]> git.ipfire.org Git - people/ms/u-boot.git/blob - board/freescale/corenet_ds/eth_superhydra.c
ARM: Kconfig: Move TI_SECURE_DEVICE to a common area
[people/ms/u-boot.git] / board / freescale / corenet_ds / eth_superhydra.c
1 /*
2 * Copyright 2009-2011 Freescale Semiconductor, Inc.
3 * Author: Srikanth Srinivasan <srikanth.srinivasan@freescale.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*
9 * This file handles the board muxing between the Fman Ethernet MACs and
10 * the RGMII/SGMII/XGMII PHYs on a Freescale P5040 "Super Hydra" reference
11 * board. The RGMII PHYs are the two on-board 1Gb ports. The SGMII PHYs are
12 * provided by the standard Freescale four-port SGMII riser card. The 10Gb
13 * XGMII PHYs are provided via the XAUI riser card. The P5040 has 2 FMans
14 * and 5 1G interfaces and 10G interface per FMan. Based on the options in
15 * the RCW, we could have upto 3 SGMII cards and 1 XAUI card at a time.
16 *
17 * Muxing is handled via the PIXIS BRDCFG1 register. The EMI1 bits control
18 * muxing among the RGMII PHYs and the SGMII PHYs. The value for RGMII is
19 * always the same (0). The value for SGMII depends on which slot the riser is
20 * inserted in. The EMI2 bits control muxing for the the XGMII. Like SGMII,
21 * the value is based on which slot the XAUI is inserted in.
22 *
23 * The SERDES configuration is used to determine where the SGMII and XAUI cards
24 * exist, and also which Fman's MACs are routed to which PHYs. So for a given
25 * Fman MAC, there is one and only PHY it connects to. MACs cannot be routed
26 * to PHYs dynamically.
27 *
28 *
29 * This file also updates the device tree in three ways:
30 *
31 * 1) The status of each virtual MDIO node that is referenced by an Ethernet
32 * node is set to "okay".
33 *
34 * 2) The phy-handle property of each active Ethernet MAC node is set to the
35 * appropriate PHY node.
36 *
37 * 3) The "mux value" for each virtual MDIO node is set to the correct value,
38 * if necessary. Some virtual MDIO nodes do not have configurable mux
39 * values, so those values are hard-coded in the DTS. On the HYDRA board,
40 * the virtual MDIO node for the SGMII card needs to be updated.
41 *
42 * For all this to work, the device tree needs to have the following:
43 *
44 * 1) An alias for each PHY node that an Ethernet node could be routed to.
45 *
46 * 2) An alias for each real and virtual MDIO node that is disabled by default
47 * and might need to be enabled, and also might need to have its mux-value
48 * updated.
49 */
50
51 #include <common.h>
52 #include <netdev.h>
53 #include <asm/fsl_serdes.h>
54 #include <fm_eth.h>
55 #include <fsl_mdio.h>
56 #include <malloc.h>
57 #include <fdt_support.h>
58 #include <fsl_dtsec.h>
59
60 #include "../common/ngpixis.h"
61 #include "../common/fman.h"
62
63 #ifdef CONFIG_FMAN_ENET
64
65 #define BRDCFG1_EMI1_SEL_MASK 0x70
66 #define BRDCFG1_EMI1_SEL_SLOT1 0x10
67 #define BRDCFG1_EMI1_SEL_SLOT2 0x20
68 #define BRDCFG1_EMI1_SEL_SLOT5 0x30
69 #define BRDCFG1_EMI1_SEL_SLOT6 0x40
70 #define BRDCFG1_EMI1_SEL_SLOT7 0x50
71 #define BRDCFG1_EMI1_SEL_SLOT3 0x60
72 #define BRDCFG1_EMI1_SEL_RGMII 0x00
73 #define BRDCFG1_EMI1_EN 0x08
74 #define BRDCFG1_EMI2_SEL_MASK 0x06
75 #define BRDCFG1_EMI2_SEL_SLOT1 0x00
76 #define BRDCFG1_EMI2_SEL_SLOT2 0x02
77
78 #define BRDCFG2_REG_GPIO_SEL 0x20
79
80 /* SGMII */
81 #define PHY_BASE_ADDR 0x00
82 #define REGNUM 0x00
83 #define PORT_NUM_FM1 0x04
84 #define PORT_NUM_FM2 0x02
85
86 /*
87 * BRDCFG1 mask and value for each MAC
88 *
89 * This array contains the BRDCFG1 values (in mask/val format) that route the
90 * MDIO bus to a particular RGMII or SGMII PHY.
