]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
ataflop: fix error handling in atari_floppy_init()
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47 int ddir, bytes, bucket;
48
49 ddir = rq_data_dir(rq);
50 bytes = blk_rq_bytes(rq);
51
52 bucket = ddir + 2*(ilog2(bytes) - 9);
53
54 if (bucket < 0)
55 return -1;
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59 return bucket;
60 }
61
62 /*
63 * Check if any of the ctx's have pending work in this hardware queue
64 */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67 return !list_empty_careful(&hctx->dispatch) ||
68 sbitmap_any_bit_set(&hctx->ctx_map) ||
69 blk_mq_sched_has_work(hctx);
70 }
71
72 /*
73 * Mark this ctx as having pending work in this hardware queue
74 */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 struct blk_mq_ctx *ctx)
77 {
78 const int bit = ctx->index_hw[hctx->type];
79
80 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
81 sbitmap_set_bit(&hctx->ctx_map, bit);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85 struct blk_mq_ctx *ctx)
86 {
87 const int bit = ctx->index_hw[hctx->type];
88
89 sbitmap_clear_bit(&hctx->ctx_map, bit);
90 }
91
92 struct mq_inflight {
93 struct hd_struct *part;
94 unsigned int *inflight;
95 };
96
97 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
98 struct request *rq, void *priv,
99 bool reserved)
100 {
101 struct mq_inflight *mi = priv;
102
103 /*
104 * index[0] counts the specific partition that was asked for. index[1]
105 * counts the ones that are active on the whole device, so increment
106 * that if mi->part is indeed a partition, and not a whole device.
107 */
108 if (rq->part == mi->part)
109 mi->inflight[0]++;
110 if (mi->part->partno)
111 mi->inflight[1]++;
112
113 return true;
114 }
115
116 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
117 unsigned int inflight[2])
118 {
119 struct mq_inflight mi = { .part = part, .inflight = inflight, };
120
121 inflight[0] = inflight[1] = 0;
122 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
123 }
124
125 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
126 struct request *rq, void *priv,
127 bool reserved)
128 {
129 struct mq_inflight *mi = priv;
130
131 if (rq->part == mi->part)
132 mi->inflight[rq_data_dir(rq)]++;
133
134 return true;
135 }
136
137 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
138 unsigned int inflight[2])
139 {
140 struct mq_inflight mi = { .part = part, .inflight = inflight, };
141
142 inflight[0] = inflight[1] = 0;
143 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
144 }
145
146 void blk_freeze_queue_start(struct request_queue *q)
147 {
148 int freeze_depth;
149
150 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
151 if (freeze_depth == 1) {
152 percpu_ref_kill(&q->q_usage_counter);
153 if (queue_is_mq(q))
154 blk_mq_run_hw_queues(q, false);
155 }
156 }
157 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
158
159 void blk_mq_freeze_queue_wait(struct request_queue *q)
160 {
161 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
164
165 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
166 unsigned long timeout)
167 {
168 return wait_event_timeout(q->mq_freeze_wq,
169 percpu_ref_is_zero(&q->q_usage_counter),
170 timeout);
171 }
172 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
173
174 /*
175 * Guarantee no request is in use, so we can change any data structure of
176 * the queue afterward.
177 */
178 void blk_freeze_queue(struct request_queue *q)
179 {
180 /*
181 * In the !blk_mq case we are only calling this to kill the
182 * q_usage_counter, otherwise this increases the freeze depth
183 * and waits for it to return to zero. For this reason there is
184 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
185 * exported to drivers as the only user for unfreeze is blk_mq.
186 */
187 blk_freeze_queue_start(q);
188 blk_mq_freeze_queue_wait(q);
189 }
190
191 void blk_mq_freeze_queue(struct request_queue *q)
192 {
193 /*
194 * ...just an alias to keep freeze and unfreeze actions balanced
195 * in the blk_mq_* namespace
196 */
197 blk_freeze_queue(q);
198 }
199 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
200
201 void blk_mq_unfreeze_queue(struct request_queue *q)
202 {
203 int freeze_depth;
204
205 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
206 WARN_ON_ONCE(freeze_depth < 0);
207 if (!freeze_depth) {
208 percpu_ref_resurrect(&q->q_usage_counter);
209 wake_up_all(&q->mq_freeze_wq);
210 }
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
213
214 /*
215 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
216 * mpt3sas driver such that this function can be removed.
217 */
218 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
219 {
220 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 }
222 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
223
224 /**
225 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
226 * @q: request queue.
227 *
228 * Note: this function does not prevent that the struct request end_io()
229 * callback function is invoked. Once this function is returned, we make
230 * sure no dispatch can happen until the queue is unquiesced via
231 * blk_mq_unquiesce_queue().
232 */
233 void blk_mq_quiesce_queue(struct request_queue *q)
234 {
235 struct blk_mq_hw_ctx *hctx;
236 unsigned int i;
237 bool rcu = false;
238
239 blk_mq_quiesce_queue_nowait(q);
240
241 queue_for_each_hw_ctx(q, hctx, i) {
242 if (hctx->flags & BLK_MQ_F_BLOCKING)
243 synchronize_srcu(hctx->srcu);
244 else
245 rcu = true;
246 }
247 if (rcu)
248 synchronize_rcu();
249 }
250 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251
252 /*
253 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254 * @q: request queue.
255 *
256 * This function recovers queue into the state before quiescing
257 * which is done by blk_mq_quiesce_queue.
258 */
259 void blk_mq_unquiesce_queue(struct request_queue *q)
260 {
261 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
262
263 /* dispatch requests which are inserted during quiescing */
264 blk_mq_run_hw_queues(q, true);
265 }
266 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
267
268 void blk_mq_wake_waiters(struct request_queue *q)
269 {
270 struct blk_mq_hw_ctx *hctx;
271 unsigned int i;
272
273 queue_for_each_hw_ctx(q, hctx, i)
274 if (blk_mq_hw_queue_mapped(hctx))
275 blk_mq_tag_wakeup_all(hctx->tags, true);
276 }
277
278 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
279 {
280 return blk_mq_has_free_tags(hctx->tags);
281 }
282 EXPORT_SYMBOL(blk_mq_can_queue);
283
284 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
285 unsigned int tag, unsigned int op)
286 {
287 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
288 struct request *rq = tags->static_rqs[tag];
289 req_flags_t rq_flags = 0;
290
291 if (data->flags & BLK_MQ_REQ_INTERNAL) {
292 rq->tag = -1;
293 rq->internal_tag = tag;
294 } else {
295 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
296 rq_flags = RQF_MQ_INFLIGHT;
297 atomic_inc(&data->hctx->nr_active);
298 }
299 rq->tag = tag;
300 rq->internal_tag = -1;
301 data->hctx->tags->rqs[rq->tag] = rq;
302 }
303
304 /* csd/requeue_work/fifo_time is initialized before use */
305 rq->q = data->q;
306 rq->mq_ctx = data->ctx;
307 rq->mq_hctx = data->hctx;
308 rq->rq_flags = rq_flags;
309 rq->cmd_flags = op;
310 if (data->flags & BLK_MQ_REQ_PREEMPT)
311 rq->rq_flags |= RQF_PREEMPT;
312 if (blk_queue_io_stat(data->q))
313 rq->rq_flags |= RQF_IO_STAT;
314 INIT_LIST_HEAD(&rq->queuelist);
315 INIT_HLIST_NODE(&rq->hash);
316 RB_CLEAR_NODE(&rq->rb_node);
317 rq->rq_disk = NULL;
318 rq->part = NULL;
319 rq->start_time_ns = ktime_get_ns();
320 rq->io_start_time_ns = 0;
321 rq->nr_phys_segments = 0;
322 #if defined(CONFIG_BLK_DEV_INTEGRITY)
323 rq->nr_integrity_segments = 0;
324 #endif
325 rq->special = NULL;
326 /* tag was already set */
327 rq->extra_len = 0;
328 WRITE_ONCE(rq->deadline, 0);
329
330 rq->timeout = 0;
331
332 rq->end_io = NULL;
333 rq->end_io_data = NULL;
334 rq->next_rq = NULL;
335
336 data->ctx->rq_dispatched[op_is_sync(op)]++;
337 refcount_set(&rq->ref, 1);
338 return rq;
339 }
340
341 static struct request *blk_mq_get_request(struct request_queue *q,
342 struct bio *bio,
343 struct blk_mq_alloc_data *data)
344 {
345 struct elevator_queue *e = q->elevator;
346 struct request *rq;
347 unsigned int tag;
348 bool put_ctx_on_error = false;
349
350 blk_queue_enter_live(q);
351 data->q = q;
352 if (likely(!data->ctx)) {
353 data->ctx = blk_mq_get_ctx(q);
354 put_ctx_on_error = true;
355 }
356 if (likely(!data->hctx))
357 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
358 data->ctx->cpu);
359 if (data->cmd_flags & REQ_NOWAIT)
360 data->flags |= BLK_MQ_REQ_NOWAIT;
361
362 if (e) {
363 data->flags |= BLK_MQ_REQ_INTERNAL;
364
365 /*
366 * Flush requests are special and go directly to the
367 * dispatch list. Don't include reserved tags in the
368 * limiting, as it isn't useful.
369 */
370 if (!op_is_flush(data->cmd_flags) &&
371 e->type->ops.limit_depth &&
372 !(data->flags & BLK_MQ_REQ_RESERVED))
373 e->type->ops.limit_depth(data->cmd_flags, data);
374 } else {
375 blk_mq_tag_busy(data->hctx);
376 }
377
378 tag = blk_mq_get_tag(data);
379 if (tag == BLK_MQ_TAG_FAIL) {
380 if (put_ctx_on_error) {
381 blk_mq_put_ctx(data->ctx);
382 data->ctx = NULL;
383 }
384 blk_queue_exit(q);
385 return NULL;
386 }
387
388 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
389 if (!op_is_flush(data->cmd_flags)) {
390 rq->elv.icq = NULL;
391 if (e && e->type->ops.prepare_request) {
392 if (e->type->icq_cache)
393 blk_mq_sched_assign_ioc(rq);
394
395 e->type->ops.prepare_request(rq, bio);
396 rq->rq_flags |= RQF_ELVPRIV;
397 }
398 }
399 data->hctx->queued++;
400 return rq;
401 }
402
403 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
404 blk_mq_req_flags_t flags)
405 {
406 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
407 struct request *rq;
408 int ret;
409
410 ret = blk_queue_enter(q, flags);
411 if (ret)
412 return ERR_PTR(ret);
413
414 rq = blk_mq_get_request(q, NULL, &alloc_data);
415 blk_queue_exit(q);
416
417 if (!rq)
418 return ERR_PTR(-EWOULDBLOCK);
419
420 blk_mq_put_ctx(alloc_data.ctx);
421
422 rq->__data_len = 0;
423 rq->__sector = (sector_t) -1;
424 rq->bio = rq->biotail = NULL;
425 return rq;
426 }
427 EXPORT_SYMBOL(blk_mq_alloc_request);
428
429 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
430 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
431 {
432 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
433 struct request *rq;
434 unsigned int cpu;
435 int ret;
436
437 /*
438 * If the tag allocator sleeps we could get an allocation for a
439 * different hardware context. No need to complicate the low level
440 * allocator for this for the rare use case of a command tied to
441 * a specific queue.
442 */
443 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
444 return ERR_PTR(-EINVAL);
445
446 if (hctx_idx >= q->nr_hw_queues)
447 return ERR_PTR(-EIO);
448
449 ret = blk_queue_enter(q, flags);
450 if (ret)
451 return ERR_PTR(ret);
452
453 /*
454 * Check if the hardware context is actually mapped to anything.
455 * If not tell the caller that it should skip this queue.
