]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/cmd_i2c.c
arm/km: fix wrong error handling
[people/ms/u-boot.git] / common / cmd_i2c.c
1 /*
2 * (C) Copyright 2009
3 * Sergey Kubushyn, himself, ksi@koi8.net
4 *
5 * Changes for unified multibus/multiadapter I2C support.
6 *
7 * (C) Copyright 2001
8 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
9 *
10 * SPDX-License-Identifier: GPL-2.0+
11 */
12
13 /*
14 * I2C Functions similar to the standard memory functions.
15 *
16 * There are several parameters in many of the commands that bear further
17 * explanations:
18 *
19 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
20 * Each I2C chip on the bus has a unique address. On the I2C data bus,
21 * the address is the upper seven bits and the LSB is the "read/write"
22 * bit. Note that the {i2c_chip} address specified on the command
23 * line is not shifted up: e.g. a typical EEPROM memory chip may have
24 * an I2C address of 0x50, but the data put on the bus will be 0xA0
25 * for write and 0xA1 for read. This "non shifted" address notation
26 * matches at least half of the data sheets :-/.
27 *
28 * {addr} is the address (or offset) within the chip. Small memory
29 * chips have 8 bit addresses. Large memory chips have 16 bit
30 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
31 * Many non-memory chips have multiple registers and {addr} is used
32 * as the register index. Some non-memory chips have only one register
33 * and therefore don't need any {addr} parameter.
34 *
35 * The default {addr} parameter is one byte (.1) which works well for
36 * memories and registers with 8 bits of address space.
37 *
38 * You can specify the length of the {addr} field with the optional .0,
39 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
40 * manipulating a single register device which doesn't use an address
41 * field, use "0.0" for the address and the ".0" length field will
42 * suppress the address in the I2C data stream. This also works for
43 * successive reads using the I2C auto-incrementing memory pointer.
44 *
45 * If you are manipulating a large memory with 2-byte addresses, use
46 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
47 *
48 * Then there are the unfortunate memory chips that spill the most
49 * significant 1, 2, or 3 bits of address into the chip address byte.
50 * This effectively makes one chip (logically) look like 2, 4, or
51 * 8 chips. This is handled (awkwardly) by #defining
52 * CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
53 * {addr} field (since .1 is the default, it doesn't actually have to
54 * be specified). Examples: given a memory chip at I2C chip address
55 * 0x50, the following would happen...
56 * i2c md 50 0 10 display 16 bytes starting at 0x000
57 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
58 * i2c md 50 100 10 display 16 bytes starting at 0x100
59 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
60 * i2c md 50 210 10 display 16 bytes starting at 0x210
61 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
62 * This is awfully ugly. It would be nice if someone would think up
63 * a better way of handling this.
64 *
65 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
66 */
67
68 #include <common.h>
69 #include <command.h>
70 #include <edid.h>
71 #include <environment.h>
72 #include <i2c.h>
73 #include <malloc.h>
74 #include <asm/byteorder.h>
75 #include <linux/compiler.h>
76
77 DECLARE_GLOBAL_DATA_PTR;
78
79 /* Display values from last command.
80 * Memory modify remembered values are different from display memory.
81 */
82 static uchar i2c_dp_last_chip;
83 static uint i2c_dp_last_addr;
84 static uint i2c_dp_last_alen;
85 static uint i2c_dp_last_length = 0x10;
86
87 static uchar i2c_mm_last_chip;
88 static uint i2c_mm_last_addr;
89 static uint i2c_mm_last_alen;
90
91 /* If only one I2C bus is present, the list of devices to ignore when
92 * the probe command is issued is represented by a 1D array of addresses.
