]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-mq.c
blk-mq: do limited block plug for multiple queue case
[thirdparty/kernel/stable.git] / block / blk-mq.c
1 /*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42 unsigned int i;
43
44 for (i = 0; i < hctx->ctx_map.size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
47
48 return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53 {
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65 {
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74 {
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81 {
82 while (true) {
83 int ret;
84
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
87
88 if (!(gfp & __GFP_WAIT))
89 return -EBUSY;
90
91 ret = wait_event_interruptible(q->mq_freeze_wq,
92 !q->mq_freeze_depth || blk_queue_dying(q));
93 if (blk_queue_dying(q))
94 return -ENODEV;
95 if (ret)
96 return ret;
97 }
98 }
99
100 static void blk_mq_queue_exit(struct request_queue *q)
101 {
102 percpu_ref_put(&q->mq_usage_counter);
103 }
104
105 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
106 {
107 struct request_queue *q =
108 container_of(ref, struct request_queue, mq_usage_counter);
109
110 wake_up_all(&q->mq_freeze_wq);
111 }
112
113 void blk_mq_freeze_queue_start(struct request_queue *q)
114 {
115 bool freeze;
116
117 spin_lock_irq(q->queue_lock);
118 freeze = !q->mq_freeze_depth++;
119 spin_unlock_irq(q->queue_lock);
120
121 if (freeze) {
122 percpu_ref_kill(&q->mq_usage_counter);
123 blk_mq_run_hw_queues(q, false);
124 }
125 }
126 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
127
128 static void blk_mq_freeze_queue_wait(struct request_queue *q)
129 {
130 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
131 }
132
133 /*
134 * Guarantee no request is in use, so we can change any data structure of
135 * the queue afterward.
136 */
137 void blk_mq_freeze_queue(struct request_queue *q)
138 {
139 blk_mq_freeze_queue_start(q);
140 blk_mq_freeze_queue_wait(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146 bool wake;
147
148 spin_lock_irq(q->queue_lock);
149 wake = !--q->mq_freeze_depth;
150 WARN_ON_ONCE(q->mq_freeze_depth < 0);
151 spin_unlock_irq(q->queue_lock);
152 if (wake) {
153 percpu_ref_reinit(&q->mq_usage_counter);
154 wake_up_all(&q->mq_freeze_wq);
155 }
156 }
157 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
158
159 void blk_mq_wake_waiters(struct request_queue *q)
160 {
161 struct blk_mq_hw_ctx *hctx;
162 unsigned int i;
163
164 queue_for_each_hw_ctx(q, hctx, i)
165 if (blk_mq_hw_queue_mapped(hctx))
166 blk_mq_tag_wakeup_all(hctx->tags, true);
167
168 /*
169 * If we are called because the queue has now been marked as
170 * dying, we need to ensure that processes currently waiting on
171 * the queue are notified as well.
172 */
173 wake_up_all(&q->mq_freeze_wq);
174 }
175
176 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
177 {
178 return blk_mq_has_free_tags(hctx->tags);
179 }
180 EXPORT_SYMBOL(blk_mq_can_queue);
181
182 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
183 struct request *rq, unsigned int rw_flags)
184 {
185 if (blk_queue_io_stat(q))
186 rw_flags |= REQ_IO_STAT;
187
188 INIT_LIST_HEAD(&rq->queuelist);
189 /* csd/requeue_work/fifo_time is initialized before use */
190 rq->q = q;
191 rq->mq_ctx = ctx;
192 rq->cmd_flags |= rw_flags;
193 /* do not touch atomic flags, it needs atomic ops against the timer */
194 rq->cpu = -1;
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
197 rq->rq_disk = NULL;
198 rq->part = NULL;
199 rq->start_time = jiffies;
200 #ifdef CONFIG_BLK_CGROUP
201 rq->rl = NULL;
202 set_start_time_ns(rq);
203 rq->io_start_time_ns = 0;
204 #endif
205 rq->nr_phys_segments = 0;
206 #if defined(CONFIG_BLK_DEV_INTEGRITY)
207 rq->nr_integrity_segments = 0;
208 #endif
209 rq->special = NULL;
210 /* tag was already set */
211 rq->errors = 0;
212
213 rq->cmd = rq->__cmd;
214
215 rq->extra_len = 0;
216 rq->sense_len = 0;
217 rq->resid_len = 0;
218 rq->sense = NULL;
219
220 INIT_LIST_HEAD(&rq->timeout_list);
221 rq->timeout = 0;
222
223 rq->end_io = NULL;
224 rq->end_io_data = NULL;
225 rq->next_rq = NULL;
226
227 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
228 }
229
230 static struct request *
231 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
232 {
233 struct request *rq;
234 unsigned int tag;
235
236 tag = blk_mq_get_tag(data);
237 if (tag != BLK_MQ_TAG_FAIL) {
238 rq = data->hctx->tags->rqs[tag];
239
240 if (blk_mq_tag_busy(data->hctx)) {
241 rq->cmd_flags = REQ_MQ_INFLIGHT;
242 atomic_inc(&data->hctx->nr_active);
243 }
244
245 rq->tag = tag;
246 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
247 return rq;
248 }
249
250 return NULL;
251 }
252
253 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
254 bool reserved)
255 {
256 struct blk_mq_ctx *ctx;
257 struct blk_mq_hw_ctx *hctx;
258 struct request *rq;
259 struct blk_mq_alloc_data alloc_data;
260 int ret;
261
262 ret = blk_mq_queue_enter(q, gfp);
263 if (ret)
264 return ERR_PTR(ret);
265
266 ctx = blk_mq_get_ctx(q);
267 hctx = q->mq_ops->map_queue(q, ctx->cpu);
268 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
269 reserved, ctx, hctx);
270
271 rq = __blk_mq_alloc_request(&alloc_data, rw);
272 if (!rq && (gfp & __GFP_WAIT)) {
273 __blk_mq_run_hw_queue(hctx);
274 blk_mq_put_ctx(ctx);
275
276 ctx = blk_mq_get_ctx(q);
277 hctx = q->mq_ops->map_queue(q, ctx->cpu);
278 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
279 hctx);
280 rq = __blk_mq_alloc_request(&alloc_data, rw);
281 ctx = alloc_data.ctx;
282 }
283 blk_mq_put_ctx(ctx);
284 if (!rq) {
285 blk_mq_queue_exit(q);
286 return ERR_PTR(-EWOULDBLOCK);
287 }
288 return rq;
289 }
290 EXPORT_SYMBOL(blk_mq_alloc_request);
291
292 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
293 struct blk_mq_ctx *ctx, struct request *rq)
294 {
295 const int tag = rq->tag;
296 struct request_queue *q = rq->q;
297
298 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
299 atomic_dec(&hctx->nr_active);
300 rq->cmd_flags = 0;
301
302 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
303 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
304 blk_mq_queue_exit(q);
305 }
306
307 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
308 {
309 struct blk_mq_ctx *ctx = rq->mq_ctx;
310
311 ctx->rq_completed[rq_is_sync(rq)]++;
312 __blk_mq_free_request(hctx, ctx, rq);
313
314 }
315 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
316
317 void blk_mq_free_request(struct request *rq)
318 {
319 struct blk_mq_hw_ctx *hctx;
320 struct request_queue *q = rq->q;
321
322 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
323 blk_mq_free_hctx_request(hctx, rq);
324 }
325 EXPORT_SYMBOL_GPL(blk_mq_free_request);
326
327 inline void __blk_mq_end_request(struct request *rq, int error)
328 {
329 blk_account_io_done(rq);
330
331 if (rq->end_io) {
332 rq->end_io(rq, error);
333 } else {
334 if (unlikely(blk_bidi_rq(rq)))
335 blk_mq_free_request(rq->next_rq);
336 blk_mq_free_request(rq);
337 }
338 }
339 EXPORT_SYMBOL(__blk_mq_end_request);
340
341 void blk_mq_end_request(struct request *rq, int error)
342 {
343 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
344 BUG();
345 __blk_mq_end_request(rq, error);
346 }
347 EXPORT_SYMBOL(blk_mq_end_request);
348
349 static void __blk_mq_complete_request_remote(void *data)
350 {
351 struct request *rq = data;
352
353 rq->q->softirq_done_fn(rq);
354 }
355
356 static void blk_mq_ipi_complete_request(struct request *rq)
357 {
358 struct blk_mq_ctx *ctx = rq->mq_ctx;
359 bool shared = false;
360 int cpu;
361
362 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
363 rq->q->softirq_done_fn(rq);
364 return;
365 }
366
367 cpu = get_cpu();
368 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
369 shared = cpus_share_cache(cpu, ctx->cpu);
370
371 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
372 rq->csd.func = __blk_mq_complete_request_remote;
373 rq->csd.info = rq;
374 rq->csd.flags = 0;
375 smp_call_function_single_async(ctx->cpu, &rq->csd);
376 } else {
377 rq->q->softirq_done_fn(rq);
378 }
379 put_cpu();
380 }
381
382 void __blk_mq_complete_request(struct request *rq)
383 {
384 struct request_queue *q = rq->q;
385
386 if (!q->softirq_done_fn)
387 blk_mq_end_request(rq, rq->errors);
388 else
389 blk_mq_ipi_complete_request(rq);
390 }
391
392 /**
393 * blk_mq_complete_request - end I/O on a request
394 * @rq: the request being processed
395 *
396 * Description:
397 * Ends all I/O on a request. It does not handle partial completions.
