]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-wbt.c
Merge tag 'riscv-for-linus-5.2-mw2' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / block / blk-wbt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * buffered writeback throttling. loosely based on CoDel. We can't drop
4 * packets for IO scheduling, so the logic is something like this:
5 *
6 * - Monitor latencies in a defined window of time.
7 * - If the minimum latency in the above window exceeds some target, increment
8 * scaling step and scale down queue depth by a factor of 2x. The monitoring
9 * window is then shrunk to 100 / sqrt(scaling step + 1).
10 * - For any window where we don't have solid data on what the latencies
11 * look like, retain status quo.
12 * - If latencies look good, decrement scaling step.
13 * - If we're only doing writes, allow the scaling step to go negative. This
14 * will temporarily boost write performance, snapping back to a stable
15 * scaling step of 0 if reads show up or the heavy writers finish. Unlike
16 * positive scaling steps where we shrink the monitoring window, a negative
17 * scaling step retains the default step==0 window size.
18 *
19 * Copyright (C) 2016 Jens Axboe
20 *
21 */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27
28 #include "blk-wbt.h"
29 #include "blk-rq-qos.h"
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/wbt.h>
33
34 static inline void wbt_clear_state(struct request *rq)
35 {
36 rq->wbt_flags = 0;
37 }
38
39 static inline enum wbt_flags wbt_flags(struct request *rq)
40 {
41 return rq->wbt_flags;
42 }
43
44 static inline bool wbt_is_tracked(struct request *rq)
45 {
46 return rq->wbt_flags & WBT_TRACKED;
47 }
48
49 static inline bool wbt_is_read(struct request *rq)
50 {
51 return rq->wbt_flags & WBT_READ;
52 }
53
54 enum {
55 /*
56 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
57 * from here depending on device stats
58 */
59 RWB_DEF_DEPTH = 16,
60
61 /*
62 * 100msec window
63 */
64 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL,
65
66 /*
67 * Disregard stats, if we don't meet this minimum
68 */
69 RWB_MIN_WRITE_SAMPLES = 3,
70
71 /*
72 * If we have this number of consecutive windows with not enough
73 * information to scale up or down, scale up.
74 */
75 RWB_UNKNOWN_BUMP = 5,
76 };
77
78 static inline bool rwb_enabled(struct rq_wb *rwb)
79 {
80 return rwb && rwb->wb_normal != 0;
81 }
82
83 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
84 {
85 if (rwb_enabled(rwb)) {
86 const unsigned long cur = jiffies;
87
88 if (cur != *var)
89 *var = cur;
90 }
91 }
92
93 /*
94 * If a task was rate throttled in balance_dirty_pages() within the last
95 * second or so, use that to indicate a higher cleaning rate.
96 */
97 static bool wb_recent_wait(struct rq_wb *rwb)
98 {
99 struct bdi_writeback *wb = &rwb->rqos.q->backing_dev_info->wb;
100
101 return time_before(jiffies, wb->dirty_sleep + HZ);
102 }
103
104 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
105 enum wbt_flags wb_acct)
106 {
107 if (wb_acct & WBT_KSWAPD)
108 return &rwb->rq_wait[WBT_RWQ_KSWAPD];
109 else if (wb_acct & WBT_DISCARD)
110 return &rwb->rq_wait[WBT_RWQ_DISCARD];
111
112 return &rwb->rq_wait[WBT_RWQ_BG];
113 }
114
115 static void rwb_wake_all(struct rq_wb *rwb)
116 {
117 int i;
118
119 for (i = 0; i < WBT_NUM_RWQ; i++) {
120 struct rq_wait *rqw = &rwb->rq_wait[i];
121
122 if (wq_has_sleeper(&rqw->wait))
123 wake_up_all(&rqw->wait);
124 }
125 }
126
127 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
128 enum wbt_flags wb_acct)
129 {
130 int inflight, limit;
131
132 inflight = atomic_dec_return(&rqw->inflight);
133
134 /*
135 * wbt got disabled with IO in flight. Wake up any potential
136 * waiters, we don't have to do more than that.
137 */
138 if (unlikely(!rwb_enabled(rwb))) {
139 rwb_wake_all(rwb);
140 return;
141 }
142
143 /*
144 * For discards, our limit is always the background. For writes, if
145 * the device does write back caching, drop further down before we
146 * wake people up.