93 * When multiple buses are present, the list is an array of bus-address
94 * pairs. The following macros take care of this */
95
96 #if defined(CONFIG_SYS_I2C_NOPROBES)
97 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
98 static struct
99 {
100 uchar bus;
101 uchar addr;
102 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
103 #define GET_BUS_NUM i2c_get_bus_num()
104 #define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
105 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
106 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
107 #else /* single bus */
108 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
109 #define GET_BUS_NUM 0
110 #define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
111 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
112 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
113 #endif /* defined(CONFIG_SYS_I2C) */
114 #endif
115
116 #define DISP_LINE_LEN 16
117
118 /**
119 * i2c_init_board() - Board-specific I2C bus init
120 *
121 * This function is the default no-op implementation of I2C bus
122 * initialization. This function can be overriden by board-specific
123 * implementation if needed.
124 */
125 __weak
126 void i2c_init_board(void)
127 {
128 }
129
130 /* TODO: Implement architecture-specific get/set functions */
131
132 /**
133 * i2c_get_bus_speed() - Return I2C bus speed
134 *
135 * This function is the default implementation of function for retrieveing
136 * the current I2C bus speed in Hz.
137 *
138 * A driver implementing runtime switching of I2C bus speed must override
139 * this function to report the speed correctly. Simple or legacy drivers
140 * can use this fallback.
141 *
142 * Returns I2C bus speed in Hz.
143 */
144 #if !defined(CONFIG_SYS_I2C)
145 /*
146 * TODO: Implement architecture-specific get/set functions
147 * Should go away, if we switched completely to new multibus support
148 */
149 __weak
150 unsigned int i2c_get_bus_speed(void)
151 {
152 return CONFIG_SYS_I2C_SPEED;
153 }
154
155 /**
156 * i2c_set_bus_speed() - Configure I2C bus speed
157 * @speed: Newly set speed of the I2C bus in Hz
158 *
159 * This function is the default implementation of function for setting
160 * the I2C bus speed in Hz.
161 *
162 * A driver implementing runtime switching of I2C bus speed must override
163 * this function to report the speed correctly. Simple or legacy drivers
164 * can use this fallback.
165 *
166 * Returns zero on success, negative value on error.
167 */
168 __weak
169 int i2c_set_bus_speed(unsigned int speed)
170 {
171 if (speed != CONFIG_SYS_I2C_SPEED)
172 return -1;
173
174 return 0;
175 }
176 #endif
177
178 /**
179 * get_alen() - Small parser helper function to get address length
180 *
181 * Returns the address length.
182 */
183 static uint get_alen(char *arg)
184 {
185 int j;
186 int alen;
187
188 alen = 1;
189 for (j = 0; j < 8; j++) {
190 if (arg[j] == '.') {
191 alen = arg[j+1] - '0';
192 break;
193 } else if (arg[j] == '\0')
194 break;
195 }
196 return alen;
197 }
198
199 /**
200 * do_i2c_read() - Handle the "i2c read" command-line command
201 * @cmdtp: Command data struct pointer
202 * @flag: Command flag
203 * @argc: Command-line argument count
204 * @argv: Array of command-line arguments
205 *
206 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
207 * on error.
208 *
209 * Syntax:
210 * i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
211 */
212 static int do_i2c_read ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
213 {
214 u_char chip;
215 uint devaddr, alen, length;
216 u_char *memaddr;
217
218 if (argc != 5)
219 return CMD_RET_USAGE;
220
221 /*
222 * I2C chip address
223 */
224 chip = simple_strtoul(argv[1], NULL, 16);
225
226 /*
227 * I2C data address within the chip. This can be 1 or
228 * 2 bytes long. Some day it might be 3 bytes long :-).
229 */
230 devaddr = simple_strtoul(argv[2], NULL, 16);
231 alen = get_alen(argv[2]);
232 if (alen > 3)
233 return CMD_RET_USAGE;
234
235 /*
236 * Length is the number of objects, not number of bytes.
