]> git.ipfire.org Git - thirdparty/u-boot.git/blob - board/synopsys/hsdk/hsdk.c
arc: Remove common.h usage
[thirdparty/u-boot.git] / board / synopsys / hsdk / hsdk.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Synopsys, Inc. All rights reserved.
4 * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
5 */
6
7 #include <command.h>
8 #include <config.h>
9 #include <cpu_func.h>
10 #include <env.h>
11 #include <image.h>
12 #include <init.h>
13 #include <irq_func.h>
14 #include <log.h>
15 #include <asm/cache.h>
16 #include <asm/global_data.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/printk.h>
20 #include <linux/kernel.h>
21 #include <linux/io.h>
22 #include <asm/arcregs.h>
23 #include <fdt_support.h>
24 #include <dwmmc.h>
25 #include <malloc.h>
26 #include <usb.h>
27
28 #include "clk-lib.h"
29 #include "env-lib.h"
30
31 DECLARE_GLOBAL_DATA_PTR;
32
33 #define ALL_CPU_MASK GENMASK(NR_CPUS - 1, 0)
34 #define MASTER_CPU_ID 0
35 #define APERTURE_SHIFT 28
36 #define NO_CCM 0x10
37 #define SLAVE_CPU_READY 0x12345678
38 #define BOOTSTAGE_1 1 /* after SP, FP setup, before HW init */
39 #define BOOTSTAGE_2 2 /* after HW init, before self halt */
40 #define BOOTSTAGE_3 3 /* after self halt */
41 #define BOOTSTAGE_4 4 /* before app launch */
42 #define BOOTSTAGE_5 5 /* after app launch, unreachable */
43
44 #define RESET_VECTOR_ADDR 0x0
45
46 #define CREG_BASE (ARC_PERIPHERAL_BASE + 0x1000)
47 #define CREG_CPU_START (CREG_BASE + 0x400)
48 #define CREG_CPU_START_MASK 0xF
49 #define CREG_CPU_START_POL BIT(4)
50
51 #define CREG_CORE_BOOT_IMAGE GENMASK(5, 4)
52
53 #define CREG_CPU_0_ENTRY (CREG_BASE + 0x404)
54
55 #define SDIO_BASE (ARC_PERIPHERAL_BASE + 0xA000)
56 #define SDIO_UHS_REG_EXT (SDIO_BASE + 0x108)
57 #define SDIO_UHS_REG_EXT_DIV_2 (2 << 30)
58
59 /* Uncached access macros */
60 #define arc_read_uncached_32(ptr) \
61 ({ \
62 unsigned int __ret; \
63 __asm__ __volatile__( \
64 " ld.di %0, [%1] \n" \
65 : "=r"(__ret) \
66 : "r"(ptr)); \
67 __ret; \
68 })
69
70 #define arc_write_uncached_32(ptr, data)\
71 ({ \
72 __asm__ __volatile__( \
73 " st.di %0, [%1] \n" \
74 : \
75 : "r"(data), "r"(ptr)); \
76 })
77
78 struct hsdk_env_core_ctl {
79 u32_env entry[NR_CPUS];
80 u32_env iccm[NR_CPUS];
81 u32_env dccm[NR_CPUS];
82 };
83
84 struct hsdk_env_common_ctl {
85 bool halt_on_boot;
86 u32_env core_mask;
87 u32_env cpu_freq;
88 u32_env axi_freq;
89 u32_env tun_freq;
90 u32_env nvlim;
91 u32_env icache;
92 u32_env dcache;
93 u32_env csm_location;
94 u32_env l2_cache;
95 u32_env haps_apb;
96 };
97
98 /*
99 * Uncached cross-cpu structure. All CPUs must access to this structure fields
100 * only with arc_read_uncached_32() / arc_write_uncached_32() accessors (which
101 * implement ld.di / st.di instructions). Simultaneous cached and uncached
102 * access to this area will lead to data loss.
103 * We flush all data caches in board_early_init_r() as we don't want to have
104 * any dirty line in L1d$ or SL$ in this area.
105 */
106 struct hsdk_cross_cpu {
107 /* slave CPU ready flag */
108 u32 ready_flag;
109 /* address of the area, which can be used for stack by slave CPU */
110 u32 stack_ptr;
111 /* slave CPU status - bootstage number */
112 s32 status[NR_CPUS];
113
114 /*
115 * Slave CPU data - it is copy of corresponding fields in
116 * hsdk_env_core_ctl and hsdk_env_common_ctl structures which are
117 * required for slave CPUs initialization.
118 * This fields can be populated by copying from hsdk_env_core_ctl
119 * and hsdk_env_common_ctl structures with sync_cross_cpu_data()
120 * function.
