]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
block: fix unintended fallthrough in generic_make_request_checks()
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
26
27 #include <trace/events/block.h>
28
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35
36 static DEFINE_MUTEX(all_q_mutex);
37 static LIST_HEAD(all_q_list);
38
39 /*
40 * Check if any of the ctx's have pending work in this hardware queue
41 */
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 {
44 return sbitmap_any_bit_set(&hctx->ctx_map);
45 }
46
47 /*
48 * Mark this ctx as having pending work in this hardware queue
49 */
50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52 {
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 }
56
57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
59 {
60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 }
62
63 void blk_mq_freeze_queue_start(struct request_queue *q)
64 {
65 int freeze_depth;
66
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
69 percpu_ref_kill(&q->q_usage_counter);
70 blk_mq_run_hw_queues(q, false);
71 }
72 }
73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74
75 static void blk_mq_freeze_queue_wait(struct request_queue *q)
76 {
77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78 }
79
80 /*
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
83 */
84 void blk_freeze_queue(struct request_queue *q)
85 {
86 /*
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
92 */
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
95 }
96
97 void blk_mq_freeze_queue(struct request_queue *q)
98 {
99 /*
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
102 */
103 blk_freeze_queue(q);
104 }
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106
107 void blk_mq_unfreeze_queue(struct request_queue *q)
108 {
109 int freeze_depth;
110
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
114 percpu_ref_reinit(&q->q_usage_counter);
115 wake_up_all(&q->mq_freeze_wq);
116 }
117 }
118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119
120 /**
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122 * @q: request queue.
123 *
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
127 */
128 void blk_mq_quiesce_queue(struct request_queue *q)
129 {
130 struct blk_mq_hw_ctx *hctx;
131 unsigned int i;
132 bool rcu = false;
133
134 blk_mq_stop_hw_queues(q);
135
136 queue_for_each_hw_ctx(q, hctx, i) {
137 if (hctx->flags & BLK_MQ_F_BLOCKING)
138 synchronize_srcu(&hctx->queue_rq_srcu);
139 else
140 rcu = true;
141 }
142 if (rcu)
143 synchronize_rcu();
144 }
145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
146
147 void blk_mq_wake_waiters(struct request_queue *q)
148 {
149 struct blk_mq_hw_ctx *hctx;
150 unsigned int i;
151
152 queue_for_each_hw_ctx(q, hctx, i)
153 if (blk_mq_hw_queue_mapped(hctx))
154 blk_mq_tag_wakeup_all(hctx->tags, true);
155
156 /*
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
160 */
161 wake_up_all(&q->mq_freeze_wq);
162 }
163
164 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
165 {
166 return blk_mq_has_free_tags(hctx->tags);
167 }
168 EXPORT_SYMBOL(blk_mq_can_queue);
169
170 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171 struct request *rq, unsigned int op)
172 {
173 INIT_LIST_HEAD(&rq->queuelist);
174 /* csd/requeue_work/fifo_time is initialized before use */
175 rq->q = q;
176 rq->mq_ctx = ctx;
177 rq->cmd_flags = op;
178 if (blk_queue_io_stat(q))
179 rq->rq_flags |= RQF_IO_STAT;
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
184 rq->rq_disk = NULL;
185 rq->part = NULL;
186 rq->start_time = jiffies;
187 #ifdef CONFIG_BLK_CGROUP
188 rq->rl = NULL;
189 set_start_time_ns(rq);
190 rq->io_start_time_ns = 0;
191 #endif
192 rq->nr_phys_segments = 0;
193 #if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq->nr_integrity_segments = 0;
195 #endif
196 rq->special = NULL;
197 /* tag was already set */
198 rq->errors = 0;
199
200 rq->cmd = rq->__cmd;
201
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
206
207 INIT_LIST_HEAD(&rq->timeout_list);
208 rq->timeout = 0;
209
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
213
214 ctx->rq_dispatched[op_is_sync(op)]++;
215 }
216
217 static struct request *
218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
219 {
220 struct request *rq;
221 unsigned int tag;
222
223 tag = blk_mq_get_tag(data);
224 if (tag != BLK_MQ_TAG_FAIL) {
225 rq = data->hctx->tags->rqs[tag];
226
227 if (blk_mq_tag_busy(data->hctx)) {
228 rq->rq_flags = RQF_MQ_INFLIGHT;
229 atomic_inc(&data->hctx->nr_active);
230 }
231
232 rq->tag = tag;
233 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
234 return rq;
235 }
236
237 return NULL;
238 }
239
240 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
241 unsigned int flags)
242 {
243 struct blk_mq_ctx *ctx;
244 struct blk_mq_hw_ctx *hctx;
245 struct request *rq;
246 struct blk_mq_alloc_data alloc_data;
247 int ret;
248
249 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
250 if (ret)
251 return ERR_PTR(ret);
252
253 ctx = blk_mq_get_ctx(q);
254 hctx = blk_mq_map_queue(q, ctx->cpu);
255 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
256 rq = __blk_mq_alloc_request(&alloc_data, rw);
257 blk_mq_put_ctx(ctx);
258
259 if (!rq) {
260 blk_queue_exit(q);
261 return ERR_PTR(-EWOULDBLOCK);
262 }
263
264 rq->__data_len = 0;
265 rq->__sector = (sector_t) -1;
266 rq->bio = rq->biotail = NULL;
267 return rq;
268 }
269 EXPORT_SYMBOL(blk_mq_alloc_request);
270
271 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
272 unsigned int flags, unsigned int hctx_idx)
273 {
274 struct blk_mq_hw_ctx *hctx;
275 struct blk_mq_ctx *ctx;
276 struct request *rq;
277 struct blk_mq_alloc_data alloc_data;
278 int ret;
279
280 /*
281 * If the tag allocator sleeps we could get an allocation for a
282 * different hardware context. No need to complicate the low level
283 * allocator for this for the rare use case of a command tied to
284 * a specific queue.
285 */
286 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
287 return ERR_PTR(-EINVAL);
288
289 if (hctx_idx >= q->nr_hw_queues)
290 return ERR_PTR(-EIO);
291
292 ret = blk_queue_enter(q, true);
293 if (ret)
294 return ERR_PTR(ret);
295
296 /*
297 * Check if the hardware context is actually mapped to anything.
298 * If not tell the caller that it should skip this queue.
299 */
300 hctx = q->queue_hw_ctx[hctx_idx];
301 if (!blk_mq_hw_queue_mapped(hctx)) {
302 ret = -EXDEV;
303 goto out_queue_exit;
304 }
305 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
306
307 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
308 rq = __blk_mq_alloc_request(&alloc_data, rw);
309 if (!rq) {
310 ret = -EWOULDBLOCK;
311 goto out_queue_exit;
312 }
313
314 return rq;
315
316 out_queue_exit:
317 blk_queue_exit(q);
318 return ERR_PTR(ret);
319 }
320 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
321
322 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
323 struct blk_mq_ctx *ctx, struct request *rq)
324 {
325 const int tag = rq->tag;
326 struct request_queue *q = rq->q;
327
328 if (rq->rq_flags & RQF_MQ_INFLIGHT)
329 atomic_dec(&hctx->nr_active);
330
331 wbt_done(q->rq_wb, &rq->issue_stat);
332 rq->rq_flags = 0;
333
334 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
336 blk_mq_put_tag(hctx, ctx, tag);
337 blk_queue_exit(q);
338 }
339
340 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
341 {
342 struct blk_mq_ctx *ctx = rq->mq_ctx;
343
344 ctx->rq_completed[rq_is_sync(rq)]++;
345 __blk_mq_free_request(hctx, ctx, rq);
346
347 }
348 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
349
350 void blk_mq_free_request(struct request *rq)
351 {
352 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
353 }
354 EXPORT_SYMBOL_GPL(blk_mq_free_request);
355
356 inline void __blk_mq_end_request(struct request *rq, int error)
357 {
358 blk_account_io_done(rq);
359
360 if (rq->end_io) {
361 wbt_done(rq->q->rq_wb, &rq->issue_stat);
362 rq->end_io(rq, error);
363 } else {
364 if (unlikely(blk_bidi_rq(rq)))
365 blk_mq_free_request(rq->next_rq);
366 blk_mq_free_request(rq);
367 }
368 }
369 EXPORT_SYMBOL(__blk_mq_end_request);
370
371 void blk_mq_end_request(struct request *rq, int error)
372 {
373 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
374 BUG();
375 __blk_mq_end_request(rq, error);
376 }
377 EXPORT_SYMBOL(blk_mq_end_request);
378
379 static void __blk_mq_complete_request_remote(void *data)
380 {
381 struct request *rq = data;
382
383 rq->q->softirq_done_fn(rq);
384 }
385
386 static void blk_mq_ipi_complete_request(struct request *rq)
387 {
388 struct blk_mq_ctx *ctx = rq->mq_ctx;
389 bool shared = false;
390 int cpu;
391
392 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
393 rq->q->softirq_done_fn(rq);
394 return;
395 }
396
397 cpu = get_cpu();
398 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
399 shared = cpus_share_cache(cpu, ctx->cpu);
400
401 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
402 rq->csd.func = __blk_mq_complete_request_remote;
403 rq->csd.info = rq;
404 rq->csd.flags = 0;
405 smp_call_function_single_async(ctx->cpu, &rq->csd);
406 } else {
407 rq->q->softirq_done_fn(rq);
408 }
409 put_cpu();
410 }
411
412 static void blk_mq_stat_add(struct request *rq)
413 {
414 if (rq->rq_flags & RQF_STATS) {
415 /*
416 * We could rq->mq_ctx here, but there's less of a risk
417 * of races if we have the completion event add the stats
418 * to the local software queue.
