]> git.ipfire.org Git - thirdparty/qemu.git/blob - block/io.c
replay: add BH oneshot event for block layer
[thirdparty/qemu.git] / block / io.c
1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "sysemu/replay.h"
37
38 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
39
40 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
41 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
42
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int bytes, BdrvRequestFlags flags);
46
47 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48 bool ignore_bds_parents)
49 {
50 BdrvChild *c, *next;
51
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
54 continue;
55 }
56 bdrv_parent_drained_begin_single(c, false);
57 }
58 }
59
60 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
61 int *drained_end_counter)
62 {
63 assert(c->parent_quiesce_counter > 0);
64 c->parent_quiesce_counter--;
65 if (c->role->drained_end) {
66 c->role->drained_end(c, drained_end_counter);
67 }
68 }
69
70 void bdrv_parent_drained_end_single(BdrvChild *c)
71 {
72 int drained_end_counter = 0;
73 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
74 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0);
75 }
76
77 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
78 bool ignore_bds_parents,
79 int *drained_end_counter)
80 {
81 BdrvChild *c;
82
83 QLIST_FOREACH(c, &bs->parents, next_parent) {
84 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
85 continue;
86 }
87 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
88 }
89 }
90
91 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
92 {
93 if (c->role->drained_poll) {
94 return c->role->drained_poll(c);
95 }
96 return false;
97 }
98
99 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
100 bool ignore_bds_parents)
101 {
102 BdrvChild *c, *next;
103 bool busy = false;
104
105 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
106 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
107 continue;
108 }
109 busy |= bdrv_parent_drained_poll_single(c);
110 }
111
112 return busy;
113 }
114
115 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
116 {
117 c->parent_quiesce_counter++;
118 if (c->role->drained_begin) {
119 c->role->drained_begin(c);
120 }
121 if (poll) {
122 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
123 }
124 }
125
126 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
127 {
128 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
129 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
130 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
131 src->opt_mem_alignment);
132 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
133 src->min_mem_alignment);
134 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
135 }
136
137 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
138 {
139 BlockDriver *drv = bs->drv;
140 Error *local_err = NULL;
141
142 memset(&bs->bl, 0, sizeof(bs->bl));
143
144 if (!drv) {
145 return;
146 }
147
148 /* Default alignment based on whether driver has byte interface */
149 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
150 drv->bdrv_aio_preadv ||
151 drv->bdrv_co_preadv_part) ? 1 : 512;
152
153 /* Take some limits from the children as a default */
154 if (bs->file) {
155 bdrv_refresh_limits(bs->file->bs, &local_err);
156 if (local_err) {
157 error_propagate(errp, local_err);
158 return;
159 }
160 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
161 } else {
162 bs->bl.min_mem_alignment = 512;
163 bs->bl.opt_mem_alignment = getpagesize();
164
165 /* Safe default since most protocols use readv()/writev()/etc */
166 bs->bl.max_iov = IOV_MAX;
167 }
168
169 if (bs->backing) {
170 bdrv_refresh_limits(bs->backing->bs, &local_err);
171 if (local_err) {
172 error_propagate(errp, local_err);
173 return;
174 }
175 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
176 }
177
178 /* Then let the driver override it */
179 if (drv->bdrv_refresh_limits) {
180 drv->bdrv_refresh_limits(bs, errp);
181 }
182 }
183
184 /**
185 * The copy-on-read flag is actually a reference count so multiple users may
186 * use the feature without worrying about clobbering its previous state.
187 * Copy-on-read stays enabled until all users have called to disable it.
188 */
189 void bdrv_enable_copy_on_read(BlockDriverState *bs)
190 {
191 atomic_inc(&bs->copy_on_read);
192 }
193
194 void bdrv_disable_copy_on_read(BlockDriverState *bs)
195 {
196 int old = atomic_fetch_dec(&bs->copy_on_read);
197 assert(old >= 1);
198 }
199
200 typedef struct {
201 Coroutine *co;
202 BlockDriverState *bs;
203 bool done;
204 bool begin;
205 bool recursive;
206 bool poll;
207 BdrvChild *parent;
208 bool ignore_bds_parents;
209 int *drained_end_counter;
210 } BdrvCoDrainData;
211
212 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
213 {
214 BdrvCoDrainData *data = opaque;
215 BlockDriverState *bs = data->bs;
216
217 if (data->begin) {
218 bs->drv->bdrv_co_drain_begin(bs);
219 } else {
220 bs->drv->bdrv_co_drain_end(bs);
221 }
222
223 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
224 atomic_mb_set(&data->done, true);
225 if (!data->begin) {
226 atomic_dec(data->drained_end_counter);
227 }
228 bdrv_dec_in_flight(bs);
229
230 g_free(data);
231 }
232
233 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
234 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
235 int *drained_end_counter)
236 {
237 BdrvCoDrainData *data;
238
239 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
240 (!begin && !bs->drv->bdrv_co_drain_end)) {
241 return;
242 }
243
244 data = g_new(BdrvCoDrainData, 1);
245 *data = (BdrvCoDrainData) {
246 .bs = bs,
247 .done = false,
248 .begin = begin,
249 .drained_end_counter = drained_end_counter,
250 };
251
252 if (!begin) {
253 atomic_inc(drained_end_counter);
254 }
255
256 /* Make sure the driver callback completes during the polling phase for
257 * drain_begin. */
258 bdrv_inc_in_flight(bs);
259 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
260 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
261 }
262
263 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
264 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
265 BdrvChild *ignore_parent, bool ignore_bds_parents)
266 {
267 BdrvChild *child, *next;
268
269 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
270 return true;
271 }
272
273 if (atomic_read(&bs->in_flight)) {
274 return true;
275 }
276
277 if (recursive) {
278 assert(!ignore_bds_parents);
279 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
280 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
281 return true;
282 }
283 }
284 }
285
286 return false;
287 }
288
289 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
290 BdrvChild *ignore_parent)
291 {
292 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
293 }
294
295 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
296 BdrvChild *parent, bool ignore_bds_parents,
297 bool poll);
298 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
299 BdrvChild *parent, bool ignore_bds_parents,
300 int *drained_end_counter);
301
302 static void bdrv_co_drain_bh_cb(void *opaque)
303 {
304 BdrvCoDrainData *data = opaque;
305 Coroutine *co = data->co;
306 BlockDriverState *bs = data->bs;
307
308 if (bs) {
309 AioContext *ctx = bdrv_get_aio_context(bs);
310 AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
311
312 /*
313 * When the coroutine yielded, the lock for its home context was
314 * released, so we need to re-acquire it here. If it explicitly
315 * acquired a different context, the lock is still held and we don't
316 * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
317 */
318 if (ctx == co_ctx) {
319 aio_context_acquire(ctx);
320 }
321 bdrv_dec_in_flight(bs);
322 if (data->begin) {
323 assert(!data->drained_end_counter);
324 bdrv_do_drained_begin(bs, data->recursive, data->parent,
325 data->ignore_bds_parents, data->poll);
326 } else {
327 assert(!data->poll);
328 bdrv_do_drained_end(bs, data->recursive, data->parent,
329 data->ignore_bds_parents,
330 data->drained_end_counter);
331 }
332 if (ctx == co_ctx) {
333 aio_context_release(ctx);
334 }
335 } else {
336 assert(data->begin);
337 bdrv_drain_all_begin();
338 }
339
340 data->done = true;
341 aio_co_wake(co);
342 }
343
344 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
345 bool begin, bool recursive,
346 BdrvChild *parent,
347 bool ignore_bds_parents,
348 bool poll,
349 int *drained_end_counter)
350 {
351 BdrvCoDrainData data;
352
353 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
354 * other coroutines run if they were queued by aio_co_enter(). */
355
356 assert(qemu_in_coroutine());
357 data = (BdrvCoDrainData) {
358 .co = qemu_coroutine_self(),
359 .bs = bs,
360 .done = false,
361 .begin = begin,
362 .recursive = recursive,
363 .parent = parent,
364 .ignore_bds_parents = ignore_bds_parents,
365 .poll = poll,
366 .drained_end_counter = drained_end_counter,
367 };
368
369 if (bs) {
370 bdrv_inc_in_flight(bs);
371 }
372 replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs),
373 bdrv_co_drain_bh_cb, &data);
374
375 qemu_coroutine_yield();
376 /* If we are resumed from some other event (such as an aio completion or a
377 * timer callback), it is a bug in the caller that should be fixed. */
378 assert(data.done);
379 }
380
381 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
382 BdrvChild *parent, bool ignore_bds_parents)
383 {
384 assert(!qemu_in_coroutine());
385
386 /* Stop things in parent-to-child order */
387 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
388 aio_disable_external(bdrv_get_aio_context(bs));
389 }
390
391 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
392 bdrv_drain_invoke(bs, true, NULL);
393 }
394
395 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
396 BdrvChild *parent, bool ignore_bds_parents,
397 bool poll)
398 {
399 BdrvChild *child, *next;
400
401 if (qemu_in_coroutine()) {
402 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
403 poll, NULL);
404 return;
405 }
406
407 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
408
409 if (recursive) {
410 assert(!ignore_bds_parents);
411 bs->recursive_quiesce_counter++;
412 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
413 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
414 false);
415 }
416 }
417
418 /*
419 * Wait for drained requests to finish.
420 *
421 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
422 * call is needed so things in this AioContext can make progress even
423 * though we don't return to the main AioContext loop - this automatically
424 * includes other nodes in the same AioContext and therefore all child
425 * nodes.
426 */
427 if (poll) {
428 assert(!ignore_bds_parents);
429 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
430 }
431 }
432
433 void bdrv_drained_begin(BlockDriverState *bs)
434 {
435 bdrv_do_drained_begin(bs, false, NULL, false, true);
436 }
437
438 void bdrv_subtree_drained_begin(BlockDriverState *bs)
439 {
440 bdrv_do_drained_begin(bs, true, NULL, false, true);
441 }
442
443 /**
444 * This function does not poll, nor must any of its recursively called
445 * functions. The *drained_end_counter pointee will be incremented
446 * once for every background operation scheduled, and decremented once
447 * the operation settles. Therefore, the pointer must remain valid
448 * until the pointee reaches 0. That implies that whoever sets up the
449 * pointee has to poll until it is 0.
450 *
451 * We use atomic operations to access *drained_end_counter, because
452 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
453 * @bs may contain nodes in different AioContexts,
454 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
455 * regardless of which AioContext they are in.