121 */
122 u32 entry[NR_CPUS];
123 u32 iccm[NR_CPUS];
124 u32 dccm[NR_CPUS];
125
126 u32 core_mask;
127 u32 icache;
128 u32 dcache;
129
130 u8 cache_padding[ARCH_DMA_MINALIGN];
131 } __aligned(ARCH_DMA_MINALIGN);
132
133 /* Place for slave CPUs temporary stack */
134 static u32 slave_stack[256 * NR_CPUS] __aligned(ARCH_DMA_MINALIGN);
135
136 static struct hsdk_env_common_ctl env_common = {};
137 static struct hsdk_env_core_ctl env_core = {};
138 static struct hsdk_cross_cpu cross_cpu_data;
139
140 static const struct env_map_common env_map_common[] = {
141 { "core_mask", ENV_HEX, true, 0x1, 0xF, &env_common.core_mask },
142 { "non_volatile_limit", ENV_HEX, true, 0, 0xF, &env_common.nvlim },
143 { "icache_ena", ENV_HEX, true, 0, 1, &env_common.icache },
144 { "dcache_ena", ENV_HEX, true, 0, 1, &env_common.dcache },
145 #if defined(CONFIG_BOARD_HSDK_4XD)
146 { "l2_cache_ena", ENV_HEX, true, 0, 1, &env_common.l2_cache },
147 { "csm_location", ENV_HEX, true, 0, NO_CCM, &env_common.csm_location },
148 { "haps_apb_location", ENV_HEX, true, 0, 1, &env_common.haps_apb },
149 #endif /* CONFIG_BOARD_HSDK_4XD */
150 {}
151 };
152
153 static const struct env_map_common env_map_clock[] = {
154 { "cpu_freq", ENV_DEC, false, 100, 1000, &env_common.cpu_freq },
155 { "axi_freq", ENV_DEC, false, 200, 800, &env_common.axi_freq },
156 { "tun_freq", ENV_DEC, false, 0, 150, &env_common.tun_freq },
157 {}
158 };
159
160 static const struct env_map_percpu env_map_core[] = {
161 { "core_iccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.iccm },
162 { "core_dccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.dccm },
163 {}
164 };
165
166 static const struct env_map_common env_map_mask[] = {
167 { "core_mask", ENV_HEX, false, 0x1, 0xF, &env_common.core_mask },
168 {}
169 };
170
171 static const struct env_map_percpu env_map_go[] = {
172 { "core_entry", ENV_HEX, true, {0, 0, 0, 0}, {U32_MAX, U32_MAX, U32_MAX, U32_MAX}, &env_core.entry },
173 {}
174 };
175
176 enum board_type {
177 T_BOARD_NONE,
178 T_BOARD_HSDK,
179 T_BOARD_HSDK_4XD
180 };
181
182 static inline enum board_type get_board_type_runtime(void)
183 {
184 u32 arc_id = read_aux_reg(ARC_AUX_IDENTITY) & 0xFF;
185
186 if (arc_id == 0x52)
187 return T_BOARD_HSDK;
188 else if (arc_id == 0x54)
189 return T_BOARD_HSDK_4XD;
190 else
191 return T_BOARD_NONE;
192 }
193
194 static inline enum board_type get_board_type_config(void)
195 {
196 if (IS_ENABLED(CONFIG_BOARD_HSDK))
197 return T_BOARD_HSDK;
198 else if (IS_ENABLED(CONFIG_BOARD_HSDK_4XD))
199 return T_BOARD_HSDK_4XD;
200 else
201 return T_BOARD_NONE;
202 }
203
204 static bool is_board_match_runtime(enum board_type type_req)
205 {
206 return get_board_type_runtime() == type_req;
207 }
208
209 static bool is_board_match_config(enum board_type type_req)
210 {
211 return get_board_type_config() == type_req;
212 }
213
214 static const char * board_name(enum board_type type)
215 {
216 switch (type) {
217 case T_BOARD_HSDK:
218 return "ARC HS Development Kit";
219 case T_BOARD_HSDK_4XD:
220 return "ARC HS4x/HS4xD Development Kit";
221 default:
222 return "?";
223 }
224 }
225
226 static bool board_mismatch(void)
227 {
228 return get_board_type_config() != get_board_type_runtime();
229 }
230
231 static void sync_cross_cpu_data(void)
232 {
233 u32 value;
234
235 for (u32 i = 0; i < NR_CPUS; i++) {
236 value = env_core.entry[i].val;
237 arc_write_uncached_32(&cross_cpu_data.entry[i], value);
238 }
239
240 for (u32 i = 0; i < NR_CPUS; i++) {
241 value = env_core.iccm[i].val;
242 arc_write_uncached_32(&cross_cpu_data.iccm[i], value);
243 }
244
245 for (u32 i = 0; i < NR_CPUS; i++) {
246 value = env_core.dccm[i].val;
247 arc_write_uncached_32(&cross_cpu_data.dccm[i], value);
248 }
249
250 value = env_common.core_mask.val;
251 arc_write_uncached_32(&cross_cpu_data.core_mask, value);
252
253 value = env_common.icache.val;
254 arc_write_uncached_32(&cross_cpu_data.icache, value);
255
256 value = env_common.dcache.val;
257 arc_write_uncached_32(&cross_cpu_data.dcache, value);
258 }
259
260 /* Can be used only on master CPU */
261 static bool is_cpu_used(u32 cpu_id)
262 {
263 return !!(env_common.core_mask.val & BIT(cpu_id));
264 }
265
266 /* TODO: add ICCM BCR and DCCM BCR runtime check */
267 static void init_slave_cpu_func(u32 core)
268 {
269 u32 val;
270
271 /* Remap ICCM to another memory region if it exists */
272 val = arc_read_uncached_32(&cross_cpu_data.iccm[core]);
273 if (val != NO_CCM)
274 write_aux_reg(ARC_AUX_ICCM_BASE, val << APERTURE_SHIFT);
275
276 /* Remap DCCM to another memory region if it exists */
277 val = arc_read_uncached_32(&cross_cpu_data.dccm[core]);
278 if (val != NO_CCM)
279 write_aux_reg(ARC_AUX_DCCM_BASE, val << APERTURE_SHIFT);
280
281 if (arc_read_uncached_32(&cross_cpu_data.icache))
282 icache_enable();
283 else
284 icache_disable();
285
286 if (arc_read_uncached_32(&cross_cpu_data.dcache))
287 dcache_enable();
288 else
289 dcache_disable();
290 }
291
292 static void init_cluster_nvlim(void)
293 {
294 u32 val = env_common.nvlim.val << APERTURE_SHIFT;
295
296 flush_dcache_all();
297 write_aux_reg(ARC_AUX_NON_VOLATILE_LIMIT, val);
298 /* AUX_AUX_CACHE_LIMIT reg is missing starting from HS48 */
299 if (is_board_match_runtime(T_BOARD_HSDK))
300 write_aux_reg(AUX_AUX_CACHE_LIMIT, val);
301 flush_n_invalidate_dcache_all();
302 }
303
304 static void init_cluster_slc(void)
305 {
306 /* ARC HS38 doesn't support SLC disabling */
307 if (!is_board_match_config(T_BOARD_HSDK_4XD))
308 return;
309
310 if (env_common.l2_cache.val)
311 slc_enable();
312 else
313 slc_disable();
314 }
315
316 #define CREG_CSM_BASE (CREG_BASE + 0x210)
317
318 static void init_cluster_csm(void)
319 {
320 /* ARC HS38 in HSDK SoC doesn't include CSM */
321 if (!is_board_match_config(T_BOARD_HSDK_4XD))
322 return;
323
324 if (env_common.csm_location.val == NO_CCM) {
325 write_aux_reg(ARC_AUX_CSM_ENABLE, 0);
326 } else {
327 /*
328 * CSM base address is 256kByte aligned but we allow to map
329 * CSM only to aperture start (256MByte aligned)
330 * The field in CREG_CSM_BASE is in 17:2 bits itself so we need
331 * to shift it.
