]> git.ipfire.org Git - people/ms/linux.git/blob - block/blk-settings.c
MIPS: asm: pgtable: Add c0 hazards on HTW start/stop sequences
[people/ms/linux.git] / block / blk-settings.c
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
14
15 #include "blk.h"
16
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
19
20 unsigned long blk_max_pfn;
21
22 /**
23 * blk_queue_prep_rq - set a prepare_request function for queue
24 * @q: queue
25 * @pfn: prepare_request function
26 *
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
31 *
32 */
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
34 {
35 q->prep_rq_fn = pfn;
36 }
37 EXPORT_SYMBOL(blk_queue_prep_rq);
38
39 /**
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
41 * @q: queue
42 * @ufn: unprepare_request function
43 *
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
48 *
49 */
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
51 {
52 q->unprep_rq_fn = ufn;
53 }
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
55
56 /**
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
58 * @q: queue
59 * @mbfn: merge_bvec_fn
60 *
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
70 * honored.
71 */
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
73 {
74 q->merge_bvec_fn = mbfn;
75 }
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
77
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
79 {
80 q->softirq_done_fn = fn;
81 }
82 EXPORT_SYMBOL(blk_queue_softirq_done);
83
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
85 {
86 q->rq_timeout = timeout;
87 }
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
89
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
91 {
92 q->rq_timed_out_fn = fn;
93 }
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
95
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
97 {
98 q->lld_busy_fn = fn;
99 }
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101
102 /**
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
105 *
106 * Description:
107 * Returns a queue_limit struct to its default state.
108 */
109 void blk_set_default_limits(struct queue_limits *lim)
110 {
111 lim->max_segments = BLK_MAX_SEGMENTS;
112 lim->max_integrity_segments = 0;
113 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116 lim->chunk_sectors = 0;
117 lim->max_write_same_sectors = 0;
118 lim->max_discard_sectors = 0;
119 lim->discard_granularity = 0;
120 lim->discard_alignment = 0;
121 lim->discard_misaligned = 0;
122 lim->discard_zeroes_data = 0;
123 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
124 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
125 lim->alignment_offset = 0;
126 lim->io_opt = 0;
127 lim->misaligned = 0;
128 lim->cluster = 1;
129 }
130 EXPORT_SYMBOL(blk_set_default_limits);
131
132 /**
133 * blk_set_stacking_limits - set default limits for stacking devices
134 * @lim: the queue_limits structure to reset
135 *
136 * Description:
137 * Returns a queue_limit struct to its default state. Should be used
138 * by stacking drivers like DM that have no internal limits.
139 */
140 void blk_set_stacking_limits(struct queue_limits *lim)
141 {
142 blk_set_default_limits(lim);
143
144 /* Inherit limits from component devices */
145 lim->discard_zeroes_data = 1;
146 lim->max_segments = USHRT_MAX;
147 lim->max_hw_sectors = UINT_MAX;
148 lim->max_segment_size = UINT_MAX;
149 lim->max_sectors = UINT_MAX;
150 lim->max_write_same_sectors = UINT_MAX;
151 }
152 EXPORT_SYMBOL(blk_set_stacking_limits);
153
154 /**
155 * blk_queue_make_request - define an alternate make_request function for a device
156 * @q: the request queue for the device to be affected
157 * @mfn: the alternate make_request function
158 *
159 * Description:
160 * The normal way for &struct bios to be passed to a device
161 * driver is for them to be collected into requests on a request
162 * queue, and then to allow the device driver to select requests
163 * off that queue when it is ready. This works well for many block
164 * devices. However some block devices (typically virtual devices
165 * such as md or lvm) do not benefit from the processing on the
166 * request queue, and are served best by having the requests passed
167 * directly to them. This can be achieved by providing a function
168 * to blk_queue_make_request().
169 *
170 * Caveat:
171 * The driver that does this *must* be able to deal appropriately
172 * with buffers in "highmemory". This can be accomplished by either calling
173 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
174 * blk_queue_bounce() to create a buffer in normal memory.