91 */
92 static struct {
93 u8 mask;
94 u8 val;
95 } mdio_mux[NUM_FM_PORTS];
96
97 /*
98 * Mapping of all 18 SERDES lanes to board slots. A value of '0' here means
99 * that the mapping must be determined dynamically, or that the lane maps to
100 * something other than a board slot
101 */
102 static u8 lane_to_slot[] = {
103 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0
104 };
105
106 /*
107 * Set the board muxing for a given MAC
108 *
109 * The MDIO layer calls this function every time it wants to talk to a PHY.
110 */
111 void super_hydra_mux_mdio(u8 mask, u8 val)
112 {
113 clrsetbits_8(&pixis->brdcfg1, mask, val);
114 }
115
116 struct super_hydra_mdio {
117 u8 mask;
118 u8 val;
119 struct mii_dev *realbus;
120 };
121
122 static int super_hydra_mdio_read(struct mii_dev *bus, int addr, int devad,
123 int regnum)
124 {
125 struct super_hydra_mdio *priv = bus->priv;
126
127 super_hydra_mux_mdio(priv->mask, priv->val);
128
129 return priv->realbus->read(priv->realbus, addr, devad, regnum);
130 }
131
132 static int super_hydra_mdio_write(struct mii_dev *bus, int addr, int devad,
133 int regnum, u16 value)
134 {
135 struct super_hydra_mdio *priv = bus->priv;
136
137 super_hydra_mux_mdio(priv->mask, priv->val);
138
139 return priv->realbus->write(priv->realbus, addr, devad, regnum, value);
140 }
141
142 static int super_hydra_mdio_reset(struct mii_dev *bus)
143 {
144 struct super_hydra_mdio *priv = bus->priv;
145
146 return priv->realbus->reset(priv->realbus);
147 }
148
149 static void super_hydra_mdio_set_mux(char *name, u8 mask, u8 val)
150 {
151 struct mii_dev *bus = miiphy_get_dev_by_name(name);
152 struct super_hydra_mdio *priv = bus->priv;
153
154 priv->mask = mask;
155 priv->val = val;
156 }
157
158 static int super_hydra_mdio_init(char *realbusname, char *fakebusname)
159 {
160 struct super_hydra_mdio *hmdio;
161 struct mii_dev *bus = mdio_alloc();
162
163 if (!bus) {
164 printf("Failed to allocate Hydra MDIO bus\n");
165 return -1;
166 }
167
168 hmdio = malloc(sizeof(*hmdio));
169 if (!hmdio) {
170 printf("Failed to allocate Hydra private data\n");
171 free(bus);
172 return -1;
173 }
174
175 bus->read = super_hydra_mdio_read;
176 bus->write = super_hydra_mdio_write;
177 bus->reset = super_hydra_mdio_reset;
178 strcpy(bus->name, fakebusname);
179
180 hmdio->realbus = miiphy_get_dev_by_name(realbusname);
181
182 if (!hmdio->realbus) {
183 printf("No bus with name %s\n", realbusname);
184 free(bus);
185 free(hmdio);
186 return -1;
187 }
188
189 bus->priv = hmdio;
190
191 return mdio_register(bus);
192 }
193
194 /*
195 * Given the following ...
196 *
197 * 1) A pointer to an Fman Ethernet node (as identified by the 'compat'
198 * compatible string and 'addr' physical address)
199 *
200 * 2) An Fman port
201 *
202 * ... update the phy-handle property of the Ethernet node to point to the
203 * right PHY. This assumes that we already know the PHY for each port. That
204 * information is stored in mdio_mux[].