456 */
457 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
458 BdrvChild *parent, bool ignore_bds_parents,
459 int *drained_end_counter)
460 {
461 BdrvChild *child;
462 int old_quiesce_counter;
463
464 assert(drained_end_counter != NULL);
465
466 if (qemu_in_coroutine()) {
467 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
468 false, drained_end_counter);
469 return;
470 }
471 assert(bs->quiesce_counter > 0);
472
473 /* Re-enable things in child-to-parent order */
474 bdrv_drain_invoke(bs, false, drained_end_counter);
475 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
476 drained_end_counter);
477
478 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
479 if (old_quiesce_counter == 1) {
480 aio_enable_external(bdrv_get_aio_context(bs));
481 }
482
483 if (recursive) {
484 assert(!ignore_bds_parents);
485 bs->recursive_quiesce_counter--;
486 QLIST_FOREACH(child, &bs->children, next) {
487 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
488 drained_end_counter);
489 }
490 }
491 }
492
493 void bdrv_drained_end(BlockDriverState *bs)
494 {
495 int drained_end_counter = 0;
496 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
497 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
498 }
499
500 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
501 {
502 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
503 }
504
505 void bdrv_subtree_drained_end(BlockDriverState *bs)
506 {
507 int drained_end_counter = 0;
508 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
509 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
510 }
511
512 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
513 {
514 int i;
515
516 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
517 bdrv_do_drained_begin(child->bs, true, child, false, true);
518 }
519 }
520
521 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
522 {
523 int drained_end_counter = 0;
524 int i;
525
526 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
527 bdrv_do_drained_end(child->bs, true, child, false,
528 &drained_end_counter);
529 }
530
531 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0);
532 }
533
534 /*
535 * Wait for pending requests to complete on a single BlockDriverState subtree,
536 * and suspend block driver's internal I/O until next request arrives.
537 *
538 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
539 * AioContext.
540 */
541 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
542 {
543 assert(qemu_in_coroutine());
544 bdrv_drained_begin(bs);
545 bdrv_drained_end(bs);
546 }
547
548 void bdrv_drain(BlockDriverState *bs)
549 {
550 bdrv_drained_begin(bs);
551 bdrv_drained_end(bs);
552 }
553
554 static void bdrv_drain_assert_idle(BlockDriverState *bs)
555 {
556 BdrvChild *child, *next;
557
558 assert(atomic_read(&bs->in_flight) == 0);
559 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
560 bdrv_drain_assert_idle(child->bs);
561 }
562 }
563
564 unsigned int bdrv_drain_all_count = 0;
565
566 static bool bdrv_drain_all_poll(void)
567 {
568 BlockDriverState *bs = NULL;
569 bool result = false;
570
571 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
572 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
573 while ((bs = bdrv_next_all_states(bs))) {
574 AioContext *aio_context = bdrv_get_aio_context(bs);
575 aio_context_acquire(aio_context);
576 result |= bdrv_drain_poll(bs, false, NULL, true);
577 aio_context_release(aio_context);
578 }
579
580 return result;
581 }
582
583 /*
584 * Wait for pending requests to complete across all BlockDriverStates
585 *
586 * This function does not flush data to disk, use bdrv_flush_all() for that
587 * after calling this function.
588 *
589 * This pauses all block jobs and disables external clients. It must
590 * be paired with bdrv_drain_all_end().
591 *
592 * NOTE: no new block jobs or BlockDriverStates can be created between
593 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
594 */
595 void bdrv_drain_all_begin(void)
596 {
597 BlockDriverState *bs = NULL;
598
599 if (qemu_in_coroutine()) {
600 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
601 return;
602 }
603
604 /*
605 * bdrv queue is managed by record/replay,
606 * waiting for finishing the I/O requests may
607 * be infinite
608 */
609 if (replay_events_enabled()) {
610 return;
611 }
612
613 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
614 * loop AioContext, so make sure we're in the main context. */
615 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
616 assert(bdrv_drain_all_count < INT_MAX);
617 bdrv_drain_all_count++;
618
619 /* Quiesce all nodes, without polling in-flight requests yet. The graph
620 * cannot change during this loop. */
621 while ((bs = bdrv_next_all_states(bs))) {
622 AioContext *aio_context = bdrv_get_aio_context(bs);
623
624 aio_context_acquire(aio_context);
625 bdrv_do_drained_begin(bs, false, NULL, true, false);
626 aio_context_release(aio_context);
627 }
628
629 /* Now poll the in-flight requests */
630 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
631
632 while ((bs = bdrv_next_all_states(bs))) {
633 bdrv_drain_assert_idle(bs);
634 }
635 }
636
637 void bdrv_drain_all_end(void)
638 {
639 BlockDriverState *bs = NULL;
640 int drained_end_counter = 0;
641
642 /*
643 * bdrv queue is managed by record/replay,
644 * waiting for finishing the I/O requests may
645 * be endless
646 */
647 if (replay_events_enabled()) {
648 return;
649 }
650
651 while ((bs = bdrv_next_all_states(bs))) {
652 AioContext *aio_context = bdrv_get_aio_context(bs);
653
654 aio_context_acquire(aio_context);
655 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
656 aio_context_release(aio_context);
657 }
658
659 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
660 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0);
661
662 assert(bdrv_drain_all_count > 0);
663 bdrv_drain_all_count--;
664 }
665
666 void bdrv_drain_all(void)
667 {
668 bdrv_drain_all_begin();
669 bdrv_drain_all_end();
670 }
671
672 /**
673 * Remove an active request from the tracked requests list
674 *
675 * This function should be called when a tracked request is completing.
676 */
677 static void tracked_request_end(BdrvTrackedRequest *req)
678 {
679 if (req->serialising) {
680 atomic_dec(&req->bs->serialising_in_flight);
681 }
682
683 qemu_co_mutex_lock(&req->bs->reqs_lock);
684 QLIST_REMOVE(req, list);
685 qemu_co_queue_restart_all(&req->wait_queue);
686 qemu_co_mutex_unlock(&req->bs->reqs_lock);
687 }
688
689 /**
690 * Add an active request to the tracked requests list
691 */
692 static void tracked_request_begin(BdrvTrackedRequest *req,
693 BlockDriverState *bs,
694 int64_t offset,
695 uint64_t bytes,
696 enum BdrvTrackedRequestType type)
697 {
698 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
699
700 *req = (BdrvTrackedRequest){
701 .bs = bs,
702 .offset = offset,
703 .bytes = bytes,
704 .type = type,
705 .co = qemu_coroutine_self(),
706 .serialising = false,
707 .overlap_offset = offset,
708 .overlap_bytes = bytes,
709 };
710
711 qemu_co_queue_init(&req->wait_queue);
712
713 qemu_co_mutex_lock(&bs->reqs_lock);
714 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
715 qemu_co_mutex_unlock(&bs->reqs_lock);
716 }
717
718 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
719 {
720 int64_t overlap_offset = req->offset & ~(align - 1);
721 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
722 - overlap_offset;
723
724 if (!req->serialising) {
725 atomic_inc(&req->bs->serialising_in_flight);
726 req->serialising = true;
727 }
728
729 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
730 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
731 }
732
733 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
734 {
735 /*
736 * If the request is serialising, overlap_offset and overlap_bytes are set,
737 * so we can check if the request is aligned. Otherwise, don't care and
738 * return false.
739 */
740
741 return req->serialising && (req->offset == req->overlap_offset) &&
742 (req->bytes == req->overlap_bytes);
743 }
744
745 /**
746 * Round a region to cluster boundaries
747 */
748 void bdrv_round_to_clusters(BlockDriverState *bs,
749 int64_t offset, int64_t bytes,
750 int64_t *cluster_offset,
751 int64_t *cluster_bytes)
752 {
753 BlockDriverInfo bdi;
754
755 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
756 *cluster_offset = offset;
757 *cluster_bytes = bytes;
758 } else {
759 int64_t c = bdi.cluster_size;
760 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
761 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
762 }
763 }
764
765 static int bdrv_get_cluster_size(BlockDriverState *bs)
766 {
767 BlockDriverInfo bdi;
768 int ret;
769
770 ret = bdrv_get_info(bs, &bdi);
771 if (ret < 0 || bdi.cluster_size == 0) {
772 return bs->bl.request_alignment;
773 } else {
774 return bdi.cluster_size;
775 }
776 }
777
778 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
779 int64_t offset, uint64_t bytes)
780 {
781 /* aaaa bbbb */
782 if (offset >= req->overlap_offset + req->overlap_bytes) {
783 return false;
784 }
785 /* bbbb aaaa */
786 if (req->overlap_offset >= offset + bytes) {
787 return false;
788 }
789 return true;
790 }
791
792 void bdrv_inc_in_flight(BlockDriverState *bs)
793 {
794 atomic_inc(&bs->in_flight);
795 }
796
797 void bdrv_wakeup(BlockDriverState *bs)
798 {
799 aio_wait_kick();
800 }
801
802 void bdrv_dec_in_flight(BlockDriverState *bs)
803 {
804 atomic_dec(&bs->in_flight);
805 bdrv_wakeup(bs);
806 }
807
808 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
809 {
810 BlockDriverState *bs = self->bs;
811 BdrvTrackedRequest *req;
812 bool retry;
813 bool waited = false;
814
815 if (!atomic_read(&bs->serialising_in_flight)) {
816 return false;
817 }
818
819 do {
820 retry = false;
821 qemu_co_mutex_lock(&bs->reqs_lock);
822 QLIST_FOREACH(req, &bs->tracked_requests, list) {
823 if (req == self || (!req->serialising && !self->serialising)) {
824 continue;
825 }
826 if (tracked_request_overlaps(req, self->overlap_offset,
827 self->overlap_bytes))
828 {
829 /* Hitting this means there was a reentrant request, for
830 * example, a block driver issuing nested requests. This must
831 * never happen since it means deadlock.
832 */
833 assert(qemu_coroutine_self() != req->co);
834
835 /* If the request is already (indirectly) waiting for us, or
836 * will wait for us as soon as it wakes up, then just go on
837 * (instead of producing a deadlock in the former case). */
838 if (!req->waiting_for) {
839 self->waiting_for = req;
840 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
841 self->waiting_for = NULL;
842 retry = true;
843 waited = true;
844 break;
845 }
846 }
847 }
848 qemu_co_mutex_unlock(&bs->reqs_lock);
849 } while (retry);
850
851 return waited;
852 }
853
854 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
855 size_t size)
856 {
857 if (size > BDRV_REQUEST_MAX_BYTES) {
858 return -EIO;
859 }
860
861 if (!bdrv_is_inserted(bs)) {
862 return -ENOMEDIUM;
863 }
864
865 if (offset < 0) {
866 return -EIO;
867 }
868
869 return 0;
870 }
871
872 typedef struct RwCo {
873 BdrvChild *child;
874 int64_t offset;
875 QEMUIOVector *qiov;
876 bool is_write;
877 int ret;
878 BdrvRequestFlags flags;
879 } RwCo;
880
881 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
882 {
883 RwCo *rwco = opaque;
884
885 if (!rwco->is_write) {
886 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
887 rwco->qiov->size, rwco->qiov,
888 rwco->flags);
889 } else {
890 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
891 rwco->qiov->size, rwco->qiov,
892 rwco->flags);
893 }
894 aio_wait_kick();
895 }
896
897 /*
898 * Process a vectored synchronous request using coroutines
899 */
900 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
901 QEMUIOVector *qiov, bool is_write,
902 BdrvRequestFlags flags)
903 {
904 Coroutine *co;
905 RwCo rwco = {
906 .child = child,
907 .offset = offset,
908 .qiov = qiov,
909 .is_write = is_write,
910 .ret = NOT_DONE,
911 .flags = flags,
912 };
913
914 if (qemu_in_coroutine()) {
915 /* Fast-path if already in coroutine context */
916 bdrv_rw_co_entry(&rwco);
917 } else {
918 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
919 bdrv_coroutine_enter(child->bs, co);
920 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
921 }
922 return rwco.ret;
923 }
924
925 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
926 int bytes, BdrvRequestFlags flags)
927 {
928 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
929
930 return bdrv_prwv_co(child, offset, &qiov, true,
931 BDRV_REQ_ZERO_WRITE | flags);
932 }
933
934 /*
935 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
936 * The operation is sped up by checking the block status and only writing
937 * zeroes to the device if they currently do not return zeroes. Optional
938 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
939 * BDRV_REQ_FUA).
