]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - block/blk-wbt.c
KVM: remove more traces of device assignment UAPI
[thirdparty/kernel/stable.git] / block / blk-wbt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * buffered writeback throttling. loosely based on CoDel. We can't drop
4 * packets for IO scheduling, so the logic is something like this:
5 *
6 * - Monitor latencies in a defined window of time.
7 * - If the minimum latency in the above window exceeds some target, increment
8 * scaling step and scale down queue depth by a factor of 2x. The monitoring
9 * window is then shrunk to 100 / sqrt(scaling step + 1).
10 * - For any window where we don't have solid data on what the latencies
11 * look like, retain status quo.
12 * - If latencies look good, decrement scaling step.
13 * - If we're only doing writes, allow the scaling step to go negative. This
14 * will temporarily boost write performance, snapping back to a stable
15 * scaling step of 0 if reads show up or the heavy writers finish. Unlike
16 * positive scaling steps where we shrink the monitoring window, a negative
17 * scaling step retains the default step==0 window size.
18 *
19 * Copyright (C) 2016 Jens Axboe
20 *
21 */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27
28 #include "blk-stat.h"
29 #include "blk-wbt.h"
30 #include "blk-rq-qos.h"
31 #include "elevator.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/wbt.h>
35
36 enum wbt_flags {
37 WBT_TRACKED = 1, /* write, tracked for throttling */
38 WBT_READ = 2, /* read */
39 WBT_KSWAPD = 4, /* write, from kswapd */
40 WBT_DISCARD = 8, /* discard */
41
42 WBT_NR_BITS = 4, /* number of bits */
43 };
44
45 enum {
46 WBT_RWQ_BG = 0,
47 WBT_RWQ_KSWAPD,
48 WBT_RWQ_DISCARD,
49 WBT_NUM_RWQ,
50 };
51
52 /*
53 * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other
54 * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered
55 * to WBT_STATE_OFF/ON_MANUAL.
56 */
57 enum {
58 WBT_STATE_ON_DEFAULT = 1, /* on by default */
59 WBT_STATE_ON_MANUAL = 2, /* on manually by sysfs */
60 WBT_STATE_OFF_DEFAULT = 3, /* off by default */
61 WBT_STATE_OFF_MANUAL = 4, /* off manually by sysfs */
62 };
63
64 struct rq_wb {
65 /*
66 * Settings that govern how we throttle
67 */
68 unsigned int wb_background; /* background writeback */
69 unsigned int wb_normal; /* normal writeback */
70
71 short enable_state; /* WBT_STATE_* */
72
73 /*
74 * Number of consecutive periods where we don't have enough
75 * information to make a firm scale up/down decision.
76 */
77 unsigned int unknown_cnt;
78
79 u64 win_nsec; /* default window size */
80 u64 cur_win_nsec; /* current window size */
81
82 struct blk_stat_callback *cb;
83
84 u64 sync_issue;
85 void *sync_cookie;
86
87 unsigned long last_issue; /* last non-throttled issue */
88 unsigned long last_comp; /* last non-throttled comp */
89 unsigned long min_lat_nsec;
90 struct rq_qos rqos;
91 struct rq_wait rq_wait[WBT_NUM_RWQ];
92 struct rq_depth rq_depth;
93 };
94
95 static inline struct rq_wb *RQWB(struct rq_qos *rqos)
96 {
97 return container_of(rqos, struct rq_wb, rqos);
98 }
99
100 static inline void wbt_clear_state(struct request *rq)
101 {
102 rq->wbt_flags = 0;
103 }
104
105 static inline enum wbt_flags wbt_flags(struct request *rq)
106 {
107 return rq->wbt_flags;
108 }
109
110 static inline bool wbt_is_tracked(struct request *rq)
111 {
112 return rq->wbt_flags & WBT_TRACKED;
113 }
114
115 static inline bool wbt_is_read(struct request *rq)
116 {
117 return rq->wbt_flags & WBT_READ;
118 }
119
120 enum {
121 /*
122 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
123 * from here depending on device stats
124 */
125 RWB_DEF_DEPTH = 16,
126
127 /*
128 * 100msec window
129 */
130 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL,
131
132 /*
133 * Disregard stats, if we don't meet this minimum
134 */
135 RWB_MIN_WRITE_SAMPLES = 3,
136
137 /*
138 * If we have this number of consecutive windows with not enough
139 * information to scale up or down, scale up.