456 */
457 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
458 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
459 blk_queue_exit(q);
460 return ERR_PTR(-EXDEV);
461 }
462 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
463 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
464
465 rq = blk_mq_get_request(q, NULL, &alloc_data);
466 blk_queue_exit(q);
467
468 if (!rq)
469 return ERR_PTR(-EWOULDBLOCK);
470
471 return rq;
472 }
473 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
474
475 static void __blk_mq_free_request(struct request *rq)
476 {
477 struct request_queue *q = rq->q;
478 struct blk_mq_ctx *ctx = rq->mq_ctx;
479 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
480 const int sched_tag = rq->internal_tag;
481
482 blk_pm_mark_last_busy(rq);
483 rq->mq_hctx = NULL;
484 if (rq->tag != -1)
485 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
486 if (sched_tag != -1)
487 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
488 blk_mq_sched_restart(hctx);
489 blk_queue_exit(q);
490 }
491
492 void blk_mq_free_request(struct request *rq)
493 {
494 struct request_queue *q = rq->q;
495 struct elevator_queue *e = q->elevator;
496 struct blk_mq_ctx *ctx = rq->mq_ctx;
497 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
498
499 if (rq->rq_flags & RQF_ELVPRIV) {
500 if (e && e->type->ops.finish_request)
501 e->type->ops.finish_request(rq);
502 if (rq->elv.icq) {
503 put_io_context(rq->elv.icq->ioc);
504 rq->elv.icq = NULL;
505 }
506 }
507
508 ctx->rq_completed[rq_is_sync(rq)]++;
509 if (rq->rq_flags & RQF_MQ_INFLIGHT)
510 atomic_dec(&hctx->nr_active);
511
512 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
513 laptop_io_completion(q->backing_dev_info);
514
515 rq_qos_done(q, rq);
516
517 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
518 if (refcount_dec_and_test(&rq->ref))
519 __blk_mq_free_request(rq);
520 }
521 EXPORT_SYMBOL_GPL(blk_mq_free_request);
522
523 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
524 {
525 u64 now = ktime_get_ns();
526
527 if (rq->rq_flags & RQF_STATS) {
528 blk_mq_poll_stats_start(rq->q);
529 blk_stat_add(rq, now);
530 }
531
532 if (rq->internal_tag != -1)
533 blk_mq_sched_completed_request(rq, now);
534
535 blk_account_io_done(rq, now);
536
537 if (rq->end_io) {
538 rq_qos_done(rq->q, rq);
539 rq->end_io(rq, error);
540 } else {
541 if (unlikely(blk_bidi_rq(rq)))
542 blk_mq_free_request(rq->next_rq);
543 blk_mq_free_request(rq);
544 }
545 }
546 EXPORT_SYMBOL(__blk_mq_end_request);
547
548 void blk_mq_end_request(struct request *rq, blk_status_t error)
549 {
550 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
551 BUG();
552 __blk_mq_end_request(rq, error);
553 }
554 EXPORT_SYMBOL(blk_mq_end_request);
555
556 static void __blk_mq_complete_request_remote(void *data)
557 {
558 struct request *rq = data;
559 struct request_queue *q = rq->q;
560
561 q->mq_ops->complete(rq);
562 }
563
564 static void __blk_mq_complete_request(struct request *rq)
565 {
566 struct blk_mq_ctx *ctx = rq->mq_ctx;
567 struct request_queue *q = rq->q;
568 bool shared = false;
569 int cpu;
570
571 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
572 /*
573 * Most of single queue controllers, there is only one irq vector
574 * for handling IO completion, and the only irq's affinity is set
575 * as all possible CPUs. On most of ARCHs, this affinity means the
576 * irq is handled on one specific CPU.
577 *
578 * So complete IO reqeust in softirq context in case of single queue
579 * for not degrading IO performance by irqsoff latency.
580 */
581 if (q->nr_hw_queues == 1) {
582 __blk_complete_request(rq);
583 return;
584 }
585
586 /*
587 * For a polled request, always complete locallly, it's pointless
588 * to redirect the completion.
589 */
590 if ((rq->cmd_flags & REQ_HIPRI) ||
591 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
592 q->mq_ops->complete(rq);
593 return;
594 }
595
596 cpu = get_cpu();
597 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
598 shared = cpus_share_cache(cpu, ctx->cpu);
599
600 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
601 rq->csd.func = __blk_mq_complete_request_remote;
602 rq->csd.info = rq;
603 rq->csd.flags = 0;
604 smp_call_function_single_async(ctx->cpu, &rq->csd);
605 } else {
606 q->mq_ops->complete(rq);
607 }
608 put_cpu();
609 }
610
611 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
612 __releases(hctx->srcu)
613 {
614 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
615 rcu_read_unlock();
616 else
617 srcu_read_unlock(hctx->srcu, srcu_idx);
618 }
619
620 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
621 __acquires(hctx->srcu)
622 {
623 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
624 /* shut up gcc false positive */
625 *srcu_idx = 0;
626 rcu_read_lock();
627 } else
628 *srcu_idx = srcu_read_lock(hctx->srcu);
629 }
630
631 /**
632 * blk_mq_complete_request - end I/O on a request
633 * @rq: the request being processed
634 *
635 * Description:
636 * Ends all I/O on a request. It does not handle partial completions.
637 * The actual completion happens out-of-order, through a IPI handler.
638 **/
639 bool blk_mq_complete_request(struct request *rq)
640 {
641 if (unlikely(blk_should_fake_timeout(rq->q)))
642 return false;
643 __blk_mq_complete_request(rq);
644 return true;
645 }
646 EXPORT_SYMBOL(blk_mq_complete_request);
647
648 int blk_mq_request_started(struct request *rq)
649 {
650 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
651 }
652 EXPORT_SYMBOL_GPL(blk_mq_request_started);
653
654 void blk_mq_start_request(struct request *rq)
655 {
656 struct request_queue *q = rq->q;
657
658 blk_mq_sched_started_request(rq);
659
660 trace_block_rq_issue(q, rq);
661
662 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
663 rq->io_start_time_ns = ktime_get_ns();
664 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
665 rq->throtl_size = blk_rq_sectors(rq);
666 #endif
667 rq->rq_flags |= RQF_STATS;
668 rq_qos_issue(q, rq);
669 }
670
671 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
672
673 blk_add_timer(rq);
674 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
675
676 if (q->dma_drain_size && blk_rq_bytes(rq)) {
677 /*
678 * Make sure space for the drain appears. We know we can do
679 * this because max_hw_segments has been adjusted to be one
680 * fewer than the device can handle.
681 */
682 rq->nr_phys_segments++;
683 }
684 }
685 EXPORT_SYMBOL(blk_mq_start_request);
686
687 static void __blk_mq_requeue_request(struct request *rq)
688 {
689 struct request_queue *q = rq->q;
690
691 blk_mq_put_driver_tag(rq);
692
693 trace_block_rq_requeue(q, rq);
694 rq_qos_requeue(q, rq);
695
696 if (blk_mq_request_started(rq)) {
697 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
698 rq->rq_flags &= ~RQF_TIMED_OUT;
699 if (q->dma_drain_size && blk_rq_bytes(rq))
700 rq->nr_phys_segments--;
701 }
702 }
703
704 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
705 {
706 __blk_mq_requeue_request(rq);
707
708 /* this request will be re-inserted to io scheduler queue */
709 blk_mq_sched_requeue_request(rq);
710
711 BUG_ON(!list_empty(&rq->queuelist));
712 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
713 }
714 EXPORT_SYMBOL(blk_mq_requeue_request);
715
716 static void blk_mq_requeue_work(struct work_struct *work)
717 {
718 struct request_queue *q =
719 container_of(work, struct request_queue, requeue_work.work);
720 LIST_HEAD(rq_list);
721 struct request *rq, *next;
722
723 spin_lock_irq(&q->requeue_lock);
724 list_splice_init(&q->requeue_list, &rq_list);
725 spin_unlock_irq(&q->requeue_lock);
726
727 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
728 if (!(rq->rq_flags & RQF_SOFTBARRIER))
729 continue;
730
731 rq->rq_flags &= ~RQF_SOFTBARRIER;
732 list_del_init(&rq->queuelist);
733 blk_mq_sched_insert_request(rq, true, false, false);
734 }
735
736 while (!list_empty(&rq_list)) {
737 rq = list_entry(rq_list.next, struct request, queuelist);
738 list_del_init(&rq->queuelist);
739 blk_mq_sched_insert_request(rq, false, false, false);
740 }
741
742 blk_mq_run_hw_queues(q, false);
743 }
744
745 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
746 bool kick_requeue_list)
747 {
748 struct request_queue *q = rq->q;
749 unsigned long flags;
750
751 /*
752 * We abuse this flag that is otherwise used by the I/O scheduler to
753 * request head insertion from the workqueue.
754 */
755 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
756
757 spin_lock_irqsave(&q->requeue_lock, flags);
758 if (at_head) {
759 rq->rq_flags |= RQF_SOFTBARRIER;
760 list_add(&rq->queuelist, &q->requeue_list);
761 } else {
762 list_add_tail(&rq->queuelist, &q->requeue_list);
763 }
764 spin_unlock_irqrestore(&q->requeue_lock, flags);
765
766 if (kick_requeue_list)
767 blk_mq_kick_requeue_list(q);
768 }
769 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
770
771 void blk_mq_kick_requeue_list(struct request_queue *q)
772 {
773 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
774 }
775 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
776
777 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
778 unsigned long msecs)
779 {
780 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
781 msecs_to_jiffies(msecs));
782 }
783 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
784
785 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
786 {
787 if (tag < tags->nr_tags) {
788 prefetch(tags->rqs[tag]);
789 return tags->rqs[tag];
790 }
791
792 return NULL;
793 }
794 EXPORT_SYMBOL(blk_mq_tag_to_rq);
795
796 static bool blk_mq_check_busy(struct blk_mq_hw_ctx *hctx, struct request *rq,
797 void *priv, bool reserved)
798 {
799 /*
800 * If we find a request, we know the queue is busy. Return false
801 * to stop the iteration.
802 */
803 if (rq->q == hctx->queue) {
804 bool *busy = priv;
805
806 *busy = true;
807 return false;
808 }
809
810 return true;
811 }
812
813 bool blk_mq_queue_busy(struct request_queue *q)
814 {
815 bool busy = false;
816
817 blk_mq_queue_tag_busy_iter(q, blk_mq_check_busy, &busy);
818 return busy;
819 }
820 EXPORT_SYMBOL_GPL(blk_mq_queue_busy);
821
822 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
823 {
824 req->rq_flags |= RQF_TIMED_OUT;
825 if (req->q->mq_ops->timeout) {
826 enum blk_eh_timer_return ret;
827
828 ret = req->q->mq_ops->timeout(req, reserved);
829 if (ret == BLK_EH_DONE)
830 return;
831 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
832 }
833
834 blk_add_timer(req);
835 }
836
837 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
838 {
839 unsigned long deadline;
840
841 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
842 return false;
843 if (rq->rq_flags & RQF_TIMED_OUT)
844 return false;
845
846 deadline = READ_ONCE(rq->deadline);
847 if (time_after_eq(jiffies, deadline))
848 return true;
849
850 if (*next == 0)
851 *next = deadline;
852 else if (time_after(*next, deadline))
853 *next = deadline;
854 return false;
855 }
856
857 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
858 struct request *rq, void *priv, bool reserved)
859 {
860 unsigned long *next = priv;
861
862 /*
863 * Just do a quick check if it is expired before locking the request in
864 * so we're not unnecessarilly synchronizing across CPUs.
865 */
866 if (!blk_mq_req_expired(rq, next))
867 return true;
868
869 /*
870 * We have reason to believe the request may be expired. Take a
871 * reference on the request to lock this request lifetime into its
872 * currently allocated context to prevent it from being reallocated in
873 * the event the completion by-passes this timeout handler.
874 *
875 * If the reference was already released, then the driver beat the
876 * timeout handler to posting a natural completion.
877 */
878 if (!refcount_inc_not_zero(&rq->ref))
879 return true;
880
881 /*
882 * The request is now locked and cannot be reallocated underneath the
883 * timeout handler's processing. Re-verify this exact request is truly
884 * expired; if it is not expired, then the request was completed and
885 * reallocated as a new request.
886 */
887 if (blk_mq_req_expired(rq, next))
888 blk_mq_rq_timed_out(rq, reserved);
889 if (refcount_dec_and_test(&rq->ref))
890 __blk_mq_free_request(rq);
891
892 return true;
893 }
894
895 static void blk_mq_timeout_work(struct work_struct *work)
896 {
897 struct request_queue *q =
898 container_of(work, struct request_queue, timeout_work);
899 unsigned long next = 0;
900 struct blk_mq_hw_ctx *hctx;
901 int i;
902
903 /* A deadlock might occur if a request is stuck requiring a
904 * timeout at the same time a queue freeze is waiting
905 * completion, since the timeout code would not be able to
906 * acquire the queue reference here.