205 *
206 * The offset of the Fman Ethernet node is also passed in for convenience, but
207 * it is not used.
208 *
209 * Note that what we call "Fman ports" (enum fm_port) is really an Fman MAC.
210 * Inside the Fman, "ports" are things that connect to MACs. We only call them
211 * ports in U-Boot because on previous Ethernet devices (e.g. Gianfar), MACs
212 * and ports are the same thing.
213 */
214 void board_ft_fman_fixup_port(void *fdt, char *compat, phys_addr_t addr,
215 enum fm_port port, int offset)
216 {
217 enum srds_prtcl device;
218 int lane, slot, phy;
219 char alias[32];
220
221 /* RGMII and XGMII are already mapped correctly in the DTS */
222
223 if (fm_info_get_enet_if(port) == PHY_INTERFACE_MODE_SGMII) {
224 device = serdes_device_from_fm_port(port);
225 lane = serdes_get_first_lane(device);
226 slot = lane_to_slot[lane];
227 phy = fm_info_get_phy_address(port);
228
229 sprintf(alias, "phy_sgmii_slot%u_%x", slot, phy);
230 fdt_set_phy_handle(fdt, compat, addr, alias);
231 }
232 }
233
234 #define PIXIS_SW2_LANE_23_SEL 0x80
235 #define PIXIS_SW2_LANE_45_SEL 0x40
236 #define PIXIS_SW2_LANE_67_SEL_MASK 0x30
237 #define PIXIS_SW2_LANE_67_SEL_5 0x00
238 #define PIXIS_SW2_LANE_67_SEL_6 0x20
239 #define PIXIS_SW2_LANE_67_SEL_7 0x10
240 #define PIXIS_SW2_LANE_8_SEL 0x08
241 #define PIXIS_SW2_LANE_1617_SEL 0x04
242 #define PIXIS_SW11_LANE_9_SEL 0x04
243 /*
244 * Initialize the lane_to_slot[] array.
245 *
246 * On the P4080DS "Expedition" board, the mapping of SERDES lanes to board
247 * slots is hard-coded. On the Hydra board, however, the mapping is controlled
248 * by board switch SW2, so the lane_to_slot[] array needs to be dynamically
249 * initialized.
250 */
251 static void initialize_lane_to_slot(void)
252 {
253 u8 sw2 = in_8(&PIXIS_SW(2));
254 /* SW11 appears in the programming model as SW9 */
255 u8 sw11 = in_8(&PIXIS_SW(9));
256
257 lane_to_slot[2] = (sw2 & PIXIS_SW2_LANE_23_SEL) ? 7 : 4;
258 lane_to_slot[3] = lane_to_slot[2];
259
260 lane_to_slot[4] = (sw2 & PIXIS_SW2_LANE_45_SEL) ? 7 : 6;
261 lane_to_slot[5] = lane_to_slot[4];
262
263 switch (sw2 & PIXIS_SW2_LANE_67_SEL_MASK) {
264 case PIXIS_SW2_LANE_67_SEL_5:
265 lane_to_slot[6] = 5;
266 break;
267 case PIXIS_SW2_LANE_67_SEL_6:
268 lane_to_slot[6] = 6;
269 break;
270 case PIXIS_SW2_LANE_67_SEL_7:
271 lane_to_slot[6] = 7;
272 break;
273 }
274 lane_to_slot[7] = lane_to_slot[6];
275
276 lane_to_slot[8] = (sw2 & PIXIS_SW2_LANE_8_SEL) ? 3 : 0;
277 lane_to_slot[9] = (sw11 & PIXIS_SW11_LANE_9_SEL) ? 0 : 3;
278
279 lane_to_slot[16] = (sw2 & PIXIS_SW2_LANE_1617_SEL) ? 1 : 0;
280 lane_to_slot[17] = lane_to_slot[16];
281 }
282
283 #endif /* #ifdef CONFIG_FMAN_ENET */
284
285 /*
286 * Configure the status for the virtual MDIO nodes
287 *
288 * Rather than create the virtual MDIO nodes from scratch for each active
289 * virtual MDIO, we expect the DTS to have the nodes defined already, and we
290 * only enable the ones that are actually active.
