]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
blk-mq: Wake tasks entering queue on dying
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 unsigned int i;
43
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
47
48 return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53 {
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65 {
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q)
81 {
82 while (true) {
83 int ret;
84
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
87
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
95 }
96
97 static void blk_mq_queue_exit(struct request_queue *q)
98 {
99 percpu_ref_put(&q->mq_usage_counter);
100 }
101
102 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103 {
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
108 }
109
110 void blk_mq_freeze_queue_start(struct request_queue *q)
111 {
112 bool freeze;
113
114 spin_lock_irq(q->queue_lock);
115 freeze = !q->mq_freeze_depth++;
116 spin_unlock_irq(q->queue_lock);
117
118 if (freeze) {
119 percpu_ref_kill(&q->mq_usage_counter);
120 blk_mq_run_queues(q, false);
121 }
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
124
125 static void blk_mq_freeze_queue_wait(struct request_queue *q)
126 {
127 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
128 }
129
130 /*
131 * Guarantee no request is in use, so we can change any data structure of
132 * the queue afterward.
133 */
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136 blk_mq_freeze_queue_start(q);
137 blk_mq_freeze_queue_wait(q);
138 }
139
140 void blk_mq_unfreeze_queue(struct request_queue *q)
141 {
142 bool wake;
143
144 spin_lock_irq(q->queue_lock);
145 wake = !--q->mq_freeze_depth;
146 WARN_ON_ONCE(q->mq_freeze_depth < 0);
147 spin_unlock_irq(q->queue_lock);
148 if (wake) {
149 percpu_ref_reinit(&q->mq_usage_counter);
150 wake_up_all(&q->mq_freeze_wq);
151 }
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154
155 void blk_mq_wake_waiters(struct request_queue *q)
156 {
157 struct blk_mq_hw_ctx *hctx;
158 unsigned int i;
159
160 queue_for_each_hw_ctx(q, hctx, i)
161 if (blk_mq_hw_queue_mapped(hctx))
162 blk_mq_tag_wakeup_all(hctx->tags, true);
163
164 /*
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
168 */
169 wake_up_all(&q->mq_freeze_wq);
170 }
171
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173 {
174 return blk_mq_has_free_tags(hctx->tags);
175 }
176 EXPORT_SYMBOL(blk_mq_can_queue);
177
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 struct request *rq, unsigned int rw_flags)
180 {
181 if (blk_queue_io_stat(q))
182 rw_flags |= REQ_IO_STAT;
183
184 INIT_LIST_HEAD(&rq->queuelist);
185 /* csd/requeue_work/fifo_time is initialized before use */
186 rq->q = q;
187 rq->mq_ctx = ctx;
188 rq->cmd_flags |= rw_flags;
189 /* do not touch atomic flags, it needs atomic ops against the timer */
190 rq->cpu = -1;
191 INIT_HLIST_NODE(&rq->hash);
192 RB_CLEAR_NODE(&rq->rb_node);
193 rq->rq_disk = NULL;
194 rq->part = NULL;
195 rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 rq->rl = NULL;
198 set_start_time_ns(rq);
199 rq->io_start_time_ns = 0;
200 #endif
201 rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq->nr_integrity_segments = 0;
204 #endif
205 rq->special = NULL;
206 /* tag was already set */
207 rq->errors = 0;
208
209 rq->cmd = rq->__cmd;
210
211 rq->extra_len = 0;
212 rq->sense_len = 0;
213 rq->resid_len = 0;
214 rq->sense = NULL;
215
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
218
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224 }
225
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 {
229 struct request *rq;
230 unsigned int tag;
231
232 tag = blk_mq_get_tag(data);
233 if (tag != BLK_MQ_TAG_FAIL) {
234 rq = data->hctx->tags->rqs[tag];
235
236 if (blk_mq_tag_busy(data->hctx)) {
237 rq->cmd_flags = REQ_MQ_INFLIGHT;
238 atomic_inc(&data->hctx->nr_active);
239 }
240
241 rq->tag = tag;
242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 return rq;
244 }
245
246 return NULL;
247 }
248
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 bool reserved)
251 {
252 struct blk_mq_ctx *ctx;
253 struct blk_mq_hw_ctx *hctx;
254 struct request *rq;
255 struct blk_mq_alloc_data alloc_data;
256 int ret;
257
258 ret = blk_mq_queue_enter(q);
259 if (ret)
260 return ERR_PTR(ret);
261
262 ctx = blk_mq_get_ctx(q);
263 hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 reserved, ctx, hctx);
266
267 rq = __blk_mq_alloc_request(&alloc_data, rw);
268 if (!rq && (gfp & __GFP_WAIT)) {
269 __blk_mq_run_hw_queue(hctx);
270 blk_mq_put_ctx(ctx);
271
272 ctx = blk_mq_get_ctx(q);
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 hctx);
276 rq = __blk_mq_alloc_request(&alloc_data, rw);
277 ctx = alloc_data.ctx;
278 }
279 blk_mq_put_ctx(ctx);
280 if (!rq) {
281 blk_mq_queue_exit(q);
282 return ERR_PTR(-EWOULDBLOCK);
283 }
284 return rq;
285 }
286 EXPORT_SYMBOL(blk_mq_alloc_request);
287
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 struct blk_mq_ctx *ctx, struct request *rq)
290 {
291 const int tag = rq->tag;
292 struct request_queue *q = rq->q;
293
294 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 atomic_dec(&hctx->nr_active);
296 rq->cmd_flags = 0;
297
298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 blk_mq_queue_exit(q);
301 }
302
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 {
305 struct blk_mq_ctx *ctx = rq->mq_ctx;
306
307 ctx->rq_completed[rq_is_sync(rq)]++;
308 __blk_mq_free_request(hctx, ctx, rq);
309
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312
313 void blk_mq_free_request(struct request *rq)
314 {
315 struct blk_mq_hw_ctx *hctx;
316 struct request_queue *q = rq->q;
317
318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 blk_mq_free_hctx_request(hctx, rq);
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
322
323 inline void __blk_mq_end_request(struct request *rq, int error)
324 {
325 blk_account_io_done(rq);
326
327 if (rq->end_io) {
328 rq->end_io(rq, error);
329 } else {
330 if (unlikely(blk_bidi_rq(rq)))
331 blk_mq_free_request(rq->next_rq);
332 blk_mq_free_request(rq);
333 }
334 }
335 EXPORT_SYMBOL(__blk_mq_end_request);
336
337 void blk_mq_end_request(struct request *rq, int error)
338 {
339 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 BUG();
341 __blk_mq_end_request(rq, error);
342 }
343 EXPORT_SYMBOL(blk_mq_end_request);
344
345 static void __blk_mq_complete_request_remote(void *data)
346 {
347 struct request *rq = data;
348
349 rq->q->softirq_done_fn(rq);
350 }
351
352 static void blk_mq_ipi_complete_request(struct request *rq)
353 {
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
355 bool shared = false;
356 int cpu;
357
358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 rq->q->softirq_done_fn(rq);
360 return;
361 }
362
363 cpu = get_cpu();
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 shared = cpus_share_cache(cpu, ctx->cpu);
366
367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 rq->csd.func = __blk_mq_complete_request_remote;
369 rq->csd.info = rq;
370 rq->csd.flags = 0;
371 smp_call_function_single_async(ctx->cpu, &rq->csd);
372 } else {
373 rq->q->softirq_done_fn(rq);
374 }
375 put_cpu();
376 }
377
378 void __blk_mq_complete_request(struct request *rq)
379 {
380 struct request_queue *q = rq->q;
381
382 if (!q->softirq_done_fn)
383 blk_mq_end_request(rq, rq->errors);
384 else
385 blk_mq_ipi_complete_request(rq);
386 }
387
388 /**
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
391 *
392 * Description:
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
395 **/
396 void blk_mq_complete_request(struct request *rq)
397 {
398 struct request_queue *q = rq->q;
399
400 if (unlikely(blk_should_fake_timeout(q)))
401 return;
402 if (!blk_mark_rq_complete(rq))
403 __blk_mq_complete_request(rq);
404 }
405 EXPORT_SYMBOL(blk_mq_complete_request);
406
407 void blk_mq_start_request(struct request *rq)
408 {
409 struct request_queue *q = rq->q;
410
411 trace_block_rq_issue(q, rq);
412
413 rq->resid_len = blk_rq_bytes(rq);
414 if (unlikely(blk_bidi_rq(rq)))
415 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
416
417 blk_add_timer(rq);
418
419 /*
420 * Ensure that ->deadline is visible before set the started
421 * flag and clear the completed flag.