332 */
333 u32 csm_base = (env_common.csm_location.val * SZ_1K) << 2;
334
335 write_aux_reg(ARC_AUX_CSM_ENABLE, 1);
336 writel(csm_base, (void __iomem *)CREG_CSM_BASE);
337 }
338 }
339
340 static void init_master_icache(void)
341 {
342 if (icache_status()) {
343 /* I$ is enabled - we need to disable it */
344 if (!env_common.icache.val)
345 icache_disable();
346 } else {
347 /* I$ is disabled - we need to enable it */
348 if (env_common.icache.val) {
349 icache_enable();
350
351 /* invalidate I$ right after enable */
352 invalidate_icache_all();
353 }
354 }
355 }
356
357 static void init_master_dcache(void)
358 {
359 if (dcache_status()) {
360 /* D$ is enabled - we need to disable it */
361 if (!env_common.dcache.val)
362 dcache_disable();
363 } else {
364 /* D$ is disabled - we need to enable it */
365 if (env_common.dcache.val)
366 dcache_enable();
367
368 /* TODO: probably we need ti invalidate D$ right after enable */
369 }
370 }
371
372 static int cleanup_before_go(void)
373 {
374 disable_interrupts();
375 sync_n_cleanup_cache_all();
376
377 return 0;
378 }
379
380 void slave_cpu_set_boot_addr(u32 addr)
381 {
382 /* All cores have reset vector pointing to 0 */
383 writel(addr, (void __iomem *)RESET_VECTOR_ADDR);
384
385 /* Make sure other cores see written value in memory */
386 sync_n_cleanup_cache_all();
387 }
388
389 static inline void halt_this_cpu(void)
390 {
391 __builtin_arc_flag(1);
392 }
393
394 static u32 get_masked_cpu_ctart_reg(void)
395 {
396 int cmd = readl((void __iomem *)CREG_CPU_START);
397
398 /*
399 * Quirk for HSDK-4xD - due to HW issues HSDK can use any pulse polarity
400 * and HSDK-4xD require active low polarity of cpu_start pulse.
401 */
402 cmd &= ~CREG_CPU_START_POL;
403
404 cmd &= ~CREG_CPU_START_MASK;
405
406 return cmd;
407 }
408
409 static void smp_kick_cpu_x(u32 cpu_id)
410 {
411 int cmd;
412
413 if (cpu_id > NR_CPUS)
414 return;
415
416 cmd = get_masked_cpu_ctart_reg();
417 cmd |= (1 << cpu_id);
418 writel(cmd, (void __iomem *)CREG_CPU_START);
419 }
420
421 static u32 prepare_cpu_ctart_reg(void)
422 {
423 return get_masked_cpu_ctart_reg() | env_common.core_mask.val;
424 }
425
426 /* slave CPU entry for configuration */
427 __attribute__((naked, noreturn, flatten)) noinline void hsdk_core_init_f(void)
428 {
429 __asm__ __volatile__(
430 "ld.di r8, [%0]\n"
431 "mov %%sp, r8\n"
432 "mov %%fp, %%sp\n"
433 : /* no output */
434 : "r" (&cross_cpu_data.stack_ptr));
435
436 invalidate_icache_all();
437
438 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_1);
439 init_slave_cpu_func(CPU_ID_GET());
440
441 arc_write_uncached_32(&cross_cpu_data.ready_flag, SLAVE_CPU_READY);
442 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_2);
443
444 /* Halt the processor until the master kick us again */
445 halt_this_cpu();
446
447 /*
448 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
449 * cores but we leave them for gebug purposes.
450 */
451 __builtin_arc_nop();
452 __builtin_arc_nop();
453 __builtin_arc_nop();
454
455 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_3);
456
457 /* get the updated entry - invalidate i$ */
458 invalidate_icache_all();
459
460 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_4);
461
462 /* Run our program */
463 ((void (*)(void))(arc_read_uncached_32(&cross_cpu_data.entry[CPU_ID_GET()])))();
464
465 /* This bootstage is unreachable as we don't return from app we launch */
466 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_5);
467
468 /* Something went terribly wrong */
469 while (true)
470 halt_this_cpu();
471 }
472
473 static void clear_cross_cpu_data(void)
474 {
475 arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
476 arc_write_uncached_32(&cross_cpu_data.stack_ptr, 0);
477
478 for (u32 i = 0; i < NR_CPUS; i++)
479 arc_write_uncached_32(&cross_cpu_data.status[i], 0);
480 }
481
482 static noinline void do_init_slave_cpu(u32 cpu_id)
483 {
484 /* attempts number for check clave CPU ready_flag */
485 u32 attempts = 100;
486 u32 stack_ptr = (u32)(slave_stack + (64 * cpu_id));
487
488 if (cpu_id >= NR_CPUS)
489 return;
490
491 arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
492
493 /* Use global unique place for each slave cpu stack */
494 arc_write_uncached_32(&cross_cpu_data.stack_ptr, stack_ptr);
495
496 debug("CPU %u: stack pool base: %p\n", cpu_id, slave_stack);
497 debug("CPU %u: current slave stack base: %x\n", cpu_id, stack_ptr);
498 slave_cpu_set_boot_addr((u32)hsdk_core_init_f);
499
500 smp_kick_cpu_x(cpu_id);
501
502 debug("CPU %u: cross-cpu flag: %x [before timeout]\n", cpu_id,
503 arc_read_uncached_32(&cross_cpu_data.ready_flag));
504
505 while (!arc_read_uncached_32(&cross_cpu_data.ready_flag) && attempts--)
506 mdelay(10);
507
508 /* Just to be sure that slave cpu is halted after it set ready_flag */
509 mdelay(20);
510
511 /*
512 * Only print error here if we reach timeout as there is no option to
513 * halt slave cpu (or check that slave cpu is halted)
514 */
515 if (!attempts)
516 pr_err("CPU %u is not responding after init!\n", cpu_id);
517
518 /* Check current stage of slave cpu */
519 if (arc_read_uncached_32(&cross_cpu_data.status[cpu_id]) != BOOTSTAGE_2)
520 pr_err("CPU %u status is unexpected: %d\n", cpu_id,
521 arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
522
523 debug("CPU %u: cross-cpu flag: %x [after timeout]\n", cpu_id,
524 arc_read_uncached_32(&cross_cpu_data.ready_flag));
525 debug("CPU %u: status: %d [after timeout]\n", cpu_id,
526 arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
527 }
528
529 static void do_init_slave_cpus(void)
530 {
531 clear_cross_cpu_data();
532 sync_cross_cpu_data();
533
534 debug("cross_cpu_data location: %#x\n", (u32)&cross_cpu_data);
535
536 for (u32 i = MASTER_CPU_ID + 1; i < NR_CPUS; i++)
537 if (is_cpu_used(i))
538 do_init_slave_cpu(i);
539 }
540
541 static void do_init_master_cpu(void)
542 {
543 /*
544 * Setup master caches even if master isn't used as we want to use
545 * same cache configuration on all running CPUs
546 */
547 init_master_icache();
548 init_master_dcache();
549 }
550
551 enum hsdk_axi_masters {
552 M_HS_CORE = 0,
553 M_HS_RTT,