291 *
292 * We assume that the DTS already hard-codes the status for all the
293 * virtual MDIO nodes to "disabled", so all we need to do is enable the
294 * active ones.
295 */
296 void fdt_fixup_board_enet(void *fdt)
297 {
298 #ifdef CONFIG_FMAN_ENET
299 enum fm_port i;
300 int lane, slot;
301
302 for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
303 int idx = i - FM1_DTSEC1;
304
305 switch (fm_info_get_enet_if(i)) {
306 case PHY_INTERFACE_MODE_SGMII:
307 lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
308 if (lane >= 0) {
309 char alias[32];
310
311 slot = lane_to_slot[lane];
312 sprintf(alias, "hydra_sg_slot%u", slot);
313 fdt_status_okay_by_alias(fdt, alias);
314 debug("Enabled MDIO node %s (slot %i)\n",
315 alias, slot);
316 }
317 break;
318 case PHY_INTERFACE_MODE_RGMII:
319 fdt_status_okay_by_alias(fdt, "hydra_rg");
320 debug("Enabled MDIO node hydra_rg\n");
321 break;
322 default:
323 break;
324 }
325 }
326
327 lane = serdes_get_first_lane(XAUI_FM1);
328 if (lane >= 0) {
329 char alias[32];
330
331 slot = lane_to_slot[lane];
332 sprintf(alias, "hydra_xg_slot%u", slot);
333 fdt_status_okay_by_alias(fdt, alias);
334 debug("Enabled MDIO node %s (slot %i)\n", alias, slot);
335 }
336
337 #if CONFIG_SYS_NUM_FMAN == 2
338 for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) {
339 int idx = i - FM2_DTSEC1;
340
341 switch (fm_info_get_enet_if(i)) {
342 case PHY_INTERFACE_MODE_SGMII:
343 lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx);
344 if (lane >= 0) {
345 char alias[32];
346
347 slot = lane_to_slot[lane];
348 sprintf(alias, "hydra_sg_slot%u", slot);
349 fdt_status_okay_by_alias(fdt, alias);
350 debug("Enabled MDIO node %s (slot %i)\n",
351 alias, slot);
352 }
353 break;
354 case PHY_INTERFACE_MODE_RGMII:
355 fdt_status_okay_by_alias(fdt, "hydra_rg");
356 debug("Enabled MDIO node hydra_rg\n");
357 break;
358 default:
359 break;
360 }
361 }
362
363 lane = serdes_get_first_lane(XAUI_FM2);
364 if (lane >= 0) {
365 char alias[32];
366
367 slot = lane_to_slot[lane];
368 sprintf(alias, "hydra_xg_slot%u", slot);
369 fdt_status_okay_by_alias(fdt, alias);
370 debug("Enabled MDIO node %s (slot %i)\n", alias, slot);
371 }
372 #endif /* CONFIG_SYS_NUM_FMAN == 2 */
373 #endif /* CONFIG_FMAN_ENET */
374 }
375
376 /*
377 * Mapping of SerDes Protocol to MDIO MUX value and PHY address.