940 *
941 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
942 */
943 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
944 {
945 int ret;
946 int64_t target_size, bytes, offset = 0;
947 BlockDriverState *bs = child->bs;
948
949 target_size = bdrv_getlength(bs);
950 if (target_size < 0) {
951 return target_size;
952 }
953
954 for (;;) {
955 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
956 if (bytes <= 0) {
957 return 0;
958 }
959 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
960 if (ret < 0) {
961 return ret;
962 }
963 if (ret & BDRV_BLOCK_ZERO) {
964 offset += bytes;
965 continue;
966 }
967 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
968 if (ret < 0) {
969 return ret;
970 }
971 offset += bytes;
972 }
973 }
974
975 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
976 {
977 int ret;
978
979 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
980 if (ret < 0) {
981 return ret;
982 }
983
984 return qiov->size;
985 }
986
987 /* See bdrv_pwrite() for the return codes */
988 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
989 {
990 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
991
992 if (bytes < 0) {
993 return -EINVAL;
994 }
995
996 return bdrv_preadv(child, offset, &qiov);
997 }
998
999 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
1000 {
1001 int ret;
1002
1003 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
1004 if (ret < 0) {
1005 return ret;
1006 }
1007
1008 return qiov->size;
1009 }
1010
1011 /* Return no. of bytes on success or < 0 on error. Important errors are:
1012 -EIO generic I/O error (may happen for all errors)
1013 -ENOMEDIUM No media inserted.
1014 -EINVAL Invalid offset or number of bytes
1015 -EACCES Trying to write a read-only device
1016 */
1017 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
1018 {
1019 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1020
1021 if (bytes < 0) {
1022 return -EINVAL;
1023 }
1024
1025 return bdrv_pwritev(child, offset, &qiov);
1026 }
1027
1028 /*
1029 * Writes to the file and ensures that no writes are reordered across this
1030 * request (acts as a barrier)
1031 *
1032 * Returns 0 on success, -errno in error cases.
1033 */
1034 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1035 const void *buf, int count)
1036 {
1037 int ret;
1038
1039 ret = bdrv_pwrite(child, offset, buf, count);
1040 if (ret < 0) {
1041 return ret;
1042 }
1043
1044 ret = bdrv_flush(child->bs);
1045 if (ret < 0) {
1046 return ret;
1047 }
1048
1049 return 0;
1050 }
1051
1052 typedef struct CoroutineIOCompletion {
1053 Coroutine *coroutine;
1054 int ret;
1055 } CoroutineIOCompletion;
1056
1057 static void bdrv_co_io_em_complete(void *opaque, int ret)
1058 {
1059 CoroutineIOCompletion *co = opaque;
1060
1061 co->ret = ret;
1062 aio_co_wake(co->coroutine);
1063 }
1064
1065 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1066 uint64_t offset, uint64_t bytes,
1067 QEMUIOVector *qiov,
1068 size_t qiov_offset, int flags)
1069 {
1070 BlockDriver *drv = bs->drv;
1071 int64_t sector_num;
1072 unsigned int nb_sectors;
1073 QEMUIOVector local_qiov;
1074 int ret;
1075
1076 assert(!(flags & ~BDRV_REQ_MASK));
1077 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1078
1079 if (!drv) {
1080 return -ENOMEDIUM;
1081 }
1082
1083 if (drv->bdrv_co_preadv_part) {
1084 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1085 flags);
1086 }
1087
1088 if (qiov_offset > 0 || bytes != qiov->size) {
1089 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1090 qiov = &local_qiov;
1091 }
1092
1093 if (drv->bdrv_co_preadv) {
1094 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1095 goto out;
1096 }
1097
1098 if (drv->bdrv_aio_preadv) {
1099 BlockAIOCB *acb;
1100 CoroutineIOCompletion co = {
1101 .coroutine = qemu_coroutine_self(),
1102 };
1103
1104 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1105 bdrv_co_io_em_complete, &co);
1106 if (acb == NULL) {
1107 ret = -EIO;
1108 goto out;
1109 } else {
1110 qemu_coroutine_yield();
1111 ret = co.ret;
1112 goto out;
1113 }
1114 }
1115
1116 sector_num = offset >> BDRV_SECTOR_BITS;
1117 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1118
1119 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1120 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1121 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1122 assert(drv->bdrv_co_readv);
1123
1124 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1125
1126 out:
1127 if (qiov == &local_qiov) {
1128 qemu_iovec_destroy(&local_qiov);
1129 }
1130
1131 return ret;
1132 }
1133
1134 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1135 uint64_t offset, uint64_t bytes,
1136 QEMUIOVector *qiov,
1137 size_t qiov_offset, int flags)
1138 {
1139 BlockDriver *drv = bs->drv;
1140 int64_t sector_num;
1141 unsigned int nb_sectors;
1142 QEMUIOVector local_qiov;
1143 int ret;
1144
1145 assert(!(flags & ~BDRV_REQ_MASK));
1146 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1147
1148 if (!drv) {
1149 return -ENOMEDIUM;
1150 }
1151
1152 if (drv->bdrv_co_pwritev_part) {
1153 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1154 flags & bs->supported_write_flags);
1155 flags &= ~bs->supported_write_flags;
1156 goto emulate_flags;
1157 }
1158
1159 if (qiov_offset > 0 || bytes != qiov->size) {
1160 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1161 qiov = &local_qiov;
1162 }
1163
1164 if (drv->bdrv_co_pwritev) {
1165 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1166 flags & bs->supported_write_flags);
1167 flags &= ~bs->supported_write_flags;
1168 goto emulate_flags;
1169 }
1170
1171 if (drv->bdrv_aio_pwritev) {
1172 BlockAIOCB *acb;
1173 CoroutineIOCompletion co = {
1174 .coroutine = qemu_coroutine_self(),
1175 };
1176
1177 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1178 flags & bs->supported_write_flags,
1179 bdrv_co_io_em_complete, &co);
1180 flags &= ~bs->supported_write_flags;
1181 if (acb == NULL) {
1182 ret = -EIO;
1183 } else {
1184 qemu_coroutine_yield();
1185 ret = co.ret;
1186 }
1187 goto emulate_flags;
1188 }
1189
1190 sector_num = offset >> BDRV_SECTOR_BITS;
1191 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1192
1193 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1194 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1195 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1196
1197 assert(drv->bdrv_co_writev);
1198 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1199 flags & bs->supported_write_flags);
1200 flags &= ~bs->supported_write_flags;
1201
1202 emulate_flags:
1203 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1204 ret = bdrv_co_flush(bs);
1205 }
1206
1207 if (qiov == &local_qiov) {
1208 qemu_iovec_destroy(&local_qiov);
1209 }
1210
1211 return ret;
1212 }
1213
1214 static int coroutine_fn
1215 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1216 uint64_t bytes, QEMUIOVector *qiov,
1217 size_t qiov_offset)
1218 {
1219 BlockDriver *drv = bs->drv;
1220 QEMUIOVector local_qiov;
1221 int ret;
1222
1223 if (!drv) {
1224 return -ENOMEDIUM;
1225 }
1226
1227 if (!block_driver_can_compress(drv)) {
1228 return -ENOTSUP;
1229 }
1230
1231 if (drv->bdrv_co_pwritev_compressed_part) {
1232 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1233 qiov, qiov_offset);
1234 }
1235
1236 if (qiov_offset == 0) {
1237 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1238 }
1239
1240 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1241 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1242 qemu_iovec_destroy(&local_qiov);
1243
1244 return ret;
1245 }
1246
1247 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1248 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1249 size_t qiov_offset, int flags)
1250 {
1251 BlockDriverState *bs = child->bs;
1252
1253 /* Perform I/O through a temporary buffer so that users who scribble over
1254 * their read buffer while the operation is in progress do not end up
1255 * modifying the image file. This is critical for zero-copy guest I/O
1256 * where anything might happen inside guest memory.
1257 */
1258 void *bounce_buffer = NULL;
1259
1260 BlockDriver *drv = bs->drv;
1261 int64_t cluster_offset;
1262 int64_t cluster_bytes;
1263 size_t skip_bytes;
1264 int ret;
1265 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1266 BDRV_REQUEST_MAX_BYTES);
1267 unsigned int progress = 0;
1268 bool skip_write;
1269
1270 if (!drv) {
1271 return -ENOMEDIUM;
1272 }
1273
1274 /*
1275 * Do not write anything when the BDS is inactive. That is not
1276 * allowed, and it would not help.
1277 */
1278 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1279
1280 /* FIXME We cannot require callers to have write permissions when all they
1281 * are doing is a read request. If we did things right, write permissions
1282 * would be obtained anyway, but internally by the copy-on-read code. As
1283 * long as it is implemented here rather than in a separate filter driver,
1284 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1285 * it could request permissions. Therefore we have to bypass the permission
1286 * system for the moment. */
1287 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1288
1289 /* Cover entire cluster so no additional backing file I/O is required when
1290 * allocating cluster in the image file. Note that this value may exceed
1291 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1292 * is one reason we loop rather than doing it all at once.
1293 */
1294 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1295 skip_bytes = offset - cluster_offset;
1296
1297 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1298 cluster_offset, cluster_bytes);
1299
1300 while (cluster_bytes) {
1301 int64_t pnum;
1302
1303 if (skip_write) {
1304 ret = 1; /* "already allocated", so nothing will be copied */
1305 pnum = MIN(cluster_bytes, max_transfer);
1306 } else {
1307 ret = bdrv_is_allocated(bs, cluster_offset,
1308 MIN(cluster_bytes, max_transfer), &pnum);
1309 if (ret < 0) {
1310 /*
1311 * Safe to treat errors in querying allocation as if
1312 * unallocated; we'll probably fail again soon on the
1313 * read, but at least that will set a decent errno.
1314 */
1315 pnum = MIN(cluster_bytes, max_transfer);
1316 }
1317
1318 /* Stop at EOF if the image ends in the middle of the cluster */
1319 if (ret == 0 && pnum == 0) {
1320 assert(progress >= bytes);
1321 break;
1322 }
1323
1324 assert(skip_bytes < pnum);
1325 }
1326
1327 if (ret <= 0) {
1328 QEMUIOVector local_qiov;
1329
1330 /* Must copy-on-read; use the bounce buffer */
1331 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1332 if (!bounce_buffer) {
1333 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1334 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1335 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1336
1337 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1338 if (!bounce_buffer) {
1339 ret = -ENOMEM;
1340 goto err;
1341 }
1342 }
1343 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1344
1345 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1346 &local_qiov, 0, 0);
1347 if (ret < 0) {
1348 goto err;
1349 }
1350
1351 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1352 if (drv->bdrv_co_pwrite_zeroes &&
1353 buffer_is_zero(bounce_buffer, pnum)) {
1354 /* FIXME: Should we (perhaps conditionally) be setting
1355 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1356 * that still correctly reads as zero? */
1357 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1358 BDRV_REQ_WRITE_UNCHANGED);
1359 } else {
1360 /* This does not change the data on the disk, it is not
1361 * necessary to flush even in cache=writethrough mode.