419 */
420 struct blk_mq_ctx *ctx;
421
422 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
423 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
424 }
425 }
426
427 static void __blk_mq_complete_request(struct request *rq)
428 {
429 struct request_queue *q = rq->q;
430
431 blk_mq_stat_add(rq);
432
433 if (!q->softirq_done_fn)
434 blk_mq_end_request(rq, rq->errors);
435 else
436 blk_mq_ipi_complete_request(rq);
437 }
438
439 /**
440 * blk_mq_complete_request - end I/O on a request
441 * @rq: the request being processed
442 *
443 * Description:
444 * Ends all I/O on a request. It does not handle partial completions.
445 * The actual completion happens out-of-order, through a IPI handler.
446 **/
447 void blk_mq_complete_request(struct request *rq, int error)
448 {
449 struct request_queue *q = rq->q;
450
451 if (unlikely(blk_should_fake_timeout(q)))
452 return;
453 if (!blk_mark_rq_complete(rq)) {
454 rq->errors = error;
455 __blk_mq_complete_request(rq);
456 }
457 }
458 EXPORT_SYMBOL(blk_mq_complete_request);
459
460 int blk_mq_request_started(struct request *rq)
461 {
462 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
463 }
464 EXPORT_SYMBOL_GPL(blk_mq_request_started);
465
466 void blk_mq_start_request(struct request *rq)
467 {
468 struct request_queue *q = rq->q;
469
470 trace_block_rq_issue(q, rq);
471
472 rq->resid_len = blk_rq_bytes(rq);
473 if (unlikely(blk_bidi_rq(rq)))
474 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
475
476 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
477 blk_stat_set_issue_time(&rq->issue_stat);
478 rq->rq_flags |= RQF_STATS;
479 wbt_issue(q->rq_wb, &rq->issue_stat);
480 }
481
482 blk_add_timer(rq);
483
484 /*
485 * Ensure that ->deadline is visible before set the started
486 * flag and clear the completed flag.
487 */
488 smp_mb__before_atomic();
489
490 /*
491 * Mark us as started and clear complete. Complete might have been
492 * set if requeue raced with timeout, which then marked it as
493 * complete. So be sure to clear complete again when we start
494 * the request, otherwise we'll ignore the completion event.
495 */
496 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
497 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
498 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
499 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
500
501 if (q->dma_drain_size && blk_rq_bytes(rq)) {
502 /*
503 * Make sure space for the drain appears. We know we can do
504 * this because max_hw_segments has been adjusted to be one
505 * fewer than the device can handle.
506 */
507 rq->nr_phys_segments++;
508 }
509 }
510 EXPORT_SYMBOL(blk_mq_start_request);
511
512 static void __blk_mq_requeue_request(struct request *rq)
513 {
514 struct request_queue *q = rq->q;
515
516 trace_block_rq_requeue(q, rq);
517 wbt_requeue(q->rq_wb, &rq->issue_stat);
518
519 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
520 if (q->dma_drain_size && blk_rq_bytes(rq))
521 rq->nr_phys_segments--;
522 }
523 }
524
525 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
526 {
527 __blk_mq_requeue_request(rq);
528
529 BUG_ON(blk_queued_rq(rq));
530 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
531 }
532 EXPORT_SYMBOL(blk_mq_requeue_request);
533
534 static void blk_mq_requeue_work(struct work_struct *work)
535 {
536 struct request_queue *q =
537 container_of(work, struct request_queue, requeue_work.work);
538 LIST_HEAD(rq_list);
539 struct request *rq, *next;
540 unsigned long flags;
541
542 spin_lock_irqsave(&q->requeue_lock, flags);
543 list_splice_init(&q->requeue_list, &rq_list);
544 spin_unlock_irqrestore(&q->requeue_lock, flags);
545
546 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
547 if (!(rq->rq_flags & RQF_SOFTBARRIER))
548 continue;
549
550 rq->rq_flags &= ~RQF_SOFTBARRIER;
551 list_del_init(&rq->queuelist);
552 blk_mq_insert_request(rq, true, false, false);
553 }
554
555 while (!list_empty(&rq_list)) {
556 rq = list_entry(rq_list.next, struct request, queuelist);
557 list_del_init(&rq->queuelist);
558 blk_mq_insert_request(rq, false, false, false);
559 }
560
561 blk_mq_run_hw_queues(q, false);
562 }
563
564 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
565 bool kick_requeue_list)
566 {
567 struct request_queue *q = rq->q;
568 unsigned long flags;
569
570 /*
571 * We abuse this flag that is otherwise used by the I/O scheduler to
572 * request head insertation from the workqueue.
573 */
574 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
575
576 spin_lock_irqsave(&q->requeue_lock, flags);
577 if (at_head) {
578 rq->rq_flags |= RQF_SOFTBARRIER;
579 list_add(&rq->queuelist, &q->requeue_list);
580 } else {
581 list_add_tail(&rq->queuelist, &q->requeue_list);
582 }
583 spin_unlock_irqrestore(&q->requeue_lock, flags);
584
585 if (kick_requeue_list)
586 blk_mq_kick_requeue_list(q);
587 }
588 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
589
590 void blk_mq_kick_requeue_list(struct request_queue *q)
591 {
592 kblockd_schedule_delayed_work(&q->requeue_work, 0);
593 }
594 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
595
596 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
597 unsigned long msecs)
598 {
599 kblockd_schedule_delayed_work(&q->requeue_work,
600 msecs_to_jiffies(msecs));
601 }
602 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
603
604 void blk_mq_abort_requeue_list(struct request_queue *q)
605 {
606 unsigned long flags;
607 LIST_HEAD(rq_list);
608
609 spin_lock_irqsave(&q->requeue_lock, flags);
610 list_splice_init(&q->requeue_list, &rq_list);
611 spin_unlock_irqrestore(&q->requeue_lock, flags);
612
613 while (!list_empty(&rq_list)) {
614 struct request *rq;
615
616 rq = list_first_entry(&rq_list, struct request, queuelist);
617 list_del_init(&rq->queuelist);
618 rq->errors = -EIO;
619 blk_mq_end_request(rq, rq->errors);
620 }
621 }
622 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
623
624 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
625 {
626 if (tag < tags->nr_tags) {
627 prefetch(tags->rqs[tag]);
628 return tags->rqs[tag];
629 }
630
631 return NULL;
632 }
633 EXPORT_SYMBOL(blk_mq_tag_to_rq);
634
635 struct blk_mq_timeout_data {
636 unsigned long next;
637 unsigned int next_set;
638 };
639
640 void blk_mq_rq_timed_out(struct request *req, bool reserved)
641 {
642 struct blk_mq_ops *ops = req->q->mq_ops;
643 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
644
645 /*
646 * We know that complete is set at this point. If STARTED isn't set
647 * anymore, then the request isn't active and the "timeout" should
648 * just be ignored. This can happen due to the bitflag ordering.
649 * Timeout first checks if STARTED is set, and if it is, assumes
650 * the request is active. But if we race with completion, then
651 * we both flags will get cleared. So check here again, and ignore
652 * a timeout event with a request that isn't active.
653 */
654 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
655 return;
656
657 if (ops->timeout)
658 ret = ops->timeout(req, reserved);
659
660 switch (ret) {
661 case BLK_EH_HANDLED:
662 __blk_mq_complete_request(req);
663 break;
664 case BLK_EH_RESET_TIMER:
665 blk_add_timer(req);
666 blk_clear_rq_complete(req);
667 break;
668 case BLK_EH_NOT_HANDLED:
669 break;
670 default:
671 printk(KERN_ERR "block: bad eh return: %d\n", ret);
672 break;
673 }
674 }
675
676 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
677 struct request *rq, void *priv, bool reserved)
678 {
679 struct blk_mq_timeout_data *data = priv;
680
681 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
682 /*
683 * If a request wasn't started before the queue was
684 * marked dying, kill it here or it'll go unnoticed.
685 */
686 if (unlikely(blk_queue_dying(rq->q))) {
687 rq->errors = -EIO;
688 blk_mq_end_request(rq, rq->errors);
689 }
690 return;
691 }
692
693 if (time_after_eq(jiffies, rq->deadline)) {
694 if (!blk_mark_rq_complete(rq))
695 blk_mq_rq_timed_out(rq, reserved);
696 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
697 data->next = rq->deadline;
698 data->next_set = 1;
699 }
700 }
701
702 static void blk_mq_timeout_work(struct work_struct *work)
703 {
704 struct request_queue *q =
705 container_of(work, struct request_queue, timeout_work);
706 struct blk_mq_timeout_data data = {
707 .next = 0,
708 .next_set = 0,
709 };
710 int i;
711
712 /* A deadlock might occur if a request is stuck requiring a
713 * timeout at the same time a queue freeze is waiting
714 * completion, since the timeout code would not be able to
715 * acquire the queue reference here.
