]> git.ipfire.org Git - thirdparty/u-boot.git/blob - board/synopsys/hsdk/hsdk.c
common: Drop image.h from common header
[thirdparty/u-boot.git] / board / synopsys / hsdk / hsdk.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Synopsys, Inc. All rights reserved.
4 * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
5 */
6
7 #include <common.h>
8 #include <config.h>
9 #include <cpu_func.h>
10 #include <env.h>
11 #include <image.h>
12 #include <init.h>
13 #include <irq_func.h>
14 #include <asm/cache.h>
15 #include <linux/printk.h>
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <asm/arcregs.h>
19 #include <fdt_support.h>
20 #include <dwmmc.h>
21 #include <malloc.h>
22 #include <usb.h>
23
24 #include "clk-lib.h"
25 #include "env-lib.h"
26
27 DECLARE_GLOBAL_DATA_PTR;
28
29 #define ALL_CPU_MASK GENMASK(NR_CPUS - 1, 0)
30 #define MASTER_CPU_ID 0
31 #define APERTURE_SHIFT 28
32 #define NO_CCM 0x10
33 #define SLAVE_CPU_READY 0x12345678
34 #define BOOTSTAGE_1 1 /* after SP, FP setup, before HW init */
35 #define BOOTSTAGE_2 2 /* after HW init, before self halt */
36 #define BOOTSTAGE_3 3 /* after self halt */
37 #define BOOTSTAGE_4 4 /* before app launch */
38 #define BOOTSTAGE_5 5 /* after app launch, unreachable */
39
40 #define RESET_VECTOR_ADDR 0x0
41
42 #define CREG_BASE (ARC_PERIPHERAL_BASE + 0x1000)
43 #define CREG_CPU_START (CREG_BASE + 0x400)
44 #define CREG_CPU_START_MASK 0xF
45 #define CREG_CPU_START_POL BIT(4)
46
47 #define CREG_CORE_BOOT_IMAGE GENMASK(5, 4)
48
49 #define CREG_CPU_0_ENTRY (CREG_BASE + 0x404)
50
51 #define SDIO_BASE (ARC_PERIPHERAL_BASE + 0xA000)
52 #define SDIO_UHS_REG_EXT (SDIO_BASE + 0x108)
53 #define SDIO_UHS_REG_EXT_DIV_2 (2 << 30)
54
55 /* Uncached access macros */
56 #define arc_read_uncached_32(ptr) \
57 ({ \
58 unsigned int __ret; \
59 __asm__ __volatile__( \
60 " ld.di %0, [%1] \n" \
61 : "=r"(__ret) \
62 : "r"(ptr)); \
63 __ret; \
64 })
65
66 #define arc_write_uncached_32(ptr, data)\
67 ({ \
68 __asm__ __volatile__( \
69 " st.di %0, [%1] \n" \
70 : \
71 : "r"(data), "r"(ptr)); \
72 })
73
74 struct hsdk_env_core_ctl {
75 u32_env entry[NR_CPUS];
76 u32_env iccm[NR_CPUS];
77 u32_env dccm[NR_CPUS];
78 };
79
80 struct hsdk_env_common_ctl {
81 bool halt_on_boot;
82 u32_env core_mask;
83 u32_env cpu_freq;
84 u32_env axi_freq;
85 u32_env tun_freq;
86 u32_env nvlim;
87 u32_env icache;
88 u32_env dcache;
89 u32_env csm_location;
90 u32_env l2_cache;
91 u32_env haps_apb;
92 };
93
94 /*
95 * Uncached cross-cpu structure. All CPUs must access to this structure fields
96 * only with arc_read_uncached_32() / arc_write_uncached_32() accessors (which
97 * implement ld.di / st.di instructions). Simultaneous cached and uncached
98 * access to this area will lead to data loss.
99 * We flush all data caches in board_early_init_r() as we don't want to have
100 * any dirty line in L1d$ or SL$ in this area.
101 */
102 struct hsdk_cross_cpu {
103 /* slave CPU ready flag */
104 u32 ready_flag;
105 /* address of the area, which can be used for stack by slave CPU */
106 u32 stack_ptr;
107 /* slave CPU status - bootstage number */
108 s32 status[NR_CPUS];
109
110 /*
111 * Slave CPU data - it is copy of corresponding fields in
112 * hsdk_env_core_ctl and hsdk_env_common_ctl structures which are
113 * required for slave CPUs initialization.
114 * This fields can be populated by copying from hsdk_env_core_ctl
115 * and hsdk_env_common_ctl structures with sync_cross_cpu_data()
116 * function.