907 *
908 * That's why we don't use blk_queue_enter here; instead, we use
909 * percpu_ref_tryget directly, because we need to be able to
910 * obtain a reference even in the short window between the queue
911 * starting to freeze, by dropping the first reference in
912 * blk_freeze_queue_start, and the moment the last request is
913 * consumed, marked by the instant q_usage_counter reaches
914 * zero.
915 */
916 if (!percpu_ref_tryget(&q->q_usage_counter))
917 return;
918
919 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
920
921 if (next != 0) {
922 mod_timer(&q->timeout, next);
923 } else {
924 /*
925 * Request timeouts are handled as a forward rolling timer. If
926 * we end up here it means that no requests are pending and
927 * also that no request has been pending for a while. Mark
928 * each hctx as idle.
929 */
930 queue_for_each_hw_ctx(q, hctx, i) {
931 /* the hctx may be unmapped, so check it here */
932 if (blk_mq_hw_queue_mapped(hctx))
933 blk_mq_tag_idle(hctx);
934 }
935 }
936 blk_queue_exit(q);
937 }
938
939 struct flush_busy_ctx_data {
940 struct blk_mq_hw_ctx *hctx;
941 struct list_head *list;
942 };
943
944 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
945 {
946 struct flush_busy_ctx_data *flush_data = data;
947 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
948 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
949
950 spin_lock(&ctx->lock);
951 list_splice_tail_init(&ctx->rq_list, flush_data->list);
952 sbitmap_clear_bit(sb, bitnr);
953 spin_unlock(&ctx->lock);
954 return true;
955 }
956
957 /*
958 * Process software queues that have been marked busy, splicing them
959 * to the for-dispatch
960 */
961 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
962 {
963 struct flush_busy_ctx_data data = {
964 .hctx = hctx,
965 .list = list,
966 };
967
968 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
969 }
970 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
971
972 struct dispatch_rq_data {
973 struct blk_mq_hw_ctx *hctx;
974 struct request *rq;
975 };
976
977 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
978 void *data)
979 {
980 struct dispatch_rq_data *dispatch_data = data;
981 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
982 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
983
984 spin_lock(&ctx->lock);
985 if (!list_empty(&ctx->rq_list)) {
986 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
987 list_del_init(&dispatch_data->rq->queuelist);
988 if (list_empty(&ctx->rq_list))
989 sbitmap_clear_bit(sb, bitnr);
990 }
991 spin_unlock(&ctx->lock);
992
993 return !dispatch_data->rq;
994 }
995
996 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
997 struct blk_mq_ctx *start)
998 {
999 unsigned off = start ? start->index_hw[hctx->type] : 0;
1000 struct dispatch_rq_data data = {
1001 .hctx = hctx,
1002 .rq = NULL,
1003 };
1004
1005 __sbitmap_for_each_set(&hctx->ctx_map, off,
1006 dispatch_rq_from_ctx, &data);
1007
1008 return data.rq;
1009 }
1010
1011 static inline unsigned int queued_to_index(unsigned int queued)
1012 {
1013 if (!queued)
1014 return 0;
1015
1016 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1017 }
1018
1019 bool blk_mq_get_driver_tag(struct request *rq)
1020 {
1021 struct blk_mq_alloc_data data = {
1022 .q = rq->q,
1023 .hctx = rq->mq_hctx,
1024 .flags = BLK_MQ_REQ_NOWAIT,
1025 .cmd_flags = rq->cmd_flags,
1026 };
1027 bool shared;
1028
1029 if (rq->tag != -1)
1030 goto done;
1031
1032 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1033 data.flags |= BLK_MQ_REQ_RESERVED;
1034
1035 shared = blk_mq_tag_busy(data.hctx);
1036 rq->tag = blk_mq_get_tag(&data);
1037 if (rq->tag >= 0) {
1038 if (shared) {
1039 rq->rq_flags |= RQF_MQ_INFLIGHT;
1040 atomic_inc(&data.hctx->nr_active);
1041 }
1042 data.hctx->tags->rqs[rq->tag] = rq;
1043 }
1044
1045 done:
1046 return rq->tag != -1;
1047 }
1048
1049 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1050 int flags, void *key)
1051 {
1052 struct blk_mq_hw_ctx *hctx;
1053
1054 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1055
1056 spin_lock(&hctx->dispatch_wait_lock);
1057 list_del_init(&wait->entry);
1058 spin_unlock(&hctx->dispatch_wait_lock);
1059
1060 blk_mq_run_hw_queue(hctx, true);
1061 return 1;
1062 }
1063
1064 /*
1065 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1066 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1067 * restart. For both cases, take care to check the condition again after
1068 * marking us as waiting.
1069 */
1070 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1071 struct request *rq)
1072 {
1073 struct wait_queue_head *wq;
1074 wait_queue_entry_t *wait;
1075 bool ret;
1076
1077 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1078 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1079 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1080
1081 /*
1082 * It's possible that a tag was freed in the window between the
1083 * allocation failure and adding the hardware queue to the wait
1084 * queue.
1085 *
1086 * Don't clear RESTART here, someone else could have set it.
1087 * At most this will cost an extra queue run.
1088 */
1089 return blk_mq_get_driver_tag(rq);
1090 }
1091
1092 wait = &hctx->dispatch_wait;
1093 if (!list_empty_careful(&wait->entry))
1094 return false;
1095
1096 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1097
1098 spin_lock_irq(&wq->lock);
1099 spin_lock(&hctx->dispatch_wait_lock);
1100 if (!list_empty(&wait->entry)) {
1101 spin_unlock(&hctx->dispatch_wait_lock);
1102 spin_unlock_irq(&wq->lock);
1103 return false;
1104 }
1105
1106 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1107 __add_wait_queue(wq, wait);
1108
1109 /*
1110 * It's possible that a tag was freed in the window between the
1111 * allocation failure and adding the hardware queue to the wait
1112 * queue.
1113 */
1114 ret = blk_mq_get_driver_tag(rq);
1115 if (!ret) {
1116 spin_unlock(&hctx->dispatch_wait_lock);
1117 spin_unlock_irq(&wq->lock);
1118 return false;
1119 }
1120
1121 /*
1122 * We got a tag, remove ourselves from the wait queue to ensure
1123 * someone else gets the wakeup.
1124 */
1125 list_del_init(&wait->entry);
1126 spin_unlock(&hctx->dispatch_wait_lock);
1127 spin_unlock_irq(&wq->lock);
1128
1129 return true;
1130 }
1131
1132 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1133 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1134 /*
1135 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1136 * - EWMA is one simple way to compute running average value
1137 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1138 * - take 4 as factor for avoiding to get too small(0) result, and this
1139 * factor doesn't matter because EWMA decreases exponentially
1140 */
1141 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1142 {
1143 unsigned int ewma;
1144
1145 if (hctx->queue->elevator)
1146 return;
1147
1148 ewma = hctx->dispatch_busy;
1149
1150 if (!ewma && !busy)
1151 return;
1152
1153 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1154 if (busy)
1155 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1156 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1157
1158 hctx->dispatch_busy = ewma;
1159 }
1160
1161 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1162
1163 /*
1164 * Returns true if we did some work AND can potentially do more.
1165 */
1166 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1167 bool got_budget)
1168 {
1169 struct blk_mq_hw_ctx *hctx;
1170 struct request *rq, *nxt;
1171 bool no_tag = false;
1172 int errors, queued;
1173 blk_status_t ret = BLK_STS_OK;
1174
1175 if (list_empty(list))
1176 return false;
1177
1178 WARN_ON(!list_is_singular(list) && got_budget);
1179
1180 /*
1181 * Now process all the entries, sending them to the driver.
1182 */
1183 errors = queued = 0;
1184 do {
1185 struct blk_mq_queue_data bd;
1186
1187 rq = list_first_entry(list, struct request, queuelist);
1188
1189 hctx = rq->mq_hctx;
1190 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1191 break;
1192
1193 if (!blk_mq_get_driver_tag(rq)) {
1194 /*
1195 * The initial allocation attempt failed, so we need to
1196 * rerun the hardware queue when a tag is freed. The
1197 * waitqueue takes care of that. If the queue is run
1198 * before we add this entry back on the dispatch list,
1199 * we'll re-run it below.
1200 */
1201 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1202 blk_mq_put_dispatch_budget(hctx);
1203 /*
1204 * For non-shared tags, the RESTART check
1205 * will suffice.
1206 */
1207 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1208 no_tag = true;
1209 break;
1210 }
1211 }
1212
1213 list_del_init(&rq->queuelist);
1214
1215 bd.rq = rq;
1216
1217 /*
1218 * Flag last if we have no more requests, or if we have more
1219 * but can't assign a driver tag to it.
1220 */
1221 if (list_empty(list))
1222 bd.last = true;
1223 else {
1224 nxt = list_first_entry(list, struct request, queuelist);
1225 bd.last = !blk_mq_get_driver_tag(nxt);
1226 }
1227
1228 ret = q->mq_ops->queue_rq(hctx, &bd);
1229 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1230 /*
1231 * If an I/O scheduler has been configured and we got a
1232 * driver tag for the next request already, free it
1233 * again.
1234 */
1235 if (!list_empty(list)) {
1236 nxt = list_first_entry(list, struct request, queuelist);
1237 blk_mq_put_driver_tag(nxt);
1238 }
1239 list_add(&rq->queuelist, list);
1240 __blk_mq_requeue_request(rq);
1241 break;
1242 }
1243
1244 if (unlikely(ret != BLK_STS_OK)) {
1245 errors++;
1246 blk_mq_end_request(rq, BLK_STS_IOERR);
1247 continue;
1248 }
1249
1250 queued++;
1251 } while (!list_empty(list));
1252
1253 hctx->dispatched[queued_to_index(queued)]++;
1254
1255 /*
1256 * Any items that need requeuing? Stuff them into hctx->dispatch,
1257 * that is where we will continue on next queue run.
1258 */
1259 if (!list_empty(list)) {
1260 bool needs_restart;
1261
1262 spin_lock(&hctx->lock);
1263 list_splice_init(list, &hctx->dispatch);
1264 spin_unlock(&hctx->lock);
1265
1266 /*
1267 * If SCHED_RESTART was set by the caller of this function and
1268 * it is no longer set that means that it was cleared by another
1269 * thread and hence that a queue rerun is needed.
1270 *
1271 * If 'no_tag' is set, that means that we failed getting
1272 * a driver tag with an I/O scheduler attached. If our dispatch
1273 * waitqueue is no longer active, ensure that we run the queue
1274 * AFTER adding our entries back to the list.
1275 *
1276 * If no I/O scheduler has been configured it is possible that
1277 * the hardware queue got stopped and restarted before requests
1278 * were pushed back onto the dispatch list. Rerun the queue to
1279 * avoid starvation. Notes:
1280 * - blk_mq_run_hw_queue() checks whether or not a queue has
1281 * been stopped before rerunning a queue.
1282 * - Some but not all block drivers stop a queue before
1283 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1284 * and dm-rq.
1285 *
1286 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1287 * bit is set, run queue after a delay to avoid IO stalls
1288 * that could otherwise occur if the queue is idle.
1289 */
1290 needs_restart = blk_mq_sched_needs_restart(hctx);
1291 if (!needs_restart ||
1292 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1293 blk_mq_run_hw_queue(hctx, true);
1294 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1295 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1296
1297 blk_mq_update_dispatch_busy(hctx, true);
1298 return false;
1299 } else
1300 blk_mq_update_dispatch_busy(hctx, false);
1301
1302 /*
1303 * If the host/device is unable to accept more work, inform the
1304 * caller of that.
1305 */
1306 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1307 return false;
1308
1309 return (queued + errors) != 0;
1310 }
1311
1312 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1313 {
1314 int srcu_idx;
1315
1316 /*
1317 * We should be running this queue from one of the CPUs that
1318 * are mapped to it.