237 */
238 length = simple_strtoul(argv[3], NULL, 16);
239
240 /*
241 * memaddr is the address where to store things in memory
242 */
243 memaddr = (u_char *)simple_strtoul(argv[4], NULL, 16);
244
245 if (i2c_read(chip, devaddr, alen, memaddr, length) != 0) {
246 puts ("Error reading the chip.\n");
247 return 1;
248 }
249 return 0;
250 }
251
252 static int do_i2c_write(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
253 {
254 u_char chip;
255 uint devaddr, alen, length;
256 u_char *memaddr;
257
258 if (argc != 5)
259 return cmd_usage(cmdtp);
260
261 /*
262 * memaddr is the address where to store things in memory
263 */
264 memaddr = (u_char *)simple_strtoul(argv[1], NULL, 16);
265
266 /*
267 * I2C chip address
268 */
269 chip = simple_strtoul(argv[2], NULL, 16);
270
271 /*
272 * I2C data address within the chip. This can be 1 or
273 * 2 bytes long. Some day it might be 3 bytes long :-).
274 */
275 devaddr = simple_strtoul(argv[3], NULL, 16);
276 alen = get_alen(argv[3]);
277 if (alen > 3)
278 return cmd_usage(cmdtp);
279
280 /*
281 * Length is the number of objects, not number of bytes.
282 */
283 length = simple_strtoul(argv[4], NULL, 16);
284
285 while (length-- > 0) {
286 if (i2c_write(chip, devaddr++, alen, memaddr++, 1) != 0) {
287 puts("Error writing to the chip.\n");
288 return 1;
289 }
290 /*
291 * No write delay with FRAM devices.
292 */
293 #if !defined(CONFIG_SYS_I2C_FRAM)
294 udelay(11000);
295 #endif
296 }
297 return 0;
298 }
299
300 /**
301 * do_i2c_md() - Handle the "i2c md" command-line command
302 * @cmdtp: Command data struct pointer
303 * @flag: Command flag
304 * @argc: Command-line argument count
305 * @argv: Array of command-line arguments
306 *
307 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
308 * on error.
309 *
310 * Syntax:
311 * i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
312 */
313 static int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
314 {
315 u_char chip;
316 uint addr, alen, length;
317 int j, nbytes, linebytes;
318
319 /* We use the last specified parameters, unless new ones are
320 * entered.
321 */
322 chip = i2c_dp_last_chip;
323 addr = i2c_dp_last_addr;
324 alen = i2c_dp_last_alen;
325 length = i2c_dp_last_length;
326
327 if (argc < 3)
328 return CMD_RET_USAGE;
329
330 if ((flag & CMD_FLAG_REPEAT) == 0) {
331 /*
332 * New command specified.
333 */
334
335 /*
336 * I2C chip address
337 */
338 chip = simple_strtoul(argv[1], NULL, 16);
339
340 /*
341 * I2C data address within the chip. This can be 1 or
342 * 2 bytes long. Some day it might be 3 bytes long :-).
343 */
344 addr = simple_strtoul(argv[2], NULL, 16);
345 alen = get_alen(argv[2]);
346 if (alen > 3)
347 return CMD_RET_USAGE;
348
349 /*
350 * If another parameter, it is the length to display.
351 * Length is the number of objects, not number of bytes.
352 */
353 if (argc > 3)
354 length = simple_strtoul(argv[3], NULL, 16);
355 }
356
357 /*
358 * Print the lines.
359 *
360 * We buffer all read data, so we can make sure data is read only
361 * once.
362 */
363 nbytes = length;
364 do {
365 unsigned char linebuf[DISP_LINE_LEN];
366 unsigned char *cp;
367
368 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
369
370 if (i2c_read(chip, addr, alen, linebuf, linebytes) != 0)
371 puts ("Error reading the chip.\n");
372 else {
373 printf("%04x:", addr);
374 cp = linebuf;
375 for (j=0; j<linebytes; j++) {
376 printf(" %02x", *cp++);
377 addr++;
378 }
379 puts (" ");
380 cp = linebuf;
381 for (j=0; j<linebytes; j++) {
382 if ((*cp < 0x20) || (*cp > 0x7e))
383 puts (".");
384 else
385 printf("%c", *cp);
386 cp++;
387 }
388 putc ('\n');
389 }
390 nbytes -= linebytes;
391 } while (nbytes > 0);
392
393 i2c_dp_last_chip = chip;
394 i2c_dp_last_addr = addr;
395 i2c_dp_last_alen = alen;
396 i2c_dp_last_length = length;
397
398 return 0;
399 }
400
401 /**
402 * do_i2c_mw() - Handle the "i2c mw" command-line command
403 * @cmdtp: Command data struct pointer
404 * @flag: Command flag
405 * @argc: Command-line argument count
406 * @argv: Array of command-line arguments
407 *
408 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
409 * on error.
