
2692 return 0;
2693
2694 out_unwind:
2695 while (--i >= 0)
2696 blk_mq_free_rq_map(set->tags[i]);
2697
2698 return -ENOMEM;
2699 }
2700
2701 /*
2702 * Allocate the request maps associated with this tag_set. Note that this
2703 * may reduce the depth asked for, if memory is tight. set->queue_depth
2704 * will be updated to reflect the allocated depth.
2705 */
2706 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2707 {
2708 unsigned int depth;
2709 int err;
2710
2711 depth = set->queue_depth;
2712 do {
2713 err = __blk_mq_alloc_rq_maps(set);
2714 if (!err)
2715 break;
2716
2717 set->queue_depth >>= 1;
2718 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2719 err = -ENOMEM;
2720 break;
2721 }
2722 } while (set->queue_depth);
2723
2724 if (!set->queue_depth || err) {
2725 pr_err("blk-mq: failed to allocate request map\n");
2726 return -ENOMEM;
2727 }
2728
2729 if (depth != set->queue_depth)
2730 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2731 depth, set->queue_depth);
2732
2733 return 0;
2734 }
2735
2736 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2737 {
2738 if (set->ops->map_queues) {
2739 /*
2740 * transport .map_queues is usually done in the following
2741 * way:
2742 *
2743 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2744 * mask = get_cpu_mask(queue)
2745 * for_each_cpu(cpu, mask)
2746 * set->mq_map[cpu] = queue;
2747 * }
2748 *
2749 * When we need to remap, the table has to be cleared for
2750 * killing stale mapping since one CPU may not be mapped
2751 * to any hw queue.
2752 */
2753 blk_mq_clear_mq_map(set);
2754
2755 return set->ops->map_queues(set);
2756 } else
2757 return blk_mq_map_queues(set);
2758 }
2759
2760 /*
2761 * Alloc a tag set to be associated with one or more request queues.
2762 * May fail with EINVAL for various error conditions. May adjust the
2763 * requested depth down, if it's too large. In that case, the set
2764 * value will be stored in set->queue_depth.
2765 */
2766 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2767 {
2768 int ret;
2769
2770 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2771
2772 if (!set->nr_hw_queues)
2773 return -EINVAL;
2774 if (!set->queue_depth)
2775 return -EINVAL;
2776 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2777 return -EINVAL;
2778
2779 if (!set->ops->queue_rq)
2780 return -EINVAL;
2781
2782 if (!set->ops->get_budget ^ !set->ops->put_budget)
2783 return -EINVAL;
2784
2785 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2786 pr_info("blk-mq: reduced tag depth to %u\n",
2787 BLK_MQ_MAX_DEPTH);
2788 set->queue_depth = BLK_MQ_MAX_DEPTH;
2789 }
2790
2791 /*
2792 * If a crashdump is active, then we are potentially in a very
2793 * memory constrained environment. Limit us to 1 queue and
2794 * 64 tags to prevent using too much memory.
2795 */
2796 if (is_kdump_kernel()) {
2797 set->nr_hw_queues = 1;
2798 set->queue_depth = min(64U, set->queue_depth);
2799 }
2800 /*
2801 * There is no use for more h/w queues than cpus.
2802 */
2803 if (set->nr_hw_queues > nr_cpu_ids)
2804 set->nr_hw_queues = nr_cpu_ids;
2805
2806 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2807 GFP_KERNEL, set->numa_node);
2808 if (!set->tags)
2809 return -ENOMEM;
2810
2811 ret = -ENOMEM;
2812 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2813 GFP_KERNEL, set->numa_node);
2814 if (!set->mq_map)
2815 goto out_free_tags;
2816
2817 ret = blk_mq_update_queue_map(set);
2818 if (ret)
2819 goto out_free_mq_map;
2820
2821 ret = blk_mq_alloc_rq_maps(set);
2822 if (ret)
2823 goto out_free_mq_map;
2824
2825 mutex_init(&set->tag_list_lock);
2826 INIT_LIST_HEAD(&set->tag_list);
2827
2828 return 0;
2829
2830 out_free_mq_map:
2831 kfree(set->mq_map);
2832 set->mq_map = NULL;
2833 out_free_tags:
2834 kfree(set->tags);
2835 set->tags = NULL;
2836 return ret;
2837 }
2838 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2839
2840 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2841 {
2842 int i;
2843
2844 for (i = 0; i < nr_cpu_ids; i++)
2845 blk_mq_free_map_and_requests(set, i);
2846
2847 kfree(set->mq_map);
2848 set->mq_map = NULL;
2849
2850 kfree(set->tags);
2851 set->tags = NULL;
2852 }
2853 EXPORT_SYMBOL(blk_mq_free_tag_set);
2854
2855 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2856 {
2857 struct blk_mq_tag_set *set = q->tag_set;
2858 struct blk_mq_hw_ctx *hctx;
2859 int i, ret;
2860
2861 if (!set)
2862 return -EINVAL;
2863
2864 blk_mq_freeze_queue(q);
2865 blk_mq_quiesce_queue(q);
2866
2867 ret = 0;
2868 queue_for_each_hw_ctx(q, hctx, i) {
2869 if (!hctx->tags)
2870 continue;
2871 /*
2872 * If we're using an MQ scheduler, just update the scheduler
2873 * queue depth. This is similar to what the old code would do.