117 */
118 u32 entry[NR_CPUS];
119 u32 iccm[NR_CPUS];
120 u32 dccm[NR_CPUS];
121
122 u32 core_mask;
123 u32 icache;
124 u32 dcache;
125
126 u8 cache_padding[ARCH_DMA_MINALIGN];
127 } __aligned(ARCH_DMA_MINALIGN);
128
129 /* Place for slave CPUs temporary stack */
130 static u32 slave_stack[256 * NR_CPUS] __aligned(ARCH_DMA_MINALIGN);
131
132 static struct hsdk_env_common_ctl env_common = {};
133 static struct hsdk_env_core_ctl env_core = {};
134 static struct hsdk_cross_cpu cross_cpu_data;
135
136 static const struct env_map_common env_map_common[] = {
137 { "core_mask", ENV_HEX, true, 0x1, 0xF, &env_common.core_mask },
138 { "non_volatile_limit", ENV_HEX, true, 0, 0xF, &env_common.nvlim },
139 { "icache_ena", ENV_HEX, true, 0, 1, &env_common.icache },
140 { "dcache_ena", ENV_HEX, true, 0, 1, &env_common.dcache },
141 #if defined(CONFIG_BOARD_HSDK_4XD)
142 { "l2_cache_ena", ENV_HEX, true, 0, 1, &env_common.l2_cache },
143 { "csm_location", ENV_HEX, true, 0, NO_CCM, &env_common.csm_location },
144 { "haps_apb_location", ENV_HEX, true, 0, 1, &env_common.haps_apb },
145 #endif /* CONFIG_BOARD_HSDK_4XD */
146 {}
147 };
148
149 static const struct env_map_common env_map_clock[] = {
150 { "cpu_freq", ENV_DEC, false, 100, 1000, &env_common.cpu_freq },
151 { "axi_freq", ENV_DEC, false, 200, 800, &env_common.axi_freq },
152 { "tun_freq", ENV_DEC, false, 0, 150, &env_common.tun_freq },
153 {}
154 };
155
156 static const struct env_map_percpu env_map_core[] = {
157 { "core_iccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.iccm },
158 { "core_dccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.dccm },
159 {}
160 };
161
162 static const struct env_map_common env_map_mask[] = {
163 { "core_mask", ENV_HEX, false, 0x1, 0xF, &env_common.core_mask },
164 {}
165 };
166
167 static const struct env_map_percpu env_map_go[] = {
168 { "core_entry", ENV_HEX, true, {0, 0, 0, 0}, {U32_MAX, U32_MAX, U32_MAX, U32_MAX}, &env_core.entry },
169 {}
170 };
171
172 enum board_type {
173 T_BOARD_NONE,
174 T_BOARD_HSDK,
175 T_BOARD_HSDK_4XD
176 };
177
178 static inline enum board_type get_board_type_runtime(void)
179 {
180 u32 arc_id = read_aux_reg(ARC_AUX_IDENTITY) & 0xFF;
181
182 if (arc_id == 0x52)
183 return T_BOARD_HSDK;
184 else if (arc_id == 0x54)
185 return T_BOARD_HSDK_4XD;
186 else
187 return T_BOARD_NONE;
188 }
189
190 static inline enum board_type get_board_type_config(void)
191 {
192 if (IS_ENABLED(CONFIG_BOARD_HSDK))
193 return T_BOARD_HSDK;
194 else if (IS_ENABLED(CONFIG_BOARD_HSDK_4XD))
195 return T_BOARD_HSDK_4XD;
196 else
197 return T_BOARD_NONE;
198 }
199
200 static bool is_board_match_runtime(enum board_type type_req)
201 {
202 return get_board_type_runtime() == type_req;
203 }
204
205 static bool is_board_match_config(enum board_type type_req)
206 {
207 return get_board_type_config() == type_req;
208 }
209
210 static const char * board_name(enum board_type type)
211 {
212 switch (type) {
213 case T_BOARD_HSDK:
214 return "ARC HS Development Kit";
215 case T_BOARD_HSDK_4XD:
216 return "ARC HS4x/HS4xD Development Kit";
217 default:
218 return "?";
219 }
220 }
221
222 static bool board_mismatch(void)
223 {
224 return get_board_type_config() != get_board_type_runtime();
225 }
226
227 static void sync_cross_cpu_data(void)
228 {
229 u32 value;
230
231 for (u32 i = 0; i < NR_CPUS; i++) {
232 value = env_core.entry[i].val;
233 arc_write_uncached_32(&cross_cpu_data.entry[i], value);
234 }
235
236 for (u32 i = 0; i < NR_CPUS; i++) {
237 value = env_core.iccm[i].val;
238 arc_write_uncached_32(&cross_cpu_data.iccm[i], value);
239 }
240
241 for (u32 i = 0; i < NR_CPUS; i++) {
242 value = env_core.dccm[i].val;
243 arc_write_uncached_32(&cross_cpu_data.dccm[i], value);
244 }
245
246 value = env_common.core_mask.val;
247 arc_write_uncached_32(&cross_cpu_data.core_mask, value);
248
249 value = env_common.icache.val;
250 arc_write_uncached_32(&cross_cpu_data.icache, value);
251
252 value = env_common.dcache.val;
253 arc_write_uncached_32(&cross_cpu_data.dcache, value);
254 }
255
256 /* Can be used only on master CPU */
257 static bool is_cpu_used(u32 cpu_id)
258 {
259 return !!(env_common.core_mask.val & BIT(cpu_id));
260 }
261
262 /* TODO: add ICCM BCR and DCCM BCR runtime check */
263 static void init_slave_cpu_func(u32 core)
264 {
265 u32 val;
266
267 /* Remap ICCM to another memory region if it exists */
268 val = arc_read_uncached_32(&cross_cpu_data.iccm[core]);
269 if (val != NO_CCM)
270 write_aux_reg(ARC_AUX_ICCM_BASE, val << APERTURE_SHIFT);
271
272 /* Remap DCCM to another memory region if it exists */
273 val = arc_read_uncached_32(&cross_cpu_data.dccm[core]);
274 if (val != NO_CCM)
275 write_aux_reg(ARC_AUX_DCCM_BASE, val << APERTURE_SHIFT);
276
277 if (arc_read_uncached_32(&cross_cpu_data.icache))
278 icache_enable();
279 else
280 icache_disable();
281
282 if (arc_read_uncached_32(&cross_cpu_data.dcache))
283 dcache_enable();
284 else
285 dcache_disable();
286 }
287
288 static void init_cluster_nvlim(void)
289 {
290 u32 val = env_common.nvlim.val << APERTURE_SHIFT;
291
292 flush_dcache_all();
293 write_aux_reg(ARC_AUX_NON_VOLATILE_LIMIT, val);
294 /* AUX_AUX_CACHE_LIMIT reg is missing starting from HS48 */
295 if (is_board_match_runtime(T_BOARD_HSDK))
296 write_aux_reg(AUX_AUX_CACHE_LIMIT, val);
297 flush_n_invalidate_dcache_all();
298 }
299
300 static void init_cluster_slc(void)
301 {
302 /* ARC HS38 doesn't support SLC disabling */
303 if (!is_board_match_config(T_BOARD_HSDK_4XD))
304 return;
305
306 if (env_common.l2_cache.val)
307 slc_enable();
308 else
309 slc_disable();
310 }
311
312 #define CREG_CSM_BASE (CREG_BASE + 0x210)
313
314 static void init_cluster_csm(void)
315 {
316 /* ARC HS38 in HSDK SoC doesn't include CSM */
317 if (!is_board_match_config(T_BOARD_HSDK_4XD))
318 return;
319
320 if (env_common.csm_location.val == NO_CCM) {
321 write_aux_reg(ARC_AUX_CSM_ENABLE, 0);
322 } else {
323 /*
324 * CSM base address is 256kByte aligned but we allow to map
325 * CSM only to aperture start (256MByte aligned)
326 * The field in CREG_CSM_BASE is in 17:2 bits itself so we need
327 * to shift it.