378 *
379 * Fman 1:
380 * DTSEC1 | DTSEC2 | DTSEC3 | DTSEC4
381 * Mux Phy | Mux Phy | Mux Phy | Mux Phy
382 * Value Addr | Value Addr | Value Addr | Value Addr
383 * 0x00 2 1c | 2 1d | 2 1e | 2 1f
384 * 0x01 | | 6 1c |
385 * 0x02 | | 3 1c | 3 1d
386 * 0x03 2 1c | 2 1d | 2 1e | 2 1f
387 * 0x04 2 1c | 2 1d | 2 1e | 2 1f
388 * 0x05 | | 3 1c | 3 1d
389 * 0x06 2 1c | 2 1d | 2 1e | 2 1f
390 * 0x07 | | 6 1c |
391 * 0x11 2 1c | 2 1d | 2 1e | 2 1f
392 * 0x2a 2 | | 2 1e | 2 1f
393 * 0x34 6 1c | 6 1d | 4 1e | 4 1f
394 * 0x35 | | 3 1c | 3 1d
395 * 0x36 6 1c | 6 1d | 4 1e | 4 1f
396 * | | |
397 * Fman 2: | | |
398 * DTSEC1 | DTSEC2 | DTSEC3 | DTSEC4
399 * EMI1 | EMI1 | EMI1 | EMI1
400 * Mux Phy | Mux Phy | Mux Phy | Mux Phy
401 * Value Addr | Value Addr | Value Addr | Value Addr
402 * 0x00 | | 6 1c | 6 1d
403 * 0x01 | | |
404 * 0x02 | | 6 1c | 6 1d
405 * 0x03 3 1c | 3 1d | 6 1c | 6 1d
406 * 0x04 3 1c | 3 1d | 6 1c | 6 1d
407 * 0x05 | | 6 1c | 6 1d
408 * 0x06 | | 6 1c | 6 1d
409 * 0x07 | | |
410 * 0x11 | | |
411 * 0x2a | | |
412 * 0x34 | | |
413 * 0x35 | | |
414 * 0x36 | | |
415 */
416
417 int board_eth_init(bd_t *bis)
418 {
419 #ifdef CONFIG_FMAN_ENET
420 struct fsl_pq_mdio_info dtsec_mdio_info;
421 struct tgec_mdio_info tgec_mdio_info;
422 unsigned int i, slot;
423 int lane;
424 struct mii_dev *bus;
425 int qsgmii;
426 int phy_real_addr;
427 ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
428 int srds_prtcl = (in_be32(&gur->rcwsr[4]) &
429 FSL_CORENET_RCWSR4_SRDS_PRTCL) >> 26;
430
431 printf("Initializing Fman\n");
432
433 initialize_lane_to_slot();
434
435 /* We want to use the PIXIS to configure MUX routing, not GPIOs. */
436 setbits_8(&pixis->brdcfg2, BRDCFG2_REG_GPIO_SEL);
437
438 memset(mdio_mux, 0, sizeof(mdio_mux));
439
440 dtsec_mdio_info.regs =
441 (struct tsec_mii_mng *)CONFIG_SYS_FM1_DTSEC1_MDIO_ADDR;
442 dtsec_mdio_info.name = DEFAULT_FM_MDIO_NAME;
443
444 /* Register the real 1G MDIO bus */
445 fsl_pq_mdio_init(bis, &dtsec_mdio_info);
446
447 tgec_mdio_info.regs =
448 (struct tgec_mdio_controller *)CONFIG_SYS_FM1_TGEC_MDIO_ADDR;
449 tgec_mdio_info.name = DEFAULT_FM_TGEC_MDIO_NAME;
450
451 /* Register the real 10G MDIO bus */
452 fm_tgec_mdio_init(bis, &tgec_mdio_info);
453
454 /* Register the three virtual MDIO front-ends */
455 super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
456 "SUPER_HYDRA_RGMII_MDIO");
457 super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
458 "SUPER_HYDRA_FM1_SGMII_MDIO");
459 super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
460 "SUPER_HYDRA_FM2_SGMII_MDIO");
461 super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
462 "SUPER_HYDRA_FM3_SGMII_MDIO");
463 super_hydra_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME,
464 "SUPER_HYDRA_FM1_TGEC_MDIO");
465 super_hydra_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME,
466 "SUPER_HYDRA_FM2_TGEC_MDIO");
467
468 /*
469 * Program the DTSEC PHY addresses assuming that they are all SGMII.
470 * For any DTSEC that's RGMII, we'll override its PHY address later.
471 * We assume that DTSEC5 is only used for RGMII.