554 M_AXI_TUN,
555 M_HDMI_VIDEO,
556 M_HDMI_AUDIO,
557 M_USB_HOST,
558 M_ETHERNET,
559 M_SDIO,
560 M_GPU,
561 M_DMAC_0,
562 M_DMAC_1,
563 M_DVFS
564 };
565
566 #define UPDATE_VAL 1
567
568 /*
569 * m master AXI_M_m_SLV0 AXI_M_m_SLV1 AXI_M_m_OFFSET0 AXI_M_m_OFFSET1
570 * 0 HS (CBU) 0x11111111 0x63111111 0xFEDCBA98 0x0E543210
571 * 1 HS (RTT) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
572 * 2 AXI Tunnel 0x88888888 0x88888888 0xFEDCBA98 0x76543210
573 * 3 HDMI-VIDEO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
574 * 4 HDMI-ADUIO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
575 * 5 USB-HOST 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
576 * 6 ETHERNET 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
577 * 7 SDIO 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
578 * 8 GPU 0x77777777 0x77777777 0xFEDCBA98 0x76543210
579 * 9 DMAC (port #1) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
580 * 10 DMAC (port #2) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
581 * 11 DVFS 0x00000000 0x60000000 0x00000000 0x00000000
582 *
583 * Please read ARC HS Development IC Specification, section 17.2 for more
584 * information about apertures configuration.
585 * NOTE: we intentionally modify default settings in U-Boot. Default settings
586 * are specified in "Table 111 CREG Address Decoder register reset values".
587 */
588
589 #define CREG_AXI_M_SLV0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m)))
590 #define CREG_AXI_M_SLV1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x004))
591 #define CREG_AXI_M_OFT0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x008))
592 #define CREG_AXI_M_OFT1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x00C))
593 #define CREG_AXI_M_UPDT(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x014))
594
595 #define CREG_AXI_M_HS_CORE_BOOT ((void __iomem *)(CREG_BASE + 0x010))
596
597 #define CREG_PAE ((void __iomem *)(CREG_BASE + 0x180))
598 #define CREG_PAE_UPDT ((void __iomem *)(CREG_BASE + 0x194))
599
600 void init_memory_bridge(void)
601 {
602 u32 reg;
603
604 /*
605 * M_HS_CORE has one unic register - BOOT.
606 * We need to clean boot mirror (BOOT[1:0]) bits in them.
607 */
608 reg = readl(CREG_AXI_M_HS_CORE_BOOT) & (~0x3);
609 writel(reg, CREG_AXI_M_HS_CORE_BOOT);
610 writel(0x11111111, CREG_AXI_M_SLV0(M_HS_CORE));
611 writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
612 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_CORE));
613 writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
614 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
615
616 writel(0x77777777, CREG_AXI_M_SLV0(M_HS_RTT));
617 writel(0x77777777, CREG_AXI_M_SLV1(M_HS_RTT));
618 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_RTT));
619 writel(0x76543210, CREG_AXI_M_OFT1(M_HS_RTT));
620 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_RTT));
621
622 writel(0x88888888, CREG_AXI_M_SLV0(M_AXI_TUN));
623 writel(0x88888888, CREG_AXI_M_SLV1(M_AXI_TUN));
624 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_AXI_TUN));
625 writel(0x76543210, CREG_AXI_M_OFT1(M_AXI_TUN));
626 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_AXI_TUN));
627
628 writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_VIDEO));
629 writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_VIDEO));
630 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_VIDEO));
631 writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_VIDEO));
632 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_VIDEO));
633
634 writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_AUDIO));
635 writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_AUDIO));
636 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_AUDIO));
637 writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_AUDIO));
638 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_AUDIO));
639
640 writel(0x77777777, CREG_AXI_M_SLV0(M_USB_HOST));
641 writel(0x77999999, CREG_AXI_M_SLV1(M_USB_HOST));
642 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_USB_HOST));
643 writel(0x76DCBA98, CREG_AXI_M_OFT1(M_USB_HOST));
644 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
645
646 writel(0x77777777, CREG_AXI_M_SLV0(M_ETHERNET));
647 writel(0x77999999, CREG_AXI_M_SLV1(M_ETHERNET));
648 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_ETHERNET));
649 writel(0x76DCBA98, CREG_AXI_M_OFT1(M_ETHERNET));
650 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
651
652 writel(0x77777777, CREG_AXI_M_SLV0(M_SDIO));
653 writel(0x77999999, CREG_AXI_M_SLV1(M_SDIO));
654 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_SDIO));
655 writel(0x76DCBA98, CREG_AXI_M_OFT1(M_SDIO));
656 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
657
658 writel(0x77777777, CREG_AXI_M_SLV0(M_GPU));
659 writel(0x77777777, CREG_AXI_M_SLV1(M_GPU));
660 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_GPU));
661 writel(0x76543210, CREG_AXI_M_OFT1(M_GPU));
662 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_GPU));
663
664 writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_0));
665 writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_0));
666 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_0));
667 writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_0));
668 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_0));
669
670 writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_1));
671 writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_1));
672 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_1));
673 writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_1));
674 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_1));
675
676 writel(0x00000000, CREG_AXI_M_SLV0(M_DVFS));
677 writel(0x60000000, CREG_AXI_M_SLV1(M_DVFS));
678 writel(0x00000000, CREG_AXI_M_OFT0(M_DVFS));
679 writel(0x00000000, CREG_AXI_M_OFT1(M_DVFS));
680 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DVFS));
681
682 writel(0x00000000, CREG_PAE);
683 writel(UPDATE_VAL, CREG_PAE_UPDT);
684 }
685
686 /*
687 * For HSDK-4xD we do additional AXI bridge tweaking in hsdk_init command:
688 * - we shrink IOC region.