328 */
329 u32 csm_base = (env_common.csm_location.val * SZ_1K) << 2;
330
331 write_aux_reg(ARC_AUX_CSM_ENABLE, 1);
332 writel(csm_base, (void __iomem *)CREG_CSM_BASE);
333 }
334 }
335
336 static void init_master_icache(void)
337 {
338 if (icache_status()) {
339 /* I$ is enabled - we need to disable it */
340 if (!env_common.icache.val)
341 icache_disable();
342 } else {
343 /* I$ is disabled - we need to enable it */
344 if (env_common.icache.val) {
345 icache_enable();
346
347 /* invalidate I$ right after enable */
348 invalidate_icache_all();
349 }
350 }
351 }
352
353 static void init_master_dcache(void)
354 {
355 if (dcache_status()) {
356 /* D$ is enabled - we need to disable it */
357 if (!env_common.dcache.val)
358 dcache_disable();
359 } else {
360 /* D$ is disabled - we need to enable it */
361 if (env_common.dcache.val)
362 dcache_enable();
363
364 /* TODO: probably we need ti invalidate D$ right after enable */
365 }
366 }
367
368 static int cleanup_before_go(void)
369 {
370 disable_interrupts();
371 sync_n_cleanup_cache_all();
372
373 return 0;
374 }
375
376 void slave_cpu_set_boot_addr(u32 addr)
377 {
378 /* All cores have reset vector pointing to 0 */
379 writel(addr, (void __iomem *)RESET_VECTOR_ADDR);
380
381 /* Make sure other cores see written value in memory */
382 sync_n_cleanup_cache_all();
383 }
384
385 static inline void halt_this_cpu(void)
386 {
387 __builtin_arc_flag(1);
388 }
389
390 static u32 get_masked_cpu_ctart_reg(void)
391 {
392 int cmd = readl((void __iomem *)CREG_CPU_START);
393
394 /*
395 * Quirk for HSDK-4xD - due to HW issues HSDK can use any pulse polarity
396 * and HSDK-4xD require active low polarity of cpu_start pulse.
397 */
398 cmd &= ~CREG_CPU_START_POL;
399
400 cmd &= ~CREG_CPU_START_MASK;
401
402 return cmd;
403 }
404
405 static void smp_kick_cpu_x(u32 cpu_id)
406 {
407 int cmd;
408
409 if (cpu_id > NR_CPUS)
410 return;
411
412 cmd = get_masked_cpu_ctart_reg();
413 cmd |= (1 << cpu_id);
414 writel(cmd, (void __iomem *)CREG_CPU_START);
415 }
416
417 static u32 prepare_cpu_ctart_reg(void)
418 {
419 return get_masked_cpu_ctart_reg() | env_common.core_mask.val;
420 }
421
422 /* slave CPU entry for configuration */
423 __attribute__((naked, noreturn, flatten)) noinline void hsdk_core_init_f(void)
424 {
425 __asm__ __volatile__(
426 "ld.di r8, [%0]\n"
427 "mov %%sp, r8\n"
428 "mov %%fp, %%sp\n"
429 : /* no output */
430 : "r" (&cross_cpu_data.stack_ptr));
431
432 invalidate_icache_all();
433
434 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_1);
435 init_slave_cpu_func(CPU_ID_GET());
436
437 arc_write_uncached_32(&cross_cpu_data.ready_flag, SLAVE_CPU_READY);
438 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_2);
439
440 /* Halt the processor until the master kick us again */
441 halt_this_cpu();
442
443 /*
444 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
445 * cores but we leave them for gebug purposes.
446 */
447 __builtin_arc_nop();
448 __builtin_arc_nop();
449 __builtin_arc_nop();
450
451 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_3);
452
453 /* get the updated entry - invalidate i$ */
454 invalidate_icache_all();
455
456 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_4);
457
458 /* Run our program */
459 ((void (*)(void))(arc_read_uncached_32(&cross_cpu_data.entry[CPU_ID_GET()])))();
460
461 /* This bootstage is unreachable as we don't return from app we launch */
462 arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_5);
463
464 /* Something went terribly wrong */
465 while (true)
466 halt_this_cpu();
467 }
468
469 static void clear_cross_cpu_data(void)
470 {
471 arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
472 arc_write_uncached_32(&cross_cpu_data.stack_ptr, 0);
473
474 for (u32 i = 0; i < NR_CPUS; i++)
475 arc_write_uncached_32(&cross_cpu_data.status[i], 0);
476 }
477
478 static noinline void do_init_slave_cpu(u32 cpu_id)
479 {
480 /* attempts number for check clave CPU ready_flag */
481 u32 attempts = 100;
482 u32 stack_ptr = (u32)(slave_stack + (64 * cpu_id));
483
484 if (cpu_id >= NR_CPUS)
485 return;
486
487 arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
488
489 /* Use global unique place for each slave cpu stack */
490 arc_write_uncached_32(&cross_cpu_data.stack_ptr, stack_ptr);
491
492 debug("CPU %u: stack pool base: %p\n", cpu_id, slave_stack);
493 debug("CPU %u: current slave stack base: %x\n", cpu_id, stack_ptr);
494 slave_cpu_set_boot_addr((u32)hsdk_core_init_f);
495
496 smp_kick_cpu_x(cpu_id);
497
498 debug("CPU %u: cross-cpu flag: %x [before timeout]\n", cpu_id,
499 arc_read_uncached_32(&cross_cpu_data.ready_flag));
500
501 while (!arc_read_uncached_32(&cross_cpu_data.ready_flag) && attempts--)
502 mdelay(10);
503
504 /* Just to be sure that slave cpu is halted after it set ready_flag */
505 mdelay(20);
506
507 /*
508 * Only print error here if we reach timeout as there is no option to
509 * halt slave cpu (or check that slave cpu is halted)
510 */
511 if (!attempts)
512 pr_err("CPU %u is not responding after init!\n", cpu_id);
513
514 /* Check current stage of slave cpu */
515 if (arc_read_uncached_32(&cross_cpu_data.status[cpu_id]) != BOOTSTAGE_2)
516 pr_err("CPU %u status is unexpected: %d\n", cpu_id,
517 arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
518
519 debug("CPU %u: cross-cpu flag: %x [after timeout]\n", cpu_id,
520 arc_read_uncached_32(&cross_cpu_data.ready_flag));
521 debug("CPU %u: status: %d [after timeout]\n", cpu_id,
522 arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
523 }
524
525 static void do_init_slave_cpus(void)
526 {
527 clear_cross_cpu_data();
528 sync_cross_cpu_data();
529
530 debug("cross_cpu_data location: %#x\n", (u32)&cross_cpu_data);
531
532 for (u32 i = MASTER_CPU_ID + 1; i < NR_CPUS; i++)
533 if (is_cpu_used(i))
534 do_init_slave_cpu(i);
535 }
536
537 static void do_init_master_cpu(void)
538 {
539 /*
540 * Setup master caches even if master isn't used as we want to use
541 * same cache configuration on all running CPUs
542 */
543 init_master_icache();
544 init_master_dcache();
545 }
546
547 enum hsdk_axi_masters {
548 M_HS_CORE = 0,
549 M_HS_RTT,