716 *
717 * That's why we don't use blk_queue_enter here; instead, we use
718 * percpu_ref_tryget directly, because we need to be able to
719 * obtain a reference even in the short window between the queue
720 * starting to freeze, by dropping the first reference in
721 * blk_mq_freeze_queue_start, and the moment the last request is
722 * consumed, marked by the instant q_usage_counter reaches
723 * zero.
724 */
725 if (!percpu_ref_tryget(&q->q_usage_counter))
726 return;
727
728 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
729
730 if (data.next_set) {
731 data.next = blk_rq_timeout(round_jiffies_up(data.next));
732 mod_timer(&q->timeout, data.next);
733 } else {
734 struct blk_mq_hw_ctx *hctx;
735
736 queue_for_each_hw_ctx(q, hctx, i) {
737 /* the hctx may be unmapped, so check it here */
738 if (blk_mq_hw_queue_mapped(hctx))
739 blk_mq_tag_idle(hctx);
740 }
741 }
742 blk_queue_exit(q);
743 }
744
745 /*
746 * Reverse check our software queue for entries that we could potentially
747 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
748 * too much time checking for merges.
749 */
750 static bool blk_mq_attempt_merge(struct request_queue *q,
751 struct blk_mq_ctx *ctx, struct bio *bio)
752 {
753 struct request *rq;
754 int checked = 8;
755
756 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
757 int el_ret;
758
759 if (!checked--)
760 break;
761
762 if (!blk_rq_merge_ok(rq, bio))
763 continue;
764
765 el_ret = blk_try_merge(rq, bio);
766 if (el_ret == ELEVATOR_BACK_MERGE) {
767 if (bio_attempt_back_merge(q, rq, bio)) {
768 ctx->rq_merged++;
769 return true;
770 }
771 break;
772 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
773 if (bio_attempt_front_merge(q, rq, bio)) {
774 ctx->rq_merged++;
775 return true;
776 }
777 break;
778 }
779 }
780
781 return false;
782 }
783
784 struct flush_busy_ctx_data {
785 struct blk_mq_hw_ctx *hctx;
786 struct list_head *list;
787 };
788
789 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
790 {
791 struct flush_busy_ctx_data *flush_data = data;
792 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
793 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
794
795 sbitmap_clear_bit(sb, bitnr);
796 spin_lock(&ctx->lock);
797 list_splice_tail_init(&ctx->rq_list, flush_data->list);
798 spin_unlock(&ctx->lock);
799 return true;
800 }
801
802 /*
803 * Process software queues that have been marked busy, splicing them
804 * to the for-dispatch
805 */
806 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
807 {
808 struct flush_busy_ctx_data data = {
809 .hctx = hctx,
810 .list = list,
811 };
812
813 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
814 }
815
816 static inline unsigned int queued_to_index(unsigned int queued)
817 {
818 if (!queued)
819 return 0;
820
821 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
822 }
823
824 /*
825 * Run this hardware queue, pulling any software queues mapped to it in.
826 * Note that this function currently has various problems around ordering
827 * of IO. In particular, we'd like FIFO behaviour on handling existing
828 * items on the hctx->dispatch list. Ignore that for now.
829 */
830 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
831 {
832 struct request_queue *q = hctx->queue;
833 struct request *rq;
834 LIST_HEAD(rq_list);
835 LIST_HEAD(driver_list);
836 struct list_head *dptr;
837 int queued;
838
839 if (unlikely(blk_mq_hctx_stopped(hctx)))
840 return;
841
842 hctx->run++;
843
844 /*
845 * Touch any software queue that has pending entries.
846 */
847 flush_busy_ctxs(hctx, &rq_list);
848
849 /*
850 * If we have previous entries on our dispatch list, grab them
851 * and stuff them at the front for more fair dispatch.
852 */
853 if (!list_empty_careful(&hctx->dispatch)) {
854 spin_lock(&hctx->lock);
855 if (!list_empty(&hctx->dispatch))
856 list_splice_init(&hctx->dispatch, &rq_list);
857 spin_unlock(&hctx->lock);
858 }
859
860 /*
861 * Start off with dptr being NULL, so we start the first request
862 * immediately, even if we have more pending.
863 */
864 dptr = NULL;
865
866 /*
867 * Now process all the entries, sending them to the driver.
868 */
869 queued = 0;
870 while (!list_empty(&rq_list)) {
871 struct blk_mq_queue_data bd;
872 int ret;
873
874 rq = list_first_entry(&rq_list, struct request, queuelist);
875 list_del_init(&rq->queuelist);
876
877 bd.rq = rq;
878 bd.list = dptr;
879 bd.last = list_empty(&rq_list);
880
881 ret = q->mq_ops->queue_rq(hctx, &bd);
882 switch (ret) {
883 case BLK_MQ_RQ_QUEUE_OK:
884 queued++;
885 break;
886 case BLK_MQ_RQ_QUEUE_BUSY:
887 list_add(&rq->queuelist, &rq_list);
888 __blk_mq_requeue_request(rq);
889 break;
890 default:
891 pr_err("blk-mq: bad return on queue: %d\n", ret);
892 case BLK_MQ_RQ_QUEUE_ERROR:
893 rq->errors = -EIO;
894 blk_mq_end_request(rq, rq->errors);
895 break;
896 }
897
898 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
899 break;
900
901 /*
902 * We've done the first request. If we have more than 1
903 * left in the list, set dptr to defer issue.
904 */
905 if (!dptr && rq_list.next != rq_list.prev)
906 dptr = &driver_list;
907 }
908
909 hctx->dispatched[queued_to_index(queued)]++;
910
911 /*
912 * Any items that need requeuing? Stuff them into hctx->dispatch,
913 * that is where we will continue on next queue run.
914 */
915 if (!list_empty(&rq_list)) {
916 spin_lock(&hctx->lock);
917 list_splice(&rq_list, &hctx->dispatch);
918 spin_unlock(&hctx->lock);
919 /*
920 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
921 * it's possible the queue is stopped and restarted again
922 * before this. Queue restart will dispatch requests. And since
923 * requests in rq_list aren't added into hctx->dispatch yet,
924 * the requests in rq_list might get lost.
925 *
926 * blk_mq_run_hw_queue() already checks the STOPPED bit
927 **/
928 blk_mq_run_hw_queue(hctx, true);
929 }
930 }
931
932 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
933 {
934 int srcu_idx;
935
936 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
937 cpu_online(hctx->next_cpu));
938
939 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
940 rcu_read_lock();
941 blk_mq_process_rq_list(hctx);
942 rcu_read_unlock();
943 } else {
944 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
945 blk_mq_process_rq_list(hctx);
946 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
947 }
948 }
949
950 /*
951 * It'd be great if the workqueue API had a way to pass
952 * in a mask and had some smarts for more clever placement.
953 * For now we just round-robin here, switching for every
954 * BLK_MQ_CPU_WORK_BATCH queued items.
955 */
956 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
957 {
958 if (hctx->queue->nr_hw_queues == 1)
959 return WORK_CPU_UNBOUND;
960
961 if (--hctx->next_cpu_batch <= 0) {
962 int next_cpu;
963
964 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
965 if (next_cpu >= nr_cpu_ids)
966 next_cpu = cpumask_first(hctx->cpumask);
967
968 hctx->next_cpu = next_cpu;
969 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
970 }
971
972 return hctx->next_cpu;
973 }
974
975 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
976 {
977 if (unlikely(blk_mq_hctx_stopped(hctx) ||
978 !blk_mq_hw_queue_mapped(hctx)))
979 return;
980
981 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
982 int cpu = get_cpu();
983 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
984 __blk_mq_run_hw_queue(hctx);
985 put_cpu();
986 return;
987 }
988
989 put_cpu();
990 }
991
992 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
993 }
994
995 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
996 {
997 struct blk_mq_hw_ctx *hctx;
998 int i;
999
1000 queue_for_each_hw_ctx(q, hctx, i) {
1001 if ((!blk_mq_hctx_has_pending(hctx) &&
1002 list_empty_careful(&hctx->dispatch)) ||
1003 blk_mq_hctx_stopped(hctx))
1004 continue;
1005
1006 blk_mq_run_hw_queue(hctx, async);
1007 }
1008 }
1009 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1010
1011 /**
1012 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1013 * @q: request queue.
1014 *
1015 * The caller is responsible for serializing this function against
1016 * blk_mq_{start,stop}_hw_queue().