175 **/
176 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
177 {
178 /*
179 * set defaults
180 */
181 q->nr_requests = BLKDEV_MAX_RQ;
182
183 q->make_request_fn = mfn;
184 blk_queue_dma_alignment(q, 511);
185 blk_queue_congestion_threshold(q);
186 q->nr_batching = BLK_BATCH_REQ;
187
188 blk_set_default_limits(&q->limits);
189
190 /*
191 * by default assume old behaviour and bounce for any highmem page
192 */
193 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
194 }
195 EXPORT_SYMBOL(blk_queue_make_request);
196
197 /**
198 * blk_queue_bounce_limit - set bounce buffer limit for queue
199 * @q: the request queue for the device
200 * @max_addr: the maximum address the device can handle
201 *
202 * Description:
203 * Different hardware can have different requirements as to what pages
204 * it can do I/O directly to. A low level driver can call
205 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
206 * buffers for doing I/O to pages residing above @max_addr.
207 **/
208 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
209 {
210 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
211 int dma = 0;
212
213 q->bounce_gfp = GFP_NOIO;
214 #if BITS_PER_LONG == 64
215 /*
216 * Assume anything <= 4GB can be handled by IOMMU. Actually
217 * some IOMMUs can handle everything, but I don't know of a
218 * way to test this here.
219 */
220 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
221 dma = 1;
222 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
223 #else
224 if (b_pfn < blk_max_low_pfn)
225 dma = 1;
226 q->limits.bounce_pfn = b_pfn;
227 #endif
228 if (dma) {
229 init_emergency_isa_pool();
230 q->bounce_gfp = GFP_NOIO | GFP_DMA;
231 q->limits.bounce_pfn = b_pfn;
232 }
233 }
234 EXPORT_SYMBOL(blk_queue_bounce_limit);
235
236 /**
237 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
238 * @limits: the queue limits
239 * @max_hw_sectors: max hardware sectors in the usual 512b unit
240 *
241 * Description:
242 * Enables a low level driver to set a hard upper limit,
243 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
244 * the device driver based upon the combined capabilities of I/O
245 * controller and storage device.
246 *
247 * max_sectors is a soft limit imposed by the block layer for
248 * filesystem type requests. This value can be overridden on a
249 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
250 * The soft limit can not exceed max_hw_sectors.
251 **/
252 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
253 {
254 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
255 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
256 printk(KERN_INFO "%s: set to minimum %d\n",
257 __func__, max_hw_sectors);
258 }
259
260 limits->max_hw_sectors = max_hw_sectors;
261 limits->max_sectors = min_t(unsigned int, max_hw_sectors,
262 BLK_DEF_MAX_SECTORS);
263 }
264 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
265
266 /**
267 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
268 * @q: the request queue for the device
269 * @max_hw_sectors: max hardware sectors in the usual 512b unit
270 *
271 * Description:
272 * See description for blk_limits_max_hw_sectors().
273 **/
274 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
275 {
276 blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
277 }
278 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
279
280 /**
281 * blk_queue_chunk_sectors - set size of the chunk for this queue
282 * @q: the request queue for the device
283 * @chunk_sectors: chunk sectors in the usual 512b unit
284 *
285 * Description:
286 * If a driver doesn't want IOs to cross a given chunk size, it can set
287 * this limit and prevent merging across chunks. Note that the chunk size
288 * must currently be a power-of-2 in sectors. Also note that the block
289 * layer must accept a page worth of data at any offset. So if the
290 * crossing of chunks is a hard limitation in the driver, it must still be
291 * prepared to split single page bios.
292 **/
293 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
294 {
295 BUG_ON(!is_power_of_2(chunk_sectors));
296 q->limits.chunk_sectors = chunk_sectors;
297 }
298 EXPORT_SYMBOL(blk_queue_chunk_sectors);
299
300 /**
301 * blk_queue_max_discard_sectors - set max sectors for a single discard
302 * @q: the request queue for the device
303 * @max_discard_sectors: maximum number of sectors to discard
304 **/
305 void blk_queue_max_discard_sectors(struct request_queue *q,
306 unsigned int max_discard_sectors)
307 {
308 q->limits.max_discard_sectors = max_discard_sectors;
309 }
310 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
311
312 /**
313 * blk_queue_max_write_same_sectors - set max sectors for a single write same
314 * @q: the request queue for the device
315 * @max_write_same_sectors: maximum number of sectors to write per command
316 **/
317 void blk_queue_max_write_same_sectors(struct request_queue *q,
318 unsigned int max_write_same_sectors)
319 {
320 q->limits.max_write_same_sectors = max_write_same_sectors;
321 }
322 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
323
324 /**
325 * blk_queue_max_segments - set max hw segments for a request for this queue
326 * @q: the request queue for the device
327 * @max_segments: max number of segments
328 *
329 * Description:
330 * Enables a low level driver to set an upper limit on the number of
331 * hw data segments in a request.