1362 */
1363 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1364 &local_qiov, 0,
1365 BDRV_REQ_WRITE_UNCHANGED);
1366 }
1367
1368 if (ret < 0) {
1369 /* It might be okay to ignore write errors for guest
1370 * requests. If this is a deliberate copy-on-read
1371 * then we don't want to ignore the error. Simply
1372 * report it in all cases.
1373 */
1374 goto err;
1375 }
1376
1377 if (!(flags & BDRV_REQ_PREFETCH)) {
1378 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1379 bounce_buffer + skip_bytes,
1380 pnum - skip_bytes);
1381 }
1382 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1383 /* Read directly into the destination */
1384 ret = bdrv_driver_preadv(bs, offset + progress,
1385 MIN(pnum - skip_bytes, bytes - progress),
1386 qiov, qiov_offset + progress, 0);
1387 if (ret < 0) {
1388 goto err;
1389 }
1390 }
1391
1392 cluster_offset += pnum;
1393 cluster_bytes -= pnum;
1394 progress += pnum - skip_bytes;
1395 skip_bytes = 0;
1396 }
1397 ret = 0;
1398
1399 err:
1400 qemu_vfree(bounce_buffer);
1401 return ret;
1402 }
1403
1404 /*
1405 * Forwards an already correctly aligned request to the BlockDriver. This
1406 * handles copy on read, zeroing after EOF, and fragmentation of large
1407 * reads; any other features must be implemented by the caller.
1408 */
1409 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1410 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1411 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1412 {
1413 BlockDriverState *bs = child->bs;
1414 int64_t total_bytes, max_bytes;
1415 int ret = 0;
1416 uint64_t bytes_remaining = bytes;
1417 int max_transfer;
1418
1419 assert(is_power_of_2(align));
1420 assert((offset & (align - 1)) == 0);
1421 assert((bytes & (align - 1)) == 0);
1422 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1423 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1424 align);
1425
1426 /* TODO: We would need a per-BDS .supported_read_flags and
1427 * potential fallback support, if we ever implement any read flags
1428 * to pass through to drivers. For now, there aren't any
1429 * passthrough flags. */
1430 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ |
1431 BDRV_REQ_PREFETCH)));
1432
1433 /* Handle Copy on Read and associated serialisation */
1434 if (flags & BDRV_REQ_COPY_ON_READ) {
1435 /* If we touch the same cluster it counts as an overlap. This
1436 * guarantees that allocating writes will be serialized and not race
1437 * with each other for the same cluster. For example, in copy-on-read
1438 * it ensures that the CoR read and write operations are atomic and
1439 * guest writes cannot interleave between them. */
1440 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1441 }
1442
1443 /* BDRV_REQ_SERIALISING is only for write operation */
1444 assert(!(flags & BDRV_REQ_SERIALISING));
1445
1446 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1447 wait_serialising_requests(req);
1448 }
1449
1450 if (flags & BDRV_REQ_COPY_ON_READ) {
1451 int64_t pnum;
1452
1453 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1454 if (ret < 0) {
1455 goto out;
1456 }
1457
1458 if (!ret || pnum != bytes) {
1459 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1460 qiov, qiov_offset, flags);
1461 goto out;
1462 } else if (flags & BDRV_REQ_PREFETCH) {
1463 goto out;
1464 }
1465 }
1466
1467 /* Forward the request to the BlockDriver, possibly fragmenting it */
1468 total_bytes = bdrv_getlength(bs);
1469 if (total_bytes < 0) {
1470 ret = total_bytes;
1471 goto out;
1472 }
1473
1474 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1475 if (bytes <= max_bytes && bytes <= max_transfer) {
1476 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0);
1477 goto out;
1478 }
1479
1480 while (bytes_remaining) {
1481 int num;
1482
1483 if (max_bytes) {
1484 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1485 assert(num);
1486
1487 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1488 num, qiov, bytes - bytes_remaining, 0);
1489 max_bytes -= num;
1490 } else {
1491 num = bytes_remaining;
1492 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1493 bytes_remaining);
1494 }
1495 if (ret < 0) {
1496 goto out;
1497 }
1498 bytes_remaining -= num;
1499 }
1500
1501 out:
1502 return ret < 0 ? ret : 0;
1503 }
1504
1505 /*
1506 * Request padding
1507 *
1508 * |<---- align ----->| |<----- align ---->|
1509 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1510 * | | | | | |
1511 * -*----------$-------*-------- ... --------*-----$------------*---
1512 * | | | | | |
1513 * | offset | | end |
1514 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1515 * [buf ... ) [tail_buf )
1516 *
1517 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1518 * is placed at the beginning of @buf and @tail at the @end.
1519 *
1520 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1521 * around tail, if tail exists.
1522 *
1523 * @merge_reads is true for small requests,
1524 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1525 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1526 */
1527 typedef struct BdrvRequestPadding {
1528 uint8_t *buf;
1529 size_t buf_len;
1530 uint8_t *tail_buf;
1531 size_t head;
1532 size_t tail;
1533 bool merge_reads;
1534 QEMUIOVector local_qiov;
1535 } BdrvRequestPadding;
1536
1537 static bool bdrv_init_padding(BlockDriverState *bs,
1538 int64_t offset, int64_t bytes,
1539 BdrvRequestPadding *pad)
1540 {
1541 uint64_t align = bs->bl.request_alignment;
1542 size_t sum;
1543
1544 memset(pad, 0, sizeof(*pad));
1545
1546 pad->head = offset & (align - 1);
1547 pad->tail = ((offset + bytes) & (align - 1));
1548 if (pad->tail) {
1549 pad->tail = align - pad->tail;
1550 }
1551
1552 if ((!pad->head && !pad->tail) || !bytes) {
1553 return false;
1554 }
1555
1556 sum = pad->head + bytes + pad->tail;
1557 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1558 pad->buf = qemu_blockalign(bs, pad->buf_len);
1559 pad->merge_reads = sum == pad->buf_len;
1560 if (pad->tail) {
1561 pad->tail_buf = pad->buf + pad->buf_len - align;
1562 }
1563
1564 return true;
1565 }
1566
1567 static int bdrv_padding_rmw_read(BdrvChild *child,
1568 BdrvTrackedRequest *req,
1569 BdrvRequestPadding *pad,
1570 bool zero_middle)
1571 {
1572 QEMUIOVector local_qiov;
1573 BlockDriverState *bs = child->bs;
1574 uint64_t align = bs->bl.request_alignment;
1575 int ret;
1576
1577 assert(req->serialising && pad->buf);
1578
1579 if (pad->head || pad->merge_reads) {
1580 uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1581
1582 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1583
1584 if (pad->head) {
1585 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1586 }
1587 if (pad->merge_reads && pad->tail) {
1588 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1589 }
1590 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1591 align, &local_qiov, 0, 0);
1592 if (ret < 0) {
1593 return ret;
1594 }
1595 if (pad->head) {
1596 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1597 }
1598 if (pad->merge_reads && pad->tail) {
1599 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1600 }
1601
1602 if (pad->merge_reads) {
1603 goto zero_mem;
1604 }
1605 }
1606
1607 if (pad->tail) {
1608 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1609
1610 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1611 ret = bdrv_aligned_preadv(
1612 child, req,
1613 req->overlap_offset + req->overlap_bytes - align,
1614 align, align, &local_qiov, 0, 0);
1615 if (ret < 0) {
1616 return ret;
1617 }
1618 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1619 }
1620
1621 zero_mem:
1622 if (zero_middle) {
1623 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1624 }
1625
1626 return 0;
1627 }
1628
1629 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1630 {
1631 if (pad->buf) {
1632 qemu_vfree(pad->buf);
1633 qemu_iovec_destroy(&pad->local_qiov);
1634 }
1635 }
1636
1637 /*
1638 * bdrv_pad_request
1639 *
1640 * Exchange request parameters with padded request if needed. Don't include RMW
1641 * read of padding, bdrv_padding_rmw_read() should be called separately if
1642 * needed.
1643 *
1644 * All parameters except @bs are in-out: they represent original request at
1645 * function call and padded (if padding needed) at function finish.
1646 *
1647 * Function always succeeds.
1648 */
1649 static bool bdrv_pad_request(BlockDriverState *bs,
1650 QEMUIOVector **qiov, size_t *qiov_offset,
1651 int64_t *offset, unsigned int *bytes,
1652 BdrvRequestPadding *pad)
1653 {
1654 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1655 return false;
1656 }
1657
1658 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1659 *qiov, *qiov_offset, *bytes,
1660 pad->buf + pad->buf_len - pad->tail, pad->tail);
1661 *bytes += pad->head + pad->tail;
1662 *offset -= pad->head;
1663 *qiov = &pad->local_qiov;
1664 *qiov_offset = 0;
1665
1666 return true;
1667 }
1668
1669 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1670 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1671 BdrvRequestFlags flags)
1672 {
1673 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1674 }
1675
1676 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1677 int64_t offset, unsigned int bytes,
1678 QEMUIOVector *qiov, size_t qiov_offset,
1679 BdrvRequestFlags flags)
1680 {
1681 BlockDriverState *bs = child->bs;
1682 BdrvTrackedRequest req;
1683 BdrvRequestPadding pad;
1684 int ret;
1685
1686 trace_bdrv_co_preadv(bs, offset, bytes, flags);
1687
1688 ret = bdrv_check_byte_request(bs, offset, bytes);
1689 if (ret < 0) {
1690 return ret;
1691 }
1692
1693 bdrv_inc_in_flight(bs);
1694
1695 /* Don't do copy-on-read if we read data before write operation */
1696 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1697 flags |= BDRV_REQ_COPY_ON_READ;
1698 }
1699
1700 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad);
1701
1702 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1703 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1704 bs->bl.request_alignment,
1705 qiov, qiov_offset, flags);
1706 tracked_request_end(&req);
1707 bdrv_dec_in_flight(bs);
1708
1709 bdrv_padding_destroy(&pad);
1710
1711 return ret;
1712 }
1713
1714 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1715 int64_t offset, int bytes, BdrvRequestFlags flags)
1716 {
1717 BlockDriver *drv = bs->drv;
1718 QEMUIOVector qiov;
1719 void *buf = NULL;
1720 int ret = 0;
1721 bool need_flush = false;
1722 int head = 0;
1723 int tail = 0;
1724
1725 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1726 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1727 bs->bl.request_alignment);
1728 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1729
1730 if (!drv) {
1731 return -ENOMEDIUM;
1732 }
1733
1734 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1735 return -ENOTSUP;
1736 }
1737
1738 assert(alignment % bs->bl.request_alignment == 0);
1739 head = offset % alignment;
1740 tail = (offset + bytes) % alignment;
1741 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1742 assert(max_write_zeroes >= bs->bl.request_alignment);
1743
1744 while (bytes > 0 && !ret) {
1745 int num = bytes;
1746
1747 /* Align request. Block drivers can expect the "bulk" of the request
1748 * to be aligned, and that unaligned requests do not cross cluster
1749 * boundaries.