147 */
148 if (wb_acct & WBT_DISCARD)
149 limit = rwb->wb_background;
150 else if (rwb->wc && !wb_recent_wait(rwb))
151 limit = 0;
152 else
153 limit = rwb->wb_normal;
154
155 /*
156 * Don't wake anyone up if we are above the normal limit.
157 */
158 if (inflight && inflight >= limit)
159 return;
160
161 if (wq_has_sleeper(&rqw->wait)) {
162 int diff = limit - inflight;
163
164 if (!inflight || diff >= rwb->wb_background / 2)
165 wake_up_all(&rqw->wait);
166 }
167 }
168
169 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
170 {
171 struct rq_wb *rwb = RQWB(rqos);
172 struct rq_wait *rqw;
173
174 if (!(wb_acct & WBT_TRACKED))
175 return;
176
177 rqw = get_rq_wait(rwb, wb_acct);
178 wbt_rqw_done(rwb, rqw, wb_acct);
179 }
180
181 /*
182 * Called on completion of a request. Note that it's also called when
183 * a request is merged, when the request gets freed.
184 */
185 static void wbt_done(struct rq_qos *rqos, struct request *rq)
186 {
187 struct rq_wb *rwb = RQWB(rqos);
188
189 if (!wbt_is_tracked(rq)) {
190 if (rwb->sync_cookie == rq) {
191 rwb->sync_issue = 0;
192 rwb->sync_cookie = NULL;
193 }
194
195 if (wbt_is_read(rq))
196 wb_timestamp(rwb, &rwb->last_comp);
197 } else {
198 WARN_ON_ONCE(rq == rwb->sync_cookie);
199 __wbt_done(rqos, wbt_flags(rq));
200 }
201 wbt_clear_state(rq);
202 }
203
204 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
205 {
206 /*
207 * We need at least one read sample, and a minimum of
208 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
209 * that it's writes impacting us, and not just some sole read on
210 * a device that is in a lower power state.
211 */
212 return (stat[READ].nr_samples >= 1 &&
213 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
214 }
215
216 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
217 {
218 u64 now, issue = READ_ONCE(rwb->sync_issue);
219
220 if (!issue || !rwb->sync_cookie)
221 return 0;
222
223 now = ktime_to_ns(ktime_get());
224 return now - issue;
225 }
226
227 enum {
228 LAT_OK = 1,
229 LAT_UNKNOWN,
230 LAT_UNKNOWN_WRITES,
231 LAT_EXCEEDED,
232 };
233
234 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
235 {
236 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
237 struct rq_depth *rqd = &rwb->rq_depth;
238 u64 thislat;
239
240 /*
241 * If our stored sync issue exceeds the window size, or it
242 * exceeds our min target AND we haven't logged any entries,
243 * flag the latency as exceeded. wbt works off completion latencies,
244 * but for a flooded device, a single sync IO can take a long time
245 * to complete after being issued. If this time exceeds our
246 * monitoring window AND we didn't see any other completions in that
247 * window, then count that sync IO as a violation of the latency.
248 */
249 thislat = rwb_sync_issue_lat(rwb);
250 if (thislat > rwb->cur_win_nsec ||
251 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
252 trace_wbt_lat(bdi, thislat);
253 return LAT_EXCEEDED;
254 }
255
256 /*
257 * No read/write mix, if stat isn't valid
258 */
259 if (!stat_sample_valid(stat)) {
260 /*
261 * If we had writes in this stat window and the window is
262 * current, we're only doing writes. If a task recently
263 * waited or still has writes in flights, consider us doing
264 * just writes as well.
265 */
266 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
267 wbt_inflight(rwb))
268 return LAT_UNKNOWN_WRITES;
269 return LAT_UNKNOWN;
270 }
271
272 /*
273 * If the 'min' latency exceeds our target, step down.