332 **/
333 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
334 {
335 if (!max_segments) {
336 max_segments = 1;
337 printk(KERN_INFO "%s: set to minimum %d\n",
338 __func__, max_segments);
339 }
340
341 q->limits.max_segments = max_segments;
342 }
343 EXPORT_SYMBOL(blk_queue_max_segments);
344
345 /**
346 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
347 * @q: the request queue for the device
348 * @max_size: max size of segment in bytes
349 *
350 * Description:
351 * Enables a low level driver to set an upper limit on the size of a
352 * coalesced segment
353 **/
354 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
355 {
356 if (max_size < PAGE_CACHE_SIZE) {
357 max_size = PAGE_CACHE_SIZE;
358 printk(KERN_INFO "%s: set to minimum %d\n",
359 __func__, max_size);
360 }
361
362 q->limits.max_segment_size = max_size;
363 }
364 EXPORT_SYMBOL(blk_queue_max_segment_size);
365
366 /**
367 * blk_queue_logical_block_size - set logical block size for the queue
368 * @q: the request queue for the device
369 * @size: the logical block size, in bytes
370 *
371 * Description:
372 * This should be set to the lowest possible block size that the
373 * storage device can address. The default of 512 covers most
374 * hardware.
375 **/
376 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
377 {
378 q->limits.logical_block_size = size;
379
380 if (q->limits.physical_block_size < size)
381 q->limits.physical_block_size = size;
382
383 if (q->limits.io_min < q->limits.physical_block_size)
384 q->limits.io_min = q->limits.physical_block_size;
385 }
386 EXPORT_SYMBOL(blk_queue_logical_block_size);
387
388 /**
389 * blk_queue_physical_block_size - set physical block size for the queue
390 * @q: the request queue for the device
391 * @size: the physical block size, in bytes
392 *
393 * Description:
394 * This should be set to the lowest possible sector size that the
395 * hardware can operate on without reverting to read-modify-write
396 * operations.
397 */
398 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
399 {
400 q->limits.physical_block_size = size;
401
402 if (q->limits.physical_block_size < q->limits.logical_block_size)
403 q->limits.physical_block_size = q->limits.logical_block_size;
404
405 if (q->limits.io_min < q->limits.physical_block_size)
406 q->limits.io_min = q->limits.physical_block_size;
407 }
408 EXPORT_SYMBOL(blk_queue_physical_block_size);
409
410 /**
411 * blk_queue_alignment_offset - set physical block alignment offset
412 * @q: the request queue for the device
413 * @offset: alignment offset in bytes
414 *
415 * Description:
416 * Some devices are naturally misaligned to compensate for things like
417 * the legacy DOS partition table 63-sector offset. Low-level drivers
418 * should call this function for devices whose first sector is not
419 * naturally aligned.
420 */
421 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
422 {
423 q->limits.alignment_offset =
424 offset & (q->limits.physical_block_size - 1);
425 q->limits.misaligned = 0;
426 }
427 EXPORT_SYMBOL(blk_queue_alignment_offset);
428
429 /**
430 * blk_limits_io_min - set minimum request size for a device
431 * @limits: the queue limits
432 * @min: smallest I/O size in bytes
433 *
434 * Description:
435 * Some devices have an internal block size bigger than the reported
436 * hardware sector size. This function can be used to signal the
437 * smallest I/O the device can perform without incurring a performance
438 * penalty.
439 */
440 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
441 {
442 limits->io_min = min;
443
444 if (limits->io_min < limits->logical_block_size)
445 limits->io_min = limits->logical_block_size;
446
447 if (limits->io_min < limits->physical_block_size)
448 limits->io_min = limits->physical_block_size;
449 }
450 EXPORT_SYMBOL(blk_limits_io_min);
451
452 /**
453 * blk_queue_io_min - set minimum request size for the queue
454 * @q: the request queue for the device
455 * @min: smallest I/O size in bytes
456 *
457 * Description:
458 * Storage devices may report a granularity or preferred minimum I/O
459 * size which is the smallest request the device can perform without
460 * incurring a performance penalty. For disk drives this is often the
461 * physical block size. For RAID arrays it is often the stripe chunk
462 * size. A properly aligned multiple of minimum_io_size is the
463 * preferred request size for workloads where a high number of I/O
464 * operations is desired.
