]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-rq-qos.c
Merge tag 'soundwire-5.3-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[thirdparty/linux.git] / block / blk-rq-qos.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "blk-rq-qos.h"
4
5 /*
6 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
7 * false if 'v' + 1 would be bigger than 'below'.
8 */
9 static bool atomic_inc_below(atomic_t *v, unsigned int below)
10 {
11 unsigned int cur = atomic_read(v);
12
13 for (;;) {
14 unsigned int old;
15
16 if (cur >= below)
17 return false;
18 old = atomic_cmpxchg(v, cur, cur + 1);
19 if (old == cur)
20 break;
21 cur = old;
22 }
23
24 return true;
25 }
26
27 bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
28 {
29 return atomic_inc_below(&rq_wait->inflight, limit);
30 }
31
32 void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
33 {
34 do {
35 if (rqos->ops->cleanup)
36 rqos->ops->cleanup(rqos, bio);
37 rqos = rqos->next;
38 } while (rqos);
39 }
40
41 void __rq_qos_done(struct rq_qos *rqos, struct request *rq)
42 {
43 do {
44 if (rqos->ops->done)
45 rqos->ops->done(rqos, rq);
46 rqos = rqos->next;
47 } while (rqos);
48 }
49
50 void __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
51 {
52 do {
53 if (rqos->ops->issue)
54 rqos->ops->issue(rqos, rq);
55 rqos = rqos->next;
56 } while (rqos);
57 }
58
59 void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
60 {
61 do {
62 if (rqos->ops->requeue)
63 rqos->ops->requeue(rqos, rq);
64 rqos = rqos->next;
65 } while (rqos);
66 }
67
68 void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
69 {
70 do {
71 if (rqos->ops->throttle)
72 rqos->ops->throttle(rqos, bio);
73 rqos = rqos->next;
74 } while (rqos);
75 }
76
77 void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
78 {
79 do {
80 if (rqos->ops->track)
81 rqos->ops->track(rqos, rq, bio);
82 rqos = rqos->next;
83 } while (rqos);
84 }
85
86 void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
87 {
88 do {
89 if (rqos->ops->done_bio)
90 rqos->ops->done_bio(rqos, bio);
91 rqos = rqos->next;
92 } while (rqos);
93 }
94
95 /*
96 * Return true, if we can't increase the depth further by scaling
97 */
98 bool rq_depth_calc_max_depth(struct rq_depth *rqd)
99 {
100 unsigned int depth;
101 bool ret = false;
102
103 /*
104 * For QD=1 devices, this is a special case. It's important for those
105 * to have one request ready when one completes, so force a depth of
106 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
107 * since the device can't have more than that in flight. If we're
108 * scaling down, then keep a setting of 1/1/1.
109 */
110 if (rqd->queue_depth == 1) {
111 if (rqd->scale_step > 0)
112 rqd->max_depth = 1;
113 else {
114 rqd->max_depth = 2;
115 ret = true;
116 }
117 } else {
118 /*
119 * scale_step == 0 is our default state. If we have suffered
120 * latency spikes, step will be > 0, and we shrink the
121 * allowed write depths. If step is < 0, we're only doing
122 * writes, and we allow a temporarily higher depth to
123 * increase performance.
124 */
125 depth = min_t(unsigned int, rqd->default_depth,
126 rqd->queue_depth);
127 if (rqd->scale_step > 0)
128 depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
129 else if (rqd->scale_step < 0) {
130 unsigned int maxd = 3 * rqd->queue_depth / 4;
131
132 depth = 1 + ((depth - 1) << -rqd->scale_step);
133 if (depth > maxd) {
134 depth = maxd;
135 ret = true;
136 }
137 }
138
139 rqd->max_depth = depth;
140 }
141
142 return ret;
143 }
144
145 void rq_depth_scale_up(struct rq_depth *rqd)
146 {
147 /*
148 * Hit max in previous round, stop here
149 */
150 if (rqd->scaled_max)
151 return;
152
153 rqd->scale_step--;
154
155 rqd->scaled_max = rq_depth_calc_max_depth(rqd);
156 }
157
158 /*
159 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
160 * had a latency violation.