274 */
275 if (stat[READ].min > rwb->min_lat_nsec) {
276 trace_wbt_lat(bdi, stat[READ].min);
277 trace_wbt_stat(bdi, stat);
278 return LAT_EXCEEDED;
279 }
280
281 if (rqd->scale_step)
282 trace_wbt_stat(bdi, stat);
283
284 return LAT_OK;
285 }
286
287 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
288 {
289 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
290 struct rq_depth *rqd = &rwb->rq_depth;
291
292 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
293 rwb->wb_background, rwb->wb_normal, rqd->max_depth);
294 }
295
296 static void calc_wb_limits(struct rq_wb *rwb)
297 {
298 if (rwb->min_lat_nsec == 0) {
299 rwb->wb_normal = rwb->wb_background = 0;
300 } else if (rwb->rq_depth.max_depth <= 2) {
301 rwb->wb_normal = rwb->rq_depth.max_depth;
302 rwb->wb_background = 1;
303 } else {
304 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
305 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
306 }
307 }
308
309 static void scale_up(struct rq_wb *rwb)
310 {
311 rq_depth_scale_up(&rwb->rq_depth);
312 calc_wb_limits(rwb);
313 rwb->unknown_cnt = 0;
314 rwb_wake_all(rwb);
315 rwb_trace_step(rwb, "scale up");
316 }
317
318 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
319 {
320 rq_depth_scale_down(&rwb->rq_depth, hard_throttle);
321 calc_wb_limits(rwb);
322 rwb->unknown_cnt = 0;
323 rwb_trace_step(rwb, "scale down");
324 }
325
326 static void rwb_arm_timer(struct rq_wb *rwb)
327 {
328 struct rq_depth *rqd = &rwb->rq_depth;
329
330 if (rqd->scale_step > 0) {
331 /*
332 * We should speed this up, using some variant of a fast
333 * integer inverse square root calculation. Since we only do
334 * this for every window expiration, it's not a huge deal,
335 * though.
336 */
337 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
338 int_sqrt((rqd->scale_step + 1) << 8));
339 } else {
340 /*
341 * For step < 0, we don't want to increase/decrease the
342 * window size.
343 */
344 rwb->cur_win_nsec = rwb->win_nsec;
345 }
346
347 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
348 }
349
350 static void wb_timer_fn(struct blk_stat_callback *cb)
351 {
352 struct rq_wb *rwb = cb->data;
353 struct rq_depth *rqd = &rwb->rq_depth;
354 unsigned int inflight = wbt_inflight(rwb);
355 int status;
356
357 status = latency_exceeded(rwb, cb->stat);
358
359 trace_wbt_timer(rwb->rqos.q->backing_dev_info, status, rqd->scale_step,
360 inflight);
361
362 /*
363 * If we exceeded the latency target, step down. If we did not,
364 * step one level up. If we don't know enough to say either exceeded
365 * or ok, then don't do anything.
366 */
367 switch (status) {
368 case LAT_EXCEEDED:
369 scale_down(rwb, true);
370 break;
371 case LAT_OK:
372 scale_up(rwb);
373 break;
374 case LAT_UNKNOWN_WRITES:
375 /*
376 * We started a the center step, but don't have a valid
377 * read/write sample, but we do have writes going on.
378 * Allow step to go negative, to increase write perf.
379 */
380 scale_up(rwb);
381 break;
382 case LAT_UNKNOWN:
383 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
384 break;
385 /*
386 * We get here when previously scaled reduced depth, and we
387 * currently don't have a valid read/write sample. For that
388 * case, slowly return to center state (step == 0).
389 */
390 if (rqd->scale_step > 0)
391 scale_up(rwb);
392 else if (rqd->scale_step < 0)
393 scale_down(rwb, false);
394 break;
395 default:
396 break;
397 }
398
399 /*
400 * Re-arm timer, if we have IO in flight
401 */
402 if (rqd->scale_step || inflight)
403 rwb_arm_timer(rwb);
404 }
405
406 static void __wbt_update_limits(struct rq_wb *rwb)
407 {
408 struct rq_depth *rqd = &rwb->rq_depth;
409
410 rqd->scale_step = 0;
411 rqd->scaled_max = false;
412
413 rq_depth_calc_max_depth(rqd);
414 calc_wb_limits(rwb);
415
416 rwb_wake_all(rwb);
417 }
418
419 void wbt_update_limits(struct request_queue *q)
420 {
421 struct rq_qos *rqos = wbt_rq_qos(q);
422 if (!rqos)
423 return;
424 __wbt_update_limits(RQWB(rqos));
425 }
426
427 u64 wbt_get_min_lat(struct request_queue *q)
428 {
429 struct rq_qos *rqos = wbt_rq_qos(q);
430 if (!rqos)
431 return 0;
432 return RQWB(rqos)->min_lat_nsec;
433 }
434
435 void wbt_set_min_lat(struct request_queue *q, u64 val)
436 {
437 struct rq_qos *rqos = wbt_rq_qos(q);
438 if (!rqos)
439 return;
440 RQWB(rqos)->min_lat_nsec = val;
441 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
442 __wbt_update_limits(RQWB(rqos));
443 }
444
445
446 static bool close_io(struct rq_wb *rwb)
447 {
448 const unsigned long now = jiffies;
449
450 return time_before(now, rwb->last_issue + HZ / 10) ||
451 time_before(now, rwb->last_comp + HZ / 10);
452 }
453
454 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO)
455
456 static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
457 {
458 unsigned int limit;
459
460 /*
461 * If we got disabled, just return UINT_MAX. This ensures that
462 * we'll properly inc a new IO, and dec+wakeup at the end.