465 */
466 void blk_queue_io_min(struct request_queue *q, unsigned int min)
467 {
468 blk_limits_io_min(&q->limits, min);
469 }
470 EXPORT_SYMBOL(blk_queue_io_min);
471
472 /**
473 * blk_limits_io_opt - set optimal request size for a device
474 * @limits: the queue limits
475 * @opt: smallest I/O size in bytes
476 *
477 * Description:
478 * Storage devices may report an optimal I/O size, which is the
479 * device's preferred unit for sustained I/O. This is rarely reported
480 * for disk drives. For RAID arrays it is usually the stripe width or
481 * the internal track size. A properly aligned multiple of
482 * optimal_io_size is the preferred request size for workloads where
483 * sustained throughput is desired.
484 */
485 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
486 {
487 limits->io_opt = opt;
488 }
489 EXPORT_SYMBOL(blk_limits_io_opt);
490
491 /**
492 * blk_queue_io_opt - set optimal request size for the queue
493 * @q: the request queue for the device
494 * @opt: optimal request size in bytes
495 *
496 * Description:
497 * Storage devices may report an optimal I/O size, which is the
498 * device's preferred unit for sustained I/O. This is rarely reported
499 * for disk drives. For RAID arrays it is usually the stripe width or
500 * the internal track size. A properly aligned multiple of
501 * optimal_io_size is the preferred request size for workloads where
502 * sustained throughput is desired.
503 */
504 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
505 {
506 blk_limits_io_opt(&q->limits, opt);
507 }
508 EXPORT_SYMBOL(blk_queue_io_opt);
509
510 /**
511 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
512 * @t: the stacking driver (top)
513 * @b: the underlying device (bottom)
514 **/
515 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
516 {
517 blk_stack_limits(&t->limits, &b->limits, 0);
518 }
519 EXPORT_SYMBOL(blk_queue_stack_limits);
520
521 /**
522 * blk_stack_limits - adjust queue_limits for stacked devices
523 * @t: the stacking driver limits (top device)
524 * @b: the underlying queue limits (bottom, component device)
525 * @start: first data sector within component device
526 *
527 * Description:
528 * This function is used by stacking drivers like MD and DM to ensure
529 * that all component devices have compatible block sizes and
530 * alignments. The stacking driver must provide a queue_limits
531 * struct (top) and then iteratively call the stacking function for
532 * all component (bottom) devices. The stacking function will
533 * attempt to combine the values and ensure proper alignment.
534 *
535 * Returns 0 if the top and bottom queue_limits are compatible. The
536 * top device's block sizes and alignment offsets may be adjusted to
537 * ensure alignment with the bottom device. If no compatible sizes
538 * and alignments exist, -1 is returned and the resulting top
539 * queue_limits will have the misaligned flag set to indicate that
540 * the alignment_offset is undefined.
541 */
542 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
543 sector_t start)
544 {
545 unsigned int top, bottom, alignment, ret = 0;
546
547 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
548 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
549 t->max_write_same_sectors = min(t->max_write_same_sectors,
550 b->max_write_same_sectors);
551 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
552
553 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
554 b->seg_boundary_mask);
555
556 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
557 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
558 b->max_integrity_segments);
559
560 t->max_segment_size = min_not_zero(t->max_segment_size,
561 b->max_segment_size);
562
563 t->misaligned |= b->misaligned;
564
565 alignment = queue_limit_alignment_offset(b, start);
566
567 /* Bottom device has different alignment. Check that it is
568 * compatible with the current top alignment.