398 * The actual completion happens out-of-order, through a IPI handler.
399 **/
400 void blk_mq_complete_request(struct request *rq)
401 {
402 struct request_queue *q = rq->q;
403
404 if (unlikely(blk_should_fake_timeout(q)))
405 return;
406 if (!blk_mark_rq_complete(rq))
407 __blk_mq_complete_request(rq);
408 }
409 EXPORT_SYMBOL(blk_mq_complete_request);
410
411 int blk_mq_request_started(struct request *rq)
412 {
413 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
414 }
415 EXPORT_SYMBOL_GPL(blk_mq_request_started);
416
417 void blk_mq_start_request(struct request *rq)
418 {
419 struct request_queue *q = rq->q;
420
421 trace_block_rq_issue(q, rq);
422
423 rq->resid_len = blk_rq_bytes(rq);
424 if (unlikely(blk_bidi_rq(rq)))
425 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
426
427 blk_add_timer(rq);
428
429 /*
430 * Ensure that ->deadline is visible before set the started
431 * flag and clear the completed flag.
432 */
433 smp_mb__before_atomic();
434
435 /*
436 * Mark us as started and clear complete. Complete might have been
437 * set if requeue raced with timeout, which then marked it as
438 * complete. So be sure to clear complete again when we start
439 * the request, otherwise we'll ignore the completion event.
440 */
441 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
442 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
443 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
444 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
445
446 if (q->dma_drain_size && blk_rq_bytes(rq)) {
447 /*
448 * Make sure space for the drain appears. We know we can do
449 * this because max_hw_segments has been adjusted to be one
450 * fewer than the device can handle.
451 */
452 rq->nr_phys_segments++;
453 }
454 }
455 EXPORT_SYMBOL(blk_mq_start_request);
456
457 static void __blk_mq_requeue_request(struct request *rq)
458 {
459 struct request_queue *q = rq->q;
460
461 trace_block_rq_requeue(q, rq);
462
463 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
464 if (q->dma_drain_size && blk_rq_bytes(rq))
465 rq->nr_phys_segments--;
466 }
467 }
468
469 void blk_mq_requeue_request(struct request *rq)
470 {
471 __blk_mq_requeue_request(rq);
472
473 BUG_ON(blk_queued_rq(rq));
474 blk_mq_add_to_requeue_list(rq, true);
475 }
476 EXPORT_SYMBOL(blk_mq_requeue_request);
477
478 static void blk_mq_requeue_work(struct work_struct *work)
479 {
480 struct request_queue *q =
481 container_of(work, struct request_queue, requeue_work);
482 LIST_HEAD(rq_list);
483 struct request *rq, *next;
484 unsigned long flags;
485
486 spin_lock_irqsave(&q->requeue_lock, flags);
487 list_splice_init(&q->requeue_list, &rq_list);
488 spin_unlock_irqrestore(&q->requeue_lock, flags);
489
490 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
491 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
492 continue;
493
494 rq->cmd_flags &= ~REQ_SOFTBARRIER;
495 list_del_init(&rq->queuelist);
496 blk_mq_insert_request(rq, true, false, false);
497 }
498
499 while (!list_empty(&rq_list)) {
500 rq = list_entry(rq_list.next, struct request, queuelist);
501 list_del_init(&rq->queuelist);
502 blk_mq_insert_request(rq, false, false, false);
503 }
504
505 /*
506 * Use the start variant of queue running here, so that running
507 * the requeue work will kick stopped queues.
508 */
509 blk_mq_start_hw_queues(q);
510 }
511
512 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
513 {
514 struct request_queue *q = rq->q;
515 unsigned long flags;
516
517 /*
518 * We abuse this flag that is otherwise used by the I/O scheduler to
519 * request head insertation from the workqueue.
520 */
521 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
522
523 spin_lock_irqsave(&q->requeue_lock, flags);
524 if (at_head) {
525 rq->cmd_flags |= REQ_SOFTBARRIER;
526 list_add(&rq->queuelist, &q->requeue_list);
527 } else {
528 list_add_tail(&rq->queuelist, &q->requeue_list);
529 }
530 spin_unlock_irqrestore(&q->requeue_lock, flags);
531 }
532 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
533
534 void blk_mq_cancel_requeue_work(struct request_queue *q)
535 {
536 cancel_work_sync(&q->requeue_work);
537 }
538 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
539
540 void blk_mq_kick_requeue_list(struct request_queue *q)
541 {
542 kblockd_schedule_work(&q->requeue_work);
543 }
544 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
545
546 void blk_mq_abort_requeue_list(struct request_queue *q)
547 {
548 unsigned long flags;
549 LIST_HEAD(rq_list);
550
551 spin_lock_irqsave(&q->requeue_lock, flags);
552 list_splice_init(&q->requeue_list, &rq_list);
553 spin_unlock_irqrestore(&q->requeue_lock, flags);
554
555 while (!list_empty(&rq_list)) {
556 struct request *rq;
557
558 rq = list_first_entry(&rq_list, struct request, queuelist);
559 list_del_init(&rq->queuelist);
560 rq->errors = -EIO;
561 blk_mq_end_request(rq, rq->errors);
562 }
563 }
564 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
565
566 static inline bool is_flush_request(struct request *rq,
567 struct blk_flush_queue *fq, unsigned int tag)
568 {
569 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
570 fq->flush_rq->tag == tag);
571 }
572
573 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
574 {
575 struct request *rq = tags->rqs[tag];
576 /* mq_ctx of flush rq is always cloned from the corresponding req */
577 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
578
579 if (!is_flush_request(rq, fq, tag))
580 return rq;
581
582 return fq->flush_rq;
583 }
584 EXPORT_SYMBOL(blk_mq_tag_to_rq);
585
586 struct blk_mq_timeout_data {
587 unsigned long next;
588 unsigned int next_set;
589 };
590
591 void blk_mq_rq_timed_out(struct request *req, bool reserved)
592 {
593 struct blk_mq_ops *ops = req->q->mq_ops;
594 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
595
596 /*
597 * We know that complete is set at this point. If STARTED isn't set
598 * anymore, then the request isn't active and the "timeout" should
599 * just be ignored. This can happen due to the bitflag ordering.
600 * Timeout first checks if STARTED is set, and if it is, assumes
601 * the request is active. But if we race with completion, then
602 * we both flags will get cleared. So check here again, and ignore
603 * a timeout event with a request that isn't active.
604 */
605 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
606 return;
607
608 if (ops->timeout)
609 ret = ops->timeout(req, reserved);
610
611 switch (ret) {
612 case BLK_EH_HANDLED:
613 __blk_mq_complete_request(req);
614 break;
615 case BLK_EH_RESET_TIMER:
616 blk_add_timer(req);
617 blk_clear_rq_complete(req);
618 break;
619 case BLK_EH_NOT_HANDLED:
620 break;
621 default:
622 printk(KERN_ERR "block: bad eh return: %d\n", ret);
623 break;
624 }
625 }
626
627 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
628 struct request *rq, void *priv, bool reserved)
629 {
630 struct blk_mq_timeout_data *data = priv;
631
632 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
633 /*
634 * If a request wasn't started before the queue was
635 * marked dying, kill it here or it'll go unnoticed.