140 */
141 RWB_UNKNOWN_BUMP = 5,
142 };
143
144 static inline bool rwb_enabled(struct rq_wb *rwb)
145 {
146 return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
147 rwb->enable_state != WBT_STATE_OFF_MANUAL;
148 }
149
150 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
151 {
152 if (rwb_enabled(rwb)) {
153 const unsigned long cur = jiffies;
154
155 if (cur != *var)
156 *var = cur;
157 }
158 }
159
160 /*
161 * If a task was rate throttled in balance_dirty_pages() within the last
162 * second or so, use that to indicate a higher cleaning rate.
163 */
164 static bool wb_recent_wait(struct rq_wb *rwb)
165 {
166 struct bdi_writeback *wb = &rwb->rqos.disk->bdi->wb;
167
168 return time_before(jiffies, wb->dirty_sleep + HZ);
169 }
170
171 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
172 enum wbt_flags wb_acct)
173 {
174 if (wb_acct & WBT_KSWAPD)
175 return &rwb->rq_wait[WBT_RWQ_KSWAPD];
176 else if (wb_acct & WBT_DISCARD)
177 return &rwb->rq_wait[WBT_RWQ_DISCARD];
178
179 return &rwb->rq_wait[WBT_RWQ_BG];
180 }
181
182 static void rwb_wake_all(struct rq_wb *rwb)
183 {
184 int i;
185
186 for (i = 0; i < WBT_NUM_RWQ; i++) {
187 struct rq_wait *rqw = &rwb->rq_wait[i];
188
189 if (wq_has_sleeper(&rqw->wait))
190 wake_up_all(&rqw->wait);
191 }
192 }
193
194 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
195 enum wbt_flags wb_acct)
196 {
197 int inflight, limit;
198
199 inflight = atomic_dec_return(&rqw->inflight);
200
201 /*
202 * For discards, our limit is always the background. For writes, if
203 * the device does write back caching, drop further down before we
204 * wake people up.
205 */
206 if (wb_acct & WBT_DISCARD)
207 limit = rwb->wb_background;
208 else if (test_bit(QUEUE_FLAG_WC, &rwb->rqos.disk->queue->queue_flags) &&
209 !wb_recent_wait(rwb))
210 limit = 0;
211 else
212 limit = rwb->wb_normal;
213
214 /*
215 * Don't wake anyone up if we are above the normal limit.
216 */
217 if (inflight && inflight >= limit)
218 return;
219
220 if (wq_has_sleeper(&rqw->wait)) {
221 int diff = limit - inflight;
222
223 if (!inflight || diff >= rwb->wb_background / 2)
224 wake_up_all(&rqw->wait);
225 }
226 }
227
228 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
229 {
230 struct rq_wb *rwb = RQWB(rqos);
231 struct rq_wait *rqw;
232
233 if (!(wb_acct & WBT_TRACKED))
234 return;
235
236 rqw = get_rq_wait(rwb, wb_acct);
237 wbt_rqw_done(rwb, rqw, wb_acct);
238 }
239
240 /*
241 * Called on completion of a request. Note that it's also called when
242 * a request is merged, when the request gets freed.
243 */
244 static void wbt_done(struct rq_qos *rqos, struct request *rq)
245 {
246 struct rq_wb *rwb = RQWB(rqos);
247
248 if (!wbt_is_tracked(rq)) {
249 if (rwb->sync_cookie == rq) {
250 rwb->sync_issue = 0;
251 rwb->sync_cookie = NULL;
252 }
253
254 if (wbt_is_read(rq))
255 wb_timestamp(rwb, &rwb->last_comp);
256 } else {
257 WARN_ON_ONCE(rq == rwb->sync_cookie);
258 __wbt_done(rqos, wbt_flags(rq));
259 }
260 wbt_clear_state(rq);
261 }
262
263 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
264 {
265 /*
266 * We need at least one read sample, and a minimum of
267 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
268 * that it's writes impacting us, and not just some sole read on
269 * a device that is in a lower power state.