410 *
411 * Syntax:
412 * i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
413 */
414 static int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
415 {
416 uchar chip;
417 ulong addr;
418 uint alen;
419 uchar byte;
420 int count;
421
422 if ((argc < 4) || (argc > 5))
423 return CMD_RET_USAGE;
424
425 /*
426 * Chip is always specified.
427 */
428 chip = simple_strtoul(argv[1], NULL, 16);
429
430 /*
431 * Address is always specified.
432 */
433 addr = simple_strtoul(argv[2], NULL, 16);
434 alen = get_alen(argv[2]);
435 if (alen > 3)
436 return CMD_RET_USAGE;
437
438 /*
439 * Value to write is always specified.
440 */
441 byte = simple_strtoul(argv[3], NULL, 16);
442
443 /*
444 * Optional count
445 */
446 if (argc == 5)
447 count = simple_strtoul(argv[4], NULL, 16);
448 else
449 count = 1;
450
451 while (count-- > 0) {
452 if (i2c_write(chip, addr++, alen, &byte, 1) != 0)
453 puts ("Error writing the chip.\n");
454 /*
455 * Wait for the write to complete. The write can take
456 * up to 10mSec (we allow a little more time).
457 */
458 /*
459 * No write delay with FRAM devices.
460 */
461 #if !defined(CONFIG_SYS_I2C_FRAM)
462 udelay(11000);
463 #endif
464 }
465
466 return 0;
467 }
468
469 /**
470 * do_i2c_crc() - Handle the "i2c crc32" command-line command
471 * @cmdtp: Command data struct pointer
472 * @flag: Command flag
473 * @argc: Command-line argument count
474 * @argv: Array of command-line arguments
475 *
476 * Calculate a CRC on memory
477 *
478 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
479 * on error.
480 *
481 * Syntax:
482 * i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
483 */
484 static int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
485 {
486 uchar chip;
487 ulong addr;
488 uint alen;
489 int count;
490 uchar byte;
491 ulong crc;
492 ulong err;
493
494 if (argc < 4)
495 return CMD_RET_USAGE;
496
497 /*
498 * Chip is always specified.
499 */
500 chip = simple_strtoul(argv[1], NULL, 16);
501
502 /*
503 * Address is always specified.
504 */
505 addr = simple_strtoul(argv[2], NULL, 16);
506 alen = get_alen(argv[2]);
507 if (alen > 3)
508 return CMD_RET_USAGE;
509
510 /*
511 * Count is always specified
512 */
513 count = simple_strtoul(argv[3], NULL, 16);
514
515 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
516 /*
517 * CRC a byte at a time. This is going to be slooow, but hey, the
518 * memories are small and slow too so hopefully nobody notices.
519 */
520 crc = 0;
521 err = 0;
522 while (count-- > 0) {
523 if (i2c_read(chip, addr, alen, &byte, 1) != 0)
524 err++;
525 crc = crc32 (crc, &byte, 1);
526 addr++;
527 }
528 if (err > 0)
529 puts ("Error reading the chip,\n");
530 else
531 printf ("%08lx\n", crc);
532
533 return 0;
534 }
535
536 /**
537 * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
538 * @cmdtp: Command data struct pointer
539 * @flag: Command flag
540 * @argc: Command-line argument count
541 * @argv: Array of command-line arguments
542 *
543 * Modify memory.