1750 */
1751 if (head) {
1752 /* Make a small request up to the first aligned sector. For
1753 * convenience, limit this request to max_transfer even if
1754 * we don't need to fall back to writes. */
1755 num = MIN(MIN(bytes, max_transfer), alignment - head);
1756 head = (head + num) % alignment;
1757 assert(num < max_write_zeroes);
1758 } else if (tail && num > alignment) {
1759 /* Shorten the request to the last aligned sector. */
1760 num -= tail;
1761 }
1762
1763 /* limit request size */
1764 if (num > max_write_zeroes) {
1765 num = max_write_zeroes;
1766 }
1767
1768 ret = -ENOTSUP;
1769 /* First try the efficient write zeroes operation */
1770 if (drv->bdrv_co_pwrite_zeroes) {
1771 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1772 flags & bs->supported_zero_flags);
1773 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1774 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1775 need_flush = true;
1776 }
1777 } else {
1778 assert(!bs->supported_zero_flags);
1779 }
1780
1781 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1782 /* Fall back to bounce buffer if write zeroes is unsupported */
1783 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1784
1785 if ((flags & BDRV_REQ_FUA) &&
1786 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1787 /* No need for bdrv_driver_pwrite() to do a fallback
1788 * flush on each chunk; use just one at the end */
1789 write_flags &= ~BDRV_REQ_FUA;
1790 need_flush = true;
1791 }
1792 num = MIN(num, max_transfer);
1793 if (buf == NULL) {
1794 buf = qemu_try_blockalign0(bs, num);
1795 if (buf == NULL) {
1796 ret = -ENOMEM;
1797 goto fail;
1798 }
1799 }
1800 qemu_iovec_init_buf(&qiov, buf, num);
1801
1802 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1803
1804 /* Keep bounce buffer around if it is big enough for all
1805 * all future requests.
1806 */
1807 if (num < max_transfer) {
1808 qemu_vfree(buf);
1809 buf = NULL;
1810 }
1811 }
1812
1813 offset += num;
1814 bytes -= num;
1815 }
1816
1817 fail:
1818 if (ret == 0 && need_flush) {
1819 ret = bdrv_co_flush(bs);
1820 }
1821 qemu_vfree(buf);
1822 return ret;
1823 }
1824
1825 static inline int coroutine_fn
1826 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1827 BdrvTrackedRequest *req, int flags)
1828 {
1829 BlockDriverState *bs = child->bs;
1830 bool waited;
1831 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1832
1833 if (bs->read_only) {
1834 return -EPERM;
1835 }
1836
1837 /* BDRV_REQ_NO_SERIALISING is only for read operation */
1838 assert(!(flags & BDRV_REQ_NO_SERIALISING));
1839 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1840 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1841 assert(!(flags & ~BDRV_REQ_MASK));
1842
1843 if (flags & BDRV_REQ_SERIALISING) {
1844 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1845 }
1846
1847 waited = wait_serialising_requests(req);
1848
1849 assert(!waited || !req->serialising ||
1850 is_request_serialising_and_aligned(req));
1851 assert(req->overlap_offset <= offset);
1852 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1853 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1854
1855 switch (req->type) {
1856 case BDRV_TRACKED_WRITE:
1857 case BDRV_TRACKED_DISCARD:
1858 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1859 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1860 } else {
1861 assert(child->perm & BLK_PERM_WRITE);
1862 }
1863 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1864 req);
1865 case BDRV_TRACKED_TRUNCATE:
1866 assert(child->perm & BLK_PERM_RESIZE);
1867 return 0;
1868 default:
1869 abort();
1870 }
1871 }
1872
1873 static inline void coroutine_fn
1874 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1875 BdrvTrackedRequest *req, int ret)
1876 {
1877 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1878 BlockDriverState *bs = child->bs;
1879
1880 atomic_inc(&bs->write_gen);
1881
1882 /*
1883 * Discard cannot extend the image, but in error handling cases, such as
1884 * when reverting a qcow2 cluster allocation, the discarded range can pass
1885 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1886 * here. Instead, just skip it, since semantically a discard request
1887 * beyond EOF cannot expand the image anyway.
1888 */
1889 if (ret == 0 &&
1890 (req->type == BDRV_TRACKED_TRUNCATE ||
1891 end_sector > bs->total_sectors) &&
1892 req->type != BDRV_TRACKED_DISCARD) {
1893 bs->total_sectors = end_sector;
1894 bdrv_parent_cb_resize(bs);
1895 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1896 }
1897 if (req->bytes) {
1898 switch (req->type) {
1899 case BDRV_TRACKED_WRITE:
1900 stat64_max(&bs->wr_highest_offset, offset + bytes);
1901 /* fall through, to set dirty bits */
1902 case BDRV_TRACKED_DISCARD:
1903 bdrv_set_dirty(bs, offset, bytes);
1904 break;
1905 default:
1906 break;
1907 }
1908 }
1909 }
1910
1911 /*
1912 * Forwards an already correctly aligned write request to the BlockDriver,
1913 * after possibly fragmenting it.
1914 */
1915 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1916 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1917 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1918 {
1919 BlockDriverState *bs = child->bs;
1920 BlockDriver *drv = bs->drv;
1921 int ret;
1922
1923 uint64_t bytes_remaining = bytes;
1924 int max_transfer;
1925
1926 if (!drv) {
1927 return -ENOMEDIUM;
1928 }
1929
1930 if (bdrv_has_readonly_bitmaps(bs)) {
1931 return -EPERM;
1932 }
1933
1934 assert(is_power_of_2(align));
1935 assert((offset & (align - 1)) == 0);
1936 assert((bytes & (align - 1)) == 0);
1937 assert(!qiov || qiov_offset + bytes <= qiov->size);
1938 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1939 align);
1940
1941 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1942
1943 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1944 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1945 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1946 flags |= BDRV_REQ_ZERO_WRITE;
1947 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1948 flags |= BDRV_REQ_MAY_UNMAP;
1949 }
1950 }
1951
1952 if (ret < 0) {
1953 /* Do nothing, write notifier decided to fail this request */
1954 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1955 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1956 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1957 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1958 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1959 qiov, qiov_offset);
1960 } else if (bytes <= max_transfer) {
1961 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1962 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1963 } else {
1964 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1965 while (bytes_remaining) {
1966 int num = MIN(bytes_remaining, max_transfer);
1967 int local_flags = flags;
1968
1969 assert(num);
1970 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1971 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1972 /* If FUA is going to be emulated by flush, we only
1973 * need to flush on the last iteration */
1974 local_flags &= ~BDRV_REQ_FUA;
1975 }
1976
1977 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1978 num, qiov, bytes - bytes_remaining,
1979 local_flags);
1980 if (ret < 0) {
1981 break;
1982 }
1983 bytes_remaining -= num;
1984 }
1985 }
1986 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1987
1988 if (ret >= 0) {
1989 ret = 0;
1990 }
1991 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1992
1993 return ret;
1994 }
1995
1996 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1997 int64_t offset,
1998 unsigned int bytes,
1999 BdrvRequestFlags flags,
2000 BdrvTrackedRequest *req)
2001 {
2002 BlockDriverState *bs = child->bs;
2003 QEMUIOVector local_qiov;
2004 uint64_t align = bs->bl.request_alignment;
2005 int ret = 0;
2006 bool padding;
2007 BdrvRequestPadding pad;
2008
2009 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2010 if (padding) {
2011 mark_request_serialising(req, align);
2012 wait_serialising_requests(req);
2013
2014 bdrv_padding_rmw_read(child, req, &pad, true);
2015
2016 if (pad.head || pad.merge_reads) {
2017 int64_t aligned_offset = offset & ~(align - 1);
2018 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2019
2020 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2021 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2022 align, &local_qiov, 0,
2023 flags & ~BDRV_REQ_ZERO_WRITE);
2024 if (ret < 0 || pad.merge_reads) {
2025 /* Error or all work is done */
2026 goto out;
2027 }
2028 offset += write_bytes - pad.head;
2029 bytes -= write_bytes - pad.head;
2030 }
2031 }
2032
2033 assert(!bytes || (offset & (align - 1)) == 0);
2034 if (bytes >= align) {
2035 /* Write the aligned part in the middle. */
2036 uint64_t aligned_bytes = bytes & ~(align - 1);
2037 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2038 NULL, 0, flags);
2039 if (ret < 0) {
2040 goto out;
2041 }
2042 bytes -= aligned_bytes;
2043 offset += aligned_bytes;
2044 }
2045
2046 assert(!bytes || (offset & (align - 1)) == 0);
2047 if (bytes) {
2048 assert(align == pad.tail + bytes);
2049
2050 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2051 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2052 &local_qiov, 0,
2053 flags & ~BDRV_REQ_ZERO_WRITE);
2054 }
2055
2056 out:
2057 bdrv_padding_destroy(&pad);
2058
2059 return ret;
2060 }
2061
2062 /*
2063 * Handle a write request in coroutine context
2064 */
2065 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2066 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2067 BdrvRequestFlags flags)
2068 {
2069 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2070 }
2071
2072 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2073 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset,
2074 BdrvRequestFlags flags)
2075 {
2076 BlockDriverState *bs = child->bs;
2077 BdrvTrackedRequest req;
2078 uint64_t align = bs->bl.request_alignment;
2079 BdrvRequestPadding pad;
2080 int ret;
2081
2082 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2083
2084 if (!bs->drv) {
2085 return -ENOMEDIUM;
2086 }
2087
2088 ret = bdrv_check_byte_request(bs, offset, bytes);
2089 if (ret < 0) {
2090 return ret;
2091 }
2092
2093 bdrv_inc_in_flight(bs);
2094 /*
2095 * Align write if necessary by performing a read-modify-write cycle.
2096 * Pad qiov with the read parts and be sure to have a tracked request not
2097 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2098 */
2099 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2100
2101 if (flags & BDRV_REQ_ZERO_WRITE) {
2102 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2103 goto out;
2104 }
2105
2106 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) {
2107 mark_request_serialising(&req, align);
2108 wait_serialising_requests(&req);
2109 bdrv_padding_rmw_read(child, &req, &pad, false);
2110 }
2111
2112 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2113 qiov, qiov_offset, flags);
2114
2115 bdrv_padding_destroy(&pad);
2116
2117 out:
2118 tracked_request_end(&req);
2119 bdrv_dec_in_flight(bs);
2120
2121 return ret;
2122 }
2123
2124 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2125 int bytes, BdrvRequestFlags flags)
2126 {
2127 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2128
2129 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2130 flags &= ~BDRV_REQ_MAY_UNMAP;
2131 }
2132
2133 return bdrv_co_pwritev(child, offset, bytes, NULL,
2134 BDRV_REQ_ZERO_WRITE | flags);
2135 }
2136
2137 /*
2138 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2139 */
2140 int bdrv_flush_all(void)
2141 {
2142 BdrvNextIterator it;
2143 BlockDriverState *bs = NULL;
2144 int result = 0;
2145
2146 /*
2147 * bdrv queue is managed by record/replay,
2148 * creating new flush request for stopping
2149 * the VM may break the determinism
2150 */
2151 if (replay_events_enabled()) {
2152 return result;
2153 }
2154
2155 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2156 AioContext *aio_context = bdrv_get_aio_context(bs);
2157 int ret;
2158
2159 aio_context_acquire(aio_context);
2160 ret = bdrv_flush(bs);
2161 if (ret < 0 && !result) {
2162 result = ret;
2163 }
2164 aio_context_release(aio_context);
2165 }
2166
2167 return result;
2168 }
2169
2170
2171 typedef struct BdrvCoBlockStatusData {
2172 BlockDriverState *bs;
2173 BlockDriverState *base;
2174 bool want_zero;
2175 int64_t offset;
2176 int64_t bytes;
2177 int64_t *pnum;
2178 int64_t *map;
2179 BlockDriverState **file;
2180 int ret;
2181 bool done;
2182 } BdrvCoBlockStatusData;
2183
2184 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
2185 bool want_zero,
2186 int64_t offset,
2187 int64_t bytes,
2188 int64_t *pnum,
2189 int64_t *map,
2190 BlockDriverState **file)
2191 {
2192 assert(bs->file && bs->file->bs);
2193 *pnum = bytes;
2194 *map = offset;
2195 *file = bs->file->bs;
2196 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2197 }
2198
2199 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2200 bool want_zero,
2201 int64_t offset,
2202 int64_t bytes,
2203 int64_t *pnum,
2204 int64_t *map,
2205 BlockDriverState **file)
2206 {
2207 assert(bs->backing && bs->backing->bs);
2208 *pnum = bytes;
2209 *map = offset;
2210 *file = bs->backing->bs;
2211 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2212 }
2213
2214 /*
2215 * Returns the allocation status of the specified sectors.