270 */
271 return (stat[READ].nr_samples >= 1 &&
272 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
273 }
274
275 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
276 {
277 u64 now, issue = READ_ONCE(rwb->sync_issue);
278
279 if (!issue || !rwb->sync_cookie)
280 return 0;
281
282 now = ktime_to_ns(ktime_get());
283 return now - issue;
284 }
285
286 static inline unsigned int wbt_inflight(struct rq_wb *rwb)
287 {
288 unsigned int i, ret = 0;
289
290 for (i = 0; i < WBT_NUM_RWQ; i++)
291 ret += atomic_read(&rwb->rq_wait[i].inflight);
292
293 return ret;
294 }
295
296 enum {
297 LAT_OK = 1,
298 LAT_UNKNOWN,
299 LAT_UNKNOWN_WRITES,
300 LAT_EXCEEDED,
301 };
302
303 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
304 {
305 struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
306 struct rq_depth *rqd = &rwb->rq_depth;
307 u64 thislat;
308
309 /*
310 * If our stored sync issue exceeds the window size, or it
311 * exceeds our min target AND we haven't logged any entries,
312 * flag the latency as exceeded. wbt works off completion latencies,
313 * but for a flooded device, a single sync IO can take a long time
314 * to complete after being issued. If this time exceeds our
315 * monitoring window AND we didn't see any other completions in that
316 * window, then count that sync IO as a violation of the latency.
317 */
318 thislat = rwb_sync_issue_lat(rwb);
319 if (thislat > rwb->cur_win_nsec ||
320 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
321 trace_wbt_lat(bdi, thislat);
322 return LAT_EXCEEDED;
323 }
324
325 /*
326 * No read/write mix, if stat isn't valid
327 */
328 if (!stat_sample_valid(stat)) {
329 /*
330 * If we had writes in this stat window and the window is
331 * current, we're only doing writes. If a task recently
332 * waited or still has writes in flights, consider us doing
333 * just writes as well.
334 */
335 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
336 wbt_inflight(rwb))
337 return LAT_UNKNOWN_WRITES;
338 return LAT_UNKNOWN;
339 }
340
341 /*
342 * If the 'min' latency exceeds our target, step down.
343 */
344 if (stat[READ].min > rwb->min_lat_nsec) {
345 trace_wbt_lat(bdi, stat[READ].min);
346 trace_wbt_stat(bdi, stat);
347 return LAT_EXCEEDED;
348 }
349
350 if (rqd->scale_step)
351 trace_wbt_stat(bdi, stat);
352
353 return LAT_OK;
354 }
355
356 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
357 {
358 struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
359 struct rq_depth *rqd = &rwb->rq_depth;
360
361 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
362 rwb->wb_background, rwb->wb_normal, rqd->max_depth);
363 }
364
365 static void calc_wb_limits(struct rq_wb *rwb)
366 {
367 if (rwb->min_lat_nsec == 0) {
368 rwb->wb_normal = rwb->wb_background = 0;
369 } else if (rwb->rq_depth.max_depth <= 2) {
370 rwb->wb_normal = rwb->rq_depth.max_depth;
371 rwb->wb_background = 1;
372 } else {
373 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
374 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
375 }
376 }
377
378 static void scale_up(struct rq_wb *rwb)
379 {
380 if (!rq_depth_scale_up(&rwb->rq_depth))
381 return;
382 calc_wb_limits(rwb);
383 rwb->unknown_cnt = 0;
384 rwb_wake_all(rwb);
385 rwb_trace_step(rwb, tracepoint_string("scale up"));
386 }
387
388 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
389 {
390 if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
391 return;
392 calc_wb_limits(rwb);
393 rwb->unknown_cnt = 0;
394 rwb_trace_step(rwb, tracepoint_string("scale down"));
395 }
396
397 static void rwb_arm_timer(struct rq_wb *rwb)
398 {
399 struct rq_depth *rqd = &rwb->rq_depth;
400
401 if (rqd->scale_step > 0) {
402 /*
403 * We should speed this up, using some variant of a fast
404 * integer inverse square root calculation. Since we only do
405 * this for every window expiration, it's not a huge deal,
406 * though.