544 *
545 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
546 * on error.
547 *
548 * Syntax:
549 * i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
550 * i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
551 */
552 static int
553 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char * const argv[])
554 {
555 uchar chip;
556 ulong addr;
557 uint alen;
558 ulong data;
559 int size = 1;
560 int nbytes;
561
562 if (argc != 3)
563 return CMD_RET_USAGE;
564
565 #ifdef CONFIG_BOOT_RETRY_TIME
566 reset_cmd_timeout(); /* got a good command to get here */
567 #endif
568 /*
569 * We use the last specified parameters, unless new ones are
570 * entered.
571 */
572 chip = i2c_mm_last_chip;
573 addr = i2c_mm_last_addr;
574 alen = i2c_mm_last_alen;
575
576 if ((flag & CMD_FLAG_REPEAT) == 0) {
577 /*
578 * New command specified. Check for a size specification.
579 * Defaults to byte if no or incorrect specification.
580 */
581 size = cmd_get_data_size(argv[0], 1);
582
583 /*
584 * Chip is always specified.
585 */
586 chip = simple_strtoul(argv[1], NULL, 16);
587
588 /*
589 * Address is always specified.
590 */
591 addr = simple_strtoul(argv[2], NULL, 16);
592 alen = get_alen(argv[2]);
593 if (alen > 3)
594 return CMD_RET_USAGE;
595 }
596
597 /*
598 * Print the address, followed by value. Then accept input for
599 * the next value. A non-converted value exits.
600 */
601 do {
602 printf("%08lx:", addr);
603 if (i2c_read(chip, addr, alen, (uchar *)&data, size) != 0)
604 puts ("\nError reading the chip,\n");
605 else {
606 data = cpu_to_be32(data);
607 if (size == 1)
608 printf(" %02lx", (data >> 24) & 0x000000FF);
609 else if (size == 2)
610 printf(" %04lx", (data >> 16) & 0x0000FFFF);
611 else
612 printf(" %08lx", data);
613 }
614
615 nbytes = readline (" ? ");
616 if (nbytes == 0) {
617 /*
618 * <CR> pressed as only input, don't modify current
619 * location and move to next.
620 */
621 if (incrflag)
622 addr += size;
623 nbytes = size;
624 #ifdef CONFIG_BOOT_RETRY_TIME
625 reset_cmd_timeout(); /* good enough to not time out */
626 #endif
627 }
628 #ifdef CONFIG_BOOT_RETRY_TIME
629 else if (nbytes == -2)
630 break; /* timed out, exit the command */
631 #endif
632 else {
633 char *endp;
634
635 data = simple_strtoul(console_buffer, &endp, 16);
636 if (size == 1)
637 data = data << 24;
638 else if (size == 2)
639 data = data << 16;
640 data = be32_to_cpu(data);
641 nbytes = endp - console_buffer;
642 if (nbytes) {
643 #ifdef CONFIG_BOOT_RETRY_TIME
644 /*
645 * good enough to not time out
646 */
647 reset_cmd_timeout();
648 #endif
649 if (i2c_write(chip, addr, alen, (uchar *)&data, size) != 0)
650 puts ("Error writing the chip.\n");
651 #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
652 udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
653 #endif
654 if (incrflag)
655 addr += size;
656 }
657 }
658 } while (nbytes);
659
660 i2c_mm_last_chip = chip;
661 i2c_mm_last_addr = addr;
662 i2c_mm_last_alen = alen;
663
664 return 0;
665 }
666
667 /**
668 * do_i2c_probe() - Handle the "i2c probe" command-line command
669 * @cmdtp: Command data struct pointer
670 * @flag: Command flag
671 * @argc: Command-line argument count
672 * @argv: Array of command-line arguments
673 *
674 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
675 * on error.