472 */
473 fm_info_set_phy_address(FM1_DTSEC1, CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
474 fm_info_set_phy_address(FM1_DTSEC2, CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
475 fm_info_set_phy_address(FM1_10GEC1, CONFIG_SYS_FM2_10GEC1_PHY_ADDR);
476
477 #if (CONFIG_SYS_NUM_FMAN == 2)
478 fm_info_set_phy_address(FM2_DTSEC1, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR);
479 fm_info_set_phy_address(FM2_DTSEC2, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR);
480 fm_info_set_phy_address(FM2_DTSEC3, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR);
481 fm_info_set_phy_address(FM2_DTSEC4, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR);
482 fm_info_set_phy_address(FM2_10GEC1, CONFIG_SYS_FM1_10GEC1_PHY_ADDR);
483 #endif
484
485 switch (srds_prtcl) {
486 case 0:
487 case 3:
488 case 4:
489 case 6:
490 case 0x11:
491 case 0x2a:
492 case 0x34:
493 case 0x36:
494 fm_info_set_phy_address(FM1_DTSEC3,
495 CONFIG_SYS_FM1_DTSEC3_PHY_ADDR);
496 fm_info_set_phy_address(FM1_DTSEC4,
497 CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);
498 break;
499 case 1:
500 case 2:
501 case 5:
502 case 7:
503 case 0x35:
504 fm_info_set_phy_address(FM1_DTSEC3,
505 CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
506 fm_info_set_phy_address(FM1_DTSEC4,
507 CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
508 break;
509 default:
510 printf("Fman: Unsupport SerDes Protocol 0x%02x\n", srds_prtcl);
511 break;
512 }
513
514 for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
515 int idx = i - FM1_DTSEC1;
516
517 switch (fm_info_get_enet_if(i)) {
518 case PHY_INTERFACE_MODE_SGMII:
519 lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
520 if (lane < 0)
521 break;
522 slot = lane_to_slot[lane];
523 mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
524 debug("FM1@DTSEC%u expects SGMII in slot %u\n",
525 idx + 1, slot);
526 switch (slot) {
527 case 1:
528 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 |
529 BRDCFG1_EMI1_EN;
530 break;
531 case 2:
532 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 |
533 BRDCFG1_EMI1_EN;
534 break;
535 case 3:
536 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT3 |
537 BRDCFG1_EMI1_EN;
538 break;
539 case 5:
540 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 |
541 BRDCFG1_EMI1_EN;
542 break;
543 case 6:
544 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 |
545 BRDCFG1_EMI1_EN;
546 break;
547 case 7:
548 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 |
549 BRDCFG1_EMI1_EN;
550 break;
551 };
552
553 super_hydra_mdio_set_mux("SUPER_HYDRA_FM1_SGMII_MDIO",
554 mdio_mux[i].mask, mdio_mux[i].val);
555 fm_info_set_mdio(i,
556 miiphy_get_dev_by_name("SUPER_HYDRA_FM1_SGMII_MDIO"));
557 break;
558 case PHY_INTERFACE_MODE_RGMII:
559 /*
560 * FM1 DTSEC5 is routed via EC1 to the first on-board
561 * RGMII port. FM2 DTSEC5 is routed via EC2 to the
562 * second on-board RGMII port. The other DTSECs cannot
563 * be routed to RGMII.