422 */
423 smp_mb__before_atomic();
424
425 /*
426 * Mark us as started and clear complete. Complete might have been
427 * set if requeue raced with timeout, which then marked it as
428 * complete. So be sure to clear complete again when we start
429 * the request, otherwise we'll ignore the completion event.
430 */
431 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
432 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
433 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
434 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
435
436 if (q->dma_drain_size && blk_rq_bytes(rq)) {
437 /*
438 * Make sure space for the drain appears. We know we can do
439 * this because max_hw_segments has been adjusted to be one
440 * fewer than the device can handle.
441 */
442 rq->nr_phys_segments++;
443 }
444 }
445 EXPORT_SYMBOL(blk_mq_start_request);
446
447 static void __blk_mq_requeue_request(struct request *rq)
448 {
449 struct request_queue *q = rq->q;
450
451 trace_block_rq_requeue(q, rq);
452
453 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
454 if (q->dma_drain_size && blk_rq_bytes(rq))
455 rq->nr_phys_segments--;
456 }
457 }
458
459 void blk_mq_requeue_request(struct request *rq)
460 {
461 __blk_mq_requeue_request(rq);
462
463 BUG_ON(blk_queued_rq(rq));
464 blk_mq_add_to_requeue_list(rq, true);
465 }
466 EXPORT_SYMBOL(blk_mq_requeue_request);
467
468 static void blk_mq_requeue_work(struct work_struct *work)
469 {
470 struct request_queue *q =
471 container_of(work, struct request_queue, requeue_work);
472 LIST_HEAD(rq_list);
473 struct request *rq, *next;
474 unsigned long flags;
475
476 spin_lock_irqsave(&q->requeue_lock, flags);
477 list_splice_init(&q->requeue_list, &rq_list);
478 spin_unlock_irqrestore(&q->requeue_lock, flags);
479
480 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
481 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
482 continue;
483
484 rq->cmd_flags &= ~REQ_SOFTBARRIER;
485 list_del_init(&rq->queuelist);
486 blk_mq_insert_request(rq, true, false, false);
487 }
488
489 while (!list_empty(&rq_list)) {
490 rq = list_entry(rq_list.next, struct request, queuelist);
491 list_del_init(&rq->queuelist);
492 blk_mq_insert_request(rq, false, false, false);
493 }
494
495 /*
496 * Use the start variant of queue running here, so that running
497 * the requeue work will kick stopped queues.
498 */
499 blk_mq_start_hw_queues(q);
500 }
501
502 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
503 {
504 struct request_queue *q = rq->q;
505 unsigned long flags;
506
507 /*
508 * We abuse this flag that is otherwise used by the I/O scheduler to
509 * request head insertation from the workqueue.
510 */
511 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
512
513 spin_lock_irqsave(&q->requeue_lock, flags);
514 if (at_head) {
515 rq->cmd_flags |= REQ_SOFTBARRIER;
516 list_add(&rq->queuelist, &q->requeue_list);
517 } else {
518 list_add_tail(&rq->queuelist, &q->requeue_list);
519 }
520 spin_unlock_irqrestore(&q->requeue_lock, flags);
521 }
522 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
523
524 void blk_mq_kick_requeue_list(struct request_queue *q)
525 {
526 kblockd_schedule_work(&q->requeue_work);
527 }
528 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
529
530 static inline bool is_flush_request(struct request *rq,
531 struct blk_flush_queue *fq, unsigned int tag)
532 {
533 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
534 fq->flush_rq->tag == tag);
535 }
536
537 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
538 {
539 struct request *rq = tags->rqs[tag];
540 /* mq_ctx of flush rq is always cloned from the corresponding req */
541 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
542
543 if (!is_flush_request(rq, fq, tag))
544 return rq;
545
546 return fq->flush_rq;
547 }
548 EXPORT_SYMBOL(blk_mq_tag_to_rq);
549
550 struct blk_mq_timeout_data {
551 unsigned long next;
552 unsigned int next_set;
553 };
554
555 void blk_mq_rq_timed_out(struct request *req, bool reserved)
556 {
557 struct blk_mq_ops *ops = req->q->mq_ops;
558 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
559
560 /*
561 * We know that complete is set at this point. If STARTED isn't set
562 * anymore, then the request isn't active and the "timeout" should
563 * just be ignored. This can happen due to the bitflag ordering.
564 * Timeout first checks if STARTED is set, and if it is, assumes
565 * the request is active. But if we race with completion, then
566 * we both flags will get cleared. So check here again, and ignore
567 * a timeout event with a request that isn't active.
568 */
569 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
570 return;
571
572 if (ops->timeout)
573 ret = ops->timeout(req, reserved);
574
575 switch (ret) {
576 case BLK_EH_HANDLED:
577 __blk_mq_complete_request(req);
578 break;
579 case BLK_EH_RESET_TIMER:
580 blk_add_timer(req);
581 blk_clear_rq_complete(req);
582 break;
583 case BLK_EH_NOT_HANDLED:
584 break;
585 default:
586 printk(KERN_ERR "block: bad eh return: %d\n", ret);
587 break;
588 }
589 }
590
591 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
592 struct request *rq, void *priv, bool reserved)
593 {
594 struct blk_mq_timeout_data *data = priv;
595
596 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
597 return;
598
599 if (time_after_eq(jiffies, rq->deadline)) {
600 if (!blk_mark_rq_complete(rq))
601 blk_mq_rq_timed_out(rq, reserved);
602 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
603 data->next = rq->deadline;
604 data->next_set = 1;
605 }
606 }
607
608 static void blk_mq_rq_timer(unsigned long priv)
609 {
610 struct request_queue *q = (struct request_queue *)priv;
611 struct blk_mq_timeout_data data = {
612 .next = 0,
613 .next_set = 0,
614 };
615 struct blk_mq_hw_ctx *hctx;
616 int i;
617
618 queue_for_each_hw_ctx(q, hctx, i) {
619 /*
620 * If not software queues are currently mapped to this
621 * hardware queue, there's nothing to check
622 */
623 if (!blk_mq_hw_queue_mapped(hctx))
624 continue;
625
626 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
627 }
628
629 if (data.next_set) {
630 data.next = blk_rq_timeout(round_jiffies_up(data.next));
631 mod_timer(&q->timeout, data.next);
632 } else {
633 queue_for_each_hw_ctx(q, hctx, i)
634 blk_mq_tag_idle(hctx);
635 }
636 }
637
638 /*
639 * Reverse check our software queue for entries that we could potentially
640 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
641 * too much time checking for merges.