463 */
464 if (!rwb_enabled(rwb))
465 return UINT_MAX;
466
467 if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
468 return rwb->wb_background;
469
470 /*
471 * At this point we know it's a buffered write. If this is
472 * kswapd trying to free memory, or REQ_SYNC is set, then
473 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
474 * that. If the write is marked as a background write, then use
475 * the idle limit, or go to normal if we haven't had competing
476 * IO for a bit.
477 */
478 if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
479 limit = rwb->rq_depth.max_depth;
480 else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
481 /*
482 * If less than 100ms since we completed unrelated IO,
483 * limit us to half the depth for background writeback.
484 */
485 limit = rwb->wb_background;
486 } else
487 limit = rwb->wb_normal;
488
489 return limit;
490 }
491
492 struct wbt_wait_data {
493 struct rq_wb *rwb;
494 enum wbt_flags wb_acct;
495 unsigned long rw;
496 };
497
498 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
499 {
500 struct wbt_wait_data *data = private_data;
501 return rq_wait_inc_below(rqw, get_limit(data->rwb, data->rw));
502 }
503
504 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
505 {
506 struct wbt_wait_data *data = private_data;
507 wbt_rqw_done(data->rwb, rqw, data->wb_acct);
508 }
509
510 /*
511 * Block if we will exceed our limit, or if we are currently waiting for
512 * the timer to kick off queuing again.
513 */
514 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
515 unsigned long rw)
516 {
517 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
518 struct wbt_wait_data data = {
519 .rwb = rwb,
520 .wb_acct = wb_acct,
521 .rw = rw,
522 };
523
524 rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
525 }
526
527 static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
528 {
529 switch (bio_op(bio)) {
530 case REQ_OP_WRITE:
531 /*
532 * Don't throttle WRITE_ODIRECT
533 */
534 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
535 (REQ_SYNC | REQ_IDLE))
536 return false;
537 /* fallthrough */
538 case REQ_OP_DISCARD:
539 return true;
540 default:
541 return false;
542 }
543 }
544
545 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
546 {
547 enum wbt_flags flags = 0;
548
549 if (!rwb_enabled(rwb))
550 return 0;
551
552 if (bio_op(bio) == REQ_OP_READ) {
553 flags = WBT_READ;
554 } else if (wbt_should_throttle(rwb, bio)) {
555 if (current_is_kswapd())
556 flags |= WBT_KSWAPD;
557 if (bio_op(bio) == REQ_OP_DISCARD)
558 flags |= WBT_DISCARD;
559 flags |= WBT_TRACKED;
560 }
561 return flags;
562 }
563
564 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
565 {
566 struct rq_wb *rwb = RQWB(rqos);
567 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
568 __wbt_done(rqos, flags);
569 }
570
571 /*
572 * Returns true if the IO request should be accounted, false if not.
573 * May sleep, if we have exceeded the writeback limits. Caller can pass
574 * in an irq held spinlock, if it holds one when calling this function.
575 * If we do sleep, we'll release and re-grab it.