1319 *
1320 * There are at least two related races now between setting
1321 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1322 * __blk_mq_run_hw_queue():
1323 *
1324 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1325 * but later it becomes online, then this warning is harmless
1326 * at all
1327 *
1328 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1329 * but later it becomes offline, then the warning can't be
1330 * triggered, and we depend on blk-mq timeout handler to
1331 * handle dispatched requests to this hctx
1332 */
1333 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1334 cpu_online(hctx->next_cpu)) {
1335 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1336 raw_smp_processor_id(),
1337 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1338 dump_stack();
1339 }
1340
1341 /*
1342 * We can't run the queue inline with ints disabled. Ensure that
1343 * we catch bad users of this early.
1344 */
1345 WARN_ON_ONCE(in_interrupt());
1346
1347 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1348
1349 hctx_lock(hctx, &srcu_idx);
1350 blk_mq_sched_dispatch_requests(hctx);
1351 hctx_unlock(hctx, srcu_idx);
1352 }
1353
1354 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1355 {
1356 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1357
1358 if (cpu >= nr_cpu_ids)
1359 cpu = cpumask_first(hctx->cpumask);
1360 return cpu;
1361 }
1362
1363 /*
1364 * It'd be great if the workqueue API had a way to pass
1365 * in a mask and had some smarts for more clever placement.
1366 * For now we just round-robin here, switching for every
1367 * BLK_MQ_CPU_WORK_BATCH queued items.
1368 */
1369 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1370 {
1371 bool tried = false;
1372 int next_cpu = hctx->next_cpu;
1373
1374 if (hctx->queue->nr_hw_queues == 1)
1375 return WORK_CPU_UNBOUND;
1376
1377 if (--hctx->next_cpu_batch <= 0) {
1378 select_cpu:
1379 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1380 cpu_online_mask);
1381 if (next_cpu >= nr_cpu_ids)
1382 next_cpu = blk_mq_first_mapped_cpu(hctx);
1383 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1384 }
1385
1386 /*
1387 * Do unbound schedule if we can't find a online CPU for this hctx,
1388 * and it should only happen in the path of handling CPU DEAD.
1389 */
1390 if (!cpu_online(next_cpu)) {
1391 if (!tried) {
1392 tried = true;
1393 goto select_cpu;
1394 }
1395
1396 /*
1397 * Make sure to re-select CPU next time once after CPUs
1398 * in hctx->cpumask become online again.
1399 */
1400 hctx->next_cpu = next_cpu;
1401 hctx->next_cpu_batch = 1;
1402 return WORK_CPU_UNBOUND;
1403 }
1404
1405 hctx->next_cpu = next_cpu;
1406 return next_cpu;
1407 }
1408
1409 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1410 unsigned long msecs)
1411 {
1412 if (unlikely(blk_mq_hctx_stopped(hctx)))
1413 return;
1414
1415 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1416 int cpu = get_cpu();
1417 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1418 __blk_mq_run_hw_queue(hctx);
1419 put_cpu();
1420 return;
1421 }
1422
1423 put_cpu();
1424 }
1425
1426 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1427 msecs_to_jiffies(msecs));
1428 }
1429
1430 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1431 {
1432 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1433 }
1434 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1435
1436 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1437 {
1438 int srcu_idx;
1439 bool need_run;
1440
1441 /*
1442 * When queue is quiesced, we may be switching io scheduler, or
1443 * updating nr_hw_queues, or other things, and we can't run queue
1444 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1445 *
1446 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1447 * quiesced.
1448 */
1449 hctx_lock(hctx, &srcu_idx);
1450 need_run = !blk_queue_quiesced(hctx->queue) &&
1451 blk_mq_hctx_has_pending(hctx);
1452 hctx_unlock(hctx, srcu_idx);
1453
1454 if (need_run) {
1455 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1456 return true;
1457 }
1458
1459 return false;
1460 }
1461 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1462
1463 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1464 {
1465 struct blk_mq_hw_ctx *hctx;
1466 int i;
1467
1468 queue_for_each_hw_ctx(q, hctx, i) {
1469 if (blk_mq_hctx_stopped(hctx))
1470 continue;
1471
1472 blk_mq_run_hw_queue(hctx, async);
1473 }
1474 }
1475 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1476
1477 /**
1478 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1479 * @q: request queue.
1480 *
1481 * The caller is responsible for serializing this function against
1482 * blk_mq_{start,stop}_hw_queue().
1483 */
1484 bool blk_mq_queue_stopped(struct request_queue *q)
1485 {
1486 struct blk_mq_hw_ctx *hctx;
1487 int i;
1488
1489 queue_for_each_hw_ctx(q, hctx, i)
1490 if (blk_mq_hctx_stopped(hctx))
1491 return true;
1492
1493 return false;
1494 }
1495 EXPORT_SYMBOL(blk_mq_queue_stopped);
1496
1497 /*
1498 * This function is often used for pausing .queue_rq() by driver when
1499 * there isn't enough resource or some conditions aren't satisfied, and
1500 * BLK_STS_RESOURCE is usually returned.
1501 *
1502 * We do not guarantee that dispatch can be drained or blocked
1503 * after blk_mq_stop_hw_queue() returns. Please use
1504 * blk_mq_quiesce_queue() for that requirement.
1505 */
1506 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1507 {
1508 cancel_delayed_work(&hctx->run_work);
1509
1510 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1511 }
1512 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1513
1514 /*
1515 * This function is often used for pausing .queue_rq() by driver when
1516 * there isn't enough resource or some conditions aren't satisfied, and
1517 * BLK_STS_RESOURCE is usually returned.
1518 *
1519 * We do not guarantee that dispatch can be drained or blocked
1520 * after blk_mq_stop_hw_queues() returns. Please use
1521 * blk_mq_quiesce_queue() for that requirement.
1522 */
1523 void blk_mq_stop_hw_queues(struct request_queue *q)
1524 {
1525 struct blk_mq_hw_ctx *hctx;
1526 int i;
1527
1528 queue_for_each_hw_ctx(q, hctx, i)
1529 blk_mq_stop_hw_queue(hctx);
1530 }
1531 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1532
1533 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1534 {
1535 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1536
1537 blk_mq_run_hw_queue(hctx, false);
1538 }
1539 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1540
1541 void blk_mq_start_hw_queues(struct request_queue *q)
1542 {
1543 struct blk_mq_hw_ctx *hctx;
1544 int i;
1545
1546 queue_for_each_hw_ctx(q, hctx, i)
1547 blk_mq_start_hw_queue(hctx);
1548 }
1549 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1550
1551 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1552 {
1553 if (!blk_mq_hctx_stopped(hctx))
1554 return;
1555
1556 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1557 blk_mq_run_hw_queue(hctx, async);
1558 }
1559 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1560
1561 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1562 {
1563 struct blk_mq_hw_ctx *hctx;
1564 int i;
1565
1566 queue_for_each_hw_ctx(q, hctx, i)
1567 blk_mq_start_stopped_hw_queue(hctx, async);
1568 }
1569 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1570
1571 static void blk_mq_run_work_fn(struct work_struct *work)
1572 {
1573 struct blk_mq_hw_ctx *hctx;
1574
1575 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1576
1577 /*
1578 * If we are stopped, don't run the queue.
1579 */
1580 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1581 return;
1582
1583 __blk_mq_run_hw_queue(hctx);
1584 }
1585
1586 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1587 struct request *rq,
1588 bool at_head)
1589 {
1590 struct blk_mq_ctx *ctx = rq->mq_ctx;
1591
1592 lockdep_assert_held(&ctx->lock);
1593
1594 trace_block_rq_insert(hctx->queue, rq);
1595
1596 if (at_head)
1597 list_add(&rq->queuelist, &ctx->rq_list);
1598 else
1599 list_add_tail(&rq->queuelist, &ctx->rq_list);
1600 }
1601
1602 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1603 bool at_head)
1604 {
1605 struct blk_mq_ctx *ctx = rq->mq_ctx;
1606
1607 lockdep_assert_held(&ctx->lock);
1608
1609 __blk_mq_insert_req_list(hctx, rq, at_head);
1610 blk_mq_hctx_mark_pending(hctx, ctx);
1611 }
1612
1613 /*
1614 * Should only be used carefully, when the caller knows we want to
1615 * bypass a potential IO scheduler on the target device.
1616 */
1617 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1618 {
1619 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1620
1621 spin_lock(&hctx->lock);
1622 list_add_tail(&rq->queuelist, &hctx->dispatch);
1623 spin_unlock(&hctx->lock);
1624
1625 if (run_queue)
1626 blk_mq_run_hw_queue(hctx, false);
1627 }
1628
1629 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1630 struct list_head *list)
1631
1632 {
1633 struct request *rq;
1634
1635 /*
1636 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1637 * offline now
1638 */
1639 list_for_each_entry(rq, list, queuelist) {
1640 BUG_ON(rq->mq_ctx != ctx);
1641 trace_block_rq_insert(hctx->queue, rq);
1642 }
1643
1644 spin_lock(&ctx->lock);
1645 list_splice_tail_init(list, &ctx->rq_list);
1646 blk_mq_hctx_mark_pending(hctx, ctx);
1647 spin_unlock(&ctx->lock);
1648 }
1649
1650 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1651 {
1652 struct request *rqa = container_of(a, struct request, queuelist);
1653 struct request *rqb = container_of(b, struct request, queuelist);
1654
1655 if (rqa->mq_ctx < rqb->mq_ctx)
1656 return -1;
1657 else if (rqa->mq_ctx > rqb->mq_ctx)
1658 return 1;
1659 else if (rqa->mq_hctx < rqb->mq_hctx)
1660 return -1;
1661 else if (rqa->mq_hctx > rqb->mq_hctx)
1662 return 1;
1663
1664 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1665 }
1666
1667 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1668 {
1669 struct blk_mq_hw_ctx *this_hctx;
1670 struct blk_mq_ctx *this_ctx;
1671 struct request_queue *this_q;
1672 struct request *rq;
1673 LIST_HEAD(list);
1674 LIST_HEAD(rq_list);
1675 unsigned int depth;
1676
1677 list_splice_init(&plug->mq_list, &list);
1678 plug->rq_count = 0;
1679
1680 list_sort(NULL, &list, plug_rq_cmp);
1681
1682 this_q = NULL;
1683 this_hctx = NULL;
1684 this_ctx = NULL;
1685 depth = 0;
1686
1687 while (!list_empty(&list)) {
1688 rq = list_entry_rq(list.next);
1689 list_del_init(&rq->queuelist);
1690 BUG_ON(!rq->q);
1691 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1692 if (this_hctx) {
1693 trace_block_unplug(this_q, depth, !from_schedule);
1694 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1695 &rq_list,
1696 from_schedule);
1697 }
1698
1699 this_q = rq->q;
1700 this_ctx = rq->mq_ctx;
1701 this_hctx = rq->mq_hctx;
1702 depth = 0;
1703 }
1704
1705 depth++;
1706 list_add_tail(&rq->queuelist, &rq_list);
1707 }
1708
1709 /*
1710 * If 'this_hctx' is set, we know we have entries to complete
1711 * on 'rq_list'. Do those.
1712 */
1713 if (this_hctx) {
1714 trace_block_unplug(this_q, depth, !from_schedule);
1715 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1716 from_schedule);
1717 }
1718 }
1719
1720 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1721 {
1722 blk_init_request_from_bio(rq, bio);
1723
1724 blk_account_io_start(rq, true);
1725 }
1726
1727 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1728 {
1729 if (rq->tag != -1)
1730 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1731
1732 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1733 }
1734
1735 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1736 struct request *rq,
1737 blk_qc_t *cookie)
1738 {
1739 struct request_queue *q = rq->q;
1740 struct blk_mq_queue_data bd = {
1741 .rq = rq,
1742 .last = true,
1743 };
1744 blk_qc_t new_cookie;
1745 blk_status_t ret;
1746
1747 new_cookie = request_to_qc_t(hctx, rq);
1748
1749 /*
1750 * For OK queue, we are done. For error, caller may kill it.
1751 * Any other error (busy), just add it to our list as we
1752 * previously would have done.