642 */
643 static bool blk_mq_attempt_merge(struct request_queue *q,
644 struct blk_mq_ctx *ctx, struct bio *bio)
645 {
646 struct request *rq;
647 int checked = 8;
648
649 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
650 int el_ret;
651
652 if (!checked--)
653 break;
654
655 if (!blk_rq_merge_ok(rq, bio))
656 continue;
657
658 el_ret = blk_try_merge(rq, bio);
659 if (el_ret == ELEVATOR_BACK_MERGE) {
660 if (bio_attempt_back_merge(q, rq, bio)) {
661 ctx->rq_merged++;
662 return true;
663 }
664 break;
665 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
666 if (bio_attempt_front_merge(q, rq, bio)) {
667 ctx->rq_merged++;
668 return true;
669 }
670 break;
671 }
672 }
673
674 return false;
675 }
676
677 /*
678 * Process software queues that have been marked busy, splicing them
679 * to the for-dispatch
680 */
681 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
682 {
683 struct blk_mq_ctx *ctx;
684 int i;
685
686 for (i = 0; i < hctx->ctx_map.map_size; i++) {
687 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
688 unsigned int off, bit;
689
690 if (!bm->word)
691 continue;
692
693 bit = 0;
694 off = i * hctx->ctx_map.bits_per_word;
695 do {
696 bit = find_next_bit(&bm->word, bm->depth, bit);
697 if (bit >= bm->depth)
698 break;
699
700 ctx = hctx->ctxs[bit + off];
701 clear_bit(bit, &bm->word);
702 spin_lock(&ctx->lock);
703 list_splice_tail_init(&ctx->rq_list, list);
704 spin_unlock(&ctx->lock);
705
706 bit++;
707 } while (1);
708 }
709 }
710
711 /*
712 * Run this hardware queue, pulling any software queues mapped to it in.
713 * Note that this function currently has various problems around ordering
714 * of IO. In particular, we'd like FIFO behaviour on handling existing
715 * items on the hctx->dispatch list. Ignore that for now.
716 */
717 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
718 {
719 struct request_queue *q = hctx->queue;
720 struct request *rq;
721 LIST_HEAD(rq_list);
722 LIST_HEAD(driver_list);
723 struct list_head *dptr;
724 int queued;
725
726 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
727
728 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
729 return;
730
731 hctx->run++;
732
733 /*
734 * Touch any software queue that has pending entries.
735 */
736 flush_busy_ctxs(hctx, &rq_list);
737
738 /*
739 * If we have previous entries on our dispatch list, grab them
740 * and stuff them at the front for more fair dispatch.
741 */
742 if (!list_empty_careful(&hctx->dispatch)) {
743 spin_lock(&hctx->lock);
744 if (!list_empty(&hctx->dispatch))
745 list_splice_init(&hctx->dispatch, &rq_list);
746 spin_unlock(&hctx->lock);
747 }
748
749 /*
750 * Start off with dptr being NULL, so we start the first request
751 * immediately, even if we have more pending.
752 */
753 dptr = NULL;
754
755 /*
756 * Now process all the entries, sending them to the driver.
757 */
758 queued = 0;
759 while (!list_empty(&rq_list)) {
760 struct blk_mq_queue_data bd;
761 int ret;
762
763 rq = list_first_entry(&rq_list, struct request, queuelist);
764 list_del_init(&rq->queuelist);
765
766 bd.rq = rq;
767 bd.list = dptr;
768 bd.last = list_empty(&rq_list);
769
770 ret = q->mq_ops->queue_rq(hctx, &bd);
771 switch (ret) {
772 case BLK_MQ_RQ_QUEUE_OK:
773 queued++;
774 continue;
775 case BLK_MQ_RQ_QUEUE_BUSY:
776 list_add(&rq->queuelist, &rq_list);
777 __blk_mq_requeue_request(rq);
778 break;
779 default:
780 pr_err("blk-mq: bad return on queue: %d\n", ret);
781 case BLK_MQ_RQ_QUEUE_ERROR:
782 rq->errors = -EIO;
783 blk_mq_end_request(rq, rq->errors);
784 break;
785 }
786
787 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
788 break;
789
790 /*
791 * We've done the first request. If we have more than 1
792 * left in the list, set dptr to defer issue.
793 */
794 if (!dptr && rq_list.next != rq_list.prev)
795 dptr = &driver_list;
796 }
797
798 if (!queued)
799 hctx->dispatched[0]++;
800 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
801 hctx->dispatched[ilog2(queued) + 1]++;
802
803 /*
804 * Any items that need requeuing? Stuff them into hctx->dispatch,
805 * that is where we will continue on next queue run.
806 */
807 if (!list_empty(&rq_list)) {
808 spin_lock(&hctx->lock);
809 list_splice(&rq_list, &hctx->dispatch);
810 spin_unlock(&hctx->lock);
811 }
812 }
813
814 /*
815 * It'd be great if the workqueue API had a way to pass
816 * in a mask and had some smarts for more clever placement.
817 * For now we just round-robin here, switching for every
818 * BLK_MQ_CPU_WORK_BATCH queued items.
819 */
820 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
821 {
822 if (hctx->queue->nr_hw_queues == 1)
823 return WORK_CPU_UNBOUND;
824
825 if (--hctx->next_cpu_batch <= 0) {
826 int cpu = hctx->next_cpu, next_cpu;
827
828 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
829 if (next_cpu >= nr_cpu_ids)
830 next_cpu = cpumask_first(hctx->cpumask);
831
832 hctx->next_cpu = next_cpu;
833 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
834
835 return cpu;
836 }
837
838 return hctx->next_cpu;
839 }
840
841 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
842 {
843 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
844 !blk_mq_hw_queue_mapped(hctx)))
845 return;
846
847 if (!async) {
848 int cpu = get_cpu();
849 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
850 __blk_mq_run_hw_queue(hctx);
851 put_cpu();
852 return;
853 }
854
855 put_cpu();
856 }
857
858 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
859 &hctx->run_work, 0);
860 }
861
862 void blk_mq_run_queues(struct request_queue *q, bool async)
863 {
864 struct blk_mq_hw_ctx *hctx;
865 int i;
866
867 queue_for_each_hw_ctx(q, hctx, i) {
868 if ((!blk_mq_hctx_has_pending(hctx) &&
869 list_empty_careful(&hctx->dispatch)) ||
870 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
871 continue;
872
873 blk_mq_run_hw_queue(hctx, async);
874 }
875 }
876 EXPORT_SYMBOL(blk_mq_run_queues);
877
878 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
879 {
880 cancel_delayed_work(&hctx->run_work);
881 cancel_delayed_work(&hctx->delay_work);
882 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
883 }
884 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
885
886 void blk_mq_stop_hw_queues(struct request_queue *q)
887 {
888 struct blk_mq_hw_ctx *hctx;
889 int i;
890
891 queue_for_each_hw_ctx(q, hctx, i)
892 blk_mq_stop_hw_queue(hctx);
893 }
894 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
895
896 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
897 {
898 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
899
900 blk_mq_run_hw_queue(hctx, false);
901 }
902 EXPORT_SYMBOL(blk_mq_start_hw_queue);
903
904 void blk_mq_start_hw_queues(struct request_queue *q)
905 {
906 struct blk_mq_hw_ctx *hctx;
907 int i;
908
909 queue_for_each_hw_ctx(q, hctx, i)
910 blk_mq_start_hw_queue(hctx);
911 }
912 EXPORT_SYMBOL(blk_mq_start_hw_queues);
913
914
915 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
916 {
917 struct blk_mq_hw_ctx *hctx;