407 */
408 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
409 int_sqrt((rqd->scale_step + 1) << 8));
410 } else {
411 /*
412 * For step < 0, we don't want to increase/decrease the
413 * window size.
414 */
415 rwb->cur_win_nsec = rwb->win_nsec;
416 }
417
418 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
419 }
420
421 static void wb_timer_fn(struct blk_stat_callback *cb)
422 {
423 struct rq_wb *rwb = cb->data;
424 struct rq_depth *rqd = &rwb->rq_depth;
425 unsigned int inflight = wbt_inflight(rwb);
426 int status;
427
428 if (!rwb->rqos.disk)
429 return;
430
431 status = latency_exceeded(rwb, cb->stat);
432
433 trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight);
434
435 /*
436 * If we exceeded the latency target, step down. If we did not,
437 * step one level up. If we don't know enough to say either exceeded
438 * or ok, then don't do anything.
439 */
440 switch (status) {
441 case LAT_EXCEEDED:
442 scale_down(rwb, true);
443 break;
444 case LAT_OK:
445 scale_up(rwb);
446 break;
447 case LAT_UNKNOWN_WRITES:
448 /*
449 * We started a the center step, but don't have a valid
450 * read/write sample, but we do have writes going on.
451 * Allow step to go negative, to increase write perf.
452 */
453 scale_up(rwb);
454 break;
455 case LAT_UNKNOWN:
456 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
457 break;
458 /*
459 * We get here when previously scaled reduced depth, and we
460 * currently don't have a valid read/write sample. For that
461 * case, slowly return to center state (step == 0).
462 */
463 if (rqd->scale_step > 0)
464 scale_up(rwb);
465 else if (rqd->scale_step < 0)
466 scale_down(rwb, false);
467 break;
468 default:
469 break;
470 }
471
472 /*
473 * Re-arm timer, if we have IO in flight
474 */
475 if (rqd->scale_step || inflight)
476 rwb_arm_timer(rwb);
477 }
478
479 static void wbt_update_limits(struct rq_wb *rwb)
480 {
481 struct rq_depth *rqd = &rwb->rq_depth;
482
483 rqd->scale_step = 0;
484 rqd->scaled_max = false;
485
486 rq_depth_calc_max_depth(rqd);
487 calc_wb_limits(rwb);
488
489 rwb_wake_all(rwb);
490 }
491
492 bool wbt_disabled(struct request_queue *q)
493 {
494 struct rq_qos *rqos = wbt_rq_qos(q);
495
496 return !rqos || !rwb_enabled(RQWB(rqos));
497 }
498
499 u64 wbt_get_min_lat(struct request_queue *q)
500 {
501 struct rq_qos *rqos = wbt_rq_qos(q);
502 if (!rqos)
503 return 0;
504 return RQWB(rqos)->min_lat_nsec;
505 }
506
507 void wbt_set_min_lat(struct request_queue *q, u64 val)
508 {
509 struct rq_qos *rqos = wbt_rq_qos(q);
510 if (!rqos)
511 return;
512
513 RQWB(rqos)->min_lat_nsec = val;
514 if (val)
515 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
516 else
517 RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL;
518
519 wbt_update_limits(RQWB(rqos));
520 }
521
522
523 static bool close_io(struct rq_wb *rwb)
524 {
525 const unsigned long now = jiffies;
526
527 return time_before(now, rwb->last_issue + HZ / 10) ||
528 time_before(now, rwb->last_comp + HZ / 10);
529 }
530
531 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO)
532
533 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf)
534 {
535 unsigned int limit;
536
537 if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD)
538 return rwb->wb_background;
539
540 /*
541 * At this point we know it's a buffered write. If this is
542 * kswapd trying to free memory, or REQ_SYNC is set, then
543 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
544 * that. If the write is marked as a background write, then use
545 * the idle limit, or go to normal if we haven't had competing
546 * IO for a bit.