689 * - we configure HS CORE SLV1 aperture depending on haps_apb_location
690 * environment variable.
691 *
692 * As we've already configured AXI bridge in init_memory_bridge we don't
693 * do full configuration here but reconfigure changed part.
694 *
695 * m master AXI_M_m_SLV0 AXI_M_m_SLV1 AXI_M_m_OFFSET0 AXI_M_m_OFFSET1
696 * 0 HS (CBU) 0x11111111 0x63111111 0xFEDCBA98 0x0E543210 [haps_apb_location = 0]
697 * 0 HS (CBU) 0x11111111 0x61111111 0xFEDCBA98 0x06543210 [haps_apb_location = 1]
698 * 1 HS (RTT) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
699 * 2 AXI Tunnel 0x88888888 0x88888888 0xFEDCBA98 0x76543210
700 * 3 HDMI-VIDEO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
701 * 4 HDMI-ADUIO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
702 * 5 USB-HOST 0x77777777 0x77779999 0xFEDCBA98 0x7654BA98
703 * 6 ETHERNET 0x77777777 0x77779999 0xFEDCBA98 0x7654BA98
704 * 7 SDIO 0x77777777 0x77779999 0xFEDCBA98 0x7654BA98
705 * 8 GPU 0x77777777 0x77777777 0xFEDCBA98 0x76543210
706 * 9 DMAC (port #1) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
707 * 10 DMAC (port #2) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
708 * 11 DVFS 0x00000000 0x60000000 0x00000000 0x00000000
709 */
710 void tweak_memory_bridge_cfg(void)
711 {
712 /*
713 * Only HSDK-4xD requre additional AXI bridge tweaking depending on
714 * haps_apb_location environment variable
715 */
716 if (!is_board_match_config(T_BOARD_HSDK_4XD))
717 return;
718
719 if (env_common.haps_apb.val) {
720 writel(0x61111111, CREG_AXI_M_SLV1(M_HS_CORE));
721 writel(0x06543210, CREG_AXI_M_OFT1(M_HS_CORE));
722 } else {
723 writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
724 writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
725 }
726 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
727
728 writel(0x77779999, CREG_AXI_M_SLV1(M_USB_HOST));
729 writel(0x7654BA98, CREG_AXI_M_OFT1(M_USB_HOST));
730 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
731
732 writel(0x77779999, CREG_AXI_M_SLV1(M_ETHERNET));;
733 writel(0x7654BA98, CREG_AXI_M_OFT1(M_ETHERNET));
734 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
735
736 writel(0x77779999, CREG_AXI_M_SLV1(M_SDIO));
737 writel(0x7654BA98, CREG_AXI_M_OFT1(M_SDIO));
738 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
739 }
740
741 static void setup_clocks(void)
742 {
743 ulong rate;
744
745 /* Setup CPU clock */
746 if (env_common.cpu_freq.set) {
747 rate = env_common.cpu_freq.val;
748 soc_clk_ctl("cpu-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
749 }
750
751 /* Setup TUN clock */
752 if (env_common.tun_freq.set) {
753 rate = env_common.tun_freq.val;
754 if (rate)
755 soc_clk_ctl("tun-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
756 else
757 soc_clk_ctl("tun-clk", NULL, CLK_OFF);
758 }
759
760 if (env_common.axi_freq.set) {
761 rate = env_common.axi_freq.val;
762 soc_clk_ctl("axi-clk", &rate, CLK_SET | CLK_ON | CLK_MHZ);
763 }
764 }
765
766 static void do_init_cluster(void)
767 {
768 /*
769 * A multi-core ARC HS configuration always includes only one
770 * ARC_AUX_NON_VOLATILE_LIMIT register, which is shared by all the
771 * cores.
772 */
773 init_cluster_nvlim();
774 init_cluster_csm();
775 init_cluster_slc();
776 tweak_memory_bridge_cfg();
777 }
778
779 static int check_master_cpu_id(void)
780 {
781 if (CPU_ID_GET() == MASTER_CPU_ID)
782 return 0;
783
784 pr_err("u-boot runs on non-master cpu with id: %lu\n", CPU_ID_GET());
785
786 return -ENOENT;
787 }
788
789 static noinline int prepare_cpus(void)
790 {
791 int ret;
792
793 ret = check_master_cpu_id();
794 if (ret)
795 return ret;
796
797 ret = envs_process_and_validate(env_map_common, env_map_core, is_cpu_used);
798 if (ret)
799 return ret;
800
801 printf("CPU start mask is %#x\n", env_common.core_mask.val);
802
803 do_init_slave_cpus();
804 do_init_master_cpu();
805 do_init_cluster();
806
807 return 0;
808 }
809
810 static int hsdk_go_run(u32 cpu_start_reg)
811 {
812 /* Cleanup caches, disable interrupts */
813 cleanup_before_go();
814
815 if (env_common.halt_on_boot)
816 halt_this_cpu();
817
818 /*
819 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
820 * cores but we leave them for gebug purposes.