918 int i;
919
920 queue_for_each_hw_ctx(q, hctx, i) {
921 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
922 continue;
923
924 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
925 blk_mq_run_hw_queue(hctx, async);
926 }
927 }
928 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
929
930 static void blk_mq_run_work_fn(struct work_struct *work)
931 {
932 struct blk_mq_hw_ctx *hctx;
933
934 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
935
936 __blk_mq_run_hw_queue(hctx);
937 }
938
939 static void blk_mq_delay_work_fn(struct work_struct *work)
940 {
941 struct blk_mq_hw_ctx *hctx;
942
943 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
944
945 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
946 __blk_mq_run_hw_queue(hctx);
947 }
948
949 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
950 {
951 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
952 return;
953
954 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
955 &hctx->delay_work, msecs_to_jiffies(msecs));
956 }
957 EXPORT_SYMBOL(blk_mq_delay_queue);
958
959 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
960 struct request *rq, bool at_head)
961 {
962 struct blk_mq_ctx *ctx = rq->mq_ctx;
963
964 trace_block_rq_insert(hctx->queue, rq);
965
966 if (at_head)
967 list_add(&rq->queuelist, &ctx->rq_list);
968 else
969 list_add_tail(&rq->queuelist, &ctx->rq_list);
970
971 blk_mq_hctx_mark_pending(hctx, ctx);
972 }
973
974 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
975 bool async)
976 {
977 struct request_queue *q = rq->q;
978 struct blk_mq_hw_ctx *hctx;
979 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
980
981 current_ctx = blk_mq_get_ctx(q);
982 if (!cpu_online(ctx->cpu))
983 rq->mq_ctx = ctx = current_ctx;
984
985 hctx = q->mq_ops->map_queue(q, ctx->cpu);
986
987 spin_lock(&ctx->lock);
988 __blk_mq_insert_request(hctx, rq, at_head);
989 spin_unlock(&ctx->lock);
990
991 if (run_queue)
992 blk_mq_run_hw_queue(hctx, async);
993
994 blk_mq_put_ctx(current_ctx);
995 }
996
997 static void blk_mq_insert_requests(struct request_queue *q,
998 struct blk_mq_ctx *ctx,
999 struct list_head *list,
1000 int depth,
1001 bool from_schedule)
1002
1003 {
1004 struct blk_mq_hw_ctx *hctx;
1005 struct blk_mq_ctx *current_ctx;
1006
1007 trace_block_unplug(q, depth, !from_schedule);
1008
1009 current_ctx = blk_mq_get_ctx(q);
1010
1011 if (!cpu_online(ctx->cpu))
1012 ctx = current_ctx;
1013 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1014
1015 /*
1016 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1017 * offline now
1018 */
1019 spin_lock(&ctx->lock);
1020 while (!list_empty(list)) {
1021 struct request *rq;
1022
1023 rq = list_first_entry(list, struct request, queuelist);
1024 list_del_init(&rq->queuelist);
1025 rq->mq_ctx = ctx;
1026 __blk_mq_insert_request(hctx, rq, false);
1027 }
1028 spin_unlock(&ctx->lock);
1029
1030 blk_mq_run_hw_queue(hctx, from_schedule);
1031 blk_mq_put_ctx(current_ctx);
1032 }
1033
1034 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1035 {
1036 struct request *rqa = container_of(a, struct request, queuelist);
1037 struct request *rqb = container_of(b, struct request, queuelist);
1038
1039 return !(rqa->mq_ctx < rqb->mq_ctx ||
1040 (rqa->mq_ctx == rqb->mq_ctx &&
1041 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1042 }
1043
1044 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1045 {
1046 struct blk_mq_ctx *this_ctx;
1047 struct request_queue *this_q;
1048 struct request *rq;
1049 LIST_HEAD(list);
1050 LIST_HEAD(ctx_list);
1051 unsigned int depth;
1052
1053 list_splice_init(&plug->mq_list, &list);
1054
1055 list_sort(NULL, &list, plug_ctx_cmp);
1056
1057 this_q = NULL;
1058 this_ctx = NULL;
1059 depth = 0;
1060
1061 while (!list_empty(&list)) {
1062 rq = list_entry_rq(list.next);
1063 list_del_init(&rq->queuelist);
1064 BUG_ON(!rq->q);
1065 if (rq->mq_ctx != this_ctx) {
1066 if (this_ctx) {
1067 blk_mq_insert_requests(this_q, this_ctx,
1068 &ctx_list, depth,
1069 from_schedule);
1070 }
1071
1072 this_ctx = rq->mq_ctx;
1073 this_q = rq->q;
1074 depth = 0;
1075 }
1076
1077 depth++;
1078 list_add_tail(&rq->queuelist, &ctx_list);
1079 }
1080
1081 /*
1082 * If 'this_ctx' is set, we know we have entries to complete
1083 * on 'ctx_list'. Do those.
1084 */
1085 if (this_ctx) {
1086 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1087 from_schedule);
1088 }
1089 }
1090
1091 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1092 {
1093 init_request_from_bio(rq, bio);
1094
1095 if (blk_do_io_stat(rq))
1096 blk_account_io_start(rq, 1);
1097 }
1098
1099 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1100 {
1101 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1102 !blk_queue_nomerges(hctx->queue);
1103 }
1104
1105 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1106 struct blk_mq_ctx *ctx,
1107 struct request *rq, struct bio *bio)
1108 {
1109 if (!hctx_allow_merges(hctx)) {
1110 blk_mq_bio_to_request(rq, bio);
1111 spin_lock(&ctx->lock);
1112 insert_rq:
1113 __blk_mq_insert_request(hctx, rq, false);
1114 spin_unlock(&ctx->lock);
1115 return false;
1116 } else {
1117 struct request_queue *q = hctx->queue;
1118
1119 spin_lock(&ctx->lock);
1120 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1121 blk_mq_bio_to_request(rq, bio);
1122 goto insert_rq;
1123 }
1124
1125 spin_unlock(&ctx->lock);
1126 __blk_mq_free_request(hctx, ctx, rq);
1127 return true;
1128 }
1129 }
1130
1131 struct blk_map_ctx {
1132 struct blk_mq_hw_ctx *hctx;
1133 struct blk_mq_ctx *ctx;
1134 };
1135
1136 static struct request *blk_mq_map_request(struct request_queue *q,
1137 struct bio *bio,
1138 struct blk_map_ctx *data)
1139 {
1140 struct blk_mq_hw_ctx *hctx;
1141 struct blk_mq_ctx *ctx;
1142 struct request *rq;
1143 int rw = bio_data_dir(bio);
1144 struct blk_mq_alloc_data alloc_data;
1145
1146 if (unlikely(blk_mq_queue_enter(q))) {
1147 bio_endio(bio, -EIO);
1148 return NULL;
1149 }
1150
1151 ctx = blk_mq_get_ctx(q);
1152 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1153
1154 if (rw_is_sync(bio->bi_rw))
1155 rw |= REQ_SYNC;
1156
1157 trace_block_getrq(q, bio, rw);
1158 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1159 hctx);
1160 rq = __blk_mq_alloc_request(&alloc_data, rw);
1161 if (unlikely(!rq)) {
1162 __blk_mq_run_hw_queue(hctx);
1163 blk_mq_put_ctx(ctx);
1164 trace_block_sleeprq(q, bio, rw);
1165
1166 ctx = blk_mq_get_ctx(q);
1167 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1168 blk_mq_set_alloc_data(&alloc_data, q,
1169 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1170 rq = __blk_mq_alloc_request(&alloc_data, rw);
1171 ctx = alloc_data.ctx;
1172 hctx = alloc_data.hctx;
1173 }
1174
1175 hctx->queued++;
1176 data->hctx = hctx;
1177 data->ctx = ctx;
1178 return rq;
1179 }
1180
1181 /*
1182 * Multiple hardware queue variant. This will not use per-process plugs,
1183 * but will attempt to bypass the hctx queueing if we can go straight to
1184 * hardware for SYNC IO.