1017 */
1018 bool blk_mq_queue_stopped(struct request_queue *q)
1019 {
1020 struct blk_mq_hw_ctx *hctx;
1021 int i;
1022
1023 queue_for_each_hw_ctx(q, hctx, i)
1024 if (blk_mq_hctx_stopped(hctx))
1025 return true;
1026
1027 return false;
1028 }
1029 EXPORT_SYMBOL(blk_mq_queue_stopped);
1030
1031 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1032 {
1033 cancel_work(&hctx->run_work);
1034 cancel_delayed_work(&hctx->delay_work);
1035 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1036 }
1037 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1038
1039 void blk_mq_stop_hw_queues(struct request_queue *q)
1040 {
1041 struct blk_mq_hw_ctx *hctx;
1042 int i;
1043
1044 queue_for_each_hw_ctx(q, hctx, i)
1045 blk_mq_stop_hw_queue(hctx);
1046 }
1047 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1048
1049 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1050 {
1051 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1052
1053 blk_mq_run_hw_queue(hctx, false);
1054 }
1055 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1056
1057 void blk_mq_start_hw_queues(struct request_queue *q)
1058 {
1059 struct blk_mq_hw_ctx *hctx;
1060 int i;
1061
1062 queue_for_each_hw_ctx(q, hctx, i)
1063 blk_mq_start_hw_queue(hctx);
1064 }
1065 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1066
1067 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1068 {
1069 struct blk_mq_hw_ctx *hctx;
1070 int i;
1071
1072 queue_for_each_hw_ctx(q, hctx, i) {
1073 if (!blk_mq_hctx_stopped(hctx))
1074 continue;
1075
1076 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1077 blk_mq_run_hw_queue(hctx, async);
1078 }
1079 }
1080 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1081
1082 static void blk_mq_run_work_fn(struct work_struct *work)
1083 {
1084 struct blk_mq_hw_ctx *hctx;
1085
1086 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1087
1088 __blk_mq_run_hw_queue(hctx);
1089 }
1090
1091 static void blk_mq_delay_work_fn(struct work_struct *work)
1092 {
1093 struct blk_mq_hw_ctx *hctx;
1094
1095 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1096
1097 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1098 __blk_mq_run_hw_queue(hctx);
1099 }
1100
1101 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1102 {
1103 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1104 return;
1105
1106 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1107 &hctx->delay_work, msecs_to_jiffies(msecs));
1108 }
1109 EXPORT_SYMBOL(blk_mq_delay_queue);
1110
1111 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1112 struct request *rq,
1113 bool at_head)
1114 {
1115 struct blk_mq_ctx *ctx = rq->mq_ctx;
1116
1117 trace_block_rq_insert(hctx->queue, rq);
1118
1119 if (at_head)
1120 list_add(&rq->queuelist, &ctx->rq_list);
1121 else
1122 list_add_tail(&rq->queuelist, &ctx->rq_list);
1123 }
1124
1125 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1126 struct request *rq, bool at_head)
1127 {
1128 struct blk_mq_ctx *ctx = rq->mq_ctx;
1129
1130 __blk_mq_insert_req_list(hctx, rq, at_head);
1131 blk_mq_hctx_mark_pending(hctx, ctx);
1132 }
1133
1134 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1135 bool async)
1136 {
1137 struct blk_mq_ctx *ctx = rq->mq_ctx;
1138 struct request_queue *q = rq->q;
1139 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1140
1141 spin_lock(&ctx->lock);
1142 __blk_mq_insert_request(hctx, rq, at_head);
1143 spin_unlock(&ctx->lock);
1144
1145 if (run_queue)
1146 blk_mq_run_hw_queue(hctx, async);
1147 }
1148
1149 static void blk_mq_insert_requests(struct request_queue *q,
1150 struct blk_mq_ctx *ctx,
1151 struct list_head *list,
1152 int depth,
1153 bool from_schedule)
1154
1155 {
1156 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1157
1158 trace_block_unplug(q, depth, !from_schedule);
1159
1160 /*
1161 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1162 * offline now
1163 */
1164 spin_lock(&ctx->lock);
1165 while (!list_empty(list)) {
1166 struct request *rq;
1167
1168 rq = list_first_entry(list, struct request, queuelist);
1169 BUG_ON(rq->mq_ctx != ctx);
1170 list_del_init(&rq->queuelist);
1171 __blk_mq_insert_req_list(hctx, rq, false);
1172 }
1173 blk_mq_hctx_mark_pending(hctx, ctx);
1174 spin_unlock(&ctx->lock);
1175
1176 blk_mq_run_hw_queue(hctx, from_schedule);
1177 }
1178
1179 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1180 {
1181 struct request *rqa = container_of(a, struct request, queuelist);
1182 struct request *rqb = container_of(b, struct request, queuelist);
1183
1184 return !(rqa->mq_ctx < rqb->mq_ctx ||
1185 (rqa->mq_ctx == rqb->mq_ctx &&
1186 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1187 }
1188
1189 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1190 {
1191 struct blk_mq_ctx *this_ctx;
1192 struct request_queue *this_q;
1193 struct request *rq;
1194 LIST_HEAD(list);
1195 LIST_HEAD(ctx_list);
1196 unsigned int depth;
1197
1198 list_splice_init(&plug->mq_list, &list);
1199
1200 list_sort(NULL, &list, plug_ctx_cmp);
1201
1202 this_q = NULL;
1203 this_ctx = NULL;
1204 depth = 0;
1205
1206 while (!list_empty(&list)) {
1207 rq = list_entry_rq(list.next);
1208 list_del_init(&rq->queuelist);
1209 BUG_ON(!rq->q);
1210 if (rq->mq_ctx != this_ctx) {
1211 if (this_ctx) {
1212 blk_mq_insert_requests(this_q, this_ctx,
1213 &ctx_list, depth,
1214 from_schedule);
1215 }
1216
1217 this_ctx = rq->mq_ctx;
1218 this_q = rq->q;
1219 depth = 0;
1220 }
1221
1222 depth++;
1223 list_add_tail(&rq->queuelist, &ctx_list);
1224 }
1225
1226 /*
1227 * If 'this_ctx' is set, we know we have entries to complete
1228 * on 'ctx_list'. Do those.
1229 */
1230 if (this_ctx) {
1231 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1232 from_schedule);
1233 }
1234 }
1235
1236 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1237 {
1238 init_request_from_bio(rq, bio);
1239
1240 blk_account_io_start(rq, 1);
1241 }
1242
1243 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1244 {
1245 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1246 !blk_queue_nomerges(hctx->queue);
1247 }
1248
1249 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1250 struct blk_mq_ctx *ctx,
1251 struct request *rq, struct bio *bio)
1252 {
1253 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1254 blk_mq_bio_to_request(rq, bio);
1255 spin_lock(&ctx->lock);
1256 insert_rq:
1257 __blk_mq_insert_request(hctx, rq, false);
1258 spin_unlock(&ctx->lock);
1259 return false;
1260 } else {
1261 struct request_queue *q = hctx->queue;
1262
1263 spin_lock(&ctx->lock);
1264 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1265 blk_mq_bio_to_request(rq, bio);
1266 goto insert_rq;
1267 }
1268
1269 spin_unlock(&ctx->lock);
1270 __blk_mq_free_request(hctx, ctx, rq);
1271 return true;
1272 }
1273 }
1274
1275 static struct request *blk_mq_map_request(struct request_queue *q,
1276 struct bio *bio,
1277 struct blk_mq_alloc_data *data)
1278 {
1279 struct blk_mq_hw_ctx *hctx;
1280 struct blk_mq_ctx *ctx;
1281 struct request *rq;
1282
1283 blk_queue_enter_live(q);
1284 ctx = blk_mq_get_ctx(q);
1285 hctx = blk_mq_map_queue(q, ctx->cpu);
1286
1287 trace_block_getrq(q, bio, bio->bi_opf);
1288 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1289 rq = __blk_mq_alloc_request(data, bio->bi_opf);
1290
1291 data->hctx->queued++;
1292 return rq;
1293 }
1294
1295 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1296 {
1297 int ret;
1298 struct request_queue *q = rq->q;
1299 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1300 struct blk_mq_queue_data bd = {
1301 .rq = rq,
1302 .list = NULL,
1303 .last = 1
1304 };
1305 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1306
1307 if (blk_mq_hctx_stopped(hctx))
1308 goto insert;
1309
1310 /*
1311 * For OK queue, we are done. For error, kill it. Any other
1312 * error (busy), just add it to our list as we previously
1313 * would have done
1314 */
1315 ret = q->mq_ops->queue_rq(hctx, &bd);
1316 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1317 *cookie = new_cookie;
1318 return;
1319 }
1320
1321 __blk_mq_requeue_request(rq);
1322
1323 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1324 *cookie = BLK_QC_T_NONE;
1325 rq->errors = -EIO;
1326 blk_mq_end_request(rq, rq->errors);
1327 return;
1328 }
1329
1330 insert:
1331 blk_mq_insert_request(rq, false, true, true);
1332 }
1333
1334 /*
1335 * Multiple hardware queue variant. This will not use per-process plugs,
1336 * but will attempt to bypass the hctx queueing if we can go straight to
1337 * hardware for SYNC IO.
1338 */
1339 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1340 {
1341 const int is_sync = op_is_sync(bio->bi_opf);
1342 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1343 struct blk_mq_alloc_data data;
1344 struct request *rq;
1345 unsigned int request_count = 0, srcu_idx;
1346 struct blk_plug *plug;
1347 struct request *same_queue_rq = NULL;
1348 blk_qc_t cookie;
1349 unsigned int wb_acct;
1350
1351 blk_queue_bounce(q, &bio);
1352
1353 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1354 bio_io_error(bio);
1355 return BLK_QC_T_NONE;
1356 }
1357
1358 blk_queue_split(q, &bio, q->bio_split);
1359
1360 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1361 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1362 return BLK_QC_T_NONE;
1363
1364 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1365
1366 rq = blk_mq_map_request(q, bio, &data);
1367 if (unlikely(!rq)) {
1368 __wbt_done(q->rq_wb, wb_acct);
1369 return BLK_QC_T_NONE;
1370 }
1371
1372 wbt_track(&rq->issue_stat, wb_acct);
1373
1374 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1375
1376 if (unlikely(is_flush_fua)) {
1377 blk_mq_bio_to_request(rq, bio);
1378 blk_insert_flush(rq);
1379 goto run_queue;
1380 }
1381
1382 plug = current->plug;
1383 /*
1384 * If the driver supports defer issued based on 'last', then
1385 * queue it up like normal since we can potentially save some
1386 * CPU this way.