161 */
162 void rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
163 {
164 /*
165 * Stop scaling down when we've hit the limit. This also prevents
166 * ->scale_step from going to crazy values, if the device can't
167 * keep up.
168 */
169 if (rqd->max_depth == 1)
170 return;
171
172 if (rqd->scale_step < 0 && hard_throttle)
173 rqd->scale_step = 0;
174 else
175 rqd->scale_step++;
176
177 rqd->scaled_max = false;
178 rq_depth_calc_max_depth(rqd);
179 }
180
181 struct rq_qos_wait_data {
182 struct wait_queue_entry wq;
183 struct task_struct *task;
184 struct rq_wait *rqw;
185 acquire_inflight_cb_t *cb;
186 void *private_data;
187 bool got_token;
188 };
189
190 static int rq_qos_wake_function(struct wait_queue_entry *curr,
191 unsigned int mode, int wake_flags, void *key)
192 {
193 struct rq_qos_wait_data *data = container_of(curr,
194 struct rq_qos_wait_data,
195 wq);
196
197 /*
198 * If we fail to get a budget, return -1 to interrupt the wake up loop
199 * in __wake_up_common.
200 */
201 if (!data->cb(data->rqw, data->private_data))
202 return -1;
203
204 data->got_token = true;
205 smp_wmb();
206 list_del_init(&curr->entry);
207 wake_up_process(data->task);
208 return 1;
209 }
210
211 /**
212 * rq_qos_wait - throttle on a rqw if we need to
213 * @rqw: rqw to throttle on
214 * @private_data: caller provided specific data
215 * @acquire_inflight_cb: inc the rqw->inflight counter if we can
216 * @cleanup_cb: the callback to cleanup in case we race with a waker
217 *
218 * This provides a uniform place for the rq_qos users to do their throttling.
219 * Since you can end up with a lot of things sleeping at once, this manages the
220 * waking up based on the resources available. The acquire_inflight_cb should
221 * inc the rqw->inflight if we have the ability to do so, or return false if not
222 * and then we will sleep until the room becomes available.
223 *
224 * cleanup_cb is in case that we race with a waker and need to cleanup the
225 * inflight count accordingly.
226 */
227 void rq_qos_wait(struct rq_wait *rqw, void *private_data,
228 acquire_inflight_cb_t *acquire_inflight_cb,
229 cleanup_cb_t *cleanup_cb)
230 {
231 struct rq_qos_wait_data data = {
232 .wq = {
233 .func = rq_qos_wake_function,
234 .entry = LIST_HEAD_INIT(data.wq.entry),
235 },
236 .task = current,
237 .rqw = rqw,
238 .cb = acquire_inflight_cb,
239 .private_data = private_data,
240 };
241 bool has_sleeper;
242
243 has_sleeper = wq_has_sleeper(&rqw->wait);
244 if (!has_sleeper && acquire_inflight_cb(rqw, private_data))
245 return;
246
247 prepare_to_wait_exclusive(&rqw->wait, &data.wq, TASK_UNINTERRUPTIBLE);
248 has_sleeper = !wq_has_single_sleeper(&rqw->wait);
249 do {
250 /* The memory barrier in set_task_state saves us here. */
251 if (data.got_token)
252 break;
253 if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) {
254 finish_wait(&rqw->wait, &data.wq);
255
256 /*
257 * We raced with wbt_wake_function() getting a token,
258 * which means we now have two. Put our local token
259 * and wake anyone else potentially waiting for one.
260 */
261 smp_rmb();
262 if (data.got_token)
263 cleanup_cb(rqw, private_data);
264 break;
265 }
266 io_schedule();
267 has_sleeper = true;
268 set_current_state(TASK_UNINTERRUPTIBLE);
269 } while (1);
270 finish_wait(&rqw->wait, &data.wq);
271 }
272
273 void rq_qos_exit(struct request_queue *q)
274 {
275 blk_mq_debugfs_unregister_queue_rqos(q);
276
277 while (q->rq_qos) {
278 struct rq_qos *rqos = q->rq_qos;
279 q->rq_qos = rqos->next;
280 rqos->ops->exit(rqos);
281 }
282 }