550 M_AXI_TUN,
551 M_HDMI_VIDEO,
552 M_HDMI_AUDIO,
553 M_USB_HOST,
554 M_ETHERNET,
555 M_SDIO,
556 M_GPU,
557 M_DMAC_0,
558 M_DMAC_1,
559 M_DVFS
560 };
561
562 #define UPDATE_VAL 1
563
564 /*
565 * m master AXI_M_m_SLV0 AXI_M_m_SLV1 AXI_M_m_OFFSET0 AXI_M_m_OFFSET1
566 * 0 HS (CBU) 0x11111111 0x63111111 0xFEDCBA98 0x0E543210
567 * 1 HS (RTT) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
568 * 2 AXI Tunnel 0x88888888 0x88888888 0xFEDCBA98 0x76543210
569 * 3 HDMI-VIDEO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
570 * 4 HDMI-ADUIO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
571 * 5 USB-HOST 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
572 * 6 ETHERNET 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
573 * 7 SDIO 0x77777777 0x77999999 0xFEDCBA98 0x76DCBA98
574 * 8 GPU 0x77777777 0x77777777 0xFEDCBA98 0x76543210
575 * 9 DMAC (port #1) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
576 * 10 DMAC (port #2) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
577 * 11 DVFS 0x00000000 0x60000000 0x00000000 0x00000000
578 *
579 * Please read ARC HS Development IC Specification, section 17.2 for more
580 * information about apertures configuration.
581 * NOTE: we intentionally modify default settings in U-boot. Default settings
582 * are specified in "Table 111 CREG Address Decoder register reset values".
583 */
584
585 #define CREG_AXI_M_SLV0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m)))
586 #define CREG_AXI_M_SLV1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x004))
587 #define CREG_AXI_M_OFT0(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x008))
588 #define CREG_AXI_M_OFT1(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x00C))
589 #define CREG_AXI_M_UPDT(m) ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x014))
590
591 #define CREG_AXI_M_HS_CORE_BOOT ((void __iomem *)(CREG_BASE + 0x010))
592
593 #define CREG_PAE ((void __iomem *)(CREG_BASE + 0x180))
594 #define CREG_PAE_UPDT ((void __iomem *)(CREG_BASE + 0x194))
595
596 void init_memory_bridge(void)
597 {
598 u32 reg;
599
600 /*
601 * M_HS_CORE has one unic register - BOOT.
602 * We need to clean boot mirror (BOOT[1:0]) bits in them.
603 */
604 reg = readl(CREG_AXI_M_HS_CORE_BOOT) & (~0x3);
605 writel(reg, CREG_AXI_M_HS_CORE_BOOT);
606 writel(0x11111111, CREG_AXI_M_SLV0(M_HS_CORE));
607 writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
608 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_CORE));
609 writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
610 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
611
612 writel(0x77777777, CREG_AXI_M_SLV0(M_HS_RTT));
613 writel(0x77777777, CREG_AXI_M_SLV1(M_HS_RTT));
614 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_RTT));
615 writel(0x76543210, CREG_AXI_M_OFT1(M_HS_RTT));
616 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_RTT));
617
618 writel(0x88888888, CREG_AXI_M_SLV0(M_AXI_TUN));
619 writel(0x88888888, CREG_AXI_M_SLV1(M_AXI_TUN));
620 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_AXI_TUN));
621 writel(0x76543210, CREG_AXI_M_OFT1(M_AXI_TUN));
622 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_AXI_TUN));
623
624 writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_VIDEO));
625 writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_VIDEO));
626 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_VIDEO));
627 writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_VIDEO));
628 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_VIDEO));
629
630 writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_AUDIO));
631 writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_AUDIO));
632 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_AUDIO));
633 writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_AUDIO));
634 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_AUDIO));
635
636 writel(0x77777777, CREG_AXI_M_SLV0(M_USB_HOST));
637 writel(0x77999999, CREG_AXI_M_SLV1(M_USB_HOST));
638 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_USB_HOST));
639 writel(0x76DCBA98, CREG_AXI_M_OFT1(M_USB_HOST));
640 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
641
642 writel(0x77777777, CREG_AXI_M_SLV0(M_ETHERNET));
643 writel(0x77999999, CREG_AXI_M_SLV1(M_ETHERNET));
644 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_ETHERNET));
645 writel(0x76DCBA98, CREG_AXI_M_OFT1(M_ETHERNET));
646 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
647
648 writel(0x77777777, CREG_AXI_M_SLV0(M_SDIO));
649 writel(0x77999999, CREG_AXI_M_SLV1(M_SDIO));
650 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_SDIO));
651 writel(0x76DCBA98, CREG_AXI_M_OFT1(M_SDIO));
652 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
653
654 writel(0x77777777, CREG_AXI_M_SLV0(M_GPU));
655 writel(0x77777777, CREG_AXI_M_SLV1(M_GPU));
656 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_GPU));
657 writel(0x76543210, CREG_AXI_M_OFT1(M_GPU));
658 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_GPU));
659
660 writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_0));
661 writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_0));
662 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_0));
663 writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_0));
664 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_0));
665
666 writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_1));
667 writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_1));
668 writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_1));
669 writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_1));
670 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_1));
671
672 writel(0x00000000, CREG_AXI_M_SLV0(M_DVFS));
673 writel(0x60000000, CREG_AXI_M_SLV1(M_DVFS));
674 writel(0x00000000, CREG_AXI_M_OFT0(M_DVFS));
675 writel(0x00000000, CREG_AXI_M_OFT1(M_DVFS));
676 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DVFS));
677
678 writel(0x00000000, CREG_PAE);
679 writel(UPDATE_VAL, CREG_PAE_UPDT);
680 }
681
682 /*
683 * For HSDK-4xD we do additional AXI bridge tweaking in hsdk_init command:
684 * - we shrink IOC region.