2216 * Drivers not implementing the functionality are assumed to not support
2217 * backing files, hence all their sectors are reported as allocated.
2218 *
2219 * If 'want_zero' is true, the caller is querying for mapping
2220 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2221 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2222 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2223 *
2224 * If 'offset' is beyond the end of the disk image the return value is
2225 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2226 *
2227 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2228 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2229 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2230 *
2231 * 'pnum' is set to the number of bytes (including and immediately
2232 * following the specified offset) that are easily known to be in the
2233 * same allocated/unallocated state. Note that a second call starting
2234 * at the original offset plus returned pnum may have the same status.
2235 * The returned value is non-zero on success except at end-of-file.
2236 *
2237 * Returns negative errno on failure. Otherwise, if the
2238 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2239 * set to the host mapping and BDS corresponding to the guest offset.
2240 */
2241 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2242 bool want_zero,
2243 int64_t offset, int64_t bytes,
2244 int64_t *pnum, int64_t *map,
2245 BlockDriverState **file)
2246 {
2247 int64_t total_size;
2248 int64_t n; /* bytes */
2249 int ret;
2250 int64_t local_map = 0;
2251 BlockDriverState *local_file = NULL;
2252 int64_t aligned_offset, aligned_bytes;
2253 uint32_t align;
2254
2255 assert(pnum);
2256 *pnum = 0;
2257 total_size = bdrv_getlength(bs);
2258 if (total_size < 0) {
2259 ret = total_size;
2260 goto early_out;
2261 }
2262
2263 if (offset >= total_size) {
2264 ret = BDRV_BLOCK_EOF;
2265 goto early_out;
2266 }
2267 if (!bytes) {
2268 ret = 0;
2269 goto early_out;
2270 }
2271
2272 n = total_size - offset;
2273 if (n < bytes) {
2274 bytes = n;
2275 }
2276
2277 /* Must be non-NULL or bdrv_getlength() would have failed */
2278 assert(bs->drv);
2279 if (!bs->drv->bdrv_co_block_status) {
2280 *pnum = bytes;
2281 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2282 if (offset + bytes == total_size) {
2283 ret |= BDRV_BLOCK_EOF;
2284 }
2285 if (bs->drv->protocol_name) {
2286 ret |= BDRV_BLOCK_OFFSET_VALID;
2287 local_map = offset;
2288 local_file = bs;
2289 }
2290 goto early_out;
2291 }
2292
2293 bdrv_inc_in_flight(bs);
2294
2295 /* Round out to request_alignment boundaries */
2296 align = bs->bl.request_alignment;
2297 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2298 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2299
2300 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2301 aligned_bytes, pnum, &local_map,
2302 &local_file);
2303 if (ret < 0) {
2304 *pnum = 0;
2305 goto out;
2306 }
2307
2308 /*
2309 * The driver's result must be a non-zero multiple of request_alignment.
2310 * Clamp pnum and adjust map to original request.
2311 */
2312 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2313 align > offset - aligned_offset);
2314 if (ret & BDRV_BLOCK_RECURSE) {
2315 assert(ret & BDRV_BLOCK_DATA);
2316 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2317 assert(!(ret & BDRV_BLOCK_ZERO));
2318 }
2319
2320 *pnum -= offset - aligned_offset;
2321 if (*pnum > bytes) {
2322 *pnum = bytes;
2323 }
2324 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2325 local_map += offset - aligned_offset;
2326 }
2327
2328 if (ret & BDRV_BLOCK_RAW) {
2329 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2330 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2331 *pnum, pnum, &local_map, &local_file);
2332 goto out;
2333 }
2334
2335 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2336 ret |= BDRV_BLOCK_ALLOCATED;
2337 } else if (want_zero) {
2338 if (bdrv_unallocated_blocks_are_zero(bs)) {
2339 ret |= BDRV_BLOCK_ZERO;
2340 } else if (bs->backing) {
2341 BlockDriverState *bs2 = bs->backing->bs;
2342 int64_t size2 = bdrv_getlength(bs2);
2343
2344 if (size2 >= 0 && offset >= size2) {
2345 ret |= BDRV_BLOCK_ZERO;
2346 }
2347 }
2348 }
2349
2350 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2351 local_file && local_file != bs &&
2352 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2353 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2354 int64_t file_pnum;
2355 int ret2;
2356
2357 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2358 *pnum, &file_pnum, NULL, NULL);
2359 if (ret2 >= 0) {
2360 /* Ignore errors. This is just providing extra information, it
2361 * is useful but not necessary.
2362 */
2363 if (ret2 & BDRV_BLOCK_EOF &&
2364 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2365 /*
2366 * It is valid for the format block driver to read
2367 * beyond the end of the underlying file's current
2368 * size; such areas read as zero.
2369 */
2370 ret |= BDRV_BLOCK_ZERO;
2371 } else {
2372 /* Limit request to the range reported by the protocol driver */
2373 *pnum = file_pnum;
2374 ret |= (ret2 & BDRV_BLOCK_ZERO);
2375 }
2376 }
2377 }
2378
2379 out:
2380 bdrv_dec_in_flight(bs);
2381 if (ret >= 0 && offset + *pnum == total_size) {
2382 ret |= BDRV_BLOCK_EOF;
2383 }
2384 early_out:
2385 if (file) {
2386 *file = local_file;
2387 }
2388 if (map) {
2389 *map = local_map;
2390 }
2391 return ret;
2392 }
2393
2394 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2395 BlockDriverState *base,
2396 bool want_zero,
2397 int64_t offset,
2398 int64_t bytes,
2399 int64_t *pnum,
2400 int64_t *map,
2401 BlockDriverState **file)
2402 {
2403 BlockDriverState *p;
2404 int ret = 0;
2405 bool first = true;
2406
2407 assert(bs != base);
2408 for (p = bs; p != base; p = backing_bs(p)) {
2409 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2410 file);
2411 if (ret < 0) {
2412 break;
2413 }
2414 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2415 /*
2416 * Reading beyond the end of the file continues to read
2417 * zeroes, but we can only widen the result to the
2418 * unallocated length we learned from an earlier
2419 * iteration.
2420 */
2421 *pnum = bytes;
2422 }
2423 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2424 break;
2425 }
2426 /* [offset, pnum] unallocated on this layer, which could be only
2427 * the first part of [offset, bytes]. */
2428 bytes = MIN(bytes, *pnum);
2429 first = false;
2430 }
2431 return ret;
2432 }
2433
2434 /* Coroutine wrapper for bdrv_block_status_above() */
2435 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2436 {
2437 BdrvCoBlockStatusData *data = opaque;
2438
2439 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2440 data->want_zero,
2441 data->offset, data->bytes,
2442 data->pnum, data->map, data->file);
2443 data->done = true;
2444 aio_wait_kick();
2445 }
2446
2447 /*
2448 * Synchronous wrapper around bdrv_co_block_status_above().
2449 *
2450 * See bdrv_co_block_status_above() for details.
2451 */
2452 static int bdrv_common_block_status_above(BlockDriverState *bs,
2453 BlockDriverState *base,
2454 bool want_zero, int64_t offset,
2455 int64_t bytes, int64_t *pnum,
2456 int64_t *map,
2457 BlockDriverState **file)
2458 {
2459 Coroutine *co;
2460 BdrvCoBlockStatusData data = {
2461 .bs = bs,
2462 .base = base,
2463 .want_zero = want_zero,
2464 .offset = offset,
2465 .bytes = bytes,
2466 .pnum = pnum,
2467 .map = map,
2468 .file = file,
2469 .done = false,
2470 };
2471
2472 if (qemu_in_coroutine()) {
2473 /* Fast-path if already in coroutine context */
2474 bdrv_block_status_above_co_entry(&data);
2475 } else {
2476 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2477 bdrv_coroutine_enter(bs, co);
2478 BDRV_POLL_WHILE(bs, !data.done);
2479 }
2480 return data.ret;
2481 }
2482
2483 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2484 int64_t offset, int64_t bytes, int64_t *pnum,
2485 int64_t *map, BlockDriverState **file)
2486 {
2487 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2488 pnum, map, file);
2489 }
2490
2491 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2492 int64_t *pnum, int64_t *map, BlockDriverState **file)
2493 {
2494 return bdrv_block_status_above(bs, backing_bs(bs),
2495 offset, bytes, pnum, map, file);
2496 }
2497
2498 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2499 int64_t bytes, int64_t *pnum)
2500 {
2501 int ret;
2502 int64_t dummy;
2503
2504 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2505 bytes, pnum ? pnum : &dummy, NULL,
2506 NULL);
2507 if (ret < 0) {
2508 return ret;
2509 }
2510 return !!(ret & BDRV_BLOCK_ALLOCATED);
2511 }
2512
2513 /*
2514 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2515 *
2516 * Return 1 if (a prefix of) the given range is allocated in any image
2517 * between BASE and TOP (BASE is only included if include_base is set).
2518 * BASE can be NULL to check if the given offset is allocated in any
2519 * image of the chain. Return 0 otherwise, or negative errno on
2520 * failure.
2521 *
2522 * 'pnum' is set to the number of bytes (including and immediately
2523 * following the specified offset) that are known to be in the same
2524 * allocated/unallocated state. Note that a subsequent call starting
2525 * at 'offset + *pnum' may return the same allocation status (in other
2526 * words, the result is not necessarily the maximum possible range);
2527 * but 'pnum' will only be 0 when end of file is reached.