569 */
570 if (t->alignment_offset != alignment) {
571
572 top = max(t->physical_block_size, t->io_min)
573 + t->alignment_offset;
574 bottom = max(b->physical_block_size, b->io_min) + alignment;
575
576 /* Verify that top and bottom intervals line up */
577 if (max(top, bottom) % min(top, bottom)) {
578 t->misaligned = 1;
579 ret = -1;
580 }
581 }
582
583 t->logical_block_size = max(t->logical_block_size,
584 b->logical_block_size);
585
586 t->physical_block_size = max(t->physical_block_size,
587 b->physical_block_size);
588
589 t->io_min = max(t->io_min, b->io_min);
590 t->io_opt = lcm(t->io_opt, b->io_opt);
591
592 t->cluster &= b->cluster;
593 t->discard_zeroes_data &= b->discard_zeroes_data;
594
595 /* Physical block size a multiple of the logical block size? */
596 if (t->physical_block_size & (t->logical_block_size - 1)) {
597 t->physical_block_size = t->logical_block_size;
598 t->misaligned = 1;
599 ret = -1;
600 }
601
602 /* Minimum I/O a multiple of the physical block size? */
603 if (t->io_min & (t->physical_block_size - 1)) {
604 t->io_min = t->physical_block_size;
605 t->misaligned = 1;
606 ret = -1;
607 }
608
609 /* Optimal I/O a multiple of the physical block size? */
610 if (t->io_opt & (t->physical_block_size - 1)) {
611 t->io_opt = 0;
612 t->misaligned = 1;
613 ret = -1;
614 }
615
616 t->raid_partial_stripes_expensive =
617 max(t->raid_partial_stripes_expensive,
618 b->raid_partial_stripes_expensive);
619
620 /* Find lowest common alignment_offset */
621 t->alignment_offset = lcm(t->alignment_offset, alignment)
622 % max(t->physical_block_size, t->io_min);
623
624 /* Verify that new alignment_offset is on a logical block boundary */
625 if (t->alignment_offset & (t->logical_block_size - 1)) {
626 t->misaligned = 1;
627 ret = -1;
628 }
629
630 /* Discard alignment and granularity */
631 if (b->discard_granularity) {
632 alignment = queue_limit_discard_alignment(b, start);
633
634 if (t->discard_granularity != 0 &&
635 t->discard_alignment != alignment) {
636 top = t->discard_granularity + t->discard_alignment;
637 bottom = b->discard_granularity + alignment;
638
639 /* Verify that top and bottom intervals line up */
640 if ((max(top, bottom) % min(top, bottom)) != 0)
641 t->discard_misaligned = 1;
642 }
643
644 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
645 b->max_discard_sectors);
646 t->discard_granularity = max(t->discard_granularity,
647 b->discard_granularity);
648 t->discard_alignment = lcm(t->discard_alignment, alignment) %
649 t->discard_granularity;
650 }
651
652 return ret;
653 }
654 EXPORT_SYMBOL(blk_stack_limits);
655
656 /**
657 * bdev_stack_limits - adjust queue limits for stacked drivers
658 * @t: the stacking driver limits (top device)
659 * @bdev: the component block_device (bottom)
660 * @start: first data sector within component device
661 *
662 * Description:
663 * Merges queue limits for a top device and a block_device. Returns
664 * 0 if alignment didn't change. Returns -1 if adding the bottom
665 * device caused misalignment.
666 */
667 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
668 sector_t start)
669 {
670 struct request_queue *bq = bdev_get_queue(bdev);
671
672 start += get_start_sect(bdev);
673
674 return blk_stack_limits(t, &bq->limits, start);
675 }
676 EXPORT_SYMBOL(bdev_stack_limits);
677
678 /**
679 * disk_stack_limits - adjust queue limits for stacked drivers
680 * @disk: MD/DM gendisk (top)
681 * @bdev: the underlying block device (bottom)
682 * @offset: offset to beginning of data within component device
683 *
684 * Description:
685 * Merges the limits for a top level gendisk and a bottom level
686 * block_device.
687 */
688 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
689 sector_t offset)
690 {
691 struct request_queue *t = disk->queue;
692
693 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
694 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
695
696 disk_name(disk, 0, top);
697 bdevname(bdev, bottom);
698
699 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
700 top, bottom);
701 }
702 }
703 EXPORT_SYMBOL(disk_stack_limits);
704
705 /**
706 * blk_queue_dma_pad - set pad mask
707 * @q: the request queue for the device
708 * @mask: pad mask
709 *
710 * Set dma pad mask.
711 *
712 * Appending pad buffer to a request modifies the last entry of a
713 * scatter list such that it includes the pad buffer.
714 **/
715 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
716 {
717 q->dma_pad_mask = mask;
718 }
719 EXPORT_SYMBOL(blk_queue_dma_pad);
720
721 /**
722 * blk_queue_update_dma_pad - update pad mask
723 * @q: the request queue for the device
724 * @mask: pad mask
725 *
726 * Update dma pad mask.
727 *
728 * Appending pad buffer to a request modifies the last entry of a
729 * scatter list such that it includes the pad buffer.