2874 */
2875 if (!hctx->sched_tags) {
2876 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2877 false);
2878 } else {
2879 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2880 nr, true);
2881 }
2882 if (ret)
2883 break;
2884 }
2885
2886 if (!ret)
2887 q->nr_requests = nr;
2888
2889 blk_mq_unquiesce_queue(q);
2890 blk_mq_unfreeze_queue(q);
2891
2892 return ret;
2893 }
2894
2895 /*
2896 * request_queue and elevator_type pair.
2897 * It is just used by __blk_mq_update_nr_hw_queues to cache
2898 * the elevator_type associated with a request_queue.
2899 */
2900 struct blk_mq_qe_pair {
2901 struct list_head node;
2902 struct request_queue *q;
2903 struct elevator_type *type;
2904 };
2905
2906 /*
2907 * Cache the elevator_type in qe pair list and switch the
2908 * io scheduler to 'none'
2909 */
2910 static bool blk_mq_elv_switch_none(struct list_head *head,
2911 struct request_queue *q)
2912 {
2913 struct blk_mq_qe_pair *qe;
2914
2915 if (!q->elevator)
2916 return true;
2917
2918 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2919 if (!qe)
2920 return false;
2921
2922 INIT_LIST_HEAD(&qe->node);
2923 qe->q = q;
2924 qe->type = q->elevator->type;
2925 list_add(&qe->node, head);
2926
2927 mutex_lock(&q->sysfs_lock);
2928 /*
2929 * After elevator_switch_mq, the previous elevator_queue will be
2930 * released by elevator_release. The reference of the io scheduler
2931 * module get by elevator_get will also be put. So we need to get
2932 * a reference of the io scheduler module here to prevent it to be
2933 * removed.
2934 */
2935 __module_get(qe->type->elevator_owner);
2936 elevator_switch_mq(q, NULL);
2937 mutex_unlock(&q->sysfs_lock);
2938
2939 return true;
2940 }
2941
2942 static void blk_mq_elv_switch_back(struct list_head *head,
2943 struct request_queue *q)
2944 {
2945 struct blk_mq_qe_pair *qe;
2946 struct elevator_type *t = NULL;
2947
2948 list_for_each_entry(qe, head, node)
2949 if (qe->q == q) {
2950 t = qe->type;
2951 break;
2952 }
2953
2954 if (!t)
2955 return;
2956
2957 list_del(&qe->node);
2958 kfree(qe);
2959
2960 mutex_lock(&q->sysfs_lock);
2961 elevator_switch_mq(q, t);
2962 mutex_unlock(&q->sysfs_lock);
2963 }
2964
2965 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2966 int nr_hw_queues)
2967 {
2968 struct request_queue *q;
2969 LIST_HEAD(head);
2970
2971 lockdep_assert_held(&set->tag_list_lock);
2972
2973 if (nr_hw_queues > nr_cpu_ids)
2974 nr_hw_queues = nr_cpu_ids;
2975 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2976 return;
2977
2978 list_for_each_entry(q, &set->tag_list, tag_set_list)
2979 blk_mq_freeze_queue(q);
2980 /*
2981 * Sync with blk_mq_queue_tag_busy_iter.
2982 */
2983 synchronize_rcu();
2984 /*
2985 * Switch IO scheduler to 'none', cleaning up the data associated
2986 * with the previous scheduler. We will switch back once we are done
2987 * updating the new sw to hw queue mappings.
2988 */
2989 list_for_each_entry(q, &set->tag_list, tag_set_list)
2990 if (!blk_mq_elv_switch_none(&head, q))
2991 goto switch_back;
2992
2993 set->nr_hw_queues = nr_hw_queues;
2994 blk_mq_update_queue_map(set);
2995 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2996 blk_mq_realloc_hw_ctxs(set, q);
2997 blk_mq_queue_reinit(q);
2998 }
2999
3000 switch_back:
3001 list_for_each_entry(q, &set->tag_list, tag_set_list)
3002 blk_mq_elv_switch_back(&head, q);
3003
3004 list_for_each_entry(q, &set->tag_list, tag_set_list)
3005 blk_mq_unfreeze_queue(q);
3006 }
3007
3008 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3009 {
3010 mutex_lock(&set->tag_list_lock);
3011 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3012 mutex_unlock(&set->tag_list_lock);
3013 }
3014 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3015
3016 /* Enable polling stats and return whether they were already enabled. */
3017 static bool blk_poll_stats_enable(struct request_queue *q)
3018 {
3019 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3020 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3021 return true;
3022 blk_stat_add_callback(q, q->poll_cb);
3023 return false;
3024 }
3025
3026 static void blk_mq_poll_stats_start(struct request_queue *q)
3027 {
3028 /*
3029 * We don't arm the callback if polling stats are not enabled or the
3030 * callback is already active.