1387 */
1388 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1389 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1390 struct request *old_rq = NULL;
1391
1392 blk_mq_bio_to_request(rq, bio);
1393
1394 /*
1395 * We do limited plugging. If the bio can be merged, do that.
1396 * Otherwise the existing request in the plug list will be
1397 * issued. So the plug list will have one request at most
1398 */
1399 if (plug) {
1400 /*
1401 * The plug list might get flushed before this. If that
1402 * happens, same_queue_rq is invalid and plug list is
1403 * empty
1404 */
1405 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1406 old_rq = same_queue_rq;
1407 list_del_init(&old_rq->queuelist);
1408 }
1409 list_add_tail(&rq->queuelist, &plug->mq_list);
1410 } else /* is_sync */
1411 old_rq = rq;
1412 blk_mq_put_ctx(data.ctx);
1413 if (!old_rq)
1414 goto done;
1415
1416 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1417 rcu_read_lock();
1418 blk_mq_try_issue_directly(old_rq, &cookie);
1419 rcu_read_unlock();
1420 } else {
1421 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1422 blk_mq_try_issue_directly(old_rq, &cookie);
1423 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1424 }
1425 goto done;
1426 }
1427
1428 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1429 /*
1430 * For a SYNC request, send it to the hardware immediately. For
1431 * an ASYNC request, just ensure that we run it later on. The
1432 * latter allows for merging opportunities and more efficient
1433 * dispatching.
1434 */
1435 run_queue:
1436 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1437 }
1438 blk_mq_put_ctx(data.ctx);
1439 done:
1440 return cookie;
1441 }
1442
1443 /*
1444 * Single hardware queue variant. This will attempt to use any per-process
1445 * plug for merging and IO deferral.
1446 */
1447 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1448 {
1449 const int is_sync = op_is_sync(bio->bi_opf);
1450 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1451 struct blk_plug *plug;
1452 unsigned int request_count = 0;
1453 struct blk_mq_alloc_data data;
1454 struct request *rq;
1455 blk_qc_t cookie;
1456 unsigned int wb_acct;
1457
1458 blk_queue_bounce(q, &bio);
1459
1460 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1461 bio_io_error(bio);
1462 return BLK_QC_T_NONE;
1463 }
1464
1465 blk_queue_split(q, &bio, q->bio_split);
1466
1467 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1468 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1469 return BLK_QC_T_NONE;
1470 } else
1471 request_count = blk_plug_queued_count(q);
1472
1473 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1474
1475 rq = blk_mq_map_request(q, bio, &data);
1476 if (unlikely(!rq)) {
1477 __wbt_done(q->rq_wb, wb_acct);
1478 return BLK_QC_T_NONE;
1479 }
1480
1481 wbt_track(&rq->issue_stat, wb_acct);
1482
1483 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1484
1485 if (unlikely(is_flush_fua)) {
1486 blk_mq_bio_to_request(rq, bio);
1487 blk_insert_flush(rq);
1488 goto run_queue;
1489 }
1490
1491 /*
1492 * A task plug currently exists. Since this is completely lockless,
1493 * utilize that to temporarily store requests until the task is
1494 * either done or scheduled away.
1495 */
1496 plug = current->plug;
1497 if (plug) {
1498 struct request *last = NULL;
1499
1500 blk_mq_bio_to_request(rq, bio);
1501
1502 /*
1503 * @request_count may become stale because of schedule
1504 * out, so check the list again.
1505 */
1506 if (list_empty(&plug->mq_list))
1507 request_count = 0;
1508 if (!request_count)
1509 trace_block_plug(q);
1510 else
1511 last = list_entry_rq(plug->mq_list.prev);
1512
1513 blk_mq_put_ctx(data.ctx);
1514
1515 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1516 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1517 blk_flush_plug_list(plug, false);
1518 trace_block_plug(q);
1519 }
1520
1521 list_add_tail(&rq->queuelist, &plug->mq_list);
1522 return cookie;
1523 }
1524
1525 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1526 /*
1527 * For a SYNC request, send it to the hardware immediately. For
1528 * an ASYNC request, just ensure that we run it later on. The
1529 * latter allows for merging opportunities and more efficient
1530 * dispatching.
1531 */
1532 run_queue:
1533 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1534 }
1535
1536 blk_mq_put_ctx(data.ctx);
1537 return cookie;
1538 }
1539
1540 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1541 struct blk_mq_tags *tags, unsigned int hctx_idx)
1542 {
1543 struct page *page;
1544
1545 if (tags->rqs && set->ops->exit_request) {
1546 int i;
1547
1548 for (i = 0; i < tags->nr_tags; i++) {
1549 if (!tags->rqs[i])
1550 continue;
1551 set->ops->exit_request(set->driver_data, tags->rqs[i],
1552 hctx_idx, i);
1553 tags->rqs[i] = NULL;
1554 }
1555 }
1556
1557 while (!list_empty(&tags->page_list)) {
1558 page = list_first_entry(&tags->page_list, struct page, lru);
1559 list_del_init(&page->lru);
1560 /*
1561 * Remove kmemleak object previously allocated in
1562 * blk_mq_init_rq_map().
1563 */
1564 kmemleak_free(page_address(page));
1565 __free_pages(page, page->private);
1566 }
1567
1568 kfree(tags->rqs);
1569
1570 blk_mq_free_tags(tags);
1571 }
1572
1573 static size_t order_to_size(unsigned int order)
1574 {
1575 return (size_t)PAGE_SIZE << order;
1576 }
1577
1578 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1579 unsigned int hctx_idx)
1580 {
1581 struct blk_mq_tags *tags;
1582 unsigned int i, j, entries_per_page, max_order = 4;
1583 size_t rq_size, left;
1584
1585 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1586 set->numa_node,
1587 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1588 if (!tags)
1589 return NULL;
1590
1591 INIT_LIST_HEAD(&tags->page_list);
1592
1593 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1594 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1595 set->numa_node);
1596 if (!tags->rqs) {
1597 blk_mq_free_tags(tags);
1598 return NULL;
1599 }
1600
1601 /*
1602 * rq_size is the size of the request plus driver payload, rounded
1603 * to the cacheline size
1604 */
1605 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1606 cache_line_size());
1607 left = rq_size * set->queue_depth;
1608
1609 for (i = 0; i < set->queue_depth; ) {
1610 int this_order = max_order;
1611 struct page *page;
1612 int to_do;
1613 void *p;
1614
1615 while (this_order && left < order_to_size(this_order - 1))
1616 this_order--;
1617
1618 do {
1619 page = alloc_pages_node(set->numa_node,
1620 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1621 this_order);
1622 if (page)
1623 break;
1624 if (!this_order--)
1625 break;
1626 if (order_to_size(this_order) < rq_size)
1627 break;
1628 } while (1);
1629
1630 if (!page)
1631 goto fail;
1632
1633 page->private = this_order;
1634 list_add_tail(&page->lru, &tags->page_list);
1635
1636 p = page_address(page);
1637 /*
1638 * Allow kmemleak to scan these pages as they contain pointers
1639 * to additional allocations like via ops->init_request().
1640 */
1641 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1642 entries_per_page = order_to_size(this_order) / rq_size;
1643 to_do = min(entries_per_page, set->queue_depth - i);
1644 left -= to_do * rq_size;
1645 for (j = 0; j < to_do; j++) {
1646 tags->rqs[i] = p;
1647 if (set->ops->init_request) {
1648 if (set->ops->init_request(set->driver_data,
1649 tags->rqs[i], hctx_idx, i,
1650 set->numa_node)) {
1651 tags->rqs[i] = NULL;
1652 goto fail;
1653 }
1654 }
1655
1656 p += rq_size;
1657 i++;
1658 }
1659 }
1660 return tags;
1661
1662 fail:
1663 blk_mq_free_rq_map(set, tags, hctx_idx);
1664 return NULL;
1665 }
1666
1667 /*
1668 * 'cpu' is going away. splice any existing rq_list entries from this
1669 * software queue to the hw queue dispatch list, and ensure that it
1670 * gets run.