685 * - we configure HS CORE SLV1 aperture depending on haps_apb_location
686 * environment variable.
687 *
688 * As we've already configured AXI bridge in init_memory_bridge we don't
689 * do full configuration here but reconfigure changed part.
690 *
691 * m master AXI_M_m_SLV0 AXI_M_m_SLV1 AXI_M_m_OFFSET0 AXI_M_m_OFFSET1
692 * 0 HS (CBU) 0x11111111 0x63111111 0xFEDCBA98 0x0E543210 [haps_apb_location = 0]
693 * 0 HS (CBU) 0x11111111 0x61111111 0xFEDCBA98 0x06543210 [haps_apb_location = 1]
694 * 1 HS (RTT) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
695 * 2 AXI Tunnel 0x88888888 0x88888888 0xFEDCBA98 0x76543210
696 * 3 HDMI-VIDEO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
697 * 4 HDMI-ADUIO 0x77777777 0x77777777 0xFEDCBA98 0x76543210
698 * 5 USB-HOST 0x77777777 0x77779999 0xFEDCBA98 0x7654BA98
699 * 6 ETHERNET 0x77777777 0x77779999 0xFEDCBA98 0x7654BA98
700 * 7 SDIO 0x77777777 0x77779999 0xFEDCBA98 0x7654BA98
701 * 8 GPU 0x77777777 0x77777777 0xFEDCBA98 0x76543210
702 * 9 DMAC (port #1) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
703 * 10 DMAC (port #2) 0x77777777 0x77777777 0xFEDCBA98 0x76543210
704 * 11 DVFS 0x00000000 0x60000000 0x00000000 0x00000000
705 */
706 void tweak_memory_bridge_cfg(void)
707 {
708 /*
709 * Only HSDK-4xD requre additional AXI bridge tweaking depending on
710 * haps_apb_location environment variable
711 */
712 if (!is_board_match_config(T_BOARD_HSDK_4XD))
713 return;
714
715 if (env_common.haps_apb.val) {
716 writel(0x61111111, CREG_AXI_M_SLV1(M_HS_CORE));
717 writel(0x06543210, CREG_AXI_M_OFT1(M_HS_CORE));
718 } else {
719 writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
720 writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
721 }
722 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
723
724 writel(0x77779999, CREG_AXI_M_SLV1(M_USB_HOST));
725 writel(0x7654BA98, CREG_AXI_M_OFT1(M_USB_HOST));
726 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
727
728 writel(0x77779999, CREG_AXI_M_SLV1(M_ETHERNET));;
729 writel(0x7654BA98, CREG_AXI_M_OFT1(M_ETHERNET));
730 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
731
732 writel(0x77779999, CREG_AXI_M_SLV1(M_SDIO));
733 writel(0x7654BA98, CREG_AXI_M_OFT1(M_SDIO));
734 writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
735 }
736
737 static void setup_clocks(void)
738 {
739 ulong rate;
740
741 /* Setup CPU clock */
742 if (env_common.cpu_freq.set) {
743 rate = env_common.cpu_freq.val;
744 soc_clk_ctl("cpu-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
745 }
746
747 /* Setup TUN clock */
748 if (env_common.tun_freq.set) {
749 rate = env_common.tun_freq.val;
750 if (rate)
751 soc_clk_ctl("tun-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
752 else
753 soc_clk_ctl("tun-clk", NULL, CLK_OFF);
754 }
755
756 if (env_common.axi_freq.set) {
757 rate = env_common.axi_freq.val;
758 soc_clk_ctl("axi-clk", &rate, CLK_SET | CLK_ON | CLK_MHZ);
759 }
760 }
761
762 static void do_init_cluster(void)
763 {
764 /*
765 * A multi-core ARC HS configuration always includes only one
766 * ARC_AUX_NON_VOLATILE_LIMIT register, which is shared by all the
767 * cores.