3031 */
3032 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3033 blk_stat_is_active(q->poll_cb))
3034 return;
3035
3036 blk_stat_activate_msecs(q->poll_cb, 100);
3037 }
3038
3039 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3040 {
3041 struct request_queue *q = cb->data;
3042 int bucket;
3043
3044 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3045 if (cb->stat[bucket].nr_samples)
3046 q->poll_stat[bucket] = cb->stat[bucket];
3047 }
3048 }
3049
3050 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3051 struct blk_mq_hw_ctx *hctx,
3052 struct request *rq)
3053 {
3054 unsigned long ret = 0;
3055 int bucket;
3056
3057 /*
3058 * If stats collection isn't on, don't sleep but turn it on for
3059 * future users
3060 */
3061 if (!blk_poll_stats_enable(q))
3062 return 0;
3063
3064 /*
3065 * As an optimistic guess, use half of the mean service time
3066 * for this type of request. We can (and should) make this smarter.
3067 * For instance, if the completion latencies are tight, we can
3068 * get closer than just half the mean. This is especially
3069 * important on devices where the completion latencies are longer
3070 * than ~10 usec. We do use the stats for the relevant IO size
3071 * if available which does lead to better estimates.
3072 */
3073 bucket = blk_mq_poll_stats_bkt(rq);
3074 if (bucket < 0)
3075 return ret;
3076
3077 if (q->poll_stat[bucket].nr_samples)
3078 ret = (q->poll_stat[bucket].mean + 1) / 2;
3079
3080 return ret;
3081 }
3082
3083 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3084 struct blk_mq_hw_ctx *hctx,
3085 struct request *rq)
3086 {
3087 struct hrtimer_sleeper hs;
3088 enum hrtimer_mode mode;
3089 unsigned int nsecs;
3090 ktime_t kt;
3091
3092 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3093 return false;
3094
3095 /*
3096 * poll_nsec can be:
3097 *
3098 * -1: don't ever hybrid sleep
3099 * 0: use half of prev avg
3100 * >0: use this specific value
3101 */
3102 if (q->poll_nsec == -1)
3103 return false;
3104 else if (q->poll_nsec > 0)
3105 nsecs = q->poll_nsec;
3106 else
3107 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3108
3109 if (!nsecs)
3110 return false;
3111
3112 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3113
3114 /*
3115 * This will be replaced with the stats tracking code, using
3116 * 'avg_completion_time / 2' as the pre-sleep target.
3117 */
3118 kt = nsecs;
3119
3120 mode = HRTIMER_MODE_REL;
3121 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3122 hrtimer_set_expires(&hs.timer, kt);
3123
3124 hrtimer_init_sleeper(&hs, current);
3125 do {
3126 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3127 break;
3128 set_current_state(TASK_UNINTERRUPTIBLE);
3129 hrtimer_start_expires(&hs.timer, mode);
3130 if (hs.task)
3131 io_schedule();
3132 hrtimer_cancel(&hs.timer);
3133 mode = HRTIMER_MODE_ABS;
3134 } while (hs.task && !signal_pending(current));
3135
3136 __set_current_state(TASK_RUNNING);
3137 destroy_hrtimer_on_stack(&hs.timer);
3138 return true;
3139 }
3140
3141 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3142 {
3143 struct request_queue *q = hctx->queue;
3144 long state;
3145
3146 /*
3147 * If we sleep, have the caller restart the poll loop to reset
3148 * the state. Like for the other success return cases, the
3149 * caller is responsible for checking if the IO completed. If
3150 * the IO isn't complete, we'll get called again and will go
3151 * straight to the busy poll loop.
3152 */
3153 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3154 return true;
3155
3156 hctx->poll_considered++;
3157
3158 state = current->state;
3159 while (!need_resched()) {
3160 int ret;
3161
3162 hctx->poll_invoked++;
3163
3164 ret = q->mq_ops->poll(hctx, rq->tag);
3165 if (ret > 0) {
3166 hctx->poll_success++;
3167 set_current_state(TASK_RUNNING);
3168 return true;
3169 }
3170
3171 if (signal_pending_state(state, current))
3172 set_current_state(TASK_RUNNING);
3173
3174 if (current->state == TASK_RUNNING)
3175 return true;
3176 if (ret < 0)
3177 break;
3178 cpu_relax();
3179 }
3180
3181 __set_current_state(TASK_RUNNING);
3182 return false;
3183 }
3184
3185 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3186 {
3187 struct blk_mq_hw_ctx *hctx;
3188 struct request *rq;
3189
3190 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3191 return false;
3192
3193 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3194 if (!blk_qc_t_is_internal(cookie))
3195 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3196 else {
3197 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3198 /*
3199 * With scheduling, if the request has completed, we'll
3200 * get a NULL return here, as we clear the sched tag when
3201 * that happens. The request still remains valid, like always,
3202 * so we should be safe with just the NULL check.
3203 */
3204 if (!rq)
3205 return false;
3206 }
3207
3208 return __blk_mq_poll(hctx, rq);
3209 }
3210
3211 static int __init blk_mq_init(void)
3212 {
3213 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3214 blk_mq_hctx_notify_dead);
3215 return 0;
3216 }
3217 subsys_initcall(blk_mq_init);