1185 */
1186 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1187 {
1188 const int is_sync = rw_is_sync(bio->bi_rw);
1189 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1190 struct blk_map_ctx data;
1191 struct request *rq;
1192
1193 blk_queue_bounce(q, &bio);
1194
1195 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1196 bio_endio(bio, -EIO);
1197 return;
1198 }
1199
1200 rq = blk_mq_map_request(q, bio, &data);
1201 if (unlikely(!rq))
1202 return;
1203
1204 if (unlikely(is_flush_fua)) {
1205 blk_mq_bio_to_request(rq, bio);
1206 blk_insert_flush(rq);
1207 goto run_queue;
1208 }
1209
1210 /*
1211 * If the driver supports defer issued based on 'last', then
1212 * queue it up like normal since we can potentially save some
1213 * CPU this way.
1214 */
1215 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1216 struct blk_mq_queue_data bd = {
1217 .rq = rq,
1218 .list = NULL,
1219 .last = 1
1220 };
1221 int ret;
1222
1223 blk_mq_bio_to_request(rq, bio);
1224
1225 /*
1226 * For OK queue, we are done. For error, kill it. Any other
1227 * error (busy), just add it to our list as we previously
1228 * would have done
1229 */
1230 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1231 if (ret == BLK_MQ_RQ_QUEUE_OK)
1232 goto done;
1233 else {
1234 __blk_mq_requeue_request(rq);
1235
1236 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1237 rq->errors = -EIO;
1238 blk_mq_end_request(rq, rq->errors);
1239 goto done;
1240 }
1241 }
1242 }
1243
1244 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1245 /*
1246 * For a SYNC request, send it to the hardware immediately. For
1247 * an ASYNC request, just ensure that we run it later on. The
1248 * latter allows for merging opportunities and more efficient
1249 * dispatching.
1250 */
1251 run_queue:
1252 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1253 }
1254 done:
1255 blk_mq_put_ctx(data.ctx);
1256 }
1257
1258 /*
1259 * Single hardware queue variant. This will attempt to use any per-process
1260 * plug for merging and IO deferral.
1261 */
1262 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1263 {
1264 const int is_sync = rw_is_sync(bio->bi_rw);
1265 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1266 unsigned int use_plug, request_count = 0;
1267 struct blk_map_ctx data;
1268 struct request *rq;
1269
1270 /*
1271 * If we have multiple hardware queues, just go directly to
1272 * one of those for sync IO.
1273 */
1274 use_plug = !is_flush_fua && !is_sync;
1275
1276 blk_queue_bounce(q, &bio);
1277
1278 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1279 bio_endio(bio, -EIO);
1280 return;
1281 }
1282
1283 if (use_plug && !blk_queue_nomerges(q) &&
1284 blk_attempt_plug_merge(q, bio, &request_count))
1285 return;
1286
1287 rq = blk_mq_map_request(q, bio, &data);
1288 if (unlikely(!rq))
1289 return;
1290
1291 if (unlikely(is_flush_fua)) {
1292 blk_mq_bio_to_request(rq, bio);
1293 blk_insert_flush(rq);
1294 goto run_queue;
1295 }
1296
1297 /*
1298 * A task plug currently exists. Since this is completely lockless,
1299 * utilize that to temporarily store requests until the task is
1300 * either done or scheduled away.
1301 */
1302 if (use_plug) {
1303 struct blk_plug *plug = current->plug;
1304
1305 if (plug) {
1306 blk_mq_bio_to_request(rq, bio);
1307 if (list_empty(&plug->mq_list))
1308 trace_block_plug(q);
1309 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1310 blk_flush_plug_list(plug, false);
1311 trace_block_plug(q);
1312 }
1313 list_add_tail(&rq->queuelist, &plug->mq_list);
1314 blk_mq_put_ctx(data.ctx);
1315 return;
1316 }
1317 }
1318
1319 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1320 /*
1321 * For a SYNC request, send it to the hardware immediately. For
1322 * an ASYNC request, just ensure that we run it later on. The
1323 * latter allows for merging opportunities and more efficient
1324 * dispatching.
1325 */
1326 run_queue:
1327 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1328 }
1329
1330 blk_mq_put_ctx(data.ctx);
1331 }
1332
1333 /*
1334 * Default mapping to a software queue, since we use one per CPU.
1335 */
1336 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1337 {
1338 return q->queue_hw_ctx[q->mq_map[cpu]];
1339 }
1340 EXPORT_SYMBOL(blk_mq_map_queue);
1341
1342 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1343 struct blk_mq_tags *tags, unsigned int hctx_idx)
1344 {
1345 struct page *page;
1346
1347 if (tags->rqs && set->ops->exit_request) {
1348 int i;
1349
1350 for (i = 0; i < tags->nr_tags; i++) {
1351 if (!tags->rqs[i])
1352 continue;
1353 set->ops->exit_request(set->driver_data, tags->rqs[i],
1354 hctx_idx, i);
1355 tags->rqs[i] = NULL;
1356 }
1357 }
1358
1359 while (!list_empty(&tags->page_list)) {
1360 page = list_first_entry(&tags->page_list, struct page, lru);
1361 list_del_init(&page->lru);
1362 __free_pages(page, page->private);
1363 }
1364
1365 kfree(tags->rqs);
1366
1367 blk_mq_free_tags(tags);
1368 }
1369
1370 static size_t order_to_size(unsigned int order)
1371 {
1372 return (size_t)PAGE_SIZE << order;
1373 }
1374
1375 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1376 unsigned int hctx_idx)
1377 {
1378 struct blk_mq_tags *tags;
1379 unsigned int i, j, entries_per_page, max_order = 4;
1380 size_t rq_size, left;
1381
1382 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1383 set->numa_node);
1384 if (!tags)
1385 return NULL;
1386
1387 INIT_LIST_HEAD(&tags->page_list);
1388
1389 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1390 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1391 set->numa_node);
1392 if (!tags->rqs) {
1393 blk_mq_free_tags(tags);
1394 return NULL;
1395 }
1396
1397 /*
1398 * rq_size is the size of the request plus driver payload, rounded
1399 * to the cacheline size
1400 */
1401 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1402 cache_line_size());
1403 left = rq_size * set->queue_depth;
1404
1405 for (i = 0; i < set->queue_depth; ) {
1406 int this_order = max_order;
1407 struct page *page;
1408 int to_do;
1409 void *p;
1410
1411 while (left < order_to_size(this_order - 1) && this_order)
1412 this_order--;
1413
1414 do {
1415 page = alloc_pages_node(set->numa_node,
1416 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1417 this_order);
1418 if (page)
1419 break;
1420 if (!this_order--)
1421 break;
1422 if (order_to_size(this_order) < rq_size)
1423 break;
1424 } while (1);
1425
1426 if (!page)
1427 goto fail;
1428
1429 page->private = this_order;
1430 list_add_tail(&page->lru, &tags->page_list);
1431
1432 p = page_address(page);
1433 entries_per_page = order_to_size(this_order) / rq_size;
1434 to_do = min(entries_per_page, set->queue_depth - i);
1435 left -= to_do * rq_size;
1436 for (j = 0; j < to_do; j++) {
1437 tags->rqs[i] = p;
1438 tags->rqs[i]->atomic_flags = 0;
1439 tags->rqs[i]->cmd_flags = 0;
1440 if (set->ops->init_request) {
1441 if (set->ops->init_request(set->driver_data,
1442 tags->rqs[i], hctx_idx, i,
1443 set->numa_node)) {
1444 tags->rqs[i] = NULL;
1445 goto fail;
1446 }
1447 }
1448
1449 p += rq_size;
1450 i++;
1451 }
1452 }
1453
1454 return tags;
1455
1456 fail:
1457 blk_mq_free_rq_map(set, tags, hctx_idx);
1458 return NULL;
1459 }
1460
1461 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1462 {
1463 kfree(bitmap->map);
1464 }
1465
1466 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1467 {
1468 unsigned int bpw = 8, total, num_maps, i;
1469
1470 bitmap->bits_per_word = bpw;
1471
1472 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1473 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1474 GFP_KERNEL, node);
1475 if (!bitmap->map)
1476 return -ENOMEM;
1477
1478 bitmap->map_size = num_maps;
1479
1480 total = nr_cpu_ids;
1481 for (i = 0; i < num_maps; i++) {
1482 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1483 total -= bitmap->map[i].depth;
1484 }
1485
1486 return 0;
1487 }
1488
1489 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1490 {
1491 struct request_queue *q = hctx->queue;
1492 struct blk_mq_ctx *ctx;
1493 LIST_HEAD(tmp);
1494
1495 /*
1496 * Move ctx entries to new CPU, if this one is going away.