636 */
637 if (unlikely(blk_queue_dying(rq->q))) {
638 rq->errors = -EIO;
639 blk_mq_complete_request(rq);
640 }
641 return;
642 }
643 if (rq->cmd_flags & REQ_NO_TIMEOUT)
644 return;
645
646 if (time_after_eq(jiffies, rq->deadline)) {
647 if (!blk_mark_rq_complete(rq))
648 blk_mq_rq_timed_out(rq, reserved);
649 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
650 data->next = rq->deadline;
651 data->next_set = 1;
652 }
653 }
654
655 static void blk_mq_rq_timer(unsigned long priv)
656 {
657 struct request_queue *q = (struct request_queue *)priv;
658 struct blk_mq_timeout_data data = {
659 .next = 0,
660 .next_set = 0,
661 };
662 struct blk_mq_hw_ctx *hctx;
663 int i;
664
665 queue_for_each_hw_ctx(q, hctx, i) {
666 /*
667 * If not software queues are currently mapped to this
668 * hardware queue, there's nothing to check
669 */
670 if (!blk_mq_hw_queue_mapped(hctx))
671 continue;
672
673 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
674 }
675
676 if (data.next_set) {
677 data.next = blk_rq_timeout(round_jiffies_up(data.next));
678 mod_timer(&q->timeout, data.next);
679 } else {
680 queue_for_each_hw_ctx(q, hctx, i)
681 blk_mq_tag_idle(hctx);
682 }
683 }
684
685 /*
686 * Reverse check our software queue for entries that we could potentially
687 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
688 * too much time checking for merges.
689 */
690 static bool blk_mq_attempt_merge(struct request_queue *q,
691 struct blk_mq_ctx *ctx, struct bio *bio)
692 {
693 struct request *rq;
694 int checked = 8;
695
696 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
697 int el_ret;
698
699 if (!checked--)
700 break;
701
702 if (!blk_rq_merge_ok(rq, bio))
703 continue;
704
705 el_ret = blk_try_merge(rq, bio);
706 if (el_ret == ELEVATOR_BACK_MERGE) {
707 if (bio_attempt_back_merge(q, rq, bio)) {
708 ctx->rq_merged++;
709 return true;
710 }
711 break;
712 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
713 if (bio_attempt_front_merge(q, rq, bio)) {
714 ctx->rq_merged++;
715 return true;
716 }
717 break;
718 }
719 }
720
721 return false;
722 }
723
724 /*
725 * Process software queues that have been marked busy, splicing them
726 * to the for-dispatch
727 */
728 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
729 {
730 struct blk_mq_ctx *ctx;
731 int i;
732
733 for (i = 0; i < hctx->ctx_map.size; i++) {
734 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
735 unsigned int off, bit;
736
737 if (!bm->word)
738 continue;
739
740 bit = 0;
741 off = i * hctx->ctx_map.bits_per_word;
742 do {
743 bit = find_next_bit(&bm->word, bm->depth, bit);
744 if (bit >= bm->depth)
745 break;
746
747 ctx = hctx->ctxs[bit + off];
748 clear_bit(bit, &bm->word);
749 spin_lock(&ctx->lock);
750 list_splice_tail_init(&ctx->rq_list, list);
751 spin_unlock(&ctx->lock);
752
753 bit++;
754 } while (1);
755 }
756 }
757
758 /*
759 * Run this hardware queue, pulling any software queues mapped to it in.
760 * Note that this function currently has various problems around ordering
761 * of IO. In particular, we'd like FIFO behaviour on handling existing
762 * items on the hctx->dispatch list. Ignore that for now.
763 */
764 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
765 {
766 struct request_queue *q = hctx->queue;
767 struct request *rq;
768 LIST_HEAD(rq_list);
769 LIST_HEAD(driver_list);
770 struct list_head *dptr;
771 int queued;
772
773 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
774
775 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
776 return;
777
778 hctx->run++;
779
780 /*
781 * Touch any software queue that has pending entries.
782 */
783 flush_busy_ctxs(hctx, &rq_list);
784
785 /*
786 * If we have previous entries on our dispatch list, grab them
787 * and stuff them at the front for more fair dispatch.
788 */
789 if (!list_empty_careful(&hctx->dispatch)) {
790 spin_lock(&hctx->lock);
791 if (!list_empty(&hctx->dispatch))
792 list_splice_init(&hctx->dispatch, &rq_list);
793 spin_unlock(&hctx->lock);
794 }
795
796 /*
797 * Start off with dptr being NULL, so we start the first request
798 * immediately, even if we have more pending.
799 */
800 dptr = NULL;
801
802 /*
803 * Now process all the entries, sending them to the driver.
804 */
805 queued = 0;
806 while (!list_empty(&rq_list)) {
807 struct blk_mq_queue_data bd;
808 int ret;
809
810 rq = list_first_entry(&rq_list, struct request, queuelist);
811 list_del_init(&rq->queuelist);
812
813 bd.rq = rq;
814 bd.list = dptr;
815 bd.last = list_empty(&rq_list);
816
817 ret = q->mq_ops->queue_rq(hctx, &bd);
818 switch (ret) {
819 case BLK_MQ_RQ_QUEUE_OK:
820 queued++;
821 continue;
822 case BLK_MQ_RQ_QUEUE_BUSY:
823 list_add(&rq->queuelist, &rq_list);
824 __blk_mq_requeue_request(rq);
825 break;
826 default:
827 pr_err("blk-mq: bad return on queue: %d\n", ret);
828 case BLK_MQ_RQ_QUEUE_ERROR:
829 rq->errors = -EIO;
830 blk_mq_end_request(rq, rq->errors);
831 break;
832 }
833
834 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
835 break;
836
837 /*
838 * We've done the first request. If we have more than 1
839 * left in the list, set dptr to defer issue.
840 */
841 if (!dptr && rq_list.next != rq_list.prev)
842 dptr = &driver_list;
843 }
844
845 if (!queued)
846 hctx->dispatched[0]++;
847 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
848 hctx->dispatched[ilog2(queued) + 1]++;
849
850 /*
851 * Any items that need requeuing? Stuff them into hctx->dispatch,
852 * that is where we will continue on next queue run.
853 */
854 if (!list_empty(&rq_list)) {
855 spin_lock(&hctx->lock);
856 list_splice(&rq_list, &hctx->dispatch);
857 spin_unlock(&hctx->lock);
858 }
859 }
860
861 /*
862 * It'd be great if the workqueue API had a way to pass
863 * in a mask and had some smarts for more clever placement.
864 * For now we just round-robin here, switching for every
865 * BLK_MQ_CPU_WORK_BATCH queued items.