1753 */
1754 ret = q->mq_ops->queue_rq(hctx, &bd);
1755 switch (ret) {
1756 case BLK_STS_OK:
1757 blk_mq_update_dispatch_busy(hctx, false);
1758 *cookie = new_cookie;
1759 break;
1760 case BLK_STS_RESOURCE:
1761 case BLK_STS_DEV_RESOURCE:
1762 blk_mq_update_dispatch_busy(hctx, true);
1763 __blk_mq_requeue_request(rq);
1764 break;
1765 default:
1766 blk_mq_update_dispatch_busy(hctx, false);
1767 *cookie = BLK_QC_T_NONE;
1768 break;
1769 }
1770
1771 return ret;
1772 }
1773
1774 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1775 struct request *rq,
1776 blk_qc_t *cookie,
1777 bool bypass_insert)
1778 {
1779 struct request_queue *q = rq->q;
1780 bool run_queue = true;
1781
1782 /*
1783 * RCU or SRCU read lock is needed before checking quiesced flag.
1784 *
1785 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1786 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1787 * and avoid driver to try to dispatch again.
1788 */
1789 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1790 run_queue = false;
1791 bypass_insert = false;
1792 goto insert;
1793 }
1794
1795 if (q->elevator && !bypass_insert)
1796 goto insert;
1797
1798 if (!blk_mq_get_dispatch_budget(hctx))
1799 goto insert;
1800
1801 if (!blk_mq_get_driver_tag(rq)) {
1802 blk_mq_put_dispatch_budget(hctx);
1803 goto insert;
1804 }
1805
1806 return __blk_mq_issue_directly(hctx, rq, cookie);
1807 insert:
1808 if (bypass_insert)
1809 return BLK_STS_RESOURCE;
1810
1811 blk_mq_sched_insert_request(rq, false, run_queue, false);
1812 return BLK_STS_OK;
1813 }
1814
1815 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1816 struct request *rq, blk_qc_t *cookie)
1817 {
1818 blk_status_t ret;
1819 int srcu_idx;
1820
1821 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1822
1823 hctx_lock(hctx, &srcu_idx);
1824
1825 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1826 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1827 blk_mq_sched_insert_request(rq, false, true, false);
1828 else if (ret != BLK_STS_OK)
1829 blk_mq_end_request(rq, ret);
1830
1831 hctx_unlock(hctx, srcu_idx);
1832 }
1833
1834 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1835 {
1836 blk_status_t ret;
1837 int srcu_idx;
1838 blk_qc_t unused_cookie;
1839 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1840
1841 hctx_lock(hctx, &srcu_idx);
1842 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1843 hctx_unlock(hctx, srcu_idx);
1844
1845 return ret;
1846 }
1847
1848 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1849 struct list_head *list)
1850 {
1851 while (!list_empty(list)) {
1852 blk_status_t ret;
1853 struct request *rq = list_first_entry(list, struct request,
1854 queuelist);
1855
1856 list_del_init(&rq->queuelist);
1857 ret = blk_mq_request_issue_directly(rq);
1858 if (ret != BLK_STS_OK) {
1859 if (ret == BLK_STS_RESOURCE ||
1860 ret == BLK_STS_DEV_RESOURCE) {
1861 list_add(&rq->queuelist, list);
1862 break;
1863 }
1864 blk_mq_end_request(rq, ret);
1865 }
1866 }
1867 }
1868
1869 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1870 {
1871 const int is_sync = op_is_sync(bio->bi_opf);
1872 const int is_flush_fua = op_is_flush(bio->bi_opf);
1873 struct blk_mq_alloc_data data = { .flags = 0, .cmd_flags = bio->bi_opf };
1874 struct request *rq;
1875 struct blk_plug *plug;
1876 struct request *same_queue_rq = NULL;
1877 blk_qc_t cookie;
1878
1879 blk_queue_bounce(q, &bio);
1880
1881 blk_queue_split(q, &bio);
1882
1883 if (!bio_integrity_prep(bio))
1884 return BLK_QC_T_NONE;
1885
1886 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1887 blk_attempt_plug_merge(q, bio, &same_queue_rq))
1888 return BLK_QC_T_NONE;
1889
1890 if (blk_mq_sched_bio_merge(q, bio))
1891 return BLK_QC_T_NONE;
1892
1893 rq_qos_throttle(q, bio);
1894
1895 rq = blk_mq_get_request(q, bio, &data);
1896 if (unlikely(!rq)) {
1897 rq_qos_cleanup(q, bio);
1898 if (bio->bi_opf & REQ_NOWAIT)
1899 bio_wouldblock_error(bio);
1900 return BLK_QC_T_NONE;
1901 }
1902
1903 trace_block_getrq(q, bio, bio->bi_opf);
1904
1905 rq_qos_track(q, rq, bio);
1906
1907 cookie = request_to_qc_t(data.hctx, rq);
1908
1909 plug = current->plug;
1910 if (unlikely(is_flush_fua)) {
1911 blk_mq_put_ctx(data.ctx);
1912 blk_mq_bio_to_request(rq, bio);
1913
1914 /* bypass scheduler for flush rq */
1915 blk_insert_flush(rq);
1916 blk_mq_run_hw_queue(data.hctx, true);
1917 } else if (plug && q->nr_hw_queues == 1) {
1918 unsigned int request_count = plug->rq_count;
1919 struct request *last = NULL;
1920
1921 blk_mq_put_ctx(data.ctx);
1922 blk_mq_bio_to_request(rq, bio);
1923
1924 if (!request_count)
1925 trace_block_plug(q);
1926 else
1927 last = list_entry_rq(plug->mq_list.prev);
1928
1929 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1930 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1931 blk_flush_plug_list(plug, false);
1932 trace_block_plug(q);
1933 }
1934
1935 list_add_tail(&rq->queuelist, &plug->mq_list);
1936 plug->rq_count++;
1937 } else if (plug && !blk_queue_nomerges(q)) {
1938 blk_mq_bio_to_request(rq, bio);
1939
1940 /*
1941 * We do limited plugging. If the bio can be merged, do that.
1942 * Otherwise the existing request in the plug list will be
1943 * issued. So the plug list will have one request at most
1944 * The plug list might get flushed before this. If that happens,
1945 * the plug list is empty, and same_queue_rq is invalid.
1946 */
1947 if (list_empty(&plug->mq_list))
1948 same_queue_rq = NULL;
1949 if (same_queue_rq) {
1950 list_del_init(&same_queue_rq->queuelist);
1951 plug->rq_count--;
1952 }
1953 list_add_tail(&rq->queuelist, &plug->mq_list);
1954 plug->rq_count++;
1955
1956 blk_mq_put_ctx(data.ctx);
1957
1958 if (same_queue_rq) {
1959 data.hctx = same_queue_rq->mq_hctx;
1960 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1961 &cookie);
1962 }
1963 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1964 !data.hctx->dispatch_busy)) {
1965 blk_mq_put_ctx(data.ctx);
1966 blk_mq_bio_to_request(rq, bio);
1967 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1968 } else {
1969 blk_mq_put_ctx(data.ctx);
1970 blk_mq_bio_to_request(rq, bio);
1971 blk_mq_sched_insert_request(rq, false, true, true);
1972 }
1973
1974 return cookie;
1975 }
1976
1977 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1978 unsigned int hctx_idx)
1979 {
1980 struct page *page;
1981
1982 if (tags->rqs && set->ops->exit_request) {
1983 int i;
1984
1985 for (i = 0; i < tags->nr_tags; i++) {
1986 struct request *rq = tags->static_rqs[i];
1987
1988 if (!rq)
1989 continue;
1990 set->ops->exit_request(set, rq, hctx_idx);
1991 tags->static_rqs[i] = NULL;
1992 }
1993 }
1994
1995 while (!list_empty(&tags->page_list)) {
1996 page = list_first_entry(&tags->page_list, struct page, lru);
1997 list_del_init(&page->lru);
1998 /*
1999 * Remove kmemleak object previously allocated in
2000 * blk_mq_init_rq_map().
2001 */
2002 kmemleak_free(page_address(page));
2003 __free_pages(page, page->private);
2004 }
2005 }
2006
2007 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2008 {
2009 kfree(tags->rqs);
2010 tags->rqs = NULL;
2011 kfree(tags->static_rqs);
2012 tags->static_rqs = NULL;
2013
2014 blk_mq_free_tags(tags);
2015 }
2016
2017 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2018 unsigned int hctx_idx,
2019 unsigned int nr_tags,
2020 unsigned int reserved_tags)
2021 {
2022 struct blk_mq_tags *tags;
2023 int node;
2024
2025 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2026 if (node == NUMA_NO_NODE)
2027 node = set->numa_node;
2028
2029 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2030 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2031 if (!tags)
2032 return NULL;
2033
2034 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2035 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2036 node);
2037 if (!tags->rqs) {
2038 blk_mq_free_tags(tags);
2039 return NULL;
2040 }
2041
2042 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2043 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2044 node);
2045 if (!tags->static_rqs) {
2046 kfree(tags->rqs);
2047 blk_mq_free_tags(tags);
2048 return NULL;
2049 }
2050
2051 return tags;
2052 }
2053
2054 static size_t order_to_size(unsigned int order)
2055 {
2056 return (size_t)PAGE_SIZE << order;
2057 }
2058
2059 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2060 unsigned int hctx_idx, int node)
2061 {
2062 int ret;
2063
2064 if (set->ops->init_request) {
2065 ret = set->ops->init_request(set, rq, hctx_idx, node);
2066 if (ret)
2067 return ret;
2068 }
2069
2070 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2071 return 0;
2072 }
2073
2074 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2075 unsigned int hctx_idx, unsigned int depth)
2076 {
2077 unsigned int i, j, entries_per_page, max_order = 4;
2078 size_t rq_size, left;
2079 int node;
2080
2081 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2082 if (node == NUMA_NO_NODE)
2083 node = set->numa_node;
2084
2085 INIT_LIST_HEAD(&tags->page_list);
2086
2087 /*
2088 * rq_size is the size of the request plus driver payload, rounded
2089 * to the cacheline size
2090 */
2091 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2092 cache_line_size());
2093 left = rq_size * depth;
2094
2095 for (i = 0; i < depth; ) {
2096 int this_order = max_order;
2097 struct page *page;
2098 int to_do;
2099 void *p;
2100
2101 while (this_order && left < order_to_size(this_order - 1))
2102 this_order--;
2103
2104 do {
2105 page = alloc_pages_node(node,
2106 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2107 this_order);
2108 if (page)
2109 break;
2110 if (!this_order--)
2111 break;
2112 if (order_to_size(this_order) < rq_size)
2113 break;
2114 } while (1);
2115
2116 if (!page)
2117 goto fail;
2118
2119 page->private = this_order;
2120 list_add_tail(&page->lru, &tags->page_list);
2121
2122 p = page_address(page);
2123 /*
2124 * Allow kmemleak to scan these pages as they contain pointers
2125 * to additional allocations like via ops->init_request().
2126 */
2127 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2128 entries_per_page = order_to_size(this_order) / rq_size;
2129 to_do = min(entries_per_page, depth - i);
2130 left -= to_do * rq_size;
2131 for (j = 0; j < to_do; j++) {
2132 struct request *rq = p;
2133
2134 tags->static_rqs[i] = rq;
2135 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2136 tags->static_rqs[i] = NULL;
2137 goto fail;
2138 }
2139
2140 p += rq_size;
2141 i++;
2142 }
2143 }
2144 return 0;
2145
2146 fail:
2147 blk_mq_free_rqs(set, tags, hctx_idx);
2148 return -ENOMEM;
2149 }
2150
2151 /*
2152 * 'cpu' is going away. splice any existing rq_list entries from this
2153 * software queue to the hw queue dispatch list, and ensure that it
2154 * gets run.