676 *
677 * Syntax:
678 * i2c probe {addr}
679 *
680 * Returns zero (success) if one or more I2C devices was found
681 */
682 static int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
683 {
684 int j;
685 int addr = -1;
686 int found = 0;
687 #if defined(CONFIG_SYS_I2C_NOPROBES)
688 int k, skip;
689 unsigned int bus = GET_BUS_NUM;
690 #endif /* NOPROBES */
691
692 if (argc == 2)
693 addr = simple_strtol(argv[1], 0, 16);
694
695 puts ("Valid chip addresses:");
696 for (j = 0; j < 128; j++) {
697 if ((0 <= addr) && (j != addr))
698 continue;
699
700 #if defined(CONFIG_SYS_I2C_NOPROBES)
701 skip = 0;
702 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
703 if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
704 skip = 1;
705 break;
706 }
707 }
708 if (skip)
709 continue;
710 #endif
711 if (i2c_probe(j) == 0) {
712 printf(" %02X", j);
713 found++;
714 }
715 }
716 putc ('\n');
717
718 #if defined(CONFIG_SYS_I2C_NOPROBES)
719 puts ("Excluded chip addresses:");
720 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
721 if (COMPARE_BUS(bus,k))
722 printf(" %02X", NO_PROBE_ADDR(k));
723 }
724 putc ('\n');
725 #endif
726
727 return (0 == found);
728 }
729
730 /**
731 * do_i2c_loop() - Handle the "i2c loop" command-line command
732 * @cmdtp: Command data struct pointer
733 * @flag: Command flag
734 * @argc: Command-line argument count
735 * @argv: Array of command-line arguments
736 *
737 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
738 * on error.
739 *
740 * Syntax:
741 * i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
742 * {length} - Number of bytes to read
743 * {delay} - A DECIMAL number and defaults to 1000 uSec
744 */
745 static int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
746 {
747 u_char chip;
748 ulong alen;
749 uint addr;
750 uint length;
751 u_char bytes[16];
752 int delay;
753
754 if (argc < 3)
755 return CMD_RET_USAGE;
756
757 /*
758 * Chip is always specified.
759 */
760 chip = simple_strtoul(argv[1], NULL, 16);
761
762 /*
763 * Address is always specified.
764 */
765 addr = simple_strtoul(argv[2], NULL, 16);
766 alen = get_alen(argv[2]);
767 if (alen > 3)
768 return CMD_RET_USAGE;
769
770 /*
771 * Length is the number of objects, not number of bytes.
772 */
773 length = 1;
774 length = simple_strtoul(argv[3], NULL, 16);
775 if (length > sizeof(bytes))
776 length = sizeof(bytes);
777
778 /*
779 * The delay time (uSec) is optional.
780 */
781 delay = 1000;
782 if (argc > 3)
783 delay = simple_strtoul(argv[4], NULL, 10);
784 /*
785 * Run the loop...
786 */
787 while (1) {
788 if (i2c_read(chip, addr, alen, bytes, length) != 0)
789 puts ("Error reading the chip.\n");
790 udelay(delay);
791 }
792
793 /* NOTREACHED */
794 return 0;
795 }
796
797 /*
798 * The SDRAM command is separately configured because many
799 * (most?) embedded boards don't use SDRAM DIMMs.
800 *
801 * FIXME: Document and probably move elsewhere!