821 */
822 __builtin_arc_nop();
823 __builtin_arc_nop();
824 __builtin_arc_nop();
825
826 /* Kick chosen slave CPUs */
827 writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
828
829 if (is_cpu_used(MASTER_CPU_ID))
830 ((void (*)(void))(env_core.entry[MASTER_CPU_ID].val))();
831 else
832 halt_this_cpu();
833
834 pr_err("u-boot still runs on cpu [%ld]\n", CPU_ID_GET());
835
836 /*
837 * We will never return after executing our program if master cpu used
838 * otherwise halt master cpu manually.
839 */
840 while (true)
841 halt_this_cpu();
842
843 return 0;
844 }
845
846 int board_prep_linux(struct bootm_headers *images)
847 {
848 int ret, ofst;
849 char mask[15];
850
851 ret = envs_read_validate_common(env_map_mask);
852 if (ret)
853 return ret;
854
855 /* Rollback to default values */
856 if (!env_common.core_mask.set) {
857 env_common.core_mask.val = ALL_CPU_MASK;
858 env_common.core_mask.set = true;
859 }
860
861 printf("CPU start mask is %#x\n", env_common.core_mask.val);
862
863 if (!is_cpu_used(MASTER_CPU_ID))
864 pr_err("ERR: try to launch linux with CPU[0] disabled! It doesn't work for ARC.\n");
865
866 /*
867 * If we want to launch linux on all CPUs we don't need to patch
868 * linux DTB as it is default configuration
869 */
870 if (env_common.core_mask.val == ALL_CPU_MASK)
871 return 0;
872
873 if (!CONFIG_IS_ENABLED(OF_LIBFDT) || !images->ft_len) {
874 pr_err("WARN: core_mask setup will work properly only with external DTB!\n");
875 return 0;
876 }
877
878 /* patch '/possible-cpus' property according to cpu mask */
879 ofst = fdt_path_offset(images->ft_addr, "/");
880 sprintf(mask, "%s%s%s%s",
881 is_cpu_used(0) ? "0," : "",
882 is_cpu_used(1) ? "1," : "",
883 is_cpu_used(2) ? "2," : "",
884 is_cpu_used(3) ? "3," : "");
885 ret = fdt_setprop_string(images->ft_addr, ofst, "possible-cpus", mask);
886 /*
887 * If we failed to patch '/possible-cpus' property we don't need break
888 * linux loading process: kernel will handle it but linux will print
889 * warning like "Timeout: CPU1 FAILED to comeup !!!".
890 * So warn here about error, but return 0 like no error had occurred.
891 */
892 if (ret)
893 pr_err("WARN: failed to patch '/possible-cpus' property, ret=%d\n",
894 ret);
895
896 return 0;
897 }
898
899 void board_jump_and_run(ulong entry, int zero, int arch, uint params)
900 {
901 void (*kernel_entry)(int zero, int arch, uint params);
902 u32 cpu_start_reg;
903
904 kernel_entry = (void (*)(int, int, uint))entry;
905
906 /* Prepare CREG_CPU_START for kicking chosen CPUs */
907 cpu_start_reg = prepare_cpu_ctart_reg();
908
909 /* In case of run without hsdk_init */
910 slave_cpu_set_boot_addr(entry);
911
912 /* In case of run with hsdk_init */
913 for (u32 i = 0; i < NR_CPUS; i++) {
914 env_core.entry[i].val = entry;
915 env_core.entry[i].set = true;
916 }
917 /* sync cross_cpu struct as we updated core-entry variables */
918 sync_cross_cpu_data();
919
920 /* Kick chosen slave CPUs */
921 writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
922
923 if (is_cpu_used(0))
924 kernel_entry(zero, arch, params);
925 }
926
927 static int hsdk_go_prepare_and_run(void)
928 {
929 /* Prepare CREG_CPU_START for kicking chosen CPUs */
930 u32 reg = prepare_cpu_ctart_reg();
931
932 if (env_common.halt_on_boot)
933 printf("CPU will halt before application start, start application with debugger.\n");
934
935 return hsdk_go_run(reg);
936 }
937
938 static int do_hsdk_go(struct cmd_tbl *cmdtp, int flag, int argc,
939 char *const argv[])
940 {
941 int ret;
942
943 if (board_mismatch()) {
944 printf("ERR: U-Boot is not configured for this board!\n");
945 return CMD_RET_FAILURE;
946 }
947
948 /*
949 * Check for 'halt' parameter. 'halt' = enter halt-mode just before
950 * starting the application; can be used for debug.
951 */
952 if (argc > 1) {
953 env_common.halt_on_boot = !strcmp(argv[1], "halt");
954 if (!env_common.halt_on_boot) {
955 pr_err("Unrecognised parameter: \'%s\'\n", argv[1]);
956 return CMD_RET_FAILURE;
957 }
958 }
959
960 ret = check_master_cpu_id();
961 if (ret)
962 return ret;
963
964 ret = envs_process_and_validate(env_map_mask, env_map_go, is_cpu_used);
965 if (ret)
966 return ret;
967
968 /* sync cross_cpu struct as we updated core-entry variables */
969 sync_cross_cpu_data();
970
971 ret = hsdk_go_prepare_and_run();
972
973 return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
974 }
975
976 U_BOOT_CMD(
977 hsdk_go, 3, 0, do_hsdk_go,
978 "Synopsys HSDK specific command",
979 " - Boot stand-alone application on HSDK\n"
980 "hsdk_go halt - Boot stand-alone application on HSDK, halt CPU just before application run\n"
981 );
982
983 /*
984 * We may simply use static variable here to store init status, but we also want
985 * to avoid the situation when we reload U-Boot via MDB after previous
986 * init is done but HW reset (board reset) isn't done. So let's store the
987 * init status in any unused register (i.e CREG_CPU_0_ENTRY) so status will
988 * survive after U-Boot is reloaded via MDB.