2155 */
2156 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2157 {
2158 struct blk_mq_hw_ctx *hctx;
2159 struct blk_mq_ctx *ctx;
2160 LIST_HEAD(tmp);
2161
2162 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2163 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2164
2165 spin_lock(&ctx->lock);
2166 if (!list_empty(&ctx->rq_list)) {
2167 list_splice_init(&ctx->rq_list, &tmp);
2168 blk_mq_hctx_clear_pending(hctx, ctx);
2169 }
2170 spin_unlock(&ctx->lock);
2171
2172 if (list_empty(&tmp))
2173 return 0;
2174
2175 spin_lock(&hctx->lock);
2176 list_splice_tail_init(&tmp, &hctx->dispatch);
2177 spin_unlock(&hctx->lock);
2178
2179 blk_mq_run_hw_queue(hctx, true);
2180 return 0;
2181 }
2182
2183 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2184 {
2185 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2186 &hctx->cpuhp_dead);
2187 }
2188
2189 /* hctx->ctxs will be freed in queue's release handler */
2190 static void blk_mq_exit_hctx(struct request_queue *q,
2191 struct blk_mq_tag_set *set,
2192 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2193 {
2194 if (blk_mq_hw_queue_mapped(hctx))
2195 blk_mq_tag_idle(hctx);
2196
2197 if (set->ops->exit_request)
2198 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2199
2200 if (set->ops->exit_hctx)
2201 set->ops->exit_hctx(hctx, hctx_idx);
2202
2203 if (hctx->flags & BLK_MQ_F_BLOCKING)
2204 cleanup_srcu_struct(hctx->srcu);
2205
2206 blk_mq_remove_cpuhp(hctx);
2207 blk_free_flush_queue(hctx->fq);
2208 sbitmap_free(&hctx->ctx_map);
2209 }
2210
2211 static void blk_mq_exit_hw_queues(struct request_queue *q,
2212 struct blk_mq_tag_set *set, int nr_queue)
2213 {
2214 struct blk_mq_hw_ctx *hctx;
2215 unsigned int i;
2216
2217 queue_for_each_hw_ctx(q, hctx, i) {
2218 if (i == nr_queue)
2219 break;
2220 blk_mq_debugfs_unregister_hctx(hctx);
2221 blk_mq_exit_hctx(q, set, hctx, i);
2222 }
2223 }
2224
2225 static int blk_mq_init_hctx(struct request_queue *q,
2226 struct blk_mq_tag_set *set,
2227 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2228 {
2229 int node;
2230
2231 node = hctx->numa_node;
2232 if (node == NUMA_NO_NODE)
2233 node = hctx->numa_node = set->numa_node;
2234
2235 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2236 spin_lock_init(&hctx->lock);
2237 INIT_LIST_HEAD(&hctx->dispatch);
2238 hctx->queue = q;
2239 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2240
2241 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2242
2243 hctx->tags = set->tags[hctx_idx];
2244
2245 /*
2246 * Allocate space for all possible cpus to avoid allocation at
2247 * runtime
2248 */
2249 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2250 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2251 if (!hctx->ctxs)
2252 goto unregister_cpu_notifier;
2253
2254 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2255 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2256 goto free_ctxs;
2257
2258 hctx->nr_ctx = 0;
2259
2260 spin_lock_init(&hctx->dispatch_wait_lock);
2261 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2262 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2263
2264 if (set->ops->init_hctx &&
2265 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2266 goto free_bitmap;
2267
2268 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2269 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2270 if (!hctx->fq)
2271 goto exit_hctx;
2272
2273 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2274 goto free_fq;
2275
2276 if (hctx->flags & BLK_MQ_F_BLOCKING)
2277 init_srcu_struct(hctx->srcu);
2278
2279 return 0;
2280
2281 free_fq:
2282 kfree(hctx->fq);
2283 exit_hctx:
2284 if (set->ops->exit_hctx)
2285 set->ops->exit_hctx(hctx, hctx_idx);
2286 free_bitmap:
2287 sbitmap_free(&hctx->ctx_map);
2288 free_ctxs:
2289 kfree(hctx->ctxs);
2290 unregister_cpu_notifier:
2291 blk_mq_remove_cpuhp(hctx);
2292 return -1;
2293 }
2294
2295 static void blk_mq_init_cpu_queues(struct request_queue *q,
2296 unsigned int nr_hw_queues)
2297 {
2298 struct blk_mq_tag_set *set = q->tag_set;
2299 unsigned int i, j;
2300
2301 for_each_possible_cpu(i) {
2302 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2303 struct blk_mq_hw_ctx *hctx;
2304
2305 __ctx->cpu = i;
2306 spin_lock_init(&__ctx->lock);
2307 INIT_LIST_HEAD(&__ctx->rq_list);
2308 __ctx->queue = q;
2309
2310 /*
2311 * Set local node, IFF we have more than one hw queue. If
2312 * not, we remain on the home node of the device
2313 */
2314 for (j = 0; j < set->nr_maps; j++) {
2315 hctx = blk_mq_map_queue_type(q, j, i);
2316 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2317 hctx->numa_node = local_memory_node(cpu_to_node(i));
2318 }
2319 }
2320 }
2321
2322 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2323 {
2324 int ret = 0;
2325
2326 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2327 set->queue_depth, set->reserved_tags);
2328 if (!set->tags[hctx_idx])
2329 return false;
2330
2331 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2332 set->queue_depth);
2333 if (!ret)
2334 return true;
2335
2336 blk_mq_free_rq_map(set->tags[hctx_idx]);
2337 set->tags[hctx_idx] = NULL;
2338 return false;
2339 }
2340
2341 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2342 unsigned int hctx_idx)
2343 {
2344 if (set->tags[hctx_idx]) {
2345 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2346 blk_mq_free_rq_map(set->tags[hctx_idx]);
2347 set->tags[hctx_idx] = NULL;
2348 }
2349 }
2350
2351 static void blk_mq_map_swqueue(struct request_queue *q)
2352 {
2353 unsigned int i, j, hctx_idx;
2354 struct blk_mq_hw_ctx *hctx;
2355 struct blk_mq_ctx *ctx;
2356 struct blk_mq_tag_set *set = q->tag_set;
2357
2358 /*
2359 * Avoid others reading imcomplete hctx->cpumask through sysfs
2360 */
2361 mutex_lock(&q->sysfs_lock);
2362
2363 queue_for_each_hw_ctx(q, hctx, i) {
2364 cpumask_clear(hctx->cpumask);
2365 hctx->nr_ctx = 0;
2366 hctx->dispatch_from = NULL;
2367 }
2368
2369 /*
2370 * Map software to hardware queues.
2371 *
2372 * If the cpu isn't present, the cpu is mapped to first hctx.
2373 */
2374 for_each_possible_cpu(i) {
2375 hctx_idx = set->map[0].mq_map[i];
2376 /* unmapped hw queue can be remapped after CPU topo changed */
2377 if (!set->tags[hctx_idx] &&
2378 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2379 /*
2380 * If tags initialization fail for some hctx,
2381 * that hctx won't be brought online. In this
2382 * case, remap the current ctx to hctx[0] which
2383 * is guaranteed to always have tags allocated
2384 */
2385 set->map[0].mq_map[i] = 0;
2386 }
2387
2388 ctx = per_cpu_ptr(q->queue_ctx, i);
2389 for (j = 0; j < set->nr_maps; j++) {
2390 hctx = blk_mq_map_queue_type(q, j, i);
2391
2392 /*
2393 * If the CPU is already set in the mask, then we've
2394 * mapped this one already. This can happen if
2395 * devices share queues across queue maps.
2396 */
2397 if (cpumask_test_cpu(i, hctx->cpumask))
2398 continue;
2399
2400 cpumask_set_cpu(i, hctx->cpumask);
2401 hctx->type = j;
2402 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2403 hctx->ctxs[hctx->nr_ctx++] = ctx;
2404
2405 /*
2406 * If the nr_ctx type overflows, we have exceeded the
2407 * amount of sw queues we can support.
2408 */
2409 BUG_ON(!hctx->nr_ctx);
2410 }
2411 }
2412
2413 mutex_unlock(&q->sysfs_lock);
2414
2415 queue_for_each_hw_ctx(q, hctx, i) {
2416 /*
2417 * If no software queues are mapped to this hardware queue,
2418 * disable it and free the request entries.
2419 */
2420 if (!hctx->nr_ctx) {
2421 /* Never unmap queue 0. We need it as a
2422 * fallback in case of a new remap fails
2423 * allocation
2424 */
2425 if (i && set->tags[i])
2426 blk_mq_free_map_and_requests(set, i);
2427
2428 hctx->tags = NULL;
2429 continue;
2430 }
2431
2432 hctx->tags = set->tags[i];
2433 WARN_ON(!hctx->tags);
2434
2435 /*
2436 * Set the map size to the number of mapped software queues.
2437 * This is more accurate and more efficient than looping
2438 * over all possibly mapped software queues.
2439 */
2440 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2441
2442 /*
2443 * Initialize batch roundrobin counts
2444 */
2445 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2446 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2447 }
2448 }
2449
2450 /*
2451 * Caller needs to ensure that we're either frozen/quiesced, or that
2452 * the queue isn't live yet.
2453 */
2454 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2455 {
2456 struct blk_mq_hw_ctx *hctx;
2457 int i;
2458
2459 queue_for_each_hw_ctx(q, hctx, i) {
2460 if (shared)
2461 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2462 else
2463 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2464 }
2465 }
2466
2467 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2468 bool shared)
2469 {
2470 struct request_queue *q;
2471
2472 lockdep_assert_held(&set->tag_list_lock);
2473
2474 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2475 blk_mq_freeze_queue(q);
2476 queue_set_hctx_shared(q, shared);
2477 blk_mq_unfreeze_queue(q);
2478 }
2479 }
2480
2481 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2482 {
2483 struct blk_mq_tag_set *set = q->tag_set;
2484
2485 mutex_lock(&set->tag_list_lock);
2486 list_del_rcu(&q->tag_set_list);
2487 if (list_is_singular(&set->tag_list)) {
2488 /* just transitioned to unshared */
2489 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2490 /* update existing queue */
2491 blk_mq_update_tag_set_depth(set, false);
2492 }
2493 mutex_unlock(&set->tag_list_lock);
2494 INIT_LIST_HEAD(&q->tag_set_list);
2495 }
2496
2497 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2498 struct request_queue *q)
2499 {
2500 mutex_lock(&set->tag_list_lock);
2501
2502 /*
2503 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2504 */
2505 if (!list_empty(&set->tag_list) &&
2506 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2507 set->flags |= BLK_MQ_F_TAG_SHARED;
2508 /* update existing queue */
2509 blk_mq_update_tag_set_depth(set, true);
2510 }
2511 if (set->flags & BLK_MQ_F_TAG_SHARED)
2512 queue_set_hctx_shared(q, true);
2513 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2514
2515 mutex_unlock(&set->tag_list_lock);
2516 }
2517
2518 /* All allocations will be freed in release handler of q->mq_kobj */
2519 static int blk_mq_alloc_ctxs(struct request_queue *q)
2520 {
2521 struct blk_mq_ctxs *ctxs;
2522 int cpu;
2523
2524 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2525 if (!ctxs)
2526 return -ENOMEM;
2527
2528 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2529 if (!ctxs->queue_ctx)
2530 goto fail;
2531
2532 for_each_possible_cpu(cpu) {
2533 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2534 ctx->ctxs = ctxs;
2535 }
2536
2537 q->mq_kobj = &ctxs->kobj;
2538 q->queue_ctx = ctxs->queue_ctx;
2539
2540 return 0;
2541 fail:
2542 kfree(ctxs);
2543 return -ENOMEM;
2544 }
2545
2546 /*
2547 * It is the actual release handler for mq, but we do it from
2548 * request queue's release handler for avoiding use-after-free
2549 * and headache because q->mq_kobj shouldn't have been introduced,
2550 * but we can't group ctx/kctx kobj without it.
2551 */
2552 void blk_mq_release(struct request_queue *q)
2553 {
2554 struct blk_mq_hw_ctx *hctx;
2555 unsigned int i;
2556
2557 /* hctx kobj stays in hctx */
2558 queue_for_each_hw_ctx(q, hctx, i) {
2559 if (!hctx)
2560 continue;
2561 kobject_put(&hctx->kobj);
2562 }
2563
2564 kfree(q->queue_hw_ctx);
2565
2566 /*
2567 * release .mq_kobj and sw queue's kobject now because
2568 * both share lifetime with request queue.