768 */
769 init_cluster_nvlim();
770 init_cluster_csm();
771 init_cluster_slc();
772 tweak_memory_bridge_cfg();
773 }
774
775 static int check_master_cpu_id(void)
776 {
777 if (CPU_ID_GET() == MASTER_CPU_ID)
778 return 0;
779
780 pr_err("u-boot runs on non-master cpu with id: %lu\n", CPU_ID_GET());
781
782 return -ENOENT;
783 }
784
785 static noinline int prepare_cpus(void)
786 {
787 int ret;
788
789 ret = check_master_cpu_id();
790 if (ret)
791 return ret;
792
793 ret = envs_process_and_validate(env_map_common, env_map_core, is_cpu_used);
794 if (ret)
795 return ret;
796
797 printf("CPU start mask is %#x\n", env_common.core_mask.val);
798
799 do_init_slave_cpus();
800 do_init_master_cpu();
801 do_init_cluster();
802
803 return 0;
804 }
805
806 static int hsdk_go_run(u32 cpu_start_reg)
807 {
808 /* Cleanup caches, disable interrupts */
809 cleanup_before_go();
810
811 if (env_common.halt_on_boot)
812 halt_this_cpu();
813
814 /*
815 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
816 * cores but we leave them for gebug purposes.
817 */
818 __builtin_arc_nop();
819 __builtin_arc_nop();
820 __builtin_arc_nop();
821
822 /* Kick chosen slave CPUs */
823 writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
824
825 if (is_cpu_used(MASTER_CPU_ID))
826 ((void (*)(void))(env_core.entry[MASTER_CPU_ID].val))();
827 else
828 halt_this_cpu();
829
830 pr_err("u-boot still runs on cpu [%ld]\n", CPU_ID_GET());
831
832 /*
833 * We will never return after executing our program if master cpu used
834 * otherwise halt master cpu manually.
835 */
836 while (true)
837 halt_this_cpu();
838
839 return 0;
840 }
841
842 int board_prep_linux(bootm_headers_t *images)
843 {
844 int ret, ofst;
845 char mask[15];
846
847 ret = envs_read_validate_common(env_map_mask);
848 if (ret)
849 return ret;
850
851 /* Rollback to default values */
852 if (!env_common.core_mask.set) {
853 env_common.core_mask.val = ALL_CPU_MASK;
854 env_common.core_mask.set = true;
855 }
856
857 printf("CPU start mask is %#x\n", env_common.core_mask.val);
858
859 if (!is_cpu_used(MASTER_CPU_ID))
860 pr_err("ERR: try to launch linux with CPU[0] disabled! It doesn't work for ARC.\n");
861
862 /*
863 * If we want to launch linux on all CPUs we don't need to patch
864 * linux DTB as it is default configuration
865 */
866 if (env_common.core_mask.val == ALL_CPU_MASK)
867 return 0;
868
869 if (!IMAGE_ENABLE_OF_LIBFDT || !images->ft_len) {
870 pr_err("WARN: core_mask setup will work properly only with external DTB!\n");
871 return 0;
872 }
873
874 /* patch '/possible-cpus' property according to cpu mask */
875 ofst = fdt_path_offset(images->ft_addr, "/");
876 sprintf(mask, "%s%s%s%s",
877 is_cpu_used(0) ? "0," : "",
878 is_cpu_used(1) ? "1," : "",
879 is_cpu_used(2) ? "2," : "",
880 is_cpu_used(3) ? "3," : "");
881 ret = fdt_setprop_string(images->ft_addr, ofst, "possible-cpus", mask);
882 /*
883 * If we failed to patch '/possible-cpus' property we don't need break
884 * linux loading process: kernel will handle it but linux will print
885 * warning like "Timeout: CPU1 FAILED to comeup !!!".
886 * So warn here about error, but return 0 like no error had occurred.
887 */
888 if (ret)
889 pr_err("WARN: failed to patch '/possible-cpus' property, ret=%d\n",
890 ret);
891
892 return 0;
893 }
894
895 void board_jump_and_run(ulong entry, int zero, int arch, uint params)
896 {
897 void (*kernel_entry)(int zero, int arch, uint params);
898 u32 cpu_start_reg;
899
900 kernel_entry = (void (*)(int, int, uint))entry;
901
902 /* Prepare CREG_CPU_START for kicking chosen CPUs */
903 cpu_start_reg = prepare_cpu_ctart_reg();
904
905 /* In case of run without hsdk_init */
906 slave_cpu_set_boot_addr(entry);
907
908 /* In case of run with hsdk_init */
909 for (u32 i = 0; i < NR_CPUS; i++) {
910 env_core.entry[i].val = entry;
911 env_core.entry[i].set = true;
912 }
913 /* sync cross_cpu struct as we updated core-entry variables */
914 sync_cross_cpu_data();
915
916 /* Kick chosen slave CPUs */
917 writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
918
919 if (is_cpu_used(0))
920 kernel_entry(zero, arch, params);
921 }
922
923 static int hsdk_go_prepare_and_run(void)
924 {
925 /* Prepare CREG_CPU_START for kicking chosen CPUs */
926 u32 reg = prepare_cpu_ctart_reg();
927
928 if (env_common.halt_on_boot)
929 printf("CPU will halt before application start, start application with debugger.\n");
930
931 return hsdk_go_run(reg);
932 }
933
934 static int do_hsdk_go(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
935 {
936 int ret;
937
938 if (board_mismatch()) {
939 printf("ERR: U-boot is not configured for this board!\n");
940 return CMD_RET_FAILURE;
941 }
942
943 /*
944 * Check for 'halt' parameter. 'halt' = enter halt-mode just before
945 * starting the application; can be used for debug.
946 */
947 if (argc > 1) {
948 env_common.halt_on_boot = !strcmp(argv[1], "halt");
949 if (!env_common.halt_on_boot) {
950 pr_err("Unrecognised parameter: \'%s\'\n", argv[1]);
951 return CMD_RET_FAILURE;
952 }
953 }
954
955 ret = check_master_cpu_id();
956 if (ret)
957 return ret;
958
959 ret = envs_process_and_validate(env_map_mask, env_map_go, is_cpu_used);
960 if (ret)
961 return ret;
962
963 /* sync cross_cpu struct as we updated core-entry variables */
964 sync_cross_cpu_data();
965
966 ret = hsdk_go_prepare_and_run();
967
968 return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
969 }
970
971 U_BOOT_CMD(
972 hsdk_go, 3, 0, do_hsdk_go,
973 "Synopsys HSDK specific command",
974 " - Boot stand-alone application on HSDK\n"
975 "hsdk_go halt - Boot stand-alone application on HSDK, halt CPU just before application run\n"
976 );
977
978 /*
979 * We may simply use static variable here to store init status, but we also want
980 * to avoid the situation when we reload U-boot via MDB after previous
981 * init is done but HW reset (board reset) isn't done. So let's store the
982 * init status in any unused register (i.e CREG_CPU_0_ENTRY) so status will
983 * survive after U-boot is reloaded via MDB.