547 */
548 if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
549 limit = rwb->rq_depth.max_depth;
550 else if ((opf & REQ_BACKGROUND) || close_io(rwb)) {
551 /*
552 * If less than 100ms since we completed unrelated IO,
553 * limit us to half the depth for background writeback.
554 */
555 limit = rwb->wb_background;
556 } else
557 limit = rwb->wb_normal;
558
559 return limit;
560 }
561
562 struct wbt_wait_data {
563 struct rq_wb *rwb;
564 enum wbt_flags wb_acct;
565 blk_opf_t opf;
566 };
567
568 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
569 {
570 struct wbt_wait_data *data = private_data;
571 return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf));
572 }
573
574 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
575 {
576 struct wbt_wait_data *data = private_data;
577 wbt_rqw_done(data->rwb, rqw, data->wb_acct);
578 }
579
580 /*
581 * Block if we will exceed our limit, or if we are currently waiting for
582 * the timer to kick off queuing again.
583 */
584 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
585 blk_opf_t opf)
586 {
587 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
588 struct wbt_wait_data data = {
589 .rwb = rwb,
590 .wb_acct = wb_acct,
591 .opf = opf,
592 };
593
594 rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
595 }
596
597 static inline bool wbt_should_throttle(struct bio *bio)
598 {
599 switch (bio_op(bio)) {
600 case REQ_OP_WRITE:
601 /*
602 * Don't throttle WRITE_ODIRECT
603 */
604 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
605 (REQ_SYNC | REQ_IDLE))
606 return false;
607 fallthrough;
608 case REQ_OP_DISCARD:
609 return true;
610 default:
611 return false;
612 }
613 }
614
615 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
616 {
617 enum wbt_flags flags = 0;
618
619 if (!rwb_enabled(rwb))
620 return 0;
621
622 if (bio_op(bio) == REQ_OP_READ) {
623 flags = WBT_READ;
624 } else if (wbt_should_throttle(bio)) {
625 if (current_is_kswapd())
626 flags |= WBT_KSWAPD;
627 if (bio_op(bio) == REQ_OP_DISCARD)
628 flags |= WBT_DISCARD;
629 flags |= WBT_TRACKED;
630 }
631 return flags;
632 }
633
634 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
635 {
636 struct rq_wb *rwb = RQWB(rqos);
637 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
638 __wbt_done(rqos, flags);
639 }
640
641 /*
642 * May sleep, if we have exceeded the writeback limits. Caller can pass
643 * in an irq held spinlock, if it holds one when calling this function.
644 * If we do sleep, we'll release and re-grab it.
645 */
646 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
647 {
648 struct rq_wb *rwb = RQWB(rqos);
649 enum wbt_flags flags;
650
651 flags = bio_to_wbt_flags(rwb, bio);
652 if (!(flags & WBT_TRACKED)) {
653 if (flags & WBT_READ)
654 wb_timestamp(rwb, &rwb->last_issue);
655 return;
656 }
657
658 __wbt_wait(rwb, flags, bio->bi_opf);
659
660 if (!blk_stat_is_active(rwb->cb))
661 rwb_arm_timer(rwb);
662 }
663
664 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
665 {
666 struct rq_wb *rwb = RQWB(rqos);
667 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
668 }
669
670 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
671 {
672 struct rq_wb *rwb = RQWB(rqos);
673
674 if (!rwb_enabled(rwb))
675 return;
676
677 /*
678 * Track sync issue, in case it takes a long time to complete. Allows us
679 * to react quicker, if a sync IO takes a long time to complete. Note
680 * that this is just a hint. The request can go away when it completes,
681 * so it's important we never dereference it. We only use the address to
682 * compare with, which is why we store the sync_issue time locally.