730 **/
731 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
732 {
733 if (mask > q->dma_pad_mask)
734 q->dma_pad_mask = mask;
735 }
736 EXPORT_SYMBOL(blk_queue_update_dma_pad);
737
738 /**
739 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
740 * @q: the request queue for the device
741 * @dma_drain_needed: fn which returns non-zero if drain is necessary
742 * @buf: physically contiguous buffer
743 * @size: size of the buffer in bytes
744 *
745 * Some devices have excess DMA problems and can't simply discard (or
746 * zero fill) the unwanted piece of the transfer. They have to have a
747 * real area of memory to transfer it into. The use case for this is
748 * ATAPI devices in DMA mode. If the packet command causes a transfer
749 * bigger than the transfer size some HBAs will lock up if there
750 * aren't DMA elements to contain the excess transfer. What this API
751 * does is adjust the queue so that the buf is always appended
752 * silently to the scatterlist.
753 *
754 * Note: This routine adjusts max_hw_segments to make room for appending
755 * the drain buffer. If you call blk_queue_max_segments() after calling
756 * this routine, you must set the limit to one fewer than your device
757 * can support otherwise there won't be room for the drain buffer.
758 */
759 int blk_queue_dma_drain(struct request_queue *q,
760 dma_drain_needed_fn *dma_drain_needed,
761 void *buf, unsigned int size)
762 {
763 if (queue_max_segments(q) < 2)
764 return -EINVAL;
765 /* make room for appending the drain */
766 blk_queue_max_segments(q, queue_max_segments(q) - 1);
767 q->dma_drain_needed = dma_drain_needed;
768 q->dma_drain_buffer = buf;
769 q->dma_drain_size = size;
770
771 return 0;
772 }
773 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
774
775 /**
776 * blk_queue_segment_boundary - set boundary rules for segment merging
777 * @q: the request queue for the device
778 * @mask: the memory boundary mask
779 **/
780 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
781 {
782 if (mask < PAGE_CACHE_SIZE - 1) {
783 mask = PAGE_CACHE_SIZE - 1;
784 printk(KERN_INFO "%s: set to minimum %lx\n",
785 __func__, mask);
786 }
787
788 q->limits.seg_boundary_mask = mask;
789 }
790 EXPORT_SYMBOL(blk_queue_segment_boundary);
791
792 /**
793 * blk_queue_dma_alignment - set dma length and memory alignment
794 * @q: the request queue for the device
795 * @mask: alignment mask
796 *
797 * description:
798 * set required memory and length alignment for direct dma transactions.
799 * this is used when building direct io requests for the queue.
800 *
801 **/
802 void blk_queue_dma_alignment(struct request_queue *q, int mask)
803 {
804 q->dma_alignment = mask;
805 }
806 EXPORT_SYMBOL(blk_queue_dma_alignment);
807
808 /**
809 * blk_queue_update_dma_alignment - update dma length and memory alignment
810 * @q: the request queue for the device
811 * @mask: alignment mask
812 *
813 * description:
814 * update required memory and length alignment for direct dma transactions.
815 * If the requested alignment is larger than the current alignment, then
816 * the current queue alignment is updated to the new value, otherwise it
817 * is left alone. The design of this is to allow multiple objects
818 * (driver, device, transport etc) to set their respective
819 * alignments without having them interfere.
820 *
821 **/
822 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
823 {
824 BUG_ON(mask > PAGE_SIZE);
825
826 if (mask > q->dma_alignment)
827 q->dma_alignment = mask;
828 }
829 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
830
831 /**
832 * blk_queue_flush - configure queue's cache flush capability
833 * @q: the request queue for the device
834 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
835 *
836 * Tell block layer cache flush capability of @q. If it supports
837 * flushing, REQ_FLUSH should be set. If it supports bypassing
838 * write cache for individual writes, REQ_FUA should be set.
839 */
840 void blk_queue_flush(struct request_queue *q, unsigned int flush)
841 {
842 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
843
844 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
845 flush &= ~REQ_FUA;
846
847 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
848 }
849 EXPORT_SYMBOL_GPL(blk_queue_flush);
850
851 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
852 {
853 q->flush_not_queueable = !queueable;
854 }
855 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
856
857 static int __init blk_settings_init(void)
858 {
859 blk_max_low_pfn = max_low_pfn - 1;
860 blk_max_pfn = max_pfn - 1;
861 return 0;
862 }
863 subsys_initcall(blk_settings_init);