2528 *
2529 */
2530 int bdrv_is_allocated_above(BlockDriverState *top,
2531 BlockDriverState *base,
2532 bool include_base, int64_t offset,
2533 int64_t bytes, int64_t *pnum)
2534 {
2535 BlockDriverState *intermediate;
2536 int ret;
2537 int64_t n = bytes;
2538
2539 assert(base || !include_base);
2540
2541 intermediate = top;
2542 while (include_base || intermediate != base) {
2543 int64_t pnum_inter;
2544 int64_t size_inter;
2545
2546 assert(intermediate);
2547 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2548 if (ret < 0) {
2549 return ret;
2550 }
2551 if (ret) {
2552 *pnum = pnum_inter;
2553 return 1;
2554 }
2555
2556 size_inter = bdrv_getlength(intermediate);
2557 if (size_inter < 0) {
2558 return size_inter;
2559 }
2560 if (n > pnum_inter &&
2561 (intermediate == top || offset + pnum_inter < size_inter)) {
2562 n = pnum_inter;
2563 }
2564
2565 if (intermediate == base) {
2566 break;
2567 }
2568
2569 intermediate = backing_bs(intermediate);
2570 }
2571
2572 *pnum = n;
2573 return 0;
2574 }
2575
2576 typedef struct BdrvVmstateCo {
2577 BlockDriverState *bs;
2578 QEMUIOVector *qiov;
2579 int64_t pos;
2580 bool is_read;
2581 int ret;
2582 } BdrvVmstateCo;
2583
2584 static int coroutine_fn
2585 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2586 bool is_read)
2587 {
2588 BlockDriver *drv = bs->drv;
2589 int ret = -ENOTSUP;
2590
2591 bdrv_inc_in_flight(bs);
2592
2593 if (!drv) {
2594 ret = -ENOMEDIUM;
2595 } else if (drv->bdrv_load_vmstate) {
2596 if (is_read) {
2597 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2598 } else {
2599 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2600 }
2601 } else if (bs->file) {
2602 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2603 }
2604
2605 bdrv_dec_in_flight(bs);
2606 return ret;
2607 }
2608
2609 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2610 {
2611 BdrvVmstateCo *co = opaque;
2612 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2613 aio_wait_kick();
2614 }
2615
2616 static inline int
2617 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2618 bool is_read)
2619 {
2620 if (qemu_in_coroutine()) {
2621 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2622 } else {
2623 BdrvVmstateCo data = {
2624 .bs = bs,
2625 .qiov = qiov,
2626 .pos = pos,
2627 .is_read = is_read,
2628 .ret = -EINPROGRESS,
2629 };
2630 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2631
2632 bdrv_coroutine_enter(bs, co);
2633 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2634 return data.ret;
2635 }
2636 }
2637
2638 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2639 int64_t pos, int size)
2640 {
2641 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2642 int ret;
2643
2644 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2645 if (ret < 0) {
2646 return ret;
2647 }
2648
2649 return size;
2650 }
2651
2652 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2653 {
2654 return bdrv_rw_vmstate(bs, qiov, pos, false);
2655 }
2656
2657 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2658 int64_t pos, int size)
2659 {
2660 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2661 int ret;
2662
2663 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2664 if (ret < 0) {
2665 return ret;
2666 }
2667
2668 return size;
2669 }
2670
2671 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2672 {
2673 return bdrv_rw_vmstate(bs, qiov, pos, true);
2674 }
2675
2676 /**************************************************************/
2677 /* async I/Os */
2678
2679 void bdrv_aio_cancel(BlockAIOCB *acb)
2680 {
2681 qemu_aio_ref(acb);
2682 bdrv_aio_cancel_async(acb);
2683 while (acb->refcnt > 1) {
2684 if (acb->aiocb_info->get_aio_context) {
2685 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2686 } else if (acb->bs) {
2687 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2688 * assert that we're not using an I/O thread. Thread-safe
2689 * code should use bdrv_aio_cancel_async exclusively.
2690 */
2691 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2692 aio_poll(bdrv_get_aio_context(acb->bs), true);
2693 } else {
2694 abort();
2695 }
2696 }
2697 qemu_aio_unref(acb);
2698 }
2699
2700 /* Async version of aio cancel. The caller is not blocked if the acb implements
2701 * cancel_async, otherwise we do nothing and let the request normally complete.
2702 * In either case the completion callback must be called. */
2703 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2704 {
2705 if (acb->aiocb_info->cancel_async) {
2706 acb->aiocb_info->cancel_async(acb);
2707 }
2708 }
2709
2710 /**************************************************************/
2711 /* Coroutine block device emulation */
2712
2713 typedef struct FlushCo {
2714 BlockDriverState *bs;
2715 int ret;
2716 } FlushCo;
2717
2718
2719 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2720 {
2721 FlushCo *rwco = opaque;
2722
2723 rwco->ret = bdrv_co_flush(rwco->bs);
2724 aio_wait_kick();
2725 }
2726
2727 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2728 {
2729 int current_gen;
2730 int ret = 0;
2731
2732 bdrv_inc_in_flight(bs);
2733
2734 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2735 bdrv_is_sg(bs)) {
2736 goto early_exit;
2737 }
2738
2739 qemu_co_mutex_lock(&bs->reqs_lock);
2740 current_gen = atomic_read(&bs->write_gen);
2741
2742 /* Wait until any previous flushes are completed */
2743 while (bs->active_flush_req) {
2744 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2745 }
2746
2747 /* Flushes reach this point in nondecreasing current_gen order. */
2748 bs->active_flush_req = true;
2749 qemu_co_mutex_unlock(&bs->reqs_lock);
2750
2751 /* Write back all layers by calling one driver function */
2752 if (bs->drv->bdrv_co_flush) {
2753 ret = bs->drv->bdrv_co_flush(bs);
2754 goto out;
2755 }
2756
2757 /* Write back cached data to the OS even with cache=unsafe */
2758 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2759 if (bs->drv->bdrv_co_flush_to_os) {
2760 ret = bs->drv->bdrv_co_flush_to_os(bs);
2761 if (ret < 0) {
2762 goto out;
2763 }
2764 }
2765
2766 /* But don't actually force it to the disk with cache=unsafe */
2767 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2768 goto flush_parent;
2769 }
2770
2771 /* Check if we really need to flush anything */
2772 if (bs->flushed_gen == current_gen) {
2773 goto flush_parent;
2774 }
2775
2776 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2777 if (!bs->drv) {
2778 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2779 * (even in case of apparent success) */
2780 ret = -ENOMEDIUM;
2781 goto out;
2782 }
2783 if (bs->drv->bdrv_co_flush_to_disk) {
2784 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2785 } else if (bs->drv->bdrv_aio_flush) {
2786 BlockAIOCB *acb;
2787 CoroutineIOCompletion co = {
2788 .coroutine = qemu_coroutine_self(),
2789 };
2790
2791 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2792 if (acb == NULL) {
2793 ret = -EIO;
2794 } else {
2795 qemu_coroutine_yield();
2796 ret = co.ret;
2797 }
2798 } else {
2799 /*
2800 * Some block drivers always operate in either writethrough or unsafe
2801 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2802 * know how the server works (because the behaviour is hardcoded or
2803 * depends on server-side configuration), so we can't ensure that
2804 * everything is safe on disk. Returning an error doesn't work because
2805 * that would break guests even if the server operates in writethrough
2806 * mode.
2807 *
2808 * Let's hope the user knows what he's doing.
2809 */
2810 ret = 0;
2811 }
2812
2813 if (ret < 0) {
2814 goto out;
2815 }
2816
2817 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2818 * in the case of cache=unsafe, so there are no useless flushes.
2819 */
2820 flush_parent:
2821 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2822 out:
2823 /* Notify any pending flushes that we have completed */
2824 if (ret == 0) {
2825 bs->flushed_gen = current_gen;
2826 }
2827
2828 qemu_co_mutex_lock(&bs->reqs_lock);
2829 bs->active_flush_req = false;
2830 /* Return value is ignored - it's ok if wait queue is empty */
2831 qemu_co_queue_next(&bs->flush_queue);
2832 qemu_co_mutex_unlock(&bs->reqs_lock);
2833
2834 early_exit:
2835 bdrv_dec_in_flight(bs);
2836 return ret;
2837 }
2838
2839 int bdrv_flush(BlockDriverState *bs)
2840 {
2841 Coroutine *co;
2842 FlushCo flush_co = {
2843 .bs = bs,
2844 .ret = NOT_DONE,
2845 };
2846
2847 if (qemu_in_coroutine()) {
2848 /* Fast-path if already in coroutine context */
2849 bdrv_flush_co_entry(&flush_co);
2850 } else {
2851 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2852 bdrv_coroutine_enter(bs, co);
2853 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2854 }
2855
2856 return flush_co.ret;
2857 }
2858
2859 typedef struct DiscardCo {
2860 BdrvChild *child;
2861 int64_t offset;
2862 int64_t bytes;
2863 int ret;
2864 } DiscardCo;
2865 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2866 {
2867 DiscardCo *rwco = opaque;
2868
2869 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2870 aio_wait_kick();
2871 }
2872
2873 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2874 int64_t bytes)
2875 {
2876 BdrvTrackedRequest req;
2877 int max_pdiscard, ret;
2878 int head, tail, align;
2879 BlockDriverState *bs = child->bs;
2880
2881 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2882 return -ENOMEDIUM;
2883 }
2884
2885 if (bdrv_has_readonly_bitmaps(bs)) {
2886 return -EPERM;
2887 }
2888
2889 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) {
2890 return -EIO;
2891 }
2892
2893 /* Do nothing if disabled. */
2894 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2895 return 0;
2896 }
2897
2898 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2899 return 0;
2900 }
2901
2902 /* Discard is advisory, but some devices track and coalesce
2903 * unaligned requests, so we must pass everything down rather than
2904 * round here. Still, most devices will just silently ignore
2905 * unaligned requests (by returning -ENOTSUP), so we must fragment
2906 * the request accordingly. */
2907 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2908 assert(align % bs->bl.request_alignment == 0);
2909 head = offset % align;
2910 tail = (offset + bytes) % align;
2911
2912 bdrv_inc_in_flight(bs);
2913 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2914
2915 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2916 if (ret < 0) {
2917 goto out;
2918 }
2919
2920 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2921 align);
2922 assert(max_pdiscard >= bs->bl.request_alignment);
2923
2924 while (bytes > 0) {
2925 int64_t num = bytes;
2926
2927 if (head) {
2928 /* Make small requests to get to alignment boundaries. */
2929 num = MIN(bytes, align - head);
2930 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2931 num %= bs->bl.request_alignment;
2932 }
2933 head = (head + num) % align;
2934 assert(num < max_pdiscard);
2935 } else if (tail) {
2936 if (num > align) {
2937 /* Shorten the request to the last aligned cluster. */
2938 num -= tail;
2939 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2940 tail > bs->bl.request_alignment) {
2941 tail %= bs->bl.request_alignment;
2942 num -= tail;
2943 }
2944 }
2945 /* limit request size */
2946 if (num > max_pdiscard) {
2947 num = max_pdiscard;
2948 }
2949
2950 if (!bs->drv) {
2951 ret = -ENOMEDIUM;
2952 goto out;
2953 }
2954 if (bs->drv->bdrv_co_pdiscard) {
2955 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2956 } else {
2957 BlockAIOCB *acb;
2958 CoroutineIOCompletion co = {
2959 .coroutine = qemu_coroutine_self(),
2960 };
2961
2962 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2963 bdrv_co_io_em_complete, &co);
2964 if (acb == NULL) {
2965 ret = -EIO;
2966 goto out;
2967 } else {
2968 qemu_coroutine_yield();
2969 ret = co.ret;
2970 }
2971 }
2972 if (ret && ret != -ENOTSUP) {
2973 goto out;
2974 }
2975
2976 offset += num;
2977 bytes -= num;
2978 }
2979 ret = 0;
2980 out:
2981 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2982 tracked_request_end(&req);
2983 bdrv_dec_in_flight(bs);
2984 return ret;
2985 }
2986
2987 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes)
2988 {
2989 Coroutine *co;
2990 DiscardCo rwco = {
2991 .child = child,
2992 .offset = offset,
2993 .bytes = bytes,
2994 .ret = NOT_DONE,
2995 };
2996
2997 if (qemu_in_coroutine()) {
2998 /* Fast-path if already in coroutine context */
2999 bdrv_pdiscard_co_entry(&rwco);
3000 } else {
3001 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
3002 bdrv_coroutine_enter(child->bs, co);
3003 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
3004 }
3005
3006 return rwco.ret;
3007 }
3008
3009 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3010 {
3011 BlockDriver *drv = bs->drv;
3012 CoroutineIOCompletion co = {
3013 .coroutine = qemu_coroutine_self(),
3014 };
3015 BlockAIOCB *acb;
3016
3017 bdrv_inc_in_flight(bs);
3018 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3019 co.ret = -ENOTSUP;
3020 goto out;
3021 }
3022
3023 if (drv->bdrv_co_ioctl) {
3024 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3025 } else {
3026 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3027 if (!acb) {
3028 co.ret = -ENOTSUP;
3029 goto out;
3030 }
3031 qemu_coroutine_yield();
3032 }
3033 out:
3034 bdrv_dec_in_flight(bs);
3035 return co.ret;
3036 }
3037
3038 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3039 {
3040 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3041 }
3042
3043 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3044 {
3045 return memset(qemu_blockalign(bs, size), 0, size);
3046 }
3047
3048 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3049 {
3050 size_t align = bdrv_opt_mem_align(bs);
3051
3052 /* Ensure that NULL is never returned on success */
3053 assert(align > 0);
3054 if (size == 0) {
3055 size = align;
3056 }
3057
3058 return qemu_try_memalign(align, size);
3059 }
3060
3061 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3062 {
3063 void *mem = qemu_try_blockalign(bs, size);
3064
3065 if (mem) {
3066 memset(mem, 0, size);
3067 }
3068
3069 return mem;
3070 }
3071
3072 /*
3073 * Check if all memory in this vector is sector aligned.