989 */
990 #define INIT_MARKER_REGISTER ((void __iomem *)CREG_CPU_0_ENTRY)
991 /* must be equal to INIT_MARKER_REGISTER reset value */
992 #define INIT_MARKER_PENDING 0
993
994 static bool init_marker_get(void)
995 {
996 return readl(INIT_MARKER_REGISTER) != INIT_MARKER_PENDING;
997 }
998
999 static void init_mark_done(void)
1000 {
1001 writel(~INIT_MARKER_PENDING, INIT_MARKER_REGISTER);
1002 }
1003
1004 static int do_hsdk_init(struct cmd_tbl *cmdtp, int flag, int argc,
1005 char *const argv[])
1006 {
1007 int ret;
1008
1009 if (board_mismatch()) {
1010 printf("ERR: U-Boot is not configured for this board!\n");
1011 return CMD_RET_FAILURE;
1012 }
1013
1014 /* hsdk_init can be run only once */
1015 if (init_marker_get()) {
1016 printf("HSDK HW is already initialized! Please reset the board if you want to change the configuration.\n");
1017 return CMD_RET_FAILURE;
1018 }
1019
1020 ret = prepare_cpus();
1021 if (!ret)
1022 init_mark_done();
1023
1024 return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
1025 }
1026
1027 U_BOOT_CMD(
1028 hsdk_init, 1, 0, do_hsdk_init,
1029 "Synopsys HSDK specific command",
1030 "- Init HSDK HW\n"
1031 );
1032
1033 static int do_hsdk_clock_set(struct cmd_tbl *cmdtp, int flag, int argc,
1034 char *const argv[])
1035 {
1036 int ret = 0;
1037
1038 /* Strip off leading subcommand argument */
1039 argc--;
1040 argv++;
1041
1042 envs_cleanup_common(env_map_clock);
1043
1044 if (!argc) {
1045 printf("Set clocks to values specified in environment\n");
1046 ret = envs_read_common(env_map_clock);
1047 } else {
1048 printf("Set clocks to values specified in args\n");
1049 ret = args_envs_enumerate(env_map_clock, 2, argc, argv);
1050 }
1051
1052 if (ret)
1053 return CMD_RET_FAILURE;
1054
1055 ret = envs_validate_common(env_map_clock);
1056 if (ret)
1057 return CMD_RET_FAILURE;
1058
1059 /* Setup clock tree HW */
1060 setup_clocks();
1061
1062 return CMD_RET_SUCCESS;
1063 }
1064
1065 static int do_hsdk_clock_get(struct cmd_tbl *cmdtp, int flag, int argc,
1066 char *const argv[])
1067 {
1068 ulong rate;
1069
1070 if (soc_clk_ctl("cpu-clk", &rate, CLK_GET | CLK_MHZ))
1071 return CMD_RET_FAILURE;
1072
1073 if (env_set_ulong("cpu_freq", rate))
1074 return CMD_RET_FAILURE;
1075
1076 if (soc_clk_ctl("tun-clk", &rate, CLK_GET | CLK_MHZ))
1077 return CMD_RET_FAILURE;
1078
1079 if (env_set_ulong("tun_freq", rate))
1080 return CMD_RET_FAILURE;
1081
1082 if (soc_clk_ctl("axi-clk", &rate, CLK_GET | CLK_MHZ))
1083 return CMD_RET_FAILURE;
1084
1085 if (env_set_ulong("axi_freq", rate))
1086 return CMD_RET_FAILURE;
1087
1088 printf("Clock values are saved to environment\n");
1089
1090 return CMD_RET_SUCCESS;
1091 }
1092
1093 static int do_hsdk_clock_print(struct cmd_tbl *cmdtp, int flag, int argc,
1094 char *const argv[])
1095 {
1096 /* Main clocks */
1097 soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
1098 soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
1099 soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
1100 soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
1101
1102 return CMD_RET_SUCCESS;
1103 }
1104
1105 static int do_hsdk_clock_print_all(struct cmd_tbl *cmdtp, int flag, int argc,
1106 char *const argv[])
1107 {
1108 /*
1109 * NOTE: as of today we don't use some peripherals like HDMI / EBI
1110 * so we don't want to print their clocks ("hdmi-sys-clk", "hdmi-pll",
1111 * "hdmi-clk", "ebi-clk"). Nevertheless their clock subsystems is fully
1112 * functional and we can print their clocks if it is required
1113 */
1114
1115 /* CPU clock domain */
1116 soc_clk_ctl("cpu-pll", NULL, CLK_PRINT | CLK_MHZ);
1117 soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
1118 printf("\n");
1119
1120 /* SYS clock domain */
1121 soc_clk_ctl("sys-pll", NULL, CLK_PRINT | CLK_MHZ);
1122 soc_clk_ctl("apb-clk", NULL, CLK_PRINT | CLK_MHZ);
1123 soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
1124 soc_clk_ctl("eth-clk", NULL, CLK_PRINT | CLK_MHZ);
1125 soc_clk_ctl("usb-clk", NULL, CLK_PRINT | CLK_MHZ);
1126 soc_clk_ctl("sdio-clk", NULL, CLK_PRINT | CLK_MHZ);
1127 if (is_board_match_runtime(T_BOARD_HSDK_4XD))
1128 soc_clk_ctl("hdmi-sys-clk", NULL, CLK_PRINT | CLK_MHZ);
1129 soc_clk_ctl("gfx-core-clk", NULL, CLK_PRINT | CLK_MHZ);
1130 if (is_board_match_runtime(T_BOARD_HSDK)) {
1131 soc_clk_ctl("gfx-dma-clk", NULL, CLK_PRINT | CLK_MHZ);
1132 soc_clk_ctl("gfx-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