683 */
684 if (wbt_is_read(rq) && !rwb->sync_issue) {
685 rwb->sync_cookie = rq;
686 rwb->sync_issue = rq->io_start_time_ns;
687 }
688 }
689
690 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
691 {
692 struct rq_wb *rwb = RQWB(rqos);
693 if (!rwb_enabled(rwb))
694 return;
695 if (rq == rwb->sync_cookie) {
696 rwb->sync_issue = 0;
697 rwb->sync_cookie = NULL;
698 }
699 }
700
701 /*
702 * Enable wbt if defaults are configured that way
703 */
704 void wbt_enable_default(struct gendisk *disk)
705 {
706 struct request_queue *q = disk->queue;
707 struct rq_qos *rqos;
708 bool enable = IS_ENABLED(CONFIG_BLK_WBT_MQ);
709
710 if (q->elevator &&
711 test_bit(ELEVATOR_FLAG_DISABLE_WBT, &q->elevator->flags))
712 enable = false;
713
714 /* Throttling already enabled? */
715 rqos = wbt_rq_qos(q);
716 if (rqos) {
717 if (enable && RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
718 RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
719 return;
720 }
721
722 /* Queue not registered? Maybe shutting down... */
723 if (!blk_queue_registered(q))
724 return;
725
726 if (queue_is_mq(q) && enable)
727 wbt_init(disk);
728 }
729 EXPORT_SYMBOL_GPL(wbt_enable_default);
730
731 u64 wbt_default_latency_nsec(struct request_queue *q)
732 {
733 /*
734 * We default to 2msec for non-rotational storage, and 75msec
735 * for rotational storage.
736 */
737 if (blk_queue_nonrot(q))
738 return 2000000ULL;
739 else
740 return 75000000ULL;
741 }
742
743 static int wbt_data_dir(const struct request *rq)
744 {
745 const enum req_op op = req_op(rq);
746
747 if (op == REQ_OP_READ)
748 return READ;
749 else if (op_is_write(op))
750 return WRITE;
751
752 /* don't account */
753 return -1;
754 }
755
756 static void wbt_queue_depth_changed(struct rq_qos *rqos)
757 {
758 RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue);
759 wbt_update_limits(RQWB(rqos));
760 }
761
762 static void wbt_exit(struct rq_qos *rqos)
763 {
764 struct rq_wb *rwb = RQWB(rqos);
765
766 blk_stat_remove_callback(rqos->disk->queue, rwb->cb);
767 blk_stat_free_callback(rwb->cb);
768 kfree(rwb);
769 }
770
771 /*
772 * Disable wbt, if enabled by default.