564 */
565 debug("FM1@DTSEC%u is RGMII at address %u\n",
566 idx + 1, 0);
567 fm_info_set_phy_address(i, 0);
568 mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
569 mdio_mux[i].val = BRDCFG1_EMI1_SEL_RGMII |
570 BRDCFG1_EMI1_EN;
571 super_hydra_mdio_set_mux("SUPER_HYDRA_RGMII_MDIO",
572 mdio_mux[i].mask, mdio_mux[i].val);
573 fm_info_set_mdio(i,
574 miiphy_get_dev_by_name("SUPER_HYDRA_RGMII_MDIO"));
575 break;
576 case PHY_INTERFACE_MODE_NONE:
577 fm_info_set_phy_address(i, 0);
578 break;
579 default:
580 printf("Fman1: DTSEC%u set to unknown interface %i\n",
581 idx + 1, fm_info_get_enet_if(i));
582 fm_info_set_phy_address(i, 0);
583 break;
584 }
585 }
586
587 bus = miiphy_get_dev_by_name("SUPER_HYDRA_FM1_SGMII_MDIO");
588 qsgmii = is_qsgmii_riser_card(bus, PHY_BASE_ADDR, PORT_NUM_FM1, REGNUM);
589
590 if (qsgmii) {
591 for (i = FM1_DTSEC1; i < FM1_DTSEC1 + PORT_NUM_FM1; i++) {
592 if (fm_info_get_enet_if(i) ==
593 PHY_INTERFACE_MODE_SGMII) {
594 phy_real_addr = PHY_BASE_ADDR + i - FM1_DTSEC1;
595 fm_info_set_phy_address(i, phy_real_addr);
596 }
597 }
598 switch (srds_prtcl) {
599 case 0x00:
600 case 0x03:
601 case 0x04:
602 case 0x06:
603 case 0x11:
604 case 0x2a:
605 case 0x34:
606 case 0x36:
607 fm_info_set_phy_address(FM1_DTSEC3, PHY_BASE_ADDR + 2);
608 fm_info_set_phy_address(FM1_DTSEC4, PHY_BASE_ADDR + 3);
609 break;
610 case 0x01:
611 case 0x02:
612 case 0x05:
613 case 0x07:
614 case 0x35:
615 fm_info_set_phy_address(FM1_DTSEC3, PHY_BASE_ADDR + 0);
616 fm_info_set_phy_address(FM1_DTSEC4, PHY_BASE_ADDR + 1);
617 break;
618 default:
619 break;
620 }
621 }
622
623 /*
624 * For 10G, we only support one XAUI card per Fman. If present, then we
625 * force its routing and never touch those bits again, which removes the
626 * need for Linux to do any muxing. This works because of the way
627 * BRDCFG1 is defined, but it's a bit hackish.
628 *
629 * The PHY address for the XAUI card depends on which slot it's in. The
630 * macros we use imply that the PHY address is based on which FM, but
631 * that's not true. On the P4080DS, FM1 could only use XAUI in slot 5,
632 * and FM2 could only use a XAUI in slot 4. On the Hydra board, we
633 * check the actual slot and just use the macros as-is, even though
634 * the P3041 and P5020 only have one Fman.
635 */
636 lane = serdes_get_first_lane(XAUI_FM1);
637 if (lane >= 0) {
638 debug("FM1@TGEC1 expects XAUI in slot %u\n", lane_to_slot[lane]);
639 mdio_mux[i].mask = BRDCFG1_EMI2_SEL_MASK;
640 mdio_mux[i].val = BRDCFG1_EMI2_SEL_SLOT2;
641 super_hydra_mdio_set_mux("SUPER_HYDRA_FM1_TGEC_MDIO",
642 mdio_mux[i].mask, mdio_mux[i].val);
643 }
644
645 fm_info_set_mdio(FM1_10GEC1,
646 miiphy_get_dev_by_name("SUPER_HYDRA_FM1_TGEC_MDIO"));
647
648 #if (CONFIG_SYS_NUM_FMAN == 2)
649 for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) {
650 int idx = i - FM2_DTSEC1;
651
652 switch (fm_info_get_enet_if(i)) {
653 case PHY_INTERFACE_MODE_SGMII:
654 lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx);
655 if (lane < 0)
656 break;
657 slot = lane_to_slot[lane];
658 mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
659 debug("FM2@DTSEC%u expects SGMII in slot %u\n",
660 idx + 1, slot);
661 switch (slot) {
662 case 1:
663 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 |
664 BRDCFG1_EMI1_EN;
665 break;
666 case 2:
667 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 |
668 BRDCFG1_EMI1_EN;
669 break;
670 case 3:
671 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT3 |
672 BRDCFG1_EMI1_EN;
673 break;
674 case 5:
675 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 |
676 BRDCFG1_EMI1_EN;
677 break;
678 case 6:
679 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 |
680 BRDCFG1_EMI1_EN;
681 break;
682 case 7:
683 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 |
684 BRDCFG1_EMI1_EN;
685 break;
686 };
687
688 if (i == FM2_DTSEC1 || i == FM2_DTSEC2) {
689 super_hydra_mdio_set_mux(
690 "SUPER_HYDRA_FM3_SGMII_MDIO",
691 mdio_mux[i].mask,
692 mdio_mux[i].val);
693 fm_info_set_mdio(i, miiphy_get_dev_by_name(
694 "SUPER_HYDRA_FM3_SGMII_MDIO"));
695 } else {
696 super_hydra_mdio_set_mux(
697 "SUPER_HYDRA_FM2_SGMII_MDIO",
698 mdio_mux[i].mask,
699 mdio_mux[i].val);
700 fm_info_set_mdio(i, miiphy_get_dev_by_name(
701 "SUPER_HYDRA_FM2_SGMII_MDIO"));
702 }
703
704 break;
705 case PHY_INTERFACE_MODE_RGMII:
706 /*
707 * FM1 DTSEC5 is routed via EC1 to the first on-board
708 * RGMII port. FM2 DTSEC5 is routed via EC2 to the
709 * second on-board RGMII port. The other DTSECs cannot
710 * be routed to RGMII.