1133 }
1134 soc_clk_ctl("dmac-core-clk", NULL, CLK_PRINT | CLK_MHZ);
1135 soc_clk_ctl("dmac-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
1136 soc_clk_ctl("sdio-ref-clk", NULL, CLK_PRINT | CLK_MHZ);
1137 soc_clk_ctl("spi-clk", NULL, CLK_PRINT | CLK_MHZ);
1138 soc_clk_ctl("i2c-clk", NULL, CLK_PRINT | CLK_MHZ);
1139 /* soc_clk_ctl("ebi-clk", NULL, CLK_PRINT | CLK_MHZ); */
1140 soc_clk_ctl("uart-clk", NULL, CLK_PRINT | CLK_MHZ);
1141 printf("\n");
1142
1143 /* DDR clock domain */
1144 soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
1145 printf("\n");
1146
1147 /* HDMI clock domain */
1148 if (is_board_match_runtime(T_BOARD_HSDK_4XD)) {
1149 soc_clk_ctl("hdmi-pll", NULL, CLK_PRINT | CLK_MHZ);
1150 soc_clk_ctl("hdmi-clk", NULL, CLK_PRINT | CLK_MHZ);
1151 printf("\n");
1152 }
1153
1154 /* TUN clock domain */
1155 soc_clk_ctl("tun-pll", NULL, CLK_PRINT | CLK_MHZ);
1156 soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
1157 soc_clk_ctl("rom-clk", NULL, CLK_PRINT | CLK_MHZ);
1158 soc_clk_ctl("pwm-clk", NULL, CLK_PRINT | CLK_MHZ);
1159 if (is_board_match_runtime(T_BOARD_HSDK_4XD))
1160 soc_clk_ctl("timer-clk", NULL, CLK_PRINT | CLK_MHZ);
1161 printf("\n");
1162
1163 return CMD_RET_SUCCESS;
1164 }
1165
1166 struct cmd_tbl cmd_hsdk_clock[] = {
1167 U_BOOT_CMD_MKENT(set, 3, 0, do_hsdk_clock_set, "", ""),
1168 U_BOOT_CMD_MKENT(get, 3, 0, do_hsdk_clock_get, "", ""),
1169 U_BOOT_CMD_MKENT(print, 4, 0, do_hsdk_clock_print, "", ""),
1170 U_BOOT_CMD_MKENT(print_all, 4, 0, do_hsdk_clock_print_all, "", ""),
1171 };
1172
1173 static int do_hsdk_clock(struct cmd_tbl *cmdtp, int flag, int argc,
1174 char *const argv[])
1175 {
1176 struct cmd_tbl *c;
1177
1178 if (argc < 2)
1179 return CMD_RET_USAGE;
1180
1181 /* Strip off leading 'hsdk_clock' command argument */
1182 argc--;
1183 argv++;
1184
1185 c = find_cmd_tbl(argv[0], cmd_hsdk_clock, ARRAY_SIZE(cmd_hsdk_clock));
1186 if (!c)
1187 return CMD_RET_USAGE;
1188
1189 return c->cmd(cmdtp, flag, argc, argv);
1190 }
1191
1192 U_BOOT_CMD(
1193 hsdk_clock, CONFIG_SYS_MAXARGS, 0, do_hsdk_clock,
1194 "Synopsys HSDK specific clock command",
1195 "set - Set clock to values specified in environment / command line arguments\n"
1196 "hsdk_clock get - Save clock values to environment\n"
1197 "hsdk_clock print - Print main clock values to console\n"
1198 "hsdk_clock print_all - Print all clock values to console\n"
1199 );
1200
1201 /* init calls */
1202 int board_early_init_f(void)
1203 {
1204 /*
1205 * Setup AXI apertures unconditionally as we want to have DDR
1206 * in 0x00000000 region when we are kicking slave cpus.
1207 */
1208 init_memory_bridge();
1209
1210 /*
1211 * Switch SDIO external ciu clock divider from default div-by-8 to
1212 * minimum possible div-by-2.
1213 */
1214 writel(SDIO_UHS_REG_EXT_DIV_2, (void __iomem *)SDIO_UHS_REG_EXT);
1215
1216 return 0;
1217 }
1218
1219 int board_early_init_r(void)
1220 {
1221 /*
1222 * TODO: Init USB here to be able read environment from USB MSD.
1223 * It can be done with usb_init() call. We can't do it right now
1224 * due to brocken USB IP SW reset and lack of USB IP HW reset in
1225 * linux kernel (if we init USB here we will break USB in linux)
1226 */
1227
1228 /*
1229 * Flush all d$ as we want to use uncached area with st.di / ld.di
1230 * instructions and we don't want to have any dirty line in L1d$ or SL$
1231 * in this area. It is enough to flush all d$ once here as we access to
1232 * uncached area with regular st (non .di) instruction only when we copy
1233 * data during u-boot relocation.
1234 */
1235 flush_dcache_all();
1236
1237 printf("Relocation Offset is: %08lx\n", gd->reloc_off);
1238
1239 return 0;
1240 }
1241
1242 int board_late_init(void)
1243 {
1244 /*
1245 * Populate environment with clock frequency values -
1246 * run hsdk_clock get callback without uboot command run.
1247 */
1248 do_hsdk_clock_get(NULL, 0, 0, NULL);
1249
1250 return 0;
1251 }
1252
1253 int checkboard(void)
1254 {
1255 u32 reg;
1256
1257 printf("Board: Synopsys %s\n", board_name(get_board_type_runtime()));
1258
1259 if (board_mismatch())
1260 printf("WARN: U-Boot is configured NOT for this board but for %s!\n",
1261 board_name(get_board_type_config()));
1262
1263 reg = readl(CREG_AXI_M_HS_CORE_BOOT) & CREG_CORE_BOOT_IMAGE;
1264 printf("U-Boot autostart: %s\n", reg ? "enabled" : "disabled");
1265
1266 return 0;
1267 };