866 */
867 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
868 {
869 if (hctx->queue->nr_hw_queues == 1)
870 return WORK_CPU_UNBOUND;
871
872 if (--hctx->next_cpu_batch <= 0) {
873 int cpu = hctx->next_cpu, next_cpu;
874
875 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
876 if (next_cpu >= nr_cpu_ids)
877 next_cpu = cpumask_first(hctx->cpumask);
878
879 hctx->next_cpu = next_cpu;
880 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
881
882 return cpu;
883 }
884
885 return hctx->next_cpu;
886 }
887
888 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
889 {
890 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
891 !blk_mq_hw_queue_mapped(hctx)))
892 return;
893
894 if (!async) {
895 int cpu = get_cpu();
896 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
897 __blk_mq_run_hw_queue(hctx);
898 put_cpu();
899 return;
900 }
901
902 put_cpu();
903 }
904
905 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
906 &hctx->run_work, 0);
907 }
908
909 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
910 {
911 struct blk_mq_hw_ctx *hctx;
912 int i;
913
914 queue_for_each_hw_ctx(q, hctx, i) {
915 if ((!blk_mq_hctx_has_pending(hctx) &&
916 list_empty_careful(&hctx->dispatch)) ||
917 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
918 continue;
919
920 blk_mq_run_hw_queue(hctx, async);
921 }
922 }
923 EXPORT_SYMBOL(blk_mq_run_hw_queues);
924
925 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
926 {
927 cancel_delayed_work(&hctx->run_work);
928 cancel_delayed_work(&hctx->delay_work);
929 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
930 }
931 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
932
933 void blk_mq_stop_hw_queues(struct request_queue *q)
934 {
935 struct blk_mq_hw_ctx *hctx;
936 int i;
937
938 queue_for_each_hw_ctx(q, hctx, i)
939 blk_mq_stop_hw_queue(hctx);
940 }
941 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
942
943 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
944 {
945 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
946
947 blk_mq_run_hw_queue(hctx, false);
948 }
949 EXPORT_SYMBOL(blk_mq_start_hw_queue);
950
951 void blk_mq_start_hw_queues(struct request_queue *q)
952 {
953 struct blk_mq_hw_ctx *hctx;
954 int i;
955
956 queue_for_each_hw_ctx(q, hctx, i)
957 blk_mq_start_hw_queue(hctx);
958 }
959 EXPORT_SYMBOL(blk_mq_start_hw_queues);
960
961 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
962 {
963 struct blk_mq_hw_ctx *hctx;
964 int i;
965
966 queue_for_each_hw_ctx(q, hctx, i) {
967 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
968 continue;
969
970 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
971 blk_mq_run_hw_queue(hctx, async);
972 }
973 }
974 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
975
976 static void blk_mq_run_work_fn(struct work_struct *work)
977 {
978 struct blk_mq_hw_ctx *hctx;
979
980 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
981
982 __blk_mq_run_hw_queue(hctx);
983 }
984
985 static void blk_mq_delay_work_fn(struct work_struct *work)
986 {
987 struct blk_mq_hw_ctx *hctx;
988
989 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
990
991 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
992 __blk_mq_run_hw_queue(hctx);
993 }
994
995 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
996 {
997 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
998 return;
999
1000 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1001 &hctx->delay_work, msecs_to_jiffies(msecs));
1002 }
1003 EXPORT_SYMBOL(blk_mq_delay_queue);
1004
1005 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1006 struct request *rq, bool at_head)
1007 {
1008 struct blk_mq_ctx *ctx = rq->mq_ctx;
1009
1010 trace_block_rq_insert(hctx->queue, rq);
1011
1012 if (at_head)
1013 list_add(&rq->queuelist, &ctx->rq_list);
1014 else
1015 list_add_tail(&rq->queuelist, &ctx->rq_list);
1016
1017 blk_mq_hctx_mark_pending(hctx, ctx);
1018 }
1019
1020 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1021 bool async)
1022 {
1023 struct request_queue *q = rq->q;
1024 struct blk_mq_hw_ctx *hctx;
1025 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1026
1027 current_ctx = blk_mq_get_ctx(q);
1028 if (!cpu_online(ctx->cpu))
1029 rq->mq_ctx = ctx = current_ctx;
1030
1031 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1032
1033 spin_lock(&ctx->lock);
1034 __blk_mq_insert_request(hctx, rq, at_head);
1035 spin_unlock(&ctx->lock);
1036
1037 if (run_queue)
1038 blk_mq_run_hw_queue(hctx, async);
1039
1040 blk_mq_put_ctx(current_ctx);
1041 }
1042
1043 static void blk_mq_insert_requests(struct request_queue *q,
1044 struct blk_mq_ctx *ctx,
1045 struct list_head *list,
1046 int depth,
1047 bool from_schedule)
1048
1049 {
1050 struct blk_mq_hw_ctx *hctx;
1051 struct blk_mq_ctx *current_ctx;
1052
1053 trace_block_unplug(q, depth, !from_schedule);
1054
1055 current_ctx = blk_mq_get_ctx(q);
1056
1057 if (!cpu_online(ctx->cpu))
1058 ctx = current_ctx;
1059 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1060
1061 /*
1062 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1063 * offline now
1064 */
1065 spin_lock(&ctx->lock);
1066 while (!list_empty(list)) {
1067 struct request *rq;
1068
1069 rq = list_first_entry(list, struct request, queuelist);
1070 list_del_init(&rq->queuelist);
1071 rq->mq_ctx = ctx;
1072 __blk_mq_insert_request(hctx, rq, false);
1073 }
1074 spin_unlock(&ctx->lock);
1075
1076 blk_mq_run_hw_queue(hctx, from_schedule);
1077 blk_mq_put_ctx(current_ctx);
1078 }
1079
1080 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1081 {
1082 struct request *rqa = container_of(a, struct request, queuelist);
1083 struct request *rqb = container_of(b, struct request, queuelist);
1084
1085 return !(rqa->mq_ctx < rqb->mq_ctx ||
1086 (rqa->mq_ctx == rqb->mq_ctx &&
1087 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1088 }
1089
1090 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1091 {
1092 struct blk_mq_ctx *this_ctx;
1093 struct request_queue *this_q;
1094 struct request *rq;
1095 LIST_HEAD(list);
1096 LIST_HEAD(ctx_list);
1097 unsigned int depth;
1098
1099 list_splice_init(&plug->mq_list, &list);
1100
1101 list_sort(NULL, &list, plug_ctx_cmp);
1102
1103 this_q = NULL;
1104 this_ctx = NULL;
1105 depth = 0;
1106
1107 while (!list_empty(&list)) {
1108 rq = list_entry_rq(list.next);
1109 list_del_init(&rq->queuelist);
1110 BUG_ON(!rq->q);
1111 if (rq->mq_ctx != this_ctx) {
1112 if (this_ctx) {
1113 blk_mq_insert_requests(this_q, this_ctx,
1114 &ctx_list, depth,
1115 from_schedule);
1116 }
1117
1118 this_ctx = rq->mq_ctx;
1119 this_q = rq->q;
1120 depth = 0;
1121 }
1122
1123 depth++;
1124 list_add_tail(&rq->queuelist, &ctx_list);
1125 }
1126
1127 /*
1128 * If 'this_ctx' is set, we know we have entries to complete
1129 * on 'ctx_list'. Do those.
1130 */
1131 if (this_ctx) {
1132 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1133 from_schedule);
1134 }
1135 }
1136
1137 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1138 {
1139 init_request_from_bio(rq, bio);
1140
1141 if (blk_do_io_stat(rq))
1142 blk_account_io_start(rq, 1);
1143 }
1144
1145 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1146 {
1147 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1148 !blk_queue_nomerges(hctx->queue);
1149 }
1150
1151 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1152 struct blk_mq_ctx *ctx,
1153 struct request *rq, struct bio *bio)
1154 {
1155 if (!hctx_allow_merges(hctx)) {
1156 blk_mq_bio_to_request(rq, bio);
1157 spin_lock(&ctx->lock);
1158 insert_rq:
1159 __blk_mq_insert_request(hctx, rq, false);
1160 spin_unlock(&ctx->lock);
1161 return false;
1162 } else {
1163 struct request_queue *q = hctx->queue;
1164
1165 spin_lock(&ctx->lock);
1166 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1167 blk_mq_bio_to_request(rq, bio);
1168 goto insert_rq;
1169 }
1170
1171 spin_unlock(&ctx->lock);
1172 __blk_mq_free_request(hctx, ctx, rq);
1173 return true;
1174 }
1175 }
1176
1177 struct blk_map_ctx {
1178 struct blk_mq_hw_ctx *hctx;
1179 struct blk_mq_ctx *ctx;
1180 };
1181
1182 static struct request *blk_mq_map_request(struct request_queue *q,
1183 struct bio *bio,
1184 struct blk_map_ctx *data)
1185 {
1186 struct blk_mq_hw_ctx *hctx;
1187 struct blk_mq_ctx *ctx;
1188 struct request *rq;
1189 int rw = bio_data_dir(bio);
1190 struct blk_mq_alloc_data alloc_data;
1191
1192 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1193 bio_endio(bio, -EIO);
1194 return NULL;
1195 }
1196
1197 ctx = blk_mq_get_ctx(q);
1198 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1199
1200 if (rw_is_sync(bio->bi_rw))
1201 rw |= REQ_SYNC;
1202
1203 trace_block_getrq(q, bio, rw);
1204 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1205 hctx);
1206 rq = __blk_mq_alloc_request(&alloc_data, rw);
1207 if (unlikely(!rq)) {
1208 __blk_mq_run_hw_queue(hctx);
1209 blk_mq_put_ctx(ctx);
1210 trace_block_sleeprq(q, bio, rw);
1211
1212 ctx = blk_mq_get_ctx(q);
1213 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1214 blk_mq_set_alloc_data(&alloc_data, q,
1215 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1216 rq = __blk_mq_alloc_request(&alloc_data, rw);
1217 ctx = alloc_data.ctx;
1218 hctx = alloc_data.hctx;
1219 }
1220
1221 hctx->queued++;
1222 data->hctx = hctx;
1223 data->ctx = ctx;
1224 return rq;
1225 }
1226
1227 static int blk_mq_direct_issue_request(struct request *rq)
1228 {
1229 int ret;
1230 struct request_queue *q = rq->q;
1231 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1232 rq->mq_ctx->cpu);
1233 struct blk_mq_queue_data bd = {
1234 .rq = rq,
1235 .list = NULL,
1236 .last = 1
1237 };
1238
1239 /*
1240 * For OK queue, we are done. For error, kill it. Any other
1241 * error (busy), just add it to our list as we previously
1242 * would have done
1243 */
1244 ret = q->mq_ops->queue_rq(hctx, &bd);
1245 if (ret == BLK_MQ_RQ_QUEUE_OK)
1246 return 0;
1247 else {
1248 __blk_mq_requeue_request(rq);
1249
1250 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1251 rq->errors = -EIO;
1252 blk_mq_end_request(rq, rq->errors);
1253 return 0;
1254 }
1255 return -1;
1256 }
1257 }
1258
1259 /*
1260 * Multiple hardware queue variant. This will not use per-process plugs,
1261 * but will attempt to bypass the hctx queueing if we can go straight to
1262 * hardware for SYNC IO.