1671 */
1672 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1673 {
1674 struct blk_mq_hw_ctx *hctx;
1675 struct blk_mq_ctx *ctx;
1676 LIST_HEAD(tmp);
1677
1678 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1679 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1680
1681 spin_lock(&ctx->lock);
1682 if (!list_empty(&ctx->rq_list)) {
1683 list_splice_init(&ctx->rq_list, &tmp);
1684 blk_mq_hctx_clear_pending(hctx, ctx);
1685 }
1686 spin_unlock(&ctx->lock);
1687
1688 if (list_empty(&tmp))
1689 return 0;
1690
1691 spin_lock(&hctx->lock);
1692 list_splice_tail_init(&tmp, &hctx->dispatch);
1693 spin_unlock(&hctx->lock);
1694
1695 blk_mq_run_hw_queue(hctx, true);
1696 return 0;
1697 }
1698
1699 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1700 {
1701 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1702 &hctx->cpuhp_dead);
1703 }
1704
1705 /* hctx->ctxs will be freed in queue's release handler */
1706 static void blk_mq_exit_hctx(struct request_queue *q,
1707 struct blk_mq_tag_set *set,
1708 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1709 {
1710 unsigned flush_start_tag = set->queue_depth;
1711
1712 blk_mq_tag_idle(hctx);
1713
1714 if (set->ops->exit_request)
1715 set->ops->exit_request(set->driver_data,
1716 hctx->fq->flush_rq, hctx_idx,
1717 flush_start_tag + hctx_idx);
1718
1719 if (set->ops->exit_hctx)
1720 set->ops->exit_hctx(hctx, hctx_idx);
1721
1722 if (hctx->flags & BLK_MQ_F_BLOCKING)
1723 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1724
1725 blk_mq_remove_cpuhp(hctx);
1726 blk_free_flush_queue(hctx->fq);
1727 sbitmap_free(&hctx->ctx_map);
1728 }
1729
1730 static void blk_mq_exit_hw_queues(struct request_queue *q,
1731 struct blk_mq_tag_set *set, int nr_queue)
1732 {
1733 struct blk_mq_hw_ctx *hctx;
1734 unsigned int i;
1735
1736 queue_for_each_hw_ctx(q, hctx, i) {
1737 if (i == nr_queue)
1738 break;
1739 blk_mq_exit_hctx(q, set, hctx, i);
1740 }
1741 }
1742
1743 static void blk_mq_free_hw_queues(struct request_queue *q,
1744 struct blk_mq_tag_set *set)
1745 {
1746 struct blk_mq_hw_ctx *hctx;
1747 unsigned int i;
1748
1749 queue_for_each_hw_ctx(q, hctx, i)
1750 free_cpumask_var(hctx->cpumask);
1751 }
1752
1753 static int blk_mq_init_hctx(struct request_queue *q,
1754 struct blk_mq_tag_set *set,
1755 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1756 {
1757 int node;
1758 unsigned flush_start_tag = set->queue_depth;
1759
1760 node = hctx->numa_node;
1761 if (node == NUMA_NO_NODE)
1762 node = hctx->numa_node = set->numa_node;
1763
1764 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1765 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1766 spin_lock_init(&hctx->lock);
1767 INIT_LIST_HEAD(&hctx->dispatch);
1768 hctx->queue = q;
1769 hctx->queue_num = hctx_idx;
1770 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1771
1772 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1773
1774 hctx->tags = set->tags[hctx_idx];
1775
1776 /*
1777 * Allocate space for all possible cpus to avoid allocation at
1778 * runtime
1779 */
1780 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1781 GFP_KERNEL, node);
1782 if (!hctx->ctxs)
1783 goto unregister_cpu_notifier;
1784
1785 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1786 node))
1787 goto free_ctxs;
1788
1789 hctx->nr_ctx = 0;
1790
1791 if (set->ops->init_hctx &&
1792 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1793 goto free_bitmap;
1794
1795 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1796 if (!hctx->fq)
1797 goto exit_hctx;
1798
1799 if (set->ops->init_request &&
1800 set->ops->init_request(set->driver_data,
1801 hctx->fq->flush_rq, hctx_idx,
1802 flush_start_tag + hctx_idx, node))
1803 goto free_fq;
1804
1805 if (hctx->flags & BLK_MQ_F_BLOCKING)
1806 init_srcu_struct(&hctx->queue_rq_srcu);
1807
1808 return 0;
1809
1810 free_fq:
1811 kfree(hctx->fq);
1812 exit_hctx:
1813 if (set->ops->exit_hctx)
1814 set->ops->exit_hctx(hctx, hctx_idx);
1815 free_bitmap:
1816 sbitmap_free(&hctx->ctx_map);
1817 free_ctxs:
1818 kfree(hctx->ctxs);
1819 unregister_cpu_notifier:
1820 blk_mq_remove_cpuhp(hctx);
1821 return -1;
1822 }
1823
1824 static void blk_mq_init_cpu_queues(struct request_queue *q,
1825 unsigned int nr_hw_queues)
1826 {
1827 unsigned int i;
1828
1829 for_each_possible_cpu(i) {
1830 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1831 struct blk_mq_hw_ctx *hctx;
1832
1833 memset(__ctx, 0, sizeof(*__ctx));
1834 __ctx->cpu = i;
1835 spin_lock_init(&__ctx->lock);
1836 INIT_LIST_HEAD(&__ctx->rq_list);
1837 __ctx->queue = q;
1838 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1839 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1840
1841 /* If the cpu isn't online, the cpu is mapped to first hctx */
1842 if (!cpu_online(i))
1843 continue;
1844
1845 hctx = blk_mq_map_queue(q, i);
1846
1847 /*
1848 * Set local node, IFF we have more than one hw queue. If
1849 * not, we remain on the home node of the device
1850 */
1851 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1852 hctx->numa_node = local_memory_node(cpu_to_node(i));
1853 }
1854 }
1855
1856 static void blk_mq_map_swqueue(struct request_queue *q,
1857 const struct cpumask *online_mask)
1858 {
1859 unsigned int i;
1860 struct blk_mq_hw_ctx *hctx;
1861 struct blk_mq_ctx *ctx;
1862 struct blk_mq_tag_set *set = q->tag_set;
1863
1864 /*
1865 * Avoid others reading imcomplete hctx->cpumask through sysfs
1866 */
1867 mutex_lock(&q->sysfs_lock);
1868
1869 queue_for_each_hw_ctx(q, hctx, i) {
1870 cpumask_clear(hctx->cpumask);
1871 hctx->nr_ctx = 0;
1872 }
1873
1874 /*
1875 * Map software to hardware queues
1876 */
1877 for_each_possible_cpu(i) {
1878 /* If the cpu isn't online, the cpu is mapped to first hctx */
1879 if (!cpumask_test_cpu(i, online_mask))
1880 continue;
1881
1882 ctx = per_cpu_ptr(q->queue_ctx, i);
1883 hctx = blk_mq_map_queue(q, i);
1884
1885 cpumask_set_cpu(i, hctx->cpumask);
1886 ctx->index_hw = hctx->nr_ctx;
1887 hctx->ctxs[hctx->nr_ctx++] = ctx;
1888 }
1889
1890 mutex_unlock(&q->sysfs_lock);
1891
1892 queue_for_each_hw_ctx(q, hctx, i) {
1893 /*
1894 * If no software queues are mapped to this hardware queue,
1895 * disable it and free the request entries.
1896 */
1897 if (!hctx->nr_ctx) {
1898 if (set->tags[i]) {
1899 blk_mq_free_rq_map(set, set->tags[i], i);
1900 set->tags[i] = NULL;
1901 }
1902 hctx->tags = NULL;
1903 continue;
1904 }
1905
1906 /* unmapped hw queue can be remapped after CPU topo changed */
1907 if (!set->tags[i])
1908 set->tags[i] = blk_mq_init_rq_map(set, i);
1909 hctx->tags = set->tags[i];
1910 WARN_ON(!hctx->tags);
1911
1912 /*
1913 * Set the map size to the number of mapped software queues.
1914 * This is more accurate and more efficient than looping
1915 * over all possibly mapped software queues.
1916 */
1917 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1918
1919 /*
1920 * Initialize batch roundrobin counts
1921 */
1922 hctx->next_cpu = cpumask_first(hctx->cpumask);
1923 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1924 }
1925 }
1926
1927 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1928 {
1929 struct blk_mq_hw_ctx *hctx;
1930 int i;
1931
1932 queue_for_each_hw_ctx(q, hctx, i) {
1933 if (shared)
1934 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1935 else
1936 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1937 }
1938 }
1939
1940 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1941 {
1942 struct request_queue *q;
1943
1944 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1945 blk_mq_freeze_queue(q);
1946 queue_set_hctx_shared(q, shared);
1947 blk_mq_unfreeze_queue(q);
1948 }
1949 }
1950
1951 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1952 {
1953 struct blk_mq_tag_set *set = q->tag_set;
1954
1955 mutex_lock(&set->tag_list_lock);
1956 list_del_init(&q->tag_set_list);
1957 if (list_is_singular(&set->tag_list)) {
1958 /* just transitioned to unshared */
1959 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1960 /* update existing queue */
1961 blk_mq_update_tag_set_depth(set, false);
1962 }
1963 mutex_unlock(&set->tag_list_lock);
1964 }
1965
1966 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1967 struct request_queue *q)
1968 {
1969 q->tag_set = set;
1970
1971 mutex_lock(&set->tag_list_lock);
1972
1973 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1974 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1975 set->flags |= BLK_MQ_F_TAG_SHARED;
1976 /* update existing queue */
1977 blk_mq_update_tag_set_depth(set, true);
1978 }
1979 if (set->flags & BLK_MQ_F_TAG_SHARED)
1980 queue_set_hctx_shared(q, true);
1981 list_add_tail(&q->tag_set_list, &set->tag_list);
1982
1983 mutex_unlock(&set->tag_list_lock);
1984 }
1985
1986 /*
1987 * It is the actual release handler for mq, but we do it from
1988 * request queue's release handler for avoiding use-after-free
1989 * and headache because q->mq_kobj shouldn't have been introduced,
1990 * but we can't group ctx/kctx kobj without it.