1497 */
1498 ctx = __blk_mq_get_ctx(q, cpu);
1499
1500 spin_lock(&ctx->lock);
1501 if (!list_empty(&ctx->rq_list)) {
1502 list_splice_init(&ctx->rq_list, &tmp);
1503 blk_mq_hctx_clear_pending(hctx, ctx);
1504 }
1505 spin_unlock(&ctx->lock);
1506
1507 if (list_empty(&tmp))
1508 return NOTIFY_OK;
1509
1510 ctx = blk_mq_get_ctx(q);
1511 spin_lock(&ctx->lock);
1512
1513 while (!list_empty(&tmp)) {
1514 struct request *rq;
1515
1516 rq = list_first_entry(&tmp, struct request, queuelist);
1517 rq->mq_ctx = ctx;
1518 list_move_tail(&rq->queuelist, &ctx->rq_list);
1519 }
1520
1521 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1522 blk_mq_hctx_mark_pending(hctx, ctx);
1523
1524 spin_unlock(&ctx->lock);
1525
1526 blk_mq_run_hw_queue(hctx, true);
1527 blk_mq_put_ctx(ctx);
1528 return NOTIFY_OK;
1529 }
1530
1531 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1532 {
1533 struct request_queue *q = hctx->queue;
1534 struct blk_mq_tag_set *set = q->tag_set;
1535
1536 if (set->tags[hctx->queue_num])
1537 return NOTIFY_OK;
1538
1539 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1540 if (!set->tags[hctx->queue_num])
1541 return NOTIFY_STOP;
1542
1543 hctx->tags = set->tags[hctx->queue_num];
1544 return NOTIFY_OK;
1545 }
1546
1547 static int blk_mq_hctx_notify(void *data, unsigned long action,
1548 unsigned int cpu)
1549 {
1550 struct blk_mq_hw_ctx *hctx = data;
1551
1552 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1553 return blk_mq_hctx_cpu_offline(hctx, cpu);
1554 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1555 return blk_mq_hctx_cpu_online(hctx, cpu);
1556
1557 return NOTIFY_OK;
1558 }
1559
1560 static void blk_mq_exit_hctx(struct request_queue *q,
1561 struct blk_mq_tag_set *set,
1562 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1563 {
1564 unsigned flush_start_tag = set->queue_depth;
1565
1566 blk_mq_tag_idle(hctx);
1567
1568 if (set->ops->exit_request)
1569 set->ops->exit_request(set->driver_data,
1570 hctx->fq->flush_rq, hctx_idx,
1571 flush_start_tag + hctx_idx);
1572
1573 if (set->ops->exit_hctx)
1574 set->ops->exit_hctx(hctx, hctx_idx);
1575
1576 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1577 blk_free_flush_queue(hctx->fq);
1578 kfree(hctx->ctxs);
1579 blk_mq_free_bitmap(&hctx->ctx_map);
1580 }
1581
1582 static void blk_mq_exit_hw_queues(struct request_queue *q,
1583 struct blk_mq_tag_set *set, int nr_queue)
1584 {
1585 struct blk_mq_hw_ctx *hctx;
1586 unsigned int i;
1587
1588 queue_for_each_hw_ctx(q, hctx, i) {
1589 if (i == nr_queue)
1590 break;
1591 blk_mq_exit_hctx(q, set, hctx, i);
1592 }
1593 }
1594
1595 static void blk_mq_free_hw_queues(struct request_queue *q,
1596 struct blk_mq_tag_set *set)
1597 {
1598 struct blk_mq_hw_ctx *hctx;
1599 unsigned int i;
1600
1601 queue_for_each_hw_ctx(q, hctx, i) {
1602 free_cpumask_var(hctx->cpumask);
1603 kfree(hctx);
1604 }
1605 }
1606
1607 static int blk_mq_init_hctx(struct request_queue *q,
1608 struct blk_mq_tag_set *set,
1609 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1610 {
1611 int node;
1612 unsigned flush_start_tag = set->queue_depth;
1613
1614 node = hctx->numa_node;
1615 if (node == NUMA_NO_NODE)
1616 node = hctx->numa_node = set->numa_node;
1617
1618 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1619 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1620 spin_lock_init(&hctx->lock);
1621 INIT_LIST_HEAD(&hctx->dispatch);
1622 hctx->queue = q;
1623 hctx->queue_num = hctx_idx;
1624 hctx->flags = set->flags;
1625
1626 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1627 blk_mq_hctx_notify, hctx);
1628 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1629
1630 hctx->tags = set->tags[hctx_idx];
1631
1632 /*
1633 * Allocate space for all possible cpus to avoid allocation at
1634 * runtime
1635 */
1636 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1637 GFP_KERNEL, node);
1638 if (!hctx->ctxs)
1639 goto unregister_cpu_notifier;
1640
1641 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1642 goto free_ctxs;
1643
1644 hctx->nr_ctx = 0;
1645
1646 if (set->ops->init_hctx &&
1647 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1648 goto free_bitmap;
1649
1650 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1651 if (!hctx->fq)
1652 goto exit_hctx;
1653
1654 if (set->ops->init_request &&
1655 set->ops->init_request(set->driver_data,
1656 hctx->fq->flush_rq, hctx_idx,
1657 flush_start_tag + hctx_idx, node))
1658 goto free_fq;
1659
1660 return 0;
1661
1662 free_fq:
1663 kfree(hctx->fq);
1664 exit_hctx:
1665 if (set->ops->exit_hctx)
1666 set->ops->exit_hctx(hctx, hctx_idx);
1667 free_bitmap:
1668 blk_mq_free_bitmap(&hctx->ctx_map);
1669 free_ctxs:
1670 kfree(hctx->ctxs);
1671 unregister_cpu_notifier:
1672 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1673
1674 return -1;
1675 }
1676
1677 static int blk_mq_init_hw_queues(struct request_queue *q,
1678 struct blk_mq_tag_set *set)
1679 {
1680 struct blk_mq_hw_ctx *hctx;
1681 unsigned int i;
1682
1683 /*
1684 * Initialize hardware queues
1685 */
1686 queue_for_each_hw_ctx(q, hctx, i) {
1687 if (blk_mq_init_hctx(q, set, hctx, i))
1688 break;
1689 }
1690
1691 if (i == q->nr_hw_queues)
1692 return 0;
1693
1694 /*
1695 * Init failed
1696 */
1697 blk_mq_exit_hw_queues(q, set, i);
1698
1699 return 1;
1700 }
1701
1702 static void blk_mq_init_cpu_queues(struct request_queue *q,
1703 unsigned int nr_hw_queues)
1704 {
1705 unsigned int i;
1706