576 */
577 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
578 {
579 struct rq_wb *rwb = RQWB(rqos);
580 enum wbt_flags flags;
581
582 flags = bio_to_wbt_flags(rwb, bio);
583 if (!(flags & WBT_TRACKED)) {
584 if (flags & WBT_READ)
585 wb_timestamp(rwb, &rwb->last_issue);
586 return;
587 }
588
589 __wbt_wait(rwb, flags, bio->bi_opf);
590
591 if (!blk_stat_is_active(rwb->cb))
592 rwb_arm_timer(rwb);
593 }
594
595 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
596 {
597 struct rq_wb *rwb = RQWB(rqos);
598 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
599 }
600
601 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
602 {
603 struct rq_wb *rwb = RQWB(rqos);
604
605 if (!rwb_enabled(rwb))
606 return;
607
608 /*
609 * Track sync issue, in case it takes a long time to complete. Allows us
610 * to react quicker, if a sync IO takes a long time to complete. Note
611 * that this is just a hint. The request can go away when it completes,
612 * so it's important we never dereference it. We only use the address to
613 * compare with, which is why we store the sync_issue time locally.
614 */
615 if (wbt_is_read(rq) && !rwb->sync_issue) {
616 rwb->sync_cookie = rq;
617 rwb->sync_issue = rq->io_start_time_ns;
618 }
619 }
620
621 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
622 {
623 struct rq_wb *rwb = RQWB(rqos);
624 if (!rwb_enabled(rwb))
625 return;
626 if (rq == rwb->sync_cookie) {
627 rwb->sync_issue = 0;
628 rwb->sync_cookie = NULL;
629 }
630 }
631
632 void wbt_set_queue_depth(struct request_queue *q, unsigned int depth)
633 {
634 struct rq_qos *rqos = wbt_rq_qos(q);
635 if (rqos) {
636 RQWB(rqos)->rq_depth.queue_depth = depth;
637 __wbt_update_limits(RQWB(rqos));
638 }
639 }
640
641 void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
642 {
643 struct rq_qos *rqos = wbt_rq_qos(q);
644 if (rqos)
645 RQWB(rqos)->wc = write_cache_on;
646 }
647
648 /*
649 * Enable wbt if defaults are configured that way
650 */
651 void wbt_enable_default(struct request_queue *q)
652 {
653 struct rq_qos *rqos = wbt_rq_qos(q);
654 /* Throttling already enabled? */
655 if (rqos)
656 return;
657
658 /* Queue not registered? Maybe shutting down... */
659 if (!test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags))
660 return;
661
662 if (queue_is_mq(q) && IS_ENABLED(CONFIG_BLK_WBT_MQ))
663 wbt_init(q);
664 }
665 EXPORT_SYMBOL_GPL(wbt_enable_default);
666
667 u64 wbt_default_latency_nsec(struct request_queue *q)
668 {
669 /*
670 * We default to 2msec for non-rotational storage, and 75msec
671 * for rotational storage.
672 */
673 if (blk_queue_nonrot(q))
674 return 2000000ULL;
675 else
676 return 75000000ULL;
677 }
678
679 static int wbt_data_dir(const struct request *rq)
680 {
681 const int op = req_op(rq);
682
683 if (op == REQ_OP_READ)
684 return READ;
685 else if (op_is_write(op))
686 return WRITE;
687
688 /* don't account */
689 return -1;
690 }
691
692 static void wbt_exit(struct rq_qos *rqos)
693 {
694 struct rq_wb *rwb = RQWB(rqos);
695 struct request_queue *q = rqos->q;
696
697 blk_stat_remove_callback(q, rwb->cb);
698 blk_stat_free_callback(rwb->cb);
699 kfree(rwb);
700 }
701
702 /*
703 * Disable wbt, if enabled by default.