1991 */
1992 void blk_mq_release(struct request_queue *q)
1993 {
1994 struct blk_mq_hw_ctx *hctx;
1995 unsigned int i;
1996
1997 /* hctx kobj stays in hctx */
1998 queue_for_each_hw_ctx(q, hctx, i) {
1999 if (!hctx)
2000 continue;
2001 kfree(hctx->ctxs);
2002 kfree(hctx);
2003 }
2004
2005 q->mq_map = NULL;
2006
2007 kfree(q->queue_hw_ctx);
2008
2009 /* ctx kobj stays in queue_ctx */
2010 free_percpu(q->queue_ctx);
2011 }
2012
2013 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2014 {
2015 struct request_queue *uninit_q, *q;
2016
2017 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2018 if (!uninit_q)
2019 return ERR_PTR(-ENOMEM);
2020
2021 q = blk_mq_init_allocated_queue(set, uninit_q);
2022 if (IS_ERR(q))
2023 blk_cleanup_queue(uninit_q);
2024
2025 return q;
2026 }
2027 EXPORT_SYMBOL(blk_mq_init_queue);
2028
2029 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2030 struct request_queue *q)
2031 {
2032 int i, j;
2033 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2034
2035 blk_mq_sysfs_unregister(q);
2036 for (i = 0; i < set->nr_hw_queues; i++) {
2037 int node;
2038
2039 if (hctxs[i])
2040 continue;
2041
2042 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2043 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2044 GFP_KERNEL, node);
2045 if (!hctxs[i])
2046 break;
2047
2048 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2049 node)) {
2050 kfree(hctxs[i]);
2051 hctxs[i] = NULL;
2052 break;
2053 }
2054
2055 atomic_set(&hctxs[i]->nr_active, 0);
2056 hctxs[i]->numa_node = node;
2057 hctxs[i]->queue_num = i;
2058
2059 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2060 free_cpumask_var(hctxs[i]->cpumask);
2061 kfree(hctxs[i]);
2062 hctxs[i] = NULL;
2063 break;
2064 }
2065 blk_mq_hctx_kobj_init(hctxs[i]);
2066 }
2067 for (j = i; j < q->nr_hw_queues; j++) {
2068 struct blk_mq_hw_ctx *hctx = hctxs[j];
2069
2070 if (hctx) {
2071 if (hctx->tags) {
2072 blk_mq_free_rq_map(set, hctx->tags, j);
2073 set->tags[j] = NULL;
2074 }
2075 blk_mq_exit_hctx(q, set, hctx, j);
2076 free_cpumask_var(hctx->cpumask);
2077 kobject_put(&hctx->kobj);
2078 kfree(hctx->ctxs);
2079 kfree(hctx);
2080 hctxs[j] = NULL;
2081
2082 }
2083 }
2084 q->nr_hw_queues = i;
2085 blk_mq_sysfs_register(q);
2086 }
2087
2088 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2089 struct request_queue *q)
2090 {
2091 /* mark the queue as mq asap */
2092 q->mq_ops = set->ops;
2093
2094 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2095 if (!q->queue_ctx)
2096 goto err_exit;
2097
2098 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2099 GFP_KERNEL, set->numa_node);
2100 if (!q->queue_hw_ctx)
2101 goto err_percpu;
2102
2103 q->mq_map = set->mq_map;
2104
2105 blk_mq_realloc_hw_ctxs(set, q);
2106 if (!q->nr_hw_queues)
2107 goto err_hctxs;
2108
2109 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2110 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2111
2112 q->nr_queues = nr_cpu_ids;
2113
2114 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2115
2116 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2117 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2118
2119 q->sg_reserved_size = INT_MAX;
2120
2121 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2122 INIT_LIST_HEAD(&q->requeue_list);
2123 spin_lock_init(&q->requeue_lock);
2124
2125 if (q->nr_hw_queues > 1)
2126 blk_queue_make_request(q, blk_mq_make_request);
2127 else
2128 blk_queue_make_request(q, blk_sq_make_request);
2129
2130 /*
2131 * Do this after blk_queue_make_request() overrides it...
2132 */
2133 q->nr_requests = set->queue_depth;
2134
2135 /*
2136 * Default to classic polling
2137 */
2138 q->poll_nsec = -1;
2139
2140 if (set->ops->complete)
2141 blk_queue_softirq_done(q, set->ops->complete);
2142
2143 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2144
2145 get_online_cpus();
2146 mutex_lock(&all_q_mutex);
2147
2148 list_add_tail(&q->all_q_node, &all_q_list);
2149 blk_mq_add_queue_tag_set(set, q);
2150 blk_mq_map_swqueue(q, cpu_online_mask);
2151
2152 mutex_unlock(&all_q_mutex);
2153 put_online_cpus();
2154
2155 return q;
2156
2157 err_hctxs:
2158 kfree(q->queue_hw_ctx);
2159 err_percpu:
2160 free_percpu(q->queue_ctx);
2161 err_exit:
2162 q->mq_ops = NULL;
2163 return ERR_PTR(-ENOMEM);
2164 }
2165 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2166
2167 void blk_mq_free_queue(struct request_queue *q)
2168 {
2169 struct blk_mq_tag_set *set = q->tag_set;
2170
2171 mutex_lock(&all_q_mutex);
2172 list_del_init(&q->all_q_node);
2173 mutex_unlock(&all_q_mutex);
2174
2175 wbt_exit(q);
2176
2177 blk_mq_del_queue_tag_set(q);
2178
2179 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2180 blk_mq_free_hw_queues(q, set);
2181 }
2182
2183 /* Basically redo blk_mq_init_queue with queue frozen */
2184 static void blk_mq_queue_reinit(struct request_queue *q,
2185 const struct cpumask *online_mask)
2186 {
2187 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2188
2189 blk_mq_sysfs_unregister(q);
2190
2191 /*
2192 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2193 * we should change hctx numa_node according to new topology (this
2194 * involves free and re-allocate memory, worthy doing?)
2195 */
2196
2197 blk_mq_map_swqueue(q, online_mask);
2198
2199 blk_mq_sysfs_register(q);
2200 }
2201
2202 /*
2203 * New online cpumask which is going to be set in this hotplug event.
2204 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2205 * one-by-one and dynamically allocating this could result in a failure.
2206 */
2207 static struct cpumask cpuhp_online_new;
2208
2209 static void blk_mq_queue_reinit_work(void)
2210 {
2211 struct request_queue *q;
2212
2213 mutex_lock(&all_q_mutex);
2214 /*
2215 * We need to freeze and reinit all existing queues. Freezing
2216 * involves synchronous wait for an RCU grace period and doing it
2217 * one by one may take a long time. Start freezing all queues in
2218 * one swoop and then wait for the completions so that freezing can
2219 * take place in parallel.
2220 */
2221 list_for_each_entry(q, &all_q_list, all_q_node)
2222 blk_mq_freeze_queue_start(q);
2223 list_for_each_entry(q, &all_q_list, all_q_node)
2224 blk_mq_freeze_queue_wait(q);
2225
2226 list_for_each_entry(q, &all_q_list, all_q_node)
2227 blk_mq_queue_reinit(q, &cpuhp_online_new);
2228
2229 list_for_each_entry(q, &all_q_list, all_q_node)
2230 blk_mq_unfreeze_queue(q);
2231
2232 mutex_unlock(&all_q_mutex);
2233 }
2234
2235 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2236 {
2237 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2238 blk_mq_queue_reinit_work();
2239 return 0;
2240 }
2241
2242 /*
2243 * Before hotadded cpu starts handling requests, new mappings must be
2244 * established. Otherwise, these requests in hw queue might never be
2245 * dispatched.
2246 *
2247 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2248 * for CPU0, and ctx1 for CPU1).
2249 *
2250 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2251 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2252 *
2253 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2254 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2255 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2256 * is ignored.
2257 */
2258 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2259 {
2260 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2261 cpumask_set_cpu(cpu, &cpuhp_online_new);
2262 blk_mq_queue_reinit_work();
2263 return 0;
2264 }
2265
2266 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2267 {
2268 int i;
2269
2270 for (i = 0; i < set->nr_hw_queues; i++) {
2271 set->tags[i] = blk_mq_init_rq_map(set, i);
2272 if (!set->tags[i])
2273 goto out_unwind;
2274 }
2275
2276 return 0;
2277
2278 out_unwind:
2279 while (--i >= 0)
2280 blk_mq_free_rq_map(set, set->tags[i], i);
2281
2282 return -ENOMEM;
2283 }
2284
2285 /*
2286 * Allocate the request maps associated with this tag_set. Note that this
2287 * may reduce the depth asked for, if memory is tight. set->queue_depth
2288 * will be updated to reflect the allocated depth.
2289 */
2290 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2291 {
2292 unsigned int depth;
2293 int err;
2294
2295 depth = set->queue_depth;
2296 do {
2297 err = __blk_mq_alloc_rq_maps(set);
2298 if (!err)
2299 break;
2300
2301 set->queue_depth >>= 1;
2302 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2303 err = -ENOMEM;
2304 break;
2305 }
2306 } while (set->queue_depth);
2307
2308 if (!set->queue_depth || err) {
2309 pr_err("blk-mq: failed to allocate request map\n");
2310 return -ENOMEM;
2311 }
2312
2313 if (depth != set->queue_depth)
2314 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2315 depth, set->queue_depth);
2316
2317 return 0;
2318 }
2319
2320 /*
2321 * Alloc a tag set to be associated with one or more request queues.