2569 */
2570 blk_mq_sysfs_deinit(q);
2571 }
2572
2573 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2574 {
2575 struct request_queue *uninit_q, *q;
2576
2577 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2578 if (!uninit_q)
2579 return ERR_PTR(-ENOMEM);
2580
2581 q = blk_mq_init_allocated_queue(set, uninit_q);
2582 if (IS_ERR(q))
2583 blk_cleanup_queue(uninit_q);
2584
2585 return q;
2586 }
2587 EXPORT_SYMBOL(blk_mq_init_queue);
2588
2589 /*
2590 * Helper for setting up a queue with mq ops, given queue depth, and
2591 * the passed in mq ops flags.
2592 */
2593 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2594 const struct blk_mq_ops *ops,
2595 unsigned int queue_depth,
2596 unsigned int set_flags)
2597 {
2598 struct request_queue *q;
2599 int ret;
2600
2601 memset(set, 0, sizeof(*set));
2602 set->ops = ops;
2603 set->nr_hw_queues = 1;
2604 set->nr_maps = 1;
2605 set->queue_depth = queue_depth;
2606 set->numa_node = NUMA_NO_NODE;
2607 set->flags = set_flags;
2608
2609 ret = blk_mq_alloc_tag_set(set);
2610 if (ret)
2611 return ERR_PTR(ret);
2612
2613 q = blk_mq_init_queue(set);
2614 if (IS_ERR(q)) {
2615 blk_mq_free_tag_set(set);
2616 return q;
2617 }
2618
2619 return q;
2620 }
2621 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2622
2623 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2624 {
2625 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2626
2627 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2628 __alignof__(struct blk_mq_hw_ctx)) !=
2629 sizeof(struct blk_mq_hw_ctx));
2630
2631 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2632 hw_ctx_size += sizeof(struct srcu_struct);
2633
2634 return hw_ctx_size;
2635 }
2636
2637 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2638 struct blk_mq_tag_set *set, struct request_queue *q,
2639 int hctx_idx, int node)
2640 {
2641 struct blk_mq_hw_ctx *hctx;
2642
2643 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2644 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2645 node);
2646 if (!hctx)
2647 return NULL;
2648
2649 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2650 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2651 node)) {
2652 kfree(hctx);
2653 return NULL;
2654 }
2655
2656 atomic_set(&hctx->nr_active, 0);
2657 hctx->numa_node = node;
2658 hctx->queue_num = hctx_idx;
2659
2660 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2661 free_cpumask_var(hctx->cpumask);
2662 kfree(hctx);
2663 return NULL;
2664 }
2665 blk_mq_hctx_kobj_init(hctx);
2666
2667 return hctx;
2668 }
2669
2670 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2671 struct request_queue *q)
2672 {
2673 int i, j, end;
2674 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2675
2676 /* protect against switching io scheduler */
2677 mutex_lock(&q->sysfs_lock);
2678 for (i = 0; i < set->nr_hw_queues; i++) {
2679 int node;
2680 struct blk_mq_hw_ctx *hctx;
2681
2682 node = blk_mq_hw_queue_to_node(&set->map[0], i);
2683 /*
2684 * If the hw queue has been mapped to another numa node,
2685 * we need to realloc the hctx. If allocation fails, fallback
2686 * to use the previous one.
2687 */
2688 if (hctxs[i] && (hctxs[i]->numa_node == node))
2689 continue;
2690
2691 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2692 if (hctx) {
2693 if (hctxs[i]) {
2694 blk_mq_exit_hctx(q, set, hctxs[i], i);
2695 kobject_put(&hctxs[i]->kobj);
2696 }
2697 hctxs[i] = hctx;
2698 } else {
2699 if (hctxs[i])
2700 pr_warn("Allocate new hctx on node %d fails,\
2701 fallback to previous one on node %d\n",
2702 node, hctxs[i]->numa_node);
2703 else
2704 break;
2705 }
2706 }
2707 /*
2708 * Increasing nr_hw_queues fails. Free the newly allocated
2709 * hctxs and keep the previous q->nr_hw_queues.
2710 */
2711 if (i != set->nr_hw_queues) {
2712 j = q->nr_hw_queues;
2713 end = i;
2714 } else {
2715 j = i;
2716 end = q->nr_hw_queues;
2717 q->nr_hw_queues = set->nr_hw_queues;
2718 }
2719
2720 for (; j < end; j++) {
2721 struct blk_mq_hw_ctx *hctx = hctxs[j];
2722
2723 if (hctx) {
2724 if (hctx->tags)
2725 blk_mq_free_map_and_requests(set, j);
2726 blk_mq_exit_hctx(q, set, hctx, j);
2727 kobject_put(&hctx->kobj);
2728 hctxs[j] = NULL;
2729
2730 }
2731 }
2732 mutex_unlock(&q->sysfs_lock);
2733 }
2734
2735 /*
2736 * Maximum number of hardware queues we support. For single sets, we'll never
2737 * have more than the CPUs (software queues). For multiple sets, the tag_set
2738 * user may have set ->nr_hw_queues larger.
2739 */
2740 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2741 {
2742 if (set->nr_maps == 1)
2743 return nr_cpu_ids;
2744
2745 return max(set->nr_hw_queues, nr_cpu_ids);
2746 }
2747
2748 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2749 struct request_queue *q)
2750 {
2751 /* mark the queue as mq asap */
2752 q->mq_ops = set->ops;
2753
2754 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2755 blk_mq_poll_stats_bkt,
2756 BLK_MQ_POLL_STATS_BKTS, q);
2757 if (!q->poll_cb)
2758 goto err_exit;
2759
2760 if (blk_mq_alloc_ctxs(q))
2761 goto err_exit;
2762
2763 /* init q->mq_kobj and sw queues' kobjects */
2764 blk_mq_sysfs_init(q);
2765
2766 q->nr_queues = nr_hw_queues(set);
2767 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2768 GFP_KERNEL, set->numa_node);
2769 if (!q->queue_hw_ctx)
2770 goto err_sys_init;
2771
2772 blk_mq_realloc_hw_ctxs(set, q);
2773 if (!q->nr_hw_queues)
2774 goto err_hctxs;
2775
2776 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2777 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2778
2779 q->tag_set = set;
2780
2781 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2782
2783 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2784 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2785
2786 q->sg_reserved_size = INT_MAX;
2787
2788 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2789 INIT_LIST_HEAD(&q->requeue_list);
2790 spin_lock_init(&q->requeue_lock);
2791
2792 blk_queue_make_request(q, blk_mq_make_request);
2793 if (q->mq_ops->poll)
2794 q->poll_fn = blk_mq_poll;
2795
2796 /*
2797 * Do this after blk_queue_make_request() overrides it...
2798 */
2799 q->nr_requests = set->queue_depth;
2800
2801 /*
2802 * Default to classic polling
2803 */
2804 q->poll_nsec = -1;
2805
2806 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2807 blk_mq_add_queue_tag_set(set, q);
2808 blk_mq_map_swqueue(q);
2809
2810 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2811 int ret;
2812
2813 ret = elevator_init_mq(q);
2814 if (ret)
2815 return ERR_PTR(ret);
2816 }
2817
2818 return q;
2819
2820 err_hctxs:
2821 kfree(q->queue_hw_ctx);
2822 err_sys_init:
2823 blk_mq_sysfs_deinit(q);
2824 err_exit:
2825 q->mq_ops = NULL;
2826 return ERR_PTR(-ENOMEM);
2827 }
2828 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2829
2830 void blk_mq_free_queue(struct request_queue *q)
2831 {
2832 struct blk_mq_tag_set *set = q->tag_set;
2833
2834 blk_mq_del_queue_tag_set(q);
2835 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2836 }
2837
2838 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2839 {
2840 int i;
2841
2842 for (i = 0; i < set->nr_hw_queues; i++)
2843 if (!__blk_mq_alloc_rq_map(set, i))
2844 goto out_unwind;
2845
2846 return 0;
2847
2848 out_unwind:
2849 while (--i >= 0)
2850 blk_mq_free_rq_map(set->tags[i]);
2851
2852 return -ENOMEM;
2853 }
2854
2855 /*
2856 * Allocate the request maps associated with this tag_set. Note that this
2857 * may reduce the depth asked for, if memory is tight. set->queue_depth
2858 * will be updated to reflect the allocated depth.
2859 */
2860 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2861 {
2862 unsigned int depth;
2863 int err;
2864
2865 depth = set->queue_depth;
2866 do {
2867 err = __blk_mq_alloc_rq_maps(set);
2868 if (!err)
2869 break;
2870
2871 set->queue_depth >>= 1;
2872 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2873 err = -ENOMEM;
2874 break;
2875 }
2876 } while (set->queue_depth);
2877
2878 if (!set->queue_depth || err) {
2879 pr_err("blk-mq: failed to allocate request map\n");
2880 return -ENOMEM;
2881 }
2882
2883 if (depth != set->queue_depth)
2884 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2885 depth, set->queue_depth);
2886
2887 return 0;
2888 }
2889
2890 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2891 {
2892 if (set->ops->map_queues) {
2893 int i;
2894
2895 /*
2896 * transport .map_queues is usually done in the following
2897 * way:
2898 *
2899 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2900 * mask = get_cpu_mask(queue)
2901 * for_each_cpu(cpu, mask)
2902 * set->map[x].mq_map[cpu] = queue;
2903 * }
2904 *
2905 * When we need to remap, the table has to be cleared for
2906 * killing stale mapping since one CPU may not be mapped
2907 * to any hw queue.
2908 */
2909 for (i = 0; i < set->nr_maps; i++)
2910 blk_mq_clear_mq_map(&set->map[i]);
2911
2912 return set->ops->map_queues(set);
2913 } else {
2914 BUG_ON(set->nr_maps > 1);
2915 return blk_mq_map_queues(&set->map[0]);
2916 }
2917 }
2918
2919 /*
2920 * Alloc a tag set to be associated with one or more request queues.
2921 * May fail with EINVAL for various error conditions. May adjust the
2922 * requested depth down, if it's too large. In that case, the set
2923 * value will be stored in set->queue_depth.
2924 */
2925 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2926 {
2927 int i, ret;
2928
2929 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2930
2931 if (!set->nr_hw_queues)
2932 return -EINVAL;
2933 if (!set->queue_depth)
2934 return -EINVAL;
2935 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2936 return -EINVAL;
2937
2938 if (!set->ops->queue_rq)
2939 return -EINVAL;
2940
2941 if (!set->ops->get_budget ^ !set->ops->put_budget)
2942 return -EINVAL;
2943
2944 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2945 pr_info("blk-mq: reduced tag depth to %u\n",
2946 BLK_MQ_MAX_DEPTH);
2947 set->queue_depth = BLK_MQ_MAX_DEPTH;
2948 }
2949
2950 if (!set->nr_maps)
2951 set->nr_maps = 1;
2952 else if (set->nr_maps > HCTX_MAX_TYPES)
2953 return -EINVAL;
2954
2955 /*
2956 * If a crashdump is active, then we are potentially in a very
2957 * memory constrained environment. Limit us to 1 queue and
2958 * 64 tags to prevent using too much memory.