1263 */
1264 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1265 {
1266 const int is_sync = rw_is_sync(bio->bi_rw);
1267 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1268 struct blk_map_ctx data;
1269 struct request *rq;
1270 unsigned int request_count = 0;
1271 struct blk_plug *plug;
1272
1273 blk_queue_bounce(q, &bio);
1274
1275 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1276 bio_endio(bio, -EIO);
1277 return;
1278 }
1279
1280 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1281 blk_attempt_plug_merge(q, bio, &request_count))
1282 return;
1283
1284 rq = blk_mq_map_request(q, bio, &data);
1285 if (unlikely(!rq))
1286 return;
1287
1288 if (unlikely(is_flush_fua)) {
1289 blk_mq_bio_to_request(rq, bio);
1290 blk_insert_flush(rq);
1291 goto run_queue;
1292 }
1293
1294 plug = current->plug;
1295 /*
1296 * If the driver supports defer issued based on 'last', then
1297 * queue it up like normal since we can potentially save some
1298 * CPU this way.
1299 */
1300 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1301 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1302 struct request *old_rq = NULL;
1303
1304 blk_mq_bio_to_request(rq, bio);
1305
1306 /*
1307 * we do limited pluging. If bio can be merged, do merge.
1308 * Otherwise the existing request in the plug list will be
1309 * issued. So the plug list will have one request at most
1310 */
1311 if (plug) {
1312 if (!list_empty(&plug->mq_list)) {
1313 old_rq = list_first_entry(&plug->mq_list,
1314 struct request, queuelist);
1315 list_del_init(&old_rq->queuelist);
1316 }
1317 list_add_tail(&rq->queuelist, &plug->mq_list);
1318 } else /* is_sync */
1319 old_rq = rq;
1320 blk_mq_put_ctx(data.ctx);
1321 if (!old_rq)
1322 return;
1323 if (!blk_mq_direct_issue_request(old_rq))
1324 return;
1325 blk_mq_insert_request(old_rq, false, true, true);
1326 return;
1327 }
1328
1329 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1330 /*
1331 * For a SYNC request, send it to the hardware immediately. For
1332 * an ASYNC request, just ensure that we run it later on. The
1333 * latter allows for merging opportunities and more efficient
1334 * dispatching.
1335 */
1336 run_queue:
1337 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1338 }
1339 blk_mq_put_ctx(data.ctx);
1340 }
1341
1342 /*
1343 * Single hardware queue variant. This will attempt to use any per-process
1344 * plug for merging and IO deferral.
1345 */
1346 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1347 {
1348 const int is_sync = rw_is_sync(bio->bi_rw);
1349 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1350 struct blk_plug *plug;
1351 unsigned int request_count = 0;
1352 struct blk_map_ctx data;
1353 struct request *rq;
1354
1355 blk_queue_bounce(q, &bio);
1356
1357 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1358 bio_endio(bio, -EIO);
1359 return;
1360 }
1361
1362 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1363 blk_attempt_plug_merge(q, bio, &request_count))
1364 return;
1365
1366 rq = blk_mq_map_request(q, bio, &data);
1367 if (unlikely(!rq))
1368 return;
1369
1370 if (unlikely(is_flush_fua)) {
1371 blk_mq_bio_to_request(rq, bio);
1372 blk_insert_flush(rq);
1373 goto run_queue;
1374 }
1375
1376 /*
1377 * A task plug currently exists. Since this is completely lockless,
1378 * utilize that to temporarily store requests until the task is
1379 * either done or scheduled away.
1380 */
1381 plug = current->plug;
1382 if (plug) {
1383 blk_mq_bio_to_request(rq, bio);
1384 if (list_empty(&plug->mq_list))
1385 trace_block_plug(q);
1386 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1387 blk_flush_plug_list(plug, false);
1388 trace_block_plug(q);
1389 }
1390 list_add_tail(&rq->queuelist, &plug->mq_list);
1391 blk_mq_put_ctx(data.ctx);
1392 return;
1393 }
1394
1395 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1396 /*
1397 * For a SYNC request, send it to the hardware immediately. For
1398 * an ASYNC request, just ensure that we run it later on. The
1399 * latter allows for merging opportunities and more efficient
1400 * dispatching.
1401 */
1402 run_queue:
1403 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1404 }
1405
1406 blk_mq_put_ctx(data.ctx);
1407 }
1408
1409 /*
1410 * Default mapping to a software queue, since we use one per CPU.