802 */
803 #if defined(CONFIG_CMD_SDRAM)
804 static void print_ddr2_tcyc (u_char const b)
805 {
806 printf ("%d.", (b >> 4) & 0x0F);
807 switch (b & 0x0F) {
808 case 0x0:
809 case 0x1:
810 case 0x2:
811 case 0x3:
812 case 0x4:
813 case 0x5:
814 case 0x6:
815 case 0x7:
816 case 0x8:
817 case 0x9:
818 printf ("%d ns\n", b & 0x0F);
819 break;
820 case 0xA:
821 puts ("25 ns\n");
822 break;
823 case 0xB:
824 puts ("33 ns\n");
825 break;
826 case 0xC:
827 puts ("66 ns\n");
828 break;
829 case 0xD:
830 puts ("75 ns\n");
831 break;
832 default:
833 puts ("?? ns\n");
834 break;
835 }
836 }
837
838 static void decode_bits (u_char const b, char const *str[], int const do_once)
839 {
840 u_char mask;
841
842 for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
843 if (b & mask) {
844 puts (*str);
845 if (do_once)
846 return;
847 }
848 }
849 }
850
851 /*
852 * Syntax:
853 * i2c sdram {i2c_chip}
854 */
855 static int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
856 {
857 enum { unknown, EDO, SDRAM, DDR2 } type;
858
859 u_char chip;
860 u_char data[128];
861 u_char cksum;
862 int j;
863
864 static const char *decode_CAS_DDR2[] = {
865 " TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
866 };
867
868 static const char *decode_CAS_default[] = {
869 " TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
870 };
871
872 static const char *decode_CS_WE_default[] = {
873 " TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
874 };
875
876 static const char *decode_byte21_default[] = {
877 " TBD (bit 7)\n",
878 " Redundant row address\n",
879 " Differential clock input\n",
880 " Registerd DQMB inputs\n",
881 " Buffered DQMB inputs\n",
882 " On-card PLL\n",
883 " Registered address/control lines\n",
884 " Buffered address/control lines\n"
885 };
886
887 static const char *decode_byte22_DDR2[] = {
888 " TBD (bit 7)\n",
889 " TBD (bit 6)\n",
890 " TBD (bit 5)\n",
891 " TBD (bit 4)\n",
892 " TBD (bit 3)\n",
893 " Supports partial array self refresh\n",
894 " Supports 50 ohm ODT\n",
895 " Supports weak driver\n"
896 };
897
898 static const char *decode_row_density_DDR2[] = {
899 "512 MiB", "256 MiB", "128 MiB", "16 GiB",
900 "8 GiB", "4 GiB", "2 GiB", "1 GiB"
901 };
902
903 static const char *decode_row_density_default[] = {
904 "512 MiB", "256 MiB", "128 MiB", "64 MiB",
905 "32 MiB", "16 MiB", "8 MiB", "4 MiB"
906 };
907
908 if (argc < 2)
909 return CMD_RET_USAGE;
910
911 /*
912 * Chip is always specified.
913 */
914 chip = simple_strtoul (argv[1], NULL, 16);
915
916 if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) {
917 puts ("No SDRAM Serial Presence Detect found.\n");
918 return 1;
919 }
920
921 cksum = 0;
922 for (j = 0; j < 63; j++) {
923 cksum += data[j];
924 }
925 if (cksum != data[63]) {
926 printf ("WARNING: Configuration data checksum failure:\n"
927 " is 0x%02x, calculated 0x%02x\n", data[63], cksum);
928 }
929 printf ("SPD data revision %d.%d\n",
930 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
931 printf ("Bytes used 0x%02X\n", data[0]);
932 printf ("Serial memory size 0x%02X\n", 1 << data[1]);
933
934 puts ("Memory type ");
935 switch (data[2]) {
936 case 2:
937 type = EDO;
938 puts ("EDO\n");
939 break;
940 case 4:
941 type = SDRAM;
942 puts ("SDRAM\n");
943 break;
944 case 8:
945 type = DDR2;
946 puts ("DDR2\n");
947 break;
948 default:
949 type = unknown;
950 puts ("unknown\n");
951 break;
952 }
953
954 puts ("Row address bits ");
955 if ((data[3] & 0x00F0) == 0)
956 printf ("%d\n", data[3] & 0x0F);