2959 */
2960 if (is_kdump_kernel()) {
2961 set->nr_hw_queues = 1;
2962 set->queue_depth = min(64U, set->queue_depth);
2963 }
2964 /*
2965 * There is no use for more h/w queues than cpus if we just have
2966 * a single map
2967 */
2968 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
2969 set->nr_hw_queues = nr_cpu_ids;
2970
2971 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
2972 GFP_KERNEL, set->numa_node);
2973 if (!set->tags)
2974 return -ENOMEM;
2975
2976 ret = -ENOMEM;
2977 for (i = 0; i < set->nr_maps; i++) {
2978 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
2979 sizeof(struct blk_mq_queue_map),
2980 GFP_KERNEL, set->numa_node);
2981 if (!set->map[i].mq_map)
2982 goto out_free_mq_map;
2983 set->map[i].nr_queues = set->nr_hw_queues;
2984 }
2985
2986 ret = blk_mq_update_queue_map(set);
2987 if (ret)
2988 goto out_free_mq_map;
2989
2990 ret = blk_mq_alloc_rq_maps(set);
2991 if (ret)
2992 goto out_free_mq_map;
2993
2994 mutex_init(&set->tag_list_lock);
2995 INIT_LIST_HEAD(&set->tag_list);
2996
2997 return 0;
2998
2999 out_free_mq_map:
3000 for (i = 0; i < set->nr_maps; i++) {
3001 kfree(set->map[i].mq_map);
3002 set->map[i].mq_map = NULL;
3003 }
3004 kfree(set->tags);
3005 set->tags = NULL;
3006 return ret;
3007 }
3008 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3009
3010 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3011 {
3012 int i, j;
3013
3014 for (i = 0; i < nr_hw_queues(set); i++)
3015 blk_mq_free_map_and_requests(set, i);
3016
3017 for (j = 0; j < set->nr_maps; j++) {
3018 kfree(set->map[j].mq_map);
3019 set->map[j].mq_map = NULL;
3020 }
3021
3022 kfree(set->tags);
3023 set->tags = NULL;
3024 }
3025 EXPORT_SYMBOL(blk_mq_free_tag_set);
3026
3027 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3028 {
3029 struct blk_mq_tag_set *set = q->tag_set;
3030 struct blk_mq_hw_ctx *hctx;
3031 int i, ret;
3032
3033 if (!set)
3034 return -EINVAL;
3035
3036 blk_mq_freeze_queue(q);
3037 blk_mq_quiesce_queue(q);
3038
3039 ret = 0;
3040 queue_for_each_hw_ctx(q, hctx, i) {
3041 if (!hctx->tags)
3042 continue;
3043 /*
3044 * If we're using an MQ scheduler, just update the scheduler
3045 * queue depth. This is similar to what the old code would do.
3046 */
3047 if (!hctx->sched_tags) {
3048 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3049 false);
3050 } else {
3051 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3052 nr, true);
3053 }
3054 if (ret)
3055 break;
3056 }
3057
3058 if (!ret)
3059 q->nr_requests = nr;
3060
3061 blk_mq_unquiesce_queue(q);
3062 blk_mq_unfreeze_queue(q);
3063
3064 return ret;
3065 }
3066
3067 /*
3068 * request_queue and elevator_type pair.
3069 * It is just used by __blk_mq_update_nr_hw_queues to cache
3070 * the elevator_type associated with a request_queue.
3071 */
3072 struct blk_mq_qe_pair {
3073 struct list_head node;
3074 struct request_queue *q;
3075 struct elevator_type *type;
3076 };
3077
3078 /*
3079 * Cache the elevator_type in qe pair list and switch the
3080 * io scheduler to 'none'
3081 */
3082 static bool blk_mq_elv_switch_none(struct list_head *head,
3083 struct request_queue *q)
3084 {
3085 struct blk_mq_qe_pair *qe;
3086
3087 if (!q->elevator)
3088 return true;
3089
3090 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3091 if (!qe)
3092 return false;
3093
3094 INIT_LIST_HEAD(&qe->node);
3095 qe->q = q;
3096 qe->type = q->elevator->type;
3097 list_add(&qe->node, head);
3098
3099 mutex_lock(&q->sysfs_lock);
3100 /*
3101 * After elevator_switch_mq, the previous elevator_queue will be
3102 * released by elevator_release. The reference of the io scheduler
3103 * module get by elevator_get will also be put. So we need to get
3104 * a reference of the io scheduler module here to prevent it to be
3105 * removed.
3106 */
3107 __module_get(qe->type->elevator_owner);
3108 elevator_switch_mq(q, NULL);
3109 mutex_unlock(&q->sysfs_lock);
3110
3111 return true;
3112 }
3113
3114 static void blk_mq_elv_switch_back(struct list_head *head,
3115 struct request_queue *q)
3116 {
3117 struct blk_mq_qe_pair *qe;
3118 struct elevator_type *t = NULL;
3119
3120 list_for_each_entry(qe, head, node)
3121 if (qe->q == q) {
3122 t = qe->type;
3123 break;
3124 }
3125
3126 if (!t)
3127 return;
3128
3129 list_del(&qe->node);
3130 kfree(qe);
3131
3132 mutex_lock(&q->sysfs_lock);
3133 elevator_switch_mq(q, t);
3134 mutex_unlock(&q->sysfs_lock);
3135 }
3136
3137 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3138 int nr_hw_queues)
3139 {
3140 struct request_queue *q;
3141 LIST_HEAD(head);
3142 int prev_nr_hw_queues;
3143
3144 lockdep_assert_held(&set->tag_list_lock);
3145
3146 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3147 nr_hw_queues = nr_cpu_ids;
3148 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3149 return;
3150
3151 list_for_each_entry(q, &set->tag_list, tag_set_list)
3152 blk_mq_freeze_queue(q);
3153 /*
3154 * Sync with blk_mq_queue_tag_busy_iter.
3155 */
3156 synchronize_rcu();
3157 /*
3158 * Switch IO scheduler to 'none', cleaning up the data associated
3159 * with the previous scheduler. We will switch back once we are done
3160 * updating the new sw to hw queue mappings.
3161 */
3162 list_for_each_entry(q, &set->tag_list, tag_set_list)
3163 if (!blk_mq_elv_switch_none(&head, q))
3164 goto switch_back;
3165
3166 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3167 blk_mq_debugfs_unregister_hctxs(q);
3168 blk_mq_sysfs_unregister(q);
3169 }
3170
3171 prev_nr_hw_queues = set->nr_hw_queues;
3172 set->nr_hw_queues = nr_hw_queues;
3173 blk_mq_update_queue_map(set);
3174 fallback:
3175 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3176 blk_mq_realloc_hw_ctxs(set, q);
3177 if (q->nr_hw_queues != set->nr_hw_queues) {
3178 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3179 nr_hw_queues, prev_nr_hw_queues);
3180 set->nr_hw_queues = prev_nr_hw_queues;
3181 blk_mq_map_queues(&set->map[0]);
3182 goto fallback;
3183 }
3184 blk_mq_map_swqueue(q);
3185 }
3186
3187 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3188 blk_mq_sysfs_register(q);
3189 blk_mq_debugfs_register_hctxs(q);
3190 }
3191
3192 switch_back:
3193 list_for_each_entry(q, &set->tag_list, tag_set_list)
3194 blk_mq_elv_switch_back(&head, q);
3195
3196 list_for_each_entry(q, &set->tag_list, tag_set_list)
3197 blk_mq_unfreeze_queue(q);
3198 }
3199
3200 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3201 {
3202 mutex_lock(&set->tag_list_lock);
3203 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3204 mutex_unlock(&set->tag_list_lock);
3205 }
3206 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3207
3208 /* Enable polling stats and return whether they were already enabled. */
3209 static bool blk_poll_stats_enable(struct request_queue *q)
3210 {
3211 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3212 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3213 return true;
3214 blk_stat_add_callback(q, q->poll_cb);
3215 return false;
3216 }
3217
3218 static void blk_mq_poll_stats_start(struct request_queue *q)
3219 {
3220 /*
3221 * We don't arm the callback if polling stats are not enabled or the
3222 * callback is already active.
3223 */
3224 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3225 blk_stat_is_active(q->poll_cb))
3226 return;
3227
3228 blk_stat_activate_msecs(q->poll_cb, 100);
3229 }
3230
3231 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3232 {
3233 struct request_queue *q = cb->data;
3234 int bucket;
3235
3236 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3237 if (cb->stat[bucket].nr_samples)
3238 q->poll_stat[bucket] = cb->stat[bucket];
3239 }
3240 }
3241
3242 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3243 struct blk_mq_hw_ctx *hctx,
3244 struct request *rq)
3245 {
3246 unsigned long ret = 0;
3247 int bucket;
3248
3249 /*
3250 * If stats collection isn't on, don't sleep but turn it on for
3251 * future users
3252 */
3253 if (!blk_poll_stats_enable(q))
3254 return 0;
3255
3256 /*
3257 * As an optimistic guess, use half of the mean service time
3258 * for this type of request. We can (and should) make this smarter.
3259 * For instance, if the completion latencies are tight, we can
3260 * get closer than just half the mean. This is especially
3261 * important on devices where the completion latencies are longer
3262 * than ~10 usec. We do use the stats for the relevant IO size
3263 * if available which does lead to better estimates.
3264 */
3265 bucket = blk_mq_poll_stats_bkt(rq);
3266 if (bucket < 0)
3267 return ret;
3268
3269 if (q->poll_stat[bucket].nr_samples)
3270 ret = (q->poll_stat[bucket].mean + 1) / 2;
3271
3272 return ret;
3273 }
3274
3275 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3276 struct blk_mq_hw_ctx *hctx,
3277 struct request *rq)
3278 {
3279 struct hrtimer_sleeper hs;
3280 enum hrtimer_mode mode;
3281 unsigned int nsecs;
3282 ktime_t kt;
3283
3284 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3285 return false;
3286
3287 /*
3288 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3289 *
3290 * 0: use half of prev avg
3291 * >0: use this specific value
3292 */
3293 if (q->poll_nsec > 0)
3294 nsecs = q->poll_nsec;
3295 else
3296 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3297
3298 if (!nsecs)
3299 return false;
3300
3301 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3302
3303 /*
3304 * This will be replaced with the stats tracking code, using
3305 * 'avg_completion_time / 2' as the pre-sleep target.
3306 */
3307 kt = nsecs;
3308
3309 mode = HRTIMER_MODE_REL;
3310 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3311 hrtimer_set_expires(&hs.timer, kt);
3312
3313 hrtimer_init_sleeper(&hs, current);
3314 do {
3315 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3316 break;
3317 set_current_state(TASK_UNINTERRUPTIBLE);
3318 hrtimer_start_expires(&hs.timer, mode);
3319 if (hs.task)
3320 io_schedule();
3321 hrtimer_cancel(&hs.timer);
3322 mode = HRTIMER_MODE_ABS;
3323 } while (hs.task && !signal_pending(current));
3324
3325 __set_current_state(TASK_RUNNING);
3326 destroy_hrtimer_on_stack(&hs.timer);
3327 return true;
3328 }
3329
3330 static bool blk_mq_poll_hybrid(struct request_queue *q,
3331 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3332 {
3333 struct request *rq;
3334
3335 if (q->poll_nsec == -1)
3336 return false;
3337
3338 if (!blk_qc_t_is_internal(cookie))
3339 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3340 else {
3341 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3342 /*
3343 * With scheduling, if the request has completed, we'll
3344 * get a NULL return here, as we clear the sched tag when
3345 * that happens. The request still remains valid, like always,
3346 * so we should be safe with just the NULL check.
3347 */
3348 if (!rq)
3349 return false;
3350 }
3351
3352 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3353 }
3354
3355 static int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3356 {
3357 struct blk_mq_hw_ctx *hctx;
3358 long state;
3359
3360 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3361 return 0;
3362
3363 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3364
3365 /*
3366 * If we sleep, have the caller restart the poll loop to reset
3367 * the state. Like for the other success return cases, the
3368 * caller is responsible for checking if the IO completed. If
3369 * the IO isn't complete, we'll get called again and will go
3370 * straight to the busy poll loop.
3371 */
3372 if (blk_mq_poll_hybrid(q, hctx, cookie))
3373 return 1;
3374
3375 hctx->poll_considered++;
3376
3377 state = current->state;
3378 do {
3379 int ret;
3380
3381 hctx->poll_invoked++;
3382
3383 ret = q->mq_ops->poll(hctx);
3384 if (ret > 0) {
3385 hctx->poll_success++;
3386 __set_current_state(TASK_RUNNING);
3387 return ret;
3388 }
3389
3390 if (signal_pending_state(state, current))
3391 __set_current_state(TASK_RUNNING);
3392
3393 if (current->state == TASK_RUNNING)
3394 return 1;
3395 if (ret < 0 || !spin)
3396 break;
3397 cpu_relax();
3398 } while (!need_resched());
3399
3400 __set_current_state(TASK_RUNNING);
3401 return 0;
3402 }
3403
3404 unsigned int blk_mq_rq_cpu(struct request *rq)
3405 {
3406 return rq->mq_ctx->cpu;
3407 }
3408 EXPORT_SYMBOL(blk_mq_rq_cpu);
3409
3410 static int __init blk_mq_init(void)
3411 {
3412 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3413 blk_mq_hctx_notify_dead);
3414 return 0;
3415 }
3416 subsys_initcall(blk_mq_init);