1411 */
1412 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1413 {
1414 return q->queue_hw_ctx[q->mq_map[cpu]];
1415 }
1416 EXPORT_SYMBOL(blk_mq_map_queue);
1417
1418 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1419 struct blk_mq_tags *tags, unsigned int hctx_idx)
1420 {
1421 struct page *page;
1422
1423 if (tags->rqs && set->ops->exit_request) {
1424 int i;
1425
1426 for (i = 0; i < tags->nr_tags; i++) {
1427 if (!tags->rqs[i])
1428 continue;
1429 set->ops->exit_request(set->driver_data, tags->rqs[i],
1430 hctx_idx, i);
1431 tags->rqs[i] = NULL;
1432 }
1433 }
1434
1435 while (!list_empty(&tags->page_list)) {
1436 page = list_first_entry(&tags->page_list, struct page, lru);
1437 list_del_init(&page->lru);
1438 __free_pages(page, page->private);
1439 }
1440
1441 kfree(tags->rqs);
1442
1443 blk_mq_free_tags(tags);
1444 }
1445
1446 static size_t order_to_size(unsigned int order)
1447 {
1448 return (size_t)PAGE_SIZE << order;
1449 }
1450
1451 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1452 unsigned int hctx_idx)
1453 {
1454 struct blk_mq_tags *tags;
1455 unsigned int i, j, entries_per_page, max_order = 4;
1456 size_t rq_size, left;
1457
1458 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1459 set->numa_node,
1460 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1461 if (!tags)
1462 return NULL;
1463
1464 INIT_LIST_HEAD(&tags->page_list);
1465
1466 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1467 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1468 set->numa_node);
1469 if (!tags->rqs) {
1470 blk_mq_free_tags(tags);
1471 return NULL;
1472 }
1473
1474 /*
1475 * rq_size is the size of the request plus driver payload, rounded
1476 * to the cacheline size
1477 */
1478 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1479 cache_line_size());
1480 left = rq_size * set->queue_depth;
1481
1482 for (i = 0; i < set->queue_depth; ) {
1483 int this_order = max_order;
1484 struct page *page;
1485 int to_do;
1486 void *p;
1487
1488 while (left < order_to_size(this_order - 1) && this_order)
1489 this_order--;
1490
1491 do {
1492 page = alloc_pages_node(set->numa_node,
1493 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1494 this_order);
1495 if (page)
1496 break;
1497 if (!this_order--)
1498 break;
1499 if (order_to_size(this_order) < rq_size)
1500 break;
1501 } while (1);
1502
1503 if (!page)
1504 goto fail;
1505
1506 page->private = this_order;
1507 list_add_tail(&page->lru, &tags->page_list);
1508
1509 p = page_address(page);
1510 entries_per_page = order_to_size(this_order) / rq_size;
1511 to_do = min(entries_per_page, set->queue_depth - i);
1512 left -= to_do * rq_size;
1513 for (j = 0; j < to_do; j++) {
1514 tags->rqs[i] = p;
1515 if (set->ops->init_request) {
1516 if (set->ops->init_request(set->driver_data,
1517 tags->rqs[i], hctx_idx, i,
1518 set->numa_node)) {
1519 tags->rqs[i] = NULL;
1520 goto fail;
1521 }
1522 }
1523
1524 p += rq_size;
1525 i++;
1526 }
1527 }
1528
1529 return tags;
1530
1531 fail:
1532 blk_mq_free_rq_map(set, tags, hctx_idx);
1533 return NULL;
1534 }
1535
1536 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1537 {
1538 kfree(bitmap->map);
1539 }
1540
1541 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1542 {
1543 unsigned int bpw = 8, total, num_maps, i;
1544
1545 bitmap->bits_per_word = bpw;
1546
1547 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1548 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1549 GFP_KERNEL, node);
1550 if (!bitmap->map)
1551 return -ENOMEM;
1552
1553 total = nr_cpu_ids;
1554 for (i = 0; i < num_maps; i++) {
1555 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1556 total -= bitmap->map[i].depth;
1557 }
1558
1559 return 0;
1560 }
1561
1562 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1563 {
1564 struct request_queue *q = hctx->queue;
1565 struct blk_mq_ctx *ctx;
1566 LIST_HEAD(tmp);
1567
1568 /*
1569 * Move ctx entries to new CPU, if this one is going away.
1570 */
1571 ctx = __blk_mq_get_ctx(q, cpu);
1572
1573 spin_lock(&ctx->lock);
1574 if (!list_empty(&ctx->rq_list)) {
1575 list_splice_init(&ctx->rq_list, &tmp);
1576 blk_mq_hctx_clear_pending(hctx, ctx);
1577 }
1578 spin_unlock(&ctx->lock);
1579
1580 if (list_empty(&tmp))
1581 return NOTIFY_OK;
1582
1583 ctx = blk_mq_get_ctx(q);
1584 spin_lock(&ctx->lock);
1585
1586 while (!list_empty(&tmp)) {
1587 struct request *rq;
1588
1589 rq = list_first_entry(&tmp, struct request, queuelist);
1590 rq->mq_ctx = ctx;
1591 list_move_tail(&rq->queuelist, &ctx->rq_list);
1592 }
1593
1594 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1595 blk_mq_hctx_mark_pending(hctx, ctx);
1596
1597 spin_unlock(&ctx->lock);
1598
1599 blk_mq_run_hw_queue(hctx, true);
1600 blk_mq_put_ctx(ctx);
1601 return NOTIFY_OK;
1602 }
1603
1604 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1605 {
1606 struct request_queue *q = hctx->queue;
1607 struct blk_mq_tag_set *set = q->tag_set;
1608
1609 if (set->tags[hctx->queue_num])
1610 return NOTIFY_OK;
1611
1612 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1613 if (!set->tags[hctx->queue_num])
1614 return NOTIFY_STOP;
1615
1616 hctx->tags = set->tags[hctx->queue_num];
1617 return NOTIFY_OK;
1618 }
1619
1620 static int blk_mq_hctx_notify(void *data, unsigned long action,
1621 unsigned int cpu)
1622 {
1623 struct blk_mq_hw_ctx *hctx = data;
1624
1625 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1626 return blk_mq_hctx_cpu_offline(hctx, cpu);
1627 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1628 return blk_mq_hctx_cpu_online(hctx, cpu);
1629
1630 return NOTIFY_OK;
1631 }
1632
1633 static void blk_mq_exit_hctx(struct request_queue *q,
1634 struct blk_mq_tag_set *set,
1635 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1636 {
1637 unsigned flush_start_tag = set->queue_depth;
1638
1639 blk_mq_tag_idle(hctx);
1640
1641 if (set->ops->exit_request)
1642 set->ops->exit_request(set->driver_data,
1643 hctx->fq->flush_rq, hctx_idx,
1644 flush_start_tag + hctx_idx);
1645
1646 if (set->ops->exit_hctx)
1647 set->ops->exit_hctx(hctx, hctx_idx);
1648
1649 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1650 blk_free_flush_queue(hctx->fq);
1651 kfree(hctx->ctxs);
1652 blk_mq_free_bitmap(&hctx->ctx_map);
1653 }
1654
1655 static void blk_mq_exit_hw_queues(struct request_queue *q,
1656 struct blk_mq_tag_set *set, int nr_queue)
1657 {
1658 struct blk_mq_hw_ctx *hctx;
1659 unsigned int i;
1660
1661 queue_for_each_hw_ctx(q, hctx, i) {
1662 if (i == nr_queue)
1663 break;
1664 blk_mq_exit_hctx(q, set, hctx, i);
1665 }
1666 }
1667
1668 static void blk_mq_free_hw_queues(struct request_queue *q,
1669 struct blk_mq_tag_set *set)
1670 {
1671 struct blk_mq_hw_ctx *hctx;
1672 unsigned int i;
1673
1674 queue_for_each_hw_ctx(q, hctx, i)
1675 free_cpumask_var(hctx->cpumask);
1676 }
1677
1678 static int blk_mq_init_hctx(struct request_queue *q,
1679 struct blk_mq_tag_set *set,
1680 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1681 {
1682 int node;
1683 unsigned flush_start_tag = set->queue_depth;
1684
1685 node = hctx->numa_node;
1686 if (node == NUMA_NO_NODE)
1687 node = hctx->numa_node = set->numa_node;
1688
1689 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1690 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1691 spin_lock_init(&hctx->lock);
1692 INIT_LIST_HEAD(&hctx->dispatch);
1693 hctx->queue = q;
1694 hctx->queue_num = hctx_idx;
1695 hctx->flags = set->flags;
1696
1697 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1698 blk_mq_hctx_notify, hctx);
1699 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1700
1701 hctx->tags = set->tags[hctx_idx];
1702
1703 /*
1704 * Allocate space for all possible cpus to avoid allocation at
1705 * runtime
1706 */
1707 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1708 GFP_KERNEL, node);
1709 if (!hctx->ctxs)
1710 goto unregister_cpu_notifier;
1711
1712 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1713 goto free_ctxs;
1714