1707 for_each_possible_cpu(i) {
1708 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1709 struct blk_mq_hw_ctx *hctx;
1710
1711 memset(__ctx, 0, sizeof(*__ctx));
1712 __ctx->cpu = i;
1713 spin_lock_init(&__ctx->lock);
1714 INIT_LIST_HEAD(&__ctx->rq_list);
1715 __ctx->queue = q;
1716
1717 /* If the cpu isn't online, the cpu is mapped to first hctx */
1718 if (!cpu_online(i))
1719 continue;
1720
1721 hctx = q->mq_ops->map_queue(q, i);
1722 cpumask_set_cpu(i, hctx->cpumask);
1723 hctx->nr_ctx++;
1724
1725 /*
1726 * Set local node, IFF we have more than one hw queue. If
1727 * not, we remain on the home node of the device
1728 */
1729 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1730 hctx->numa_node = cpu_to_node(i);
1731 }
1732 }
1733
1734 static void blk_mq_map_swqueue(struct request_queue *q)
1735 {
1736 unsigned int i;
1737 struct blk_mq_hw_ctx *hctx;
1738 struct blk_mq_ctx *ctx;
1739
1740 queue_for_each_hw_ctx(q, hctx, i) {
1741 cpumask_clear(hctx->cpumask);
1742 hctx->nr_ctx = 0;
1743 }
1744
1745 /*
1746 * Map software to hardware queues
1747 */
1748 queue_for_each_ctx(q, ctx, i) {
1749 /* If the cpu isn't online, the cpu is mapped to first hctx */
1750 if (!cpu_online(i))
1751 continue;
1752
1753 hctx = q->mq_ops->map_queue(q, i);
1754 cpumask_set_cpu(i, hctx->cpumask);
1755 ctx->index_hw = hctx->nr_ctx;
1756 hctx->ctxs[hctx->nr_ctx++] = ctx;
1757 }
1758
1759 queue_for_each_hw_ctx(q, hctx, i) {
1760 /*
1761 * If no software queues are mapped to this hardware queue,
1762 * disable it and free the request entries.
1763 */
1764 if (!hctx->nr_ctx) {
1765 struct blk_mq_tag_set *set = q->tag_set;
1766
1767 if (set->tags[i]) {
1768 blk_mq_free_rq_map(set, set->tags[i], i);
1769 set->tags[i] = NULL;
1770 hctx->tags = NULL;
1771 }
1772 continue;
1773 }
1774
1775 /*
1776 * Initialize batch roundrobin counts
1777 */
1778 hctx->next_cpu = cpumask_first(hctx->cpumask);
1779 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1780 }
1781 }
1782
1783 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1784 {
1785 struct blk_mq_hw_ctx *hctx;
1786 struct request_queue *q;
1787 bool shared;
1788 int i;
1789
1790 if (set->tag_list.next == set->tag_list.prev)
1791 shared = false;
1792 else
1793 shared = true;
1794
1795 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1796 blk_mq_freeze_queue(q);
1797
1798 queue_for_each_hw_ctx(q, hctx, i) {
1799 if (shared)
1800 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1801 else
1802 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1803 }
1804 blk_mq_unfreeze_queue(q);
1805 }
1806 }
1807
1808 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1809 {
1810 struct blk_mq_tag_set *set = q->tag_set;
1811
1812 mutex_lock(&set->tag_list_lock);
1813 list_del_init(&q->tag_set_list);
1814 blk_mq_update_tag_set_depth(set);
1815 mutex_unlock(&set->tag_list_lock);
1816 }
1817
1818 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1819 struct request_queue *q)
1820 {
1821 q->tag_set = set;
1822
1823 mutex_lock(&set->tag_list_lock);
1824 list_add_tail(&q->tag_set_list, &set->tag_list);
1825 blk_mq_update_tag_set_depth(set);
1826 mutex_unlock(&set->tag_list_lock);
1827 }
1828
1829 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1830 {
1831 struct blk_mq_hw_ctx **hctxs;
1832 struct blk_mq_ctx __percpu *ctx;
1833 struct request_queue *q;
1834 unsigned int *map;
1835 int i;
1836
1837 ctx = alloc_percpu(struct blk_mq_ctx);
1838 if (!ctx)
1839 return ERR_PTR(-ENOMEM);
1840
1841 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1842 set->numa_node);
1843
1844 if (!hctxs)
1845 goto err_percpu;
1846
1847 map = blk_mq_make_queue_map(set);
1848 if (!map)
1849 goto err_map;
1850
1851 for (i = 0; i < set->nr_hw_queues; i++) {
1852 int node = blk_mq_hw_queue_to_node(map, i);
1853
1854 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1855 GFP_KERNEL, node);
1856 if (!hctxs[i])
1857 goto err_hctxs;
1858
1859 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1860 node))
1861 goto err_hctxs;
1862
1863 atomic_set(&hctxs[i]->nr_active, 0);
1864 hctxs[i]->numa_node = node;
1865 hctxs[i]->queue_num = i;
1866 }
1867
1868 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1869 if (!q)
1870 goto err_hctxs;
1871
1872 /*
1873 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1874 * See blk_register_queue() for details.
1875 */
1876 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1877 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1878 goto err_map;
1879
1880 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1881 blk_queue_rq_timeout(q, 30000);
1882
1883 q->nr_queues = nr_cpu_ids;
1884 q->nr_hw_queues = set->nr_hw_queues;
1885 q->mq_map = map;
1886
1887 q->queue_ctx = ctx;
1888 q->queue_hw_ctx = hctxs;
1889
1890 q->mq_ops = set->ops;
1891 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1892
1893 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1894 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1895
1896 q->sg_reserved_size = INT_MAX;
1897
1898 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1899 INIT_LIST_HEAD(&q->requeue_list);
1900 spin_lock_init(&q->requeue_lock);
1901
1902 if (q->nr_hw_queues > 1)
1903 blk_queue_make_request(q, blk_mq_make_request);
1904 else
1905 blk_queue_make_request(q, blk_sq_make_request);
1906
1907 if (set->timeout)
1908 blk_queue_rq_timeout(q, set->timeout);
1909
1910 /*
1911 * Do this after blk_queue_make_request() overrides it...