773 */
774 void wbt_disable_default(struct gendisk *disk)
775 {
776 struct rq_qos *rqos = wbt_rq_qos(disk->queue);
777 struct rq_wb *rwb;
778 if (!rqos)
779 return;
780 rwb = RQWB(rqos);
781 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
782 blk_stat_deactivate(rwb->cb);
783 rwb->enable_state = WBT_STATE_OFF_DEFAULT;
784 }
785 }
786 EXPORT_SYMBOL_GPL(wbt_disable_default);
787
788 #ifdef CONFIG_BLK_DEBUG_FS
789 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
790 {
791 struct rq_qos *rqos = data;
792 struct rq_wb *rwb = RQWB(rqos);
793
794 seq_printf(m, "%llu\n", rwb->cur_win_nsec);
795 return 0;
796 }
797
798 static int wbt_enabled_show(void *data, struct seq_file *m)
799 {
800 struct rq_qos *rqos = data;
801 struct rq_wb *rwb = RQWB(rqos);
802
803 seq_printf(m, "%d\n", rwb->enable_state);
804 return 0;
805 }
806
807 static int wbt_id_show(void *data, struct seq_file *m)
808 {
809 struct rq_qos *rqos = data;
810
811 seq_printf(m, "%u\n", rqos->id);
812 return 0;
813 }
814
815 static int wbt_inflight_show(void *data, struct seq_file *m)
816 {
817 struct rq_qos *rqos = data;
818 struct rq_wb *rwb = RQWB(rqos);
819 int i;
820
821 for (i = 0; i < WBT_NUM_RWQ; i++)
822 seq_printf(m, "%d: inflight %d\n", i,
823 atomic_read(&rwb->rq_wait[i].inflight));
824 return 0;
825 }
826
827 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
828 {
829 struct rq_qos *rqos = data;
830 struct rq_wb *rwb = RQWB(rqos);
831
832 seq_printf(m, "%lu\n", rwb->min_lat_nsec);
833 return 0;
834 }
835
836 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
837 {
838 struct rq_qos *rqos = data;
839 struct rq_wb *rwb = RQWB(rqos);
840
841 seq_printf(m, "%u\n", rwb->unknown_cnt);
842 return 0;
843 }
844
845 static int wbt_normal_show(void *data, struct seq_file *m)
846 {
847 struct rq_qos *rqos = data;
848 struct rq_wb *rwb = RQWB(rqos);
849
850 seq_printf(m, "%u\n", rwb->wb_normal);
851 return 0;
852 }
853
854 static int wbt_background_show(void *data, struct seq_file *m)
855 {
856 struct rq_qos *rqos = data;
857 struct rq_wb *rwb = RQWB(rqos);
858
859 seq_printf(m, "%u\n", rwb->wb_background);
860 return 0;
861 }
862
863 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
864 {"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
865 {"enabled", 0400, wbt_enabled_show},
866 {"id", 0400, wbt_id_show},
867 {"inflight", 0400, wbt_inflight_show},
868 {"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
869 {"unknown_cnt", 0400, wbt_unknown_cnt_show},
870 {"wb_normal", 0400, wbt_normal_show},
871 {"wb_background", 0400, wbt_background_show},
872 {},
873 };
874 #endif
875
876 static const struct rq_qos_ops wbt_rqos_ops = {
877 .throttle = wbt_wait,
878 .issue = wbt_issue,
879 .track = wbt_track,
880 .requeue = wbt_requeue,
881 .done = wbt_done,
882 .cleanup = wbt_cleanup,
883 .queue_depth_changed = wbt_queue_depth_changed,
884 .exit = wbt_exit,
885 #ifdef CONFIG_BLK_DEBUG_FS
886 .debugfs_attrs = wbt_debugfs_attrs,
887 #endif
888 };
889
890 int wbt_init(struct gendisk *disk)
891 {
892 struct request_queue *q = disk->queue;
893 struct rq_wb *rwb;
894 int i;
895 int ret;
896
897 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
898 if (!rwb)
899 return -ENOMEM;
900
901 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
902 if (!rwb->cb) {
903 kfree(rwb);
904 return -ENOMEM;
905 }
906
907 for (i = 0; i < WBT_NUM_RWQ; i++)
908 rq_wait_init(&rwb->rq_wait[i]);
909
910 rwb->last_comp = rwb->last_issue = jiffies;
911 rwb->win_nsec = RWB_WINDOW_NSEC;
912 rwb->enable_state = WBT_STATE_ON_DEFAULT;
913 rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
914 rwb->min_lat_nsec = wbt_default_latency_nsec(q);
915 rwb->rq_depth.queue_depth = blk_queue_depth(q);
916 wbt_update_limits(rwb);
917
918 /*
919 * Assign rwb and add the stats callback.
920 */
921 mutex_lock(&q->rq_qos_mutex);
922 ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops);
923 mutex_unlock(&q->rq_qos_mutex);
924 if (ret)
925 goto err_free;
926
927 blk_stat_add_callback(q, rwb->cb);
928
929 return 0;
930
931 err_free:
932 blk_stat_free_callback(rwb->cb);
933 kfree(rwb);
934 return ret;
935
936 }