1715 hctx->nr_ctx = 0;
1716
1717 if (set->ops->init_hctx &&
1718 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1719 goto free_bitmap;
1720
1721 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1722 if (!hctx->fq)
1723 goto exit_hctx;
1724
1725 if (set->ops->init_request &&
1726 set->ops->init_request(set->driver_data,
1727 hctx->fq->flush_rq, hctx_idx,
1728 flush_start_tag + hctx_idx, node))
1729 goto free_fq;
1730
1731 return 0;
1732
1733 free_fq:
1734 kfree(hctx->fq);
1735 exit_hctx:
1736 if (set->ops->exit_hctx)
1737 set->ops->exit_hctx(hctx, hctx_idx);
1738 free_bitmap:
1739 blk_mq_free_bitmap(&hctx->ctx_map);
1740 free_ctxs:
1741 kfree(hctx->ctxs);
1742 unregister_cpu_notifier:
1743 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1744
1745 return -1;
1746 }
1747
1748 static int blk_mq_init_hw_queues(struct request_queue *q,
1749 struct blk_mq_tag_set *set)
1750 {
1751 struct blk_mq_hw_ctx *hctx;
1752 unsigned int i;
1753
1754 /*
1755 * Initialize hardware queues
1756 */
1757 queue_for_each_hw_ctx(q, hctx, i) {
1758 if (blk_mq_init_hctx(q, set, hctx, i))
1759 break;
1760 }
1761
1762 if (i == q->nr_hw_queues)
1763 return 0;
1764
1765 /*
1766 * Init failed
1767 */
1768 blk_mq_exit_hw_queues(q, set, i);
1769
1770 return 1;
1771 }
1772
1773 static void blk_mq_init_cpu_queues(struct request_queue *q,
1774 unsigned int nr_hw_queues)
1775 {
1776 unsigned int i;
1777
1778 for_each_possible_cpu(i) {
1779 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1780 struct blk_mq_hw_ctx *hctx;
1781
1782 memset(__ctx, 0, sizeof(*__ctx));
1783 __ctx->cpu = i;
1784 spin_lock_init(&__ctx->lock);
1785 INIT_LIST_HEAD(&__ctx->rq_list);
1786 __ctx->queue = q;
1787
1788 /* If the cpu isn't online, the cpu is mapped to first hctx */
1789 if (!cpu_online(i))
1790 continue;
1791
1792 hctx = q->mq_ops->map_queue(q, i);
1793
1794 /*
1795 * Set local node, IFF we have more than one hw queue. If
1796 * not, we remain on the home node of the device
1797 */
1798 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1799 hctx->numa_node = cpu_to_node(i);
1800 }
1801 }
1802
1803 static void blk_mq_map_swqueue(struct request_queue *q)
1804 {
1805 unsigned int i;
1806 struct blk_mq_hw_ctx *hctx;
1807 struct blk_mq_ctx *ctx;
1808
1809 queue_for_each_hw_ctx(q, hctx, i) {
1810 cpumask_clear(hctx->cpumask);
1811 hctx->nr_ctx = 0;
1812 }
1813
1814 /*
1815 * Map software to hardware queues
1816 */
1817 queue_for_each_ctx(q, ctx, i) {
1818 /* If the cpu isn't online, the cpu is mapped to first hctx */
1819 if (!cpu_online(i))
1820 continue;
1821
1822 hctx = q->mq_ops->map_queue(q, i);
1823 cpumask_set_cpu(i, hctx->cpumask);
1824 ctx->index_hw = hctx->nr_ctx;
1825 hctx->ctxs[hctx->nr_ctx++] = ctx;
1826 }
1827
1828 queue_for_each_hw_ctx(q, hctx, i) {
1829 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1830
1831 /*
1832 * If no software queues are mapped to this hardware queue,
1833 * disable it and free the request entries.
1834 */
1835 if (!hctx->nr_ctx) {
1836 struct blk_mq_tag_set *set = q->tag_set;
1837
1838 if (set->tags[i]) {
1839 blk_mq_free_rq_map(set, set->tags[i], i);
1840 set->tags[i] = NULL;
1841 hctx->tags = NULL;
1842 }
1843 continue;
1844 }
1845
1846 /*
1847 * Set the map size to the number of mapped software queues.
1848 * This is more accurate and more efficient than looping
1849 * over all possibly mapped software queues.
1850 */
1851 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1852
1853 /*
1854 * Initialize batch roundrobin counts
1855 */
1856 hctx->next_cpu = cpumask_first(hctx->cpumask);
1857 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1858 }
1859 }
1860
1861 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1862 {
1863 struct blk_mq_hw_ctx *hctx;
1864 struct request_queue *q;
1865 bool shared;
1866 int i;
1867
1868 if (set->tag_list.next == set->tag_list.prev)
1869 shared = false;
1870 else
1871 shared = true;
1872
1873 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1874 blk_mq_freeze_queue(q);
1875
1876 queue_for_each_hw_ctx(q, hctx, i) {
1877 if (shared)
1878 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1879 else
1880 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1881 }
1882 blk_mq_unfreeze_queue(q);
1883 }
1884 }
1885
1886 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1887 {
1888 struct blk_mq_tag_set *set = q->tag_set;
1889
1890 mutex_lock(&set->tag_list_lock);
1891 list_del_init(&q->tag_set_list);
1892 blk_mq_update_tag_set_depth(set);
1893 mutex_unlock(&set->tag_list_lock);
1894 }
1895
1896 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1897 struct request_queue *q)
1898 {
1899 q->tag_set = set;
1900
1901 mutex_lock(&set->tag_list_lock);
1902 list_add_tail(&q->tag_set_list, &set->tag_list);
1903 blk_mq_update_tag_set_depth(set);
1904 mutex_unlock(&set->tag_list_lock);
1905 }
1906
1907 /*
1908 * It is the actual release handler for mq, but we do it from
1909 * request queue's release handler for avoiding use-after-free
1910 * and headache because q->mq_kobj shouldn't have been introduced,
1911 * but we can't group ctx/kctx kobj without it.
1912 */
1913 void blk_mq_release(struct request_queue *q)
1914 {
1915 struct blk_mq_hw_ctx *hctx;
1916 unsigned int i;
1917
1918 /* hctx kobj stays in hctx */
1919 queue_for_each_hw_ctx(q, hctx, i)
1920 kfree(hctx);
1921
1922 kfree(q->queue_hw_ctx);
1923
1924 /* ctx kobj stays in queue_ctx */
1925 free_percpu(q->queue_ctx);
1926 }
1927
1928 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1929 {
1930 struct request_queue *uninit_q, *q;
1931
1932 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1933 if (!uninit_q)
1934 return ERR_PTR(-ENOMEM);
1935
1936 q = blk_mq_init_allocated_queue(set, uninit_q);
1937 if (IS_ERR(q))
1938 blk_cleanup_queue(uninit_q);
1939
1940 return q;
1941 }
1942 EXPORT_SYMBOL(blk_mq_init_queue);
1943
1944 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1945 struct request_queue *q)
1946 {
1947 struct blk_mq_hw_ctx **hctxs;
1948 struct blk_mq_ctx __percpu *ctx;
1949 unsigned int *map;
1950 int i;
1951
1952 ctx = alloc_percpu(struct blk_mq_ctx);
1953 if (!ctx)
1954 return ERR_PTR(-ENOMEM);
1955
1956 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1957 set->numa_node);
1958
1959 if (!hctxs)
1960 goto err_percpu;
1961
1962 map = blk_mq_make_queue_map(set);
1963 if (!map)
1964 goto err_map;
1965
1966 for (i = 0; i < set->nr_hw_queues; i++) {
1967 int node = blk_mq_hw_queue_to_node(map, i);
1968
1969 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1970 GFP_KERNEL, node);
1971 if (!hctxs[i])
1972 goto err_hctxs;
1973
1974 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1975 node))
1976 goto err_hctxs;
1977
1978 atomic_set(&hctxs[i]->nr_active, 0);
1979 hctxs[i]->numa_node = node;
1980 hctxs[i]->queue_num = i;
1981 }
1982
1983 /*
1984 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1985 * See blk_register_queue() for details.
1986 */
1987 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1988 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1989 goto err_hctxs;
1990
1991 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1992 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30000);
1993
1994 q->nr_queues = nr_cpu_ids;
1995 q->nr_hw_queues = set->nr_hw_queues;
1996 q->mq_map = map;
1997
1998 q->queue_ctx = ctx;
1999 q->queue_hw_ctx = hctxs;
2000
2001 q->mq_ops = set->ops;
2002 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2003
2004 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2005 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2006
2007 q->sg_reserved_size = INT_MAX;
2008
2009 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2010 INIT_LIST_HEAD(&q->requeue_list);
2011 spin_lock_init(&q->requeue_lock);
2012
2013 if (q->nr_hw_queues > 1)
2014 blk_queue_make_request(q, blk_mq_make_request);
2015 else
2016 blk_queue_make_request(q, blk_sq_make_request);
2017
2018 /*
2019 * Do this after blk_queue_make_request() overrides it...