1912 */
1913 q->nr_requests = set->queue_depth;
1914
1915 if (set->ops->complete)
1916 blk_queue_softirq_done(q, set->ops->complete);
1917
1918 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1919
1920 if (blk_mq_init_hw_queues(q, set))
1921 goto err_hw;
1922
1923 mutex_lock(&all_q_mutex);
1924 list_add_tail(&q->all_q_node, &all_q_list);
1925 mutex_unlock(&all_q_mutex);
1926
1927 blk_mq_add_queue_tag_set(set, q);
1928
1929 blk_mq_map_swqueue(q);
1930
1931 return q;
1932
1933 err_hw:
1934 blk_cleanup_queue(q);
1935 err_hctxs:
1936 kfree(map);
1937 for (i = 0; i < set->nr_hw_queues; i++) {
1938 if (!hctxs[i])
1939 break;
1940 free_cpumask_var(hctxs[i]->cpumask);
1941 kfree(hctxs[i]);
1942 }
1943 err_map:
1944 kfree(hctxs);
1945 err_percpu:
1946 free_percpu(ctx);
1947 return ERR_PTR(-ENOMEM);
1948 }
1949 EXPORT_SYMBOL(blk_mq_init_queue);
1950
1951 void blk_mq_free_queue(struct request_queue *q)
1952 {
1953 struct blk_mq_tag_set *set = q->tag_set;
1954
1955 blk_mq_del_queue_tag_set(q);
1956
1957 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1958 blk_mq_free_hw_queues(q, set);
1959
1960 percpu_ref_exit(&q->mq_usage_counter);
1961
1962 free_percpu(q->queue_ctx);
1963 kfree(q->queue_hw_ctx);
1964 kfree(q->mq_map);
1965
1966 q->queue_ctx = NULL;
1967 q->queue_hw_ctx = NULL;
1968 q->mq_map = NULL;
1969
1970 mutex_lock(&all_q_mutex);
1971 list_del_init(&q->all_q_node);
1972 mutex_unlock(&all_q_mutex);
1973 }
1974
1975 /* Basically redo blk_mq_init_queue with queue frozen */
1976 static void blk_mq_queue_reinit(struct request_queue *q)
1977 {
1978 WARN_ON_ONCE(!q->mq_freeze_depth);
1979
1980 blk_mq_sysfs_unregister(q);
1981
1982 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1983
1984 /*
1985 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1986 * we should change hctx numa_node according to new topology (this
1987 * involves free and re-allocate memory, worthy doing?)
1988 */
1989
1990 blk_mq_map_swqueue(q);
1991
1992 blk_mq_sysfs_register(q);
1993 }
1994
1995 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1996 unsigned long action, void *hcpu)
1997 {
1998 struct request_queue *q;
1999
2000 /*
2001 * Before new mappings are established, hotadded cpu might already
2002 * start handling requests. This doesn't break anything as we map
2003 * offline CPUs to first hardware queue. We will re-init the queue
2004 * below to get optimal settings.
2005 */
2006 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2007 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2008 return NOTIFY_OK;
2009
2010 mutex_lock(&all_q_mutex);
2011
2012 /*
2013 * We need to freeze and reinit all existing queues. Freezing
2014 * involves synchronous wait for an RCU grace period and doing it
2015 * one by one may take a long time. Start freezing all queues in
2016 * one swoop and then wait for the completions so that freezing can
2017 * take place in parallel.
2018 */
2019 list_for_each_entry(q, &all_q_list, all_q_node)
2020 blk_mq_freeze_queue_start(q);
2021 list_for_each_entry(q, &all_q_list, all_q_node)
2022 blk_mq_freeze_queue_wait(q);
2023
2024 list_for_each_entry(q, &all_q_list, all_q_node)
2025 blk_mq_queue_reinit(q);
2026
2027 list_for_each_entry(q, &all_q_list, all_q_node)
2028 blk_mq_unfreeze_queue(q);
2029
2030 mutex_unlock(&all_q_mutex);
2031 return NOTIFY_OK;
2032 }
2033
2034 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2035 {
2036 int i;
2037
2038 for (i = 0; i < set->nr_hw_queues; i++) {
2039 set->tags[i] = blk_mq_init_rq_map(set, i);
2040 if (!set->tags[i])
2041 goto out_unwind;
2042 }
2043
2044 return 0;
2045
2046 out_unwind:
2047 while (--i >= 0)
2048 blk_mq_free_rq_map(set, set->tags[i], i);
2049
2050 return -ENOMEM;
2051 }
2052
2053 /*
2054 * Allocate the request maps associated with this tag_set. Note that this
2055 * may reduce the depth asked for, if memory is tight. set->queue_depth
2056 * will be updated to reflect the allocated depth.
2057 */
2058 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2059 {
2060 unsigned int depth;
2061 int err;
2062
2063 depth = set->queue_depth;
2064 do {
2065 err = __blk_mq_alloc_rq_maps(set);
2066 if (!err)
2067 break;
2068
2069 set->queue_depth >>= 1;
2070 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2071 err = -ENOMEM;
2072 break;
2073 }
2074 } while (set->queue_depth);
2075
2076 if (!set->queue_depth || err) {
2077 pr_err("blk-mq: failed to allocate request map\n");
2078 return -ENOMEM;
2079 }
2080
2081 if (depth != set->queue_depth)
2082 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2083 depth, set->queue_depth);
2084
2085 return 0;
2086 }
2087
2088 /*
2089 * Alloc a tag set to be associated with one or more request queues.
2090 * May fail with EINVAL for various error conditions. May adjust the
2091 * requested depth down, if if it too large. In that case, the set
2092 * value will be stored in set->queue_depth.
2093 */
2094 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2095 {
2096 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2097
2098 if (!set->nr_hw_queues)
2099 return -EINVAL;
2100 if (!set->queue_depth)
2101 return -EINVAL;
2102 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2103 return -EINVAL;
2104
2105 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2106 return -EINVAL;
2107
2108 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2109 pr_info("blk-mq: reduced tag depth to %u\n",
2110 BLK_MQ_MAX_DEPTH);
2111 set->queue_depth = BLK_MQ_MAX_DEPTH;
2112 }
2113
2114 /*
2115 * If a crashdump is active, then we are potentially in a very
2116 * memory constrained environment. Limit us to 1 queue and
2117 * 64 tags to prevent using too much memory.
2118 */
2119 if (is_kdump_kernel()) {
2120 set->nr_hw_queues = 1;
2121 set->queue_depth = min(64U, set->queue_depth);
2122 }
2123
2124 set->tags = kmalloc_node(set->nr_hw_queues *
2125 sizeof(struct blk_mq_tags *),
2126 GFP_KERNEL, set->numa_node);
2127 if (!set->tags)
2128 return -ENOMEM;
2129
2130 if (blk_mq_alloc_rq_maps(set))
2131 goto enomem;
2132
2133 mutex_init(&set->tag_list_lock);
2134 INIT_LIST_HEAD(&set->tag_list);
2135
2136 return 0;
2137 enomem:
2138 kfree(set->tags);
2139 set->tags = NULL;
2140 return -ENOMEM;
2141 }
2142 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2143
2144 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2145 {
2146 int i;
2147
2148 for (i = 0; i < set->nr_hw_queues; i++) {
2149 if (set->tags[i])
2150 blk_mq_free_rq_map(set, set->tags[i], i);
2151 }
2152
2153 kfree(set->tags);
2154 set->tags = NULL;
2155 }
2156 EXPORT_SYMBOL(blk_mq_free_tag_set);
2157
2158 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2159 {
2160 struct blk_mq_tag_set *set = q->tag_set;
2161 struct blk_mq_hw_ctx *hctx;
2162 int i, ret;
2163
2164 if (!set || nr > set->queue_depth)
2165 return -EINVAL;
2166
2167 ret = 0;
2168 queue_for_each_hw_ctx(q, hctx, i) {
2169 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2170 if (ret)
2171 break;
2172 }
2173
2174 if (!ret)
2175 q->nr_requests = nr;
2176
2177 return ret;
2178 }
2179
2180 void blk_mq_disable_hotplug(void)
2181 {
2182 mutex_lock(&all_q_mutex);
2183 }
2184
2185 void blk_mq_enable_hotplug(void)
2186 {
2187 mutex_unlock(&all_q_mutex);
2188 }
2189
2190 static int __init blk_mq_init(void)
2191 {
2192 blk_mq_cpu_init();
2193
2194 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2195
2196 return 0;
2197 }
2198 subsys_initcall(blk_mq_init);