984 */
985 #define INIT_MARKER_REGISTER ((void __iomem *)CREG_CPU_0_ENTRY)
986 /* must be equal to INIT_MARKER_REGISTER reset value */
987 #define INIT_MARKER_PENDING 0
988
989 static bool init_marker_get(void)
990 {
991 return readl(INIT_MARKER_REGISTER) != INIT_MARKER_PENDING;
992 }
993
994 static void init_mark_done(void)
995 {
996 writel(~INIT_MARKER_PENDING, INIT_MARKER_REGISTER);
997 }
998
999 static int do_hsdk_init(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1000 {
1001 int ret;
1002
1003 if (board_mismatch()) {
1004 printf("ERR: U-boot is not configured for this board!\n");
1005 return CMD_RET_FAILURE;
1006 }
1007
1008 /* hsdk_init can be run only once */
1009 if (init_marker_get()) {
1010 printf("HSDK HW is already initialized! Please reset the board if you want to change the configuration.\n");
1011 return CMD_RET_FAILURE;
1012 }
1013
1014 ret = prepare_cpus();
1015 if (!ret)
1016 init_mark_done();
1017
1018 return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
1019 }
1020
1021 U_BOOT_CMD(
1022 hsdk_init, 1, 0, do_hsdk_init,
1023 "Synopsys HSDK specific command",
1024 "- Init HSDK HW\n"
1025 );
1026
1027 static int do_hsdk_clock_set(cmd_tbl_t *cmdtp, int flag, int argc,
1028 char *const argv[])
1029 {
1030 int ret = 0;
1031
1032 /* Strip off leading subcommand argument */
1033 argc--;
1034 argv++;
1035
1036 envs_cleanup_common(env_map_clock);
1037
1038 if (!argc) {
1039 printf("Set clocks to values specified in environment\n");
1040 ret = envs_read_common(env_map_clock);
1041 } else {
1042 printf("Set clocks to values specified in args\n");
1043 ret = args_envs_enumerate(env_map_clock, 2, argc, argv);
1044 }
1045
1046 if (ret)
1047 return CMD_RET_FAILURE;
1048
1049 ret = envs_validate_common(env_map_clock);
1050 if (ret)
1051 return CMD_RET_FAILURE;
1052
1053 /* Setup clock tree HW */
1054 setup_clocks();
1055
1056 return CMD_RET_SUCCESS;
1057 }
1058
1059 static int do_hsdk_clock_get(cmd_tbl_t *cmdtp, int flag, int argc,
1060 char *const argv[])
1061 {
1062 ulong rate;
1063
1064 if (soc_clk_ctl("cpu-clk", &rate, CLK_GET | CLK_MHZ))
1065 return CMD_RET_FAILURE;
1066
1067 if (env_set_ulong("cpu_freq", rate))
1068 return CMD_RET_FAILURE;
1069
1070 if (soc_clk_ctl("tun-clk", &rate, CLK_GET | CLK_MHZ))
1071 return CMD_RET_FAILURE;
1072
1073 if (env_set_ulong("tun_freq", rate))
1074 return CMD_RET_FAILURE;
1075
1076 if (soc_clk_ctl("axi-clk", &rate, CLK_GET | CLK_MHZ))
1077 return CMD_RET_FAILURE;
1078
1079 if (env_set_ulong("axi_freq", rate))
1080 return CMD_RET_FAILURE;
1081
1082 printf("Clock values are saved to environment\n");
1083
1084 return CMD_RET_SUCCESS;
1085 }
1086
1087 static int do_hsdk_clock_print(cmd_tbl_t *cmdtp, int flag, int argc,
1088 char *const argv[])
1089 {
1090 /* Main clocks */
1091 soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
1092 soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
1093 soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
1094 soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
1095
1096 return CMD_RET_SUCCESS;
1097 }
1098
1099 static int do_hsdk_clock_print_all(cmd_tbl_t *cmdtp, int flag, int argc,
1100 char *const argv[])
1101 {
1102 /*
1103 * NOTE: as of today we don't use some peripherals like HDMI / EBI
1104 * so we don't want to print their clocks ("hdmi-sys-clk", "hdmi-pll",
1105 * "hdmi-clk", "ebi-clk"). Nevertheless their clock subsystems is fully
1106 * functional and we can print their clocks if it is required
1107 */
1108
1109 /* CPU clock domain */
1110 soc_clk_ctl("cpu-pll", NULL, CLK_PRINT | CLK_MHZ);
1111 soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
1112 printf("\n");
1113
1114 /* SYS clock domain */
1115 soc_clk_ctl("sys-pll", NULL, CLK_PRINT | CLK_MHZ);
1116 soc_clk_ctl("apb-clk", NULL, CLK_PRINT | CLK_MHZ);
1117 soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
1118 soc_clk_ctl("eth-clk", NULL, CLK_PRINT | CLK_MHZ);
1119 soc_clk_ctl("usb-clk", NULL, CLK_PRINT | CLK_MHZ);
1120 soc_clk_ctl("sdio-clk", NULL, CLK_PRINT | CLK_MHZ);
1121 if (is_board_match_runtime(T_BOARD_HSDK_4XD))
1122 soc_clk_ctl("hdmi-sys-clk", NULL, CLK_PRINT | CLK_MHZ);
1123 soc_clk_ctl("gfx-core-clk", NULL, CLK_PRINT | CLK_MHZ);
1124 if (is_board_match_runtime(T_BOARD_HSDK)) {
1125 soc_clk_ctl("gfx-dma-clk", NULL, CLK_PRINT | CLK_MHZ);
1126 soc_clk_ctl("gfx-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