3074 */
3075 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3076 {
3077 int i;
3078 size_t alignment = bdrv_min_mem_align(bs);
3079
3080 for (i = 0; i < qiov->niov; i++) {
3081 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3082 return false;
3083 }
3084 if (qiov->iov[i].iov_len % alignment) {
3085 return false;
3086 }
3087 }
3088
3089 return true;
3090 }
3091
3092 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3093 NotifierWithReturn *notifier)
3094 {
3095 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3096 }
3097
3098 void bdrv_io_plug(BlockDriverState *bs)
3099 {
3100 BdrvChild *child;
3101
3102 QLIST_FOREACH(child, &bs->children, next) {
3103 bdrv_io_plug(child->bs);
3104 }
3105
3106 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
3107 BlockDriver *drv = bs->drv;
3108 if (drv && drv->bdrv_io_plug) {
3109 drv->bdrv_io_plug(bs);
3110 }
3111 }
3112 }
3113
3114 void bdrv_io_unplug(BlockDriverState *bs)
3115 {
3116 BdrvChild *child;
3117
3118 assert(bs->io_plugged);
3119 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
3120 BlockDriver *drv = bs->drv;
3121 if (drv && drv->bdrv_io_unplug) {
3122 drv->bdrv_io_unplug(bs);
3123 }
3124 }
3125
3126 QLIST_FOREACH(child, &bs->children, next) {
3127 bdrv_io_unplug(child->bs);
3128 }
3129 }
3130
3131 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3132 {
3133 BdrvChild *child;
3134
3135 if (bs->drv && bs->drv->bdrv_register_buf) {
3136 bs->drv->bdrv_register_buf(bs, host, size);
3137 }
3138 QLIST_FOREACH(child, &bs->children, next) {
3139 bdrv_register_buf(child->bs, host, size);
3140 }
3141 }
3142
3143 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3144 {
3145 BdrvChild *child;
3146
3147 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3148 bs->drv->bdrv_unregister_buf(bs, host);
3149 }
3150 QLIST_FOREACH(child, &bs->children, next) {
3151 bdrv_unregister_buf(child->bs, host);
3152 }
3153 }
3154
3155 static int coroutine_fn bdrv_co_copy_range_internal(
3156 BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3157 uint64_t dst_offset, uint64_t bytes,
3158 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3159 bool recurse_src)
3160 {
3161 BdrvTrackedRequest req;
3162 int ret;
3163
3164 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3165 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3166 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3167
3168 if (!dst || !dst->bs) {
3169 return -ENOMEDIUM;
3170 }
3171 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3172 if (ret) {
3173 return ret;
3174 }
3175 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3176 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3177 }
3178
3179 if (!src || !src->bs) {
3180 return -ENOMEDIUM;
3181 }
3182 ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3183 if (ret) {
3184 return ret;
3185 }
3186
3187 if (!src->bs->drv->bdrv_co_copy_range_from
3188 || !dst->bs->drv->bdrv_co_copy_range_to
3189 || src->bs->encrypted || dst->bs->encrypted) {
3190 return -ENOTSUP;
3191 }
3192
3193 if (recurse_src) {
3194 bdrv_inc_in_flight(src->bs);
3195 tracked_request_begin(&req, src->bs, src_offset, bytes,
3196 BDRV_TRACKED_READ);
3197
3198 /* BDRV_REQ_SERIALISING is only for write operation */
3199 assert(!(read_flags & BDRV_REQ_SERIALISING));
3200 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
3201 wait_serialising_requests(&req);
3202 }
3203
3204 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3205 src, src_offset,
3206 dst, dst_offset,
3207 bytes,
3208 read_flags, write_flags);
3209
3210 tracked_request_end(&req);
3211 bdrv_dec_in_flight(src->bs);
3212 } else {
3213 bdrv_inc_in_flight(dst->bs);
3214 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3215 BDRV_TRACKED_WRITE);
3216 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3217 write_flags);
3218 if (!ret) {
3219 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3220 src, src_offset,
3221 dst, dst_offset,
3222 bytes,
3223 read_flags, write_flags);
3224 }
3225 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3226 tracked_request_end(&req);
3227 bdrv_dec_in_flight(dst->bs);
3228 }
3229
3230 return ret;
3231 }
3232
3233 /* Copy range from @src to @dst.
3234 *
3235 * See the comment of bdrv_co_copy_range for the parameter and return value
3236 * semantics. */
3237 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3238 BdrvChild *dst, uint64_t dst_offset,
3239 uint64_t bytes,
3240 BdrvRequestFlags read_flags,
3241 BdrvRequestFlags write_flags)
3242 {
3243 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3244 read_flags, write_flags);
3245 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3246 bytes, read_flags, write_flags, true);
3247 }
3248
3249 /* Copy range from @src to @dst.
3250 *
3251 * See the comment of bdrv_co_copy_range for the parameter and return value
3252 * semantics. */
3253 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3254 BdrvChild *dst, uint64_t dst_offset,
3255 uint64_t bytes,
3256 BdrvRequestFlags read_flags,
3257 BdrvRequestFlags write_flags)
3258 {
3259 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3260 read_flags, write_flags);
3261 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3262 bytes, read_flags, write_flags, false);
3263 }
3264
3265 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3266 BdrvChild *dst, uint64_t dst_offset,
3267 uint64_t bytes, BdrvRequestFlags read_flags,
3268 BdrvRequestFlags write_flags)
3269 {
3270 return bdrv_co_copy_range_from(src, src_offset,
3271 dst, dst_offset,
3272 bytes, read_flags, write_flags);
3273 }
3274
3275 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3276 {
3277 BdrvChild *c;
3278 QLIST_FOREACH(c, &bs->parents, next_parent) {
3279 if (c->role->resize) {
3280 c->role->resize(c);
3281 }
3282 }
3283 }
3284
3285 /**
3286 * Truncate file to 'offset' bytes (needed only for file protocols)
3287 */
3288 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3289 PreallocMode prealloc, Error **errp)
3290 {
3291 BlockDriverState *bs = child->bs;
3292 BlockDriver *drv = bs->drv;
3293 BdrvTrackedRequest req;
3294 int64_t old_size, new_bytes;
3295 int ret;
3296
3297
3298 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3299 if (!drv) {
3300 error_setg(errp, "No medium inserted");
3301 return -ENOMEDIUM;
3302 }
3303 if (offset < 0) {
3304 error_setg(errp, "Image size cannot be negative");
3305 return -EINVAL;
3306 }
3307
3308 old_size = bdrv_getlength(bs);
3309 if (old_size < 0) {
3310 error_setg_errno(errp, -old_size, "Failed to get old image size");
3311 return old_size;
3312 }
3313
3314 if (offset > old_size) {
3315 new_bytes = offset - old_size;
3316 } else {
3317 new_bytes = 0;
3318 }
3319
3320 bdrv_inc_in_flight(bs);
3321 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3322 BDRV_TRACKED_TRUNCATE);
3323
3324 /* If we are growing the image and potentially using preallocation for the
3325 * new area, we need to make sure that no write requests are made to it
3326 * concurrently or they might be overwritten by preallocation. */
3327 if (new_bytes) {
3328 mark_request_serialising(&req, 1);
3329 }
3330 if (bs->read_only) {
3331 error_setg(errp, "Image is read-only");
3332 ret = -EACCES;
3333 goto out;
3334 }
3335 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3336 0);
3337 if (ret < 0) {
3338 error_setg_errno(errp, -ret,
3339 "Failed to prepare request for truncation");
3340 goto out;
3341 }
3342
3343 if (!drv->bdrv_co_truncate) {
3344 if (bs->file && drv->is_filter) {
3345 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3346 goto out;
3347 }
3348 error_setg(errp, "Image format driver does not support resize");
3349 ret = -ENOTSUP;
3350 goto out;
3351 }
3352
3353 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3354 if (ret < 0) {
3355 goto out;
3356 }
3357 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3358 if (ret < 0) {
3359 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3360 } else {
3361 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3362 }
3363 /* It's possible that truncation succeeded but refresh_total_sectors
3364 * failed, but the latter doesn't affect how we should finish the request.
3365 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3366 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3367
3368 out:
3369 tracked_request_end(&req);
3370 bdrv_dec_in_flight(bs);
3371
3372 return ret;
3373 }
3374
3375 typedef struct TruncateCo {
3376 BdrvChild *child;
3377 int64_t offset;
3378 PreallocMode prealloc;
3379 Error **errp;
3380 int ret;
3381 } TruncateCo;
3382
3383 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3384 {
3385 TruncateCo *tco = opaque;
3386 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3387 tco->errp);
3388 aio_wait_kick();
3389 }
3390
3391 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3392 Error **errp)
3393 {
3394 Coroutine *co;
3395 TruncateCo tco = {
3396 .child = child,
3397 .offset = offset,
3398 .prealloc = prealloc,
3399 .errp = errp,
3400 .ret = NOT_DONE,
3401 };
3402
3403 if (qemu_in_coroutine()) {
3404 /* Fast-path if already in coroutine context */
3405 bdrv_truncate_co_entry(&tco);
3406 } else {
3407 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3408 bdrv_coroutine_enter(child->bs, co);
3409 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3410 }
3411
3412 return tco.ret;
3413 }