704 */
705 void wbt_disable_default(struct request_queue *q)
706 {
707 struct rq_qos *rqos = wbt_rq_qos(q);
708 struct rq_wb *rwb;
709 if (!rqos)
710 return;
711 rwb = RQWB(rqos);
712 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
713 blk_stat_deactivate(rwb->cb);
714 rwb->wb_normal = 0;
715 }
716 }
717 EXPORT_SYMBOL_GPL(wbt_disable_default);
718
719 #ifdef CONFIG_BLK_DEBUG_FS
720 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
721 {
722 struct rq_qos *rqos = data;
723 struct rq_wb *rwb = RQWB(rqos);
724
725 seq_printf(m, "%llu\n", rwb->cur_win_nsec);
726 return 0;
727 }
728
729 static int wbt_enabled_show(void *data, struct seq_file *m)
730 {
731 struct rq_qos *rqos = data;
732 struct rq_wb *rwb = RQWB(rqos);
733
734 seq_printf(m, "%d\n", rwb->enable_state);
735 return 0;
736 }
737
738 static int wbt_id_show(void *data, struct seq_file *m)
739 {
740 struct rq_qos *rqos = data;
741
742 seq_printf(m, "%u\n", rqos->id);
743 return 0;
744 }
745
746 static int wbt_inflight_show(void *data, struct seq_file *m)
747 {
748 struct rq_qos *rqos = data;
749 struct rq_wb *rwb = RQWB(rqos);
750 int i;
751
752 for (i = 0; i < WBT_NUM_RWQ; i++)
753 seq_printf(m, "%d: inflight %d\n", i,
754 atomic_read(&rwb->rq_wait[i].inflight));
755 return 0;
756 }
757
758 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
759 {
760 struct rq_qos *rqos = data;
761 struct rq_wb *rwb = RQWB(rqos);
762
763 seq_printf(m, "%lu\n", rwb->min_lat_nsec);
764 return 0;
765 }
766
767 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
768 {
769 struct rq_qos *rqos = data;
770 struct rq_wb *rwb = RQWB(rqos);
771
772 seq_printf(m, "%u\n", rwb->unknown_cnt);
773 return 0;
774 }
775
776 static int wbt_normal_show(void *data, struct seq_file *m)
777 {
778 struct rq_qos *rqos = data;
779 struct rq_wb *rwb = RQWB(rqos);
780
781 seq_printf(m, "%u\n", rwb->wb_normal);
782 return 0;
783 }
784
785 static int wbt_background_show(void *data, struct seq_file *m)
786 {
787 struct rq_qos *rqos = data;
788 struct rq_wb *rwb = RQWB(rqos);
789
790 seq_printf(m, "%u\n", rwb->wb_background);
791 return 0;
792 }
793
794 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
795 {"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
796 {"enabled", 0400, wbt_enabled_show},
797 {"id", 0400, wbt_id_show},
798 {"inflight", 0400, wbt_inflight_show},
799 {"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
800 {"unknown_cnt", 0400, wbt_unknown_cnt_show},
801 {"wb_normal", 0400, wbt_normal_show},
802 {"wb_background", 0400, wbt_background_show},
803 {},
804 };
805 #endif
806
807 static struct rq_qos_ops wbt_rqos_ops = {
808 .throttle = wbt_wait,
809 .issue = wbt_issue,
810 .track = wbt_track,
811 .requeue = wbt_requeue,
812 .done = wbt_done,
813 .cleanup = wbt_cleanup,
814 .exit = wbt_exit,
815 #ifdef CONFIG_BLK_DEBUG_FS
816 .debugfs_attrs = wbt_debugfs_attrs,
817 #endif
818 };
819
820 int wbt_init(struct request_queue *q)
821 {
822 struct rq_wb *rwb;
823 int i;
824
825 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
826 if (!rwb)
827 return -ENOMEM;
828
829 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
830 if (!rwb->cb) {
831 kfree(rwb);
832 return -ENOMEM;
833 }
834
835 for (i = 0; i < WBT_NUM_RWQ; i++)
836 rq_wait_init(&rwb->rq_wait[i]);
837
838 rwb->rqos.id = RQ_QOS_WBT;
839 rwb->rqos.ops = &wbt_rqos_ops;
840 rwb->rqos.q = q;
841 rwb->last_comp = rwb->last_issue = jiffies;
842 rwb->win_nsec = RWB_WINDOW_NSEC;
843 rwb->enable_state = WBT_STATE_ON_DEFAULT;
844 rwb->wc = 1;
845 rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
846 __wbt_update_limits(rwb);
847
848 /*
849 * Assign rwb and add the stats callback.
850 */
851 rq_qos_add(q, &rwb->rqos);
852 blk_stat_add_callback(q, rwb->cb);
853
854 rwb->min_lat_nsec = wbt_default_latency_nsec(q);
855
856 wbt_set_queue_depth(q, blk_queue_depth(q));
857 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
858
859 return 0;
860 }