1127 }
1128 soc_clk_ctl("dmac-core-clk", NULL, CLK_PRINT | CLK_MHZ);
1129 soc_clk_ctl("dmac-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
1130 soc_clk_ctl("sdio-ref-clk", NULL, CLK_PRINT | CLK_MHZ);
1131 soc_clk_ctl("spi-clk", NULL, CLK_PRINT | CLK_MHZ);
1132 soc_clk_ctl("i2c-clk", NULL, CLK_PRINT | CLK_MHZ);
1133 /* soc_clk_ctl("ebi-clk", NULL, CLK_PRINT | CLK_MHZ); */
1134 soc_clk_ctl("uart-clk", NULL, CLK_PRINT | CLK_MHZ);
1135 printf("\n");
1136
1137 /* DDR clock domain */
1138 soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
1139 printf("\n");
1140
1141 /* HDMI clock domain */
1142 if (is_board_match_runtime(T_BOARD_HSDK_4XD)) {
1143 soc_clk_ctl("hdmi-pll", NULL, CLK_PRINT | CLK_MHZ);
1144 soc_clk_ctl("hdmi-clk", NULL, CLK_PRINT | CLK_MHZ);
1145 printf("\n");
1146 }
1147
1148 /* TUN clock domain */
1149 soc_clk_ctl("tun-pll", NULL, CLK_PRINT | CLK_MHZ);
1150 soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
1151 soc_clk_ctl("rom-clk", NULL, CLK_PRINT | CLK_MHZ);
1152 soc_clk_ctl("pwm-clk", NULL, CLK_PRINT | CLK_MHZ);
1153 if (is_board_match_runtime(T_BOARD_HSDK_4XD))
1154 soc_clk_ctl("timer-clk", NULL, CLK_PRINT | CLK_MHZ);
1155 printf("\n");
1156
1157 return CMD_RET_SUCCESS;
1158 }
1159
1160 cmd_tbl_t cmd_hsdk_clock[] = {
1161 U_BOOT_CMD_MKENT(set, 3, 0, do_hsdk_clock_set, "", ""),
1162 U_BOOT_CMD_MKENT(get, 3, 0, do_hsdk_clock_get, "", ""),
1163 U_BOOT_CMD_MKENT(print, 4, 0, do_hsdk_clock_print, "", ""),
1164 U_BOOT_CMD_MKENT(print_all, 4, 0, do_hsdk_clock_print_all, "", ""),
1165 };
1166
1167 static int do_hsdk_clock(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1168 {
1169 cmd_tbl_t *c;
1170
1171 if (argc < 2)
1172 return CMD_RET_USAGE;
1173
1174 /* Strip off leading 'hsdk_clock' command argument */
1175 argc--;
1176 argv++;
1177
1178 c = find_cmd_tbl(argv[0], cmd_hsdk_clock, ARRAY_SIZE(cmd_hsdk_clock));
1179 if (!c)
1180 return CMD_RET_USAGE;
1181
1182 return c->cmd(cmdtp, flag, argc, argv);
1183 }
1184
1185 U_BOOT_CMD(
1186 hsdk_clock, CONFIG_SYS_MAXARGS, 0, do_hsdk_clock,
1187 "Synopsys HSDK specific clock command",
1188 "set - Set clock to values specified in environment / command line arguments\n"
1189 "hsdk_clock get - Save clock values to environment\n"
1190 "hsdk_clock print - Print main clock values to console\n"
1191 "hsdk_clock print_all - Print all clock values to console\n"
1192 );
1193
1194 /* init calls */
1195 int board_early_init_f(void)
1196 {
1197 /*
1198 * Setup AXI apertures unconditionally as we want to have DDR
1199 * in 0x00000000 region when we are kicking slave cpus.
1200 */
1201 init_memory_bridge();
1202
1203 /*
1204 * Switch SDIO external ciu clock divider from default div-by-8 to
1205 * minimum possible div-by-2.
1206 */
1207 writel(SDIO_UHS_REG_EXT_DIV_2, (void __iomem *)SDIO_UHS_REG_EXT);
1208
1209 return 0;
1210 }
1211
1212 int board_early_init_r(void)
1213 {
1214 /*
1215 * TODO: Init USB here to be able read environment from USB MSD.
1216 * It can be done with usb_init() call. We can't do it right now
1217 * due to brocken USB IP SW reset and lack of USB IP HW reset in
1218 * linux kernel (if we init USB here we will break USB in linux)
1219 */
1220
1221 /*
1222 * Flush all d$ as we want to use uncached area with st.di / ld.di
1223 * instructions and we don't want to have any dirty line in L1d$ or SL$
1224 * in this area. It is enough to flush all d$ once here as we access to
1225 * uncached area with regular st (non .di) instruction only when we copy
1226 * data during u-boot relocation.
1227 */
1228 flush_dcache_all();
1229
1230 printf("Relocation Offset is: %08lx\n", gd->reloc_off);
1231
1232 return 0;
1233 }
1234
1235 int board_late_init(void)
1236 {
1237 /*
1238 * Populate environment with clock frequency values -
1239 * run hsdk_clock get callback without uboot command run.
1240 */
1241 do_hsdk_clock_get(NULL, 0, 0, NULL);
1242
1243 return 0;
1244 }
1245
1246 int checkboard(void)
1247 {
1248 u32 reg;
1249
1250 printf("Board: Synopsys %s\n", board_name(get_board_type_runtime()));
1251
1252 if (board_mismatch())
1253 printf("WARN: U-boot is configured NOT for this board but for %s!\n",
1254 board_name(get_board_type_config()));
1255
1256 reg = readl(CREG_AXI_M_HS_CORE_BOOT) & CREG_CORE_BOOT_IMAGE;
1257 printf("U-boot autostart: %s\n", reg ? "enabled" : "disabled");
1258
1259 return 0;
1260 };