2322 * May fail with EINVAL for various error conditions. May adjust the
2323 * requested depth down, if if it too large. In that case, the set
2324 * value will be stored in set->queue_depth.
2325 */
2326 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2327 {
2328 int ret;
2329
2330 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2331
2332 if (!set->nr_hw_queues)
2333 return -EINVAL;
2334 if (!set->queue_depth)
2335 return -EINVAL;
2336 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2337 return -EINVAL;
2338
2339 if (!set->ops->queue_rq)
2340 return -EINVAL;
2341
2342 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2343 pr_info("blk-mq: reduced tag depth to %u\n",
2344 BLK_MQ_MAX_DEPTH);
2345 set->queue_depth = BLK_MQ_MAX_DEPTH;
2346 }
2347
2348 /*
2349 * If a crashdump is active, then we are potentially in a very
2350 * memory constrained environment. Limit us to 1 queue and
2351 * 64 tags to prevent using too much memory.
2352 */
2353 if (is_kdump_kernel()) {
2354 set->nr_hw_queues = 1;
2355 set->queue_depth = min(64U, set->queue_depth);
2356 }
2357 /*
2358 * There is no use for more h/w queues than cpus.
2359 */
2360 if (set->nr_hw_queues > nr_cpu_ids)
2361 set->nr_hw_queues = nr_cpu_ids;
2362
2363 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2364 GFP_KERNEL, set->numa_node);
2365 if (!set->tags)
2366 return -ENOMEM;
2367
2368 ret = -ENOMEM;
2369 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2370 GFP_KERNEL, set->numa_node);
2371 if (!set->mq_map)
2372 goto out_free_tags;
2373
2374 if (set->ops->map_queues)
2375 ret = set->ops->map_queues(set);
2376 else
2377 ret = blk_mq_map_queues(set);
2378 if (ret)
2379 goto out_free_mq_map;
2380
2381 ret = blk_mq_alloc_rq_maps(set);
2382 if (ret)
2383 goto out_free_mq_map;
2384
2385 mutex_init(&set->tag_list_lock);
2386 INIT_LIST_HEAD(&set->tag_list);
2387
2388 return 0;
2389
2390 out_free_mq_map:
2391 kfree(set->mq_map);
2392 set->mq_map = NULL;
2393 out_free_tags:
2394 kfree(set->tags);
2395 set->tags = NULL;
2396 return ret;
2397 }
2398 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2399
2400 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2401 {
2402 int i;
2403
2404 for (i = 0; i < nr_cpu_ids; i++) {
2405 if (set->tags[i])
2406 blk_mq_free_rq_map(set, set->tags[i], i);
2407 }
2408
2409 kfree(set->mq_map);
2410 set->mq_map = NULL;
2411
2412 kfree(set->tags);
2413 set->tags = NULL;
2414 }
2415 EXPORT_SYMBOL(blk_mq_free_tag_set);
2416
2417 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2418 {
2419 struct blk_mq_tag_set *set = q->tag_set;
2420 struct blk_mq_hw_ctx *hctx;
2421 int i, ret;
2422
2423 if (!set || nr > set->queue_depth)
2424 return -EINVAL;
2425
2426 ret = 0;
2427 queue_for_each_hw_ctx(q, hctx, i) {
2428 if (!hctx->tags)
2429 continue;
2430 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2431 if (ret)
2432 break;
2433 }
2434
2435 if (!ret)
2436 q->nr_requests = nr;
2437
2438 return ret;
2439 }
2440
2441 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2442 {
2443 struct request_queue *q;
2444
2445 if (nr_hw_queues > nr_cpu_ids)
2446 nr_hw_queues = nr_cpu_ids;
2447 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2448 return;
2449
2450 list_for_each_entry(q, &set->tag_list, tag_set_list)
2451 blk_mq_freeze_queue(q);
2452
2453 set->nr_hw_queues = nr_hw_queues;
2454 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2455 blk_mq_realloc_hw_ctxs(set, q);
2456
2457 if (q->nr_hw_queues > 1)
2458 blk_queue_make_request(q, blk_mq_make_request);
2459 else
2460 blk_queue_make_request(q, blk_sq_make_request);
2461
2462 blk_mq_queue_reinit(q, cpu_online_mask);
2463 }
2464
2465 list_for_each_entry(q, &set->tag_list, tag_set_list)
2466 blk_mq_unfreeze_queue(q);
2467 }
2468 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2469
2470 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2471 struct blk_mq_hw_ctx *hctx,
2472 struct request *rq)
2473 {
2474 struct blk_rq_stat stat[2];
2475 unsigned long ret = 0;
2476
2477 /*
2478 * If stats collection isn't on, don't sleep but turn it on for
2479 * future users
2480 */
2481 if (!blk_stat_enable(q))
2482 return 0;
2483
2484 /*
2485 * We don't have to do this once per IO, should optimize this
2486 * to just use the current window of stats until it changes
2487 */
2488 memset(&stat, 0, sizeof(stat));
2489 blk_hctx_stat_get(hctx, stat);
2490
2491 /*
2492 * As an optimistic guess, use half of the mean service time
2493 * for this type of request. We can (and should) make this smarter.
2494 * For instance, if the completion latencies are tight, we can
2495 * get closer than just half the mean. This is especially
2496 * important on devices where the completion latencies are longer
2497 * than ~10 usec.
2498 */
2499 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2500 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2501 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2502 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2503
2504 return ret;
2505 }
2506
2507 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2508 struct blk_mq_hw_ctx *hctx,
2509 struct request *rq)
2510 {
2511 struct hrtimer_sleeper hs;
2512 enum hrtimer_mode mode;
2513 unsigned int nsecs;
2514 ktime_t kt;
2515
2516 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2517 return false;
2518
2519 /*
2520 * poll_nsec can be:
2521 *
2522 * -1: don't ever hybrid sleep
2523 * 0: use half of prev avg
2524 * >0: use this specific value
2525 */
2526 if (q->poll_nsec == -1)
2527 return false;
2528 else if (q->poll_nsec > 0)
2529 nsecs = q->poll_nsec;
2530 else
2531 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2532
2533 if (!nsecs)
2534 return false;
2535
2536 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2537
2538 /*
2539 * This will be replaced with the stats tracking code, using
2540 * 'avg_completion_time / 2' as the pre-sleep target.
2541 */
2542 kt = ktime_set(0, nsecs);
2543
2544 mode = HRTIMER_MODE_REL;
2545 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2546 hrtimer_set_expires(&hs.timer, kt);
2547
2548 hrtimer_init_sleeper(&hs, current);
2549 do {
2550 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2551 break;
2552 set_current_state(TASK_UNINTERRUPTIBLE);
2553 hrtimer_start_expires(&hs.timer, mode);
2554 if (hs.task)
2555 io_schedule();
2556 hrtimer_cancel(&hs.timer);
2557 mode = HRTIMER_MODE_ABS;
2558 } while (hs.task && !signal_pending(current));
2559
2560 __set_current_state(TASK_RUNNING);
2561 destroy_hrtimer_on_stack(&hs.timer);
2562 return true;
2563 }
2564
2565 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2566 {
2567 struct request_queue *q = hctx->queue;
2568 long state;
2569
2570 /*
2571 * If we sleep, have the caller restart the poll loop to reset
2572 * the state. Like for the other success return cases, the
2573 * caller is responsible for checking if the IO completed. If
2574 * the IO isn't complete, we'll get called again and will go
2575 * straight to the busy poll loop.
2576 */
2577 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2578 return true;
2579
2580 hctx->poll_considered++;
2581
2582 state = current->state;
2583 while (!need_resched()) {
2584 int ret;
2585
2586 hctx->poll_invoked++;
2587
2588 ret = q->mq_ops->poll(hctx, rq->tag);
2589 if (ret > 0) {
2590 hctx->poll_success++;
2591 set_current_state(TASK_RUNNING);
2592 return true;
2593 }
2594
2595 if (signal_pending_state(state, current))
2596 set_current_state(TASK_RUNNING);
2597
2598 if (current->state == TASK_RUNNING)
2599 return true;
2600 if (ret < 0)
2601 break;
2602 cpu_relax();
2603 }
2604
2605 return false;
2606 }
2607
2608 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2609 {
2610 struct blk_mq_hw_ctx *hctx;
2611 struct blk_plug *plug;
2612 struct request *rq;
2613
2614 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2615 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2616 return false;
2617
2618 plug = current->plug;
2619 if (plug)
2620 blk_flush_plug_list(plug, false);
2621
2622 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2623 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2624
2625 return __blk_mq_poll(hctx, rq);
2626 }
2627 EXPORT_SYMBOL_GPL(blk_mq_poll);
2628
2629 void blk_mq_disable_hotplug(void)
2630 {
2631 mutex_lock(&all_q_mutex);
2632 }
2633
2634 void blk_mq_enable_hotplug(void)
2635 {
2636 mutex_unlock(&all_q_mutex);
2637 }
2638
2639 static int __init blk_mq_init(void)
2640 {
2641 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2642 blk_mq_hctx_notify_dead);
2643
2644 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2645 blk_mq_queue_reinit_prepare,
2646 blk_mq_queue_reinit_dead);
2647 return 0;
2648 }
2649 subsys_initcall(blk_mq_init);