2020 */
2021 q->nr_requests = set->queue_depth;
2022
2023 if (set->ops->complete)
2024 blk_queue_softirq_done(q, set->ops->complete);
2025
2026 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2027
2028 if (blk_mq_init_hw_queues(q, set))
2029 goto err_hctxs;
2030
2031 mutex_lock(&all_q_mutex);
2032 list_add_tail(&q->all_q_node, &all_q_list);
2033 mutex_unlock(&all_q_mutex);
2034
2035 blk_mq_add_queue_tag_set(set, q);
2036
2037 blk_mq_map_swqueue(q);
2038
2039 return q;
2040
2041 err_hctxs:
2042 kfree(map);
2043 for (i = 0; i < set->nr_hw_queues; i++) {
2044 if (!hctxs[i])
2045 break;
2046 free_cpumask_var(hctxs[i]->cpumask);
2047 kfree(hctxs[i]);
2048 }
2049 err_map:
2050 kfree(hctxs);
2051 err_percpu:
2052 free_percpu(ctx);
2053 return ERR_PTR(-ENOMEM);
2054 }
2055 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2056
2057 void blk_mq_free_queue(struct request_queue *q)
2058 {
2059 struct blk_mq_tag_set *set = q->tag_set;
2060
2061 blk_mq_del_queue_tag_set(q);
2062
2063 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2064 blk_mq_free_hw_queues(q, set);
2065
2066 percpu_ref_exit(&q->mq_usage_counter);
2067
2068 kfree(q->mq_map);
2069
2070 q->mq_map = NULL;
2071
2072 mutex_lock(&all_q_mutex);
2073 list_del_init(&q->all_q_node);
2074 mutex_unlock(&all_q_mutex);
2075 }
2076
2077 /* Basically redo blk_mq_init_queue with queue frozen */
2078 static void blk_mq_queue_reinit(struct request_queue *q)
2079 {
2080 WARN_ON_ONCE(!q->mq_freeze_depth);
2081
2082 blk_mq_sysfs_unregister(q);
2083
2084 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2085
2086 /*
2087 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2088 * we should change hctx numa_node according to new topology (this
2089 * involves free and re-allocate memory, worthy doing?)
2090 */
2091
2092 blk_mq_map_swqueue(q);
2093
2094 blk_mq_sysfs_register(q);
2095 }
2096
2097 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2098 unsigned long action, void *hcpu)
2099 {
2100 struct request_queue *q;
2101
2102 /*
2103 * Before new mappings are established, hotadded cpu might already
2104 * start handling requests. This doesn't break anything as we map
2105 * offline CPUs to first hardware queue. We will re-init the queue
2106 * below to get optimal settings.
2107 */
2108 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2109 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2110 return NOTIFY_OK;
2111
2112 mutex_lock(&all_q_mutex);
2113
2114 /*
2115 * We need to freeze and reinit all existing queues. Freezing
2116 * involves synchronous wait for an RCU grace period and doing it
2117 * one by one may take a long time. Start freezing all queues in
2118 * one swoop and then wait for the completions so that freezing can
2119 * take place in parallel.
2120 */
2121 list_for_each_entry(q, &all_q_list, all_q_node)
2122 blk_mq_freeze_queue_start(q);
2123 list_for_each_entry(q, &all_q_list, all_q_node)
2124 blk_mq_freeze_queue_wait(q);
2125
2126 list_for_each_entry(q, &all_q_list, all_q_node)
2127 blk_mq_queue_reinit(q);
2128
2129 list_for_each_entry(q, &all_q_list, all_q_node)
2130 blk_mq_unfreeze_queue(q);
2131
2132 mutex_unlock(&all_q_mutex);
2133 return NOTIFY_OK;
2134 }
2135
2136 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2137 {
2138 int i;
2139
2140 for (i = 0; i < set->nr_hw_queues; i++) {
2141 set->tags[i] = blk_mq_init_rq_map(set, i);
2142 if (!set->tags[i])
2143 goto out_unwind;
2144 }
2145
2146 return 0;
2147
2148 out_unwind:
2149 while (--i >= 0)
2150 blk_mq_free_rq_map(set, set->tags[i], i);
2151
2152 return -ENOMEM;
2153 }
2154
2155 /*
2156 * Allocate the request maps associated with this tag_set. Note that this
2157 * may reduce the depth asked for, if memory is tight. set->queue_depth
2158 * will be updated to reflect the allocated depth.
2159 */
2160 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2161 {
2162 unsigned int depth;
2163 int err;
2164
2165 depth = set->queue_depth;
2166 do {
2167 err = __blk_mq_alloc_rq_maps(set);
2168 if (!err)
2169 break;
2170
2171 set->queue_depth >>= 1;
2172 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2173 err = -ENOMEM;
2174 break;
2175 }
2176 } while (set->queue_depth);
2177
2178 if (!set->queue_depth || err) {
2179 pr_err("blk-mq: failed to allocate request map\n");
2180 return -ENOMEM;
2181 }
2182
2183 if (depth != set->queue_depth)
2184 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2185 depth, set->queue_depth);
2186
2187 return 0;
2188 }
2189
2190 /*
2191 * Alloc a tag set to be associated with one or more request queues.
2192 * May fail with EINVAL for various error conditions. May adjust the
2193 * requested depth down, if if it too large. In that case, the set
2194 * value will be stored in set->queue_depth.
2195 */
2196 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2197 {
2198 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2199
2200 if (!set->nr_hw_queues)
2201 return -EINVAL;
2202 if (!set->queue_depth)
2203 return -EINVAL;
2204 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2205 return -EINVAL;
2206
2207 if (!set->ops->queue_rq || !set->ops->map_queue)
2208 return -EINVAL;
2209
2210 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2211 pr_info("blk-mq: reduced tag depth to %u\n",
2212 BLK_MQ_MAX_DEPTH);
2213 set->queue_depth = BLK_MQ_MAX_DEPTH;
2214 }
2215
2216 /*
2217 * If a crashdump is active, then we are potentially in a very
2218 * memory constrained environment. Limit us to 1 queue and
2219 * 64 tags to prevent using too much memory.
2220 */
2221 if (is_kdump_kernel()) {
2222 set->nr_hw_queues = 1;
2223 set->queue_depth = min(64U, set->queue_depth);
2224 }
2225
2226 set->tags = kmalloc_node(set->nr_hw_queues *
2227 sizeof(struct blk_mq_tags *),
2228 GFP_KERNEL, set->numa_node);
2229 if (!set->tags)
2230 return -ENOMEM;
2231
2232 if (blk_mq_alloc_rq_maps(set))
2233 goto enomem;
2234
2235 mutex_init(&set->tag_list_lock);
2236 INIT_LIST_HEAD(&set->tag_list);
2237
2238 return 0;
2239 enomem:
2240 kfree(set->tags);
2241 set->tags = NULL;
2242 return -ENOMEM;
2243 }
2244 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2245
2246 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2247 {
2248 int i;
2249
2250 for (i = 0; i < set->nr_hw_queues; i++) {
2251 if (set->tags[i])
2252 blk_mq_free_rq_map(set, set->tags[i], i);
2253 }
2254
2255 kfree(set->tags);
2256 set->tags = NULL;
2257 }
2258 EXPORT_SYMBOL(blk_mq_free_tag_set);
2259
2260 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2261 {
2262 struct blk_mq_tag_set *set = q->tag_set;
2263 struct blk_mq_hw_ctx *hctx;
2264 int i, ret;
2265
2266 if (!set || nr > set->queue_depth)
2267 return -EINVAL;
2268
2269 ret = 0;
2270 queue_for_each_hw_ctx(q, hctx, i) {
2271 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2272 if (ret)
2273 break;
2274 }
2275
2276 if (!ret)
2277 q->nr_requests = nr;
2278
2279 return ret;
2280 }
2281
2282 void blk_mq_disable_hotplug(void)
2283 {
2284 mutex_lock(&all_q_mutex);
2285 }
2286
2287 void blk_mq_enable_hotplug(void)
2288 {
2289 mutex_unlock(&all_q_mutex);
2290 }
2291
2292 static int __init blk_mq_init(void)
2293 {
2294 blk_mq_cpu_init();
2295
2296 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2297
2298 return 0;
2299 }
2300 subsys_initcall(blk_mq_init);