711 */
712 debug("FM2@DTSEC%u is RGMII at address %u\n",
713 idx + 1, 1);
714 fm_info_set_phy_address(i, 1);
715 mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
716 mdio_mux[i].val = BRDCFG1_EMI1_SEL_RGMII |
717 BRDCFG1_EMI1_EN;
718 super_hydra_mdio_set_mux("SUPER_HYDRA_RGMII_MDIO",
719 mdio_mux[i].mask, mdio_mux[i].val);
720 fm_info_set_mdio(i,
721 miiphy_get_dev_by_name("SUPER_HYDRA_RGMII_MDIO"));
722 break;
723 case PHY_INTERFACE_MODE_NONE:
724 fm_info_set_phy_address(i, 0);
725 break;
726 default:
727 printf("Fman2: DTSEC%u set to unknown interface %i\n",
728 idx + 1, fm_info_get_enet_if(i));
729 fm_info_set_phy_address(i, 0);
730 break;
731 }
732 }
733
734 bus = miiphy_get_dev_by_name("SUPER_HYDRA_FM2_SGMII_MDIO");
735 set_sgmii_phy(bus, FM2_DTSEC3, PORT_NUM_FM2, PHY_BASE_ADDR);
736 bus = miiphy_get_dev_by_name("SUPER_HYDRA_FM3_SGMII_MDIO");
737 set_sgmii_phy(bus, FM2_DTSEC1, PORT_NUM_FM2, PHY_BASE_ADDR);
738
739 /*
740 * For 10G, we only support one XAUI card per Fman. If present, then we
741 * force its routing and never touch those bits again, which removes the
742 * need for Linux to do any muxing. This works because of the way
743 * BRDCFG1 is defined, but it's a bit hackish.
744 *
745 * The PHY address for the XAUI card depends on which slot it's in. The
746 * macros we use imply that the PHY address is based on which FM, but
747 * that's not true. On the P4080DS, FM1 could only use XAUI in slot 5,
748 * and FM2 could only use a XAUI in slot 4. On the Hydra board, we
749 * check the actual slot and just use the macros as-is, even though
750 * the P3041 and P5020 only have one Fman.
751 */
752 lane = serdes_get_first_lane(XAUI_FM2);
753 if (lane >= 0) {
754 debug("FM2@TGEC1 expects XAUI in slot %u\n", lane_to_slot[lane]);
755 mdio_mux[i].mask = BRDCFG1_EMI2_SEL_MASK;
756 mdio_mux[i].val = BRDCFG1_EMI2_SEL_SLOT1;
757 super_hydra_mdio_set_mux("SUPER_HYDRA_FM2_TGEC_MDIO",
758 mdio_mux[i].mask, mdio_mux[i].val);
759 }
760
761 fm_info_set_mdio(FM2_10GEC1,
762 miiphy_get_dev_by_name("SUPER_HYDRA_FM2_TGEC_MDIO"));
763
764 #endif
765
766 cpu_eth_init(bis);
767 #endif
768
769 return pci_eth_init(bis);
770 }