957 else
958 printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
959
960 puts ("Column address bits ");
961 if ((data[4] & 0x00F0) == 0)
962 printf ("%d\n", data[4] & 0x0F);
963 else
964 printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
965
966 switch (type) {
967 case DDR2:
968 printf ("Number of ranks %d\n",
969 (data[5] & 0x07) + 1);
970 break;
971 default:
972 printf ("Module rows %d\n", data[5]);
973 break;
974 }
975
976 switch (type) {
977 case DDR2:
978 printf ("Module data width %d bits\n", data[6]);
979 break;
980 default:
981 printf ("Module data width %d bits\n",
982 (data[7] << 8) | data[6]);
983 break;
984 }
985
986 puts ("Interface signal levels ");
987 switch(data[8]) {
988 case 0: puts ("TTL 5.0 V\n"); break;
989 case 1: puts ("LVTTL\n"); break;
990 case 2: puts ("HSTL 1.5 V\n"); break;
991 case 3: puts ("SSTL 3.3 V\n"); break;
992 case 4: puts ("SSTL 2.5 V\n"); break;
993 case 5: puts ("SSTL 1.8 V\n"); break;
994 default: puts ("unknown\n"); break;
995 }
996
997 switch (type) {
998 case DDR2:
999 printf ("SDRAM cycle time ");
1000 print_ddr2_tcyc (data[9]);
1001 break;
1002 default:
1003 printf ("SDRAM cycle time %d.%d ns\n",
1004 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
1005 break;
1006 }
1007
1008 switch (type) {
1009 case DDR2:
1010 printf ("SDRAM access time 0.%d%d ns\n",
1011 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1012 break;
1013 default:
1014 printf ("SDRAM access time %d.%d ns\n",
1015 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1016 break;
1017 }
1018
1019 puts ("EDC configuration ");
1020 switch (data[11]) {
1021 case 0: puts ("None\n"); break;
1022 case 1: puts ("Parity\n"); break;
1023 case 2: puts ("ECC\n"); break;
1024 default: puts ("unknown\n"); break;
1025 }
1026
1027 if ((data[12] & 0x80) == 0)
1028 puts ("No self refresh, rate ");
1029 else
1030 puts ("Self refresh, rate ");
1031
1032 switch(data[12] & 0x7F) {
1033 case 0: puts ("15.625 us\n"); break;
1034 case 1: puts ("3.9 us\n"); break;
1035 case 2: puts ("7.8 us\n"); break;
1036 case 3: puts ("31.3 us\n"); break;
1037 case 4: puts ("62.5 us\n"); break;
1038 case 5: puts ("125 us\n"); break;
1039 default: puts ("unknown\n"); break;
1040 }
1041
1042 switch (type) {
1043 case DDR2:
1044 printf ("SDRAM width (primary) %d\n", data[13]);
1045 break;
1046 default:
1047 printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
1048 if ((data[13] & 0x80) != 0) {
1049 printf (" (second bank) %d\n",
1050 2 * (data[13] & 0x7F));
1051 }
1052 break;
1053 }
1054
1055 switch (type) {
1056 case DDR2:
1057 if (data[14] != 0)
1058 printf ("EDC width %d\n", data[14]);
1059 break;
1060 default:
1061 if (data[14] != 0) {
1062 printf ("EDC width %d\n",
1063 data[14] & 0x7F);
1064
1065 if ((data[14] & 0x80) != 0) {
1066 printf (" (second bank) %d\n",
1067 2 * (data[14] & 0x7F));
1068 }
1069 }
1070 break;
1071 }
1072
1073 if (DDR2 != type) {
1074 printf ("Min clock delay, back-to-back random column addresses "
1075 "%d\n", data[15]);
1076 }
1077
1078 puts ("Burst length(s) ");
1079 if (data[16] & 0x80) puts (" Page");
1080 if (data[16] & 0x08) puts (" 8");
1081 if (data[16] & 0x04) puts (" 4");
1082 if (data[16] & 0x02) puts (" 2");
1083 if (data[16] & 0x01) puts (" 1");
1084 putc ('\n');
1085 printf ("Number of banks %d\n", data[17]);
1086
1087 switch (type) {
1088 case DDR2:
1089 puts ("CAS latency(s) ");
1090 decode_bits (data[18], decode_CAS_DDR2, 0);
1091 putc ('\n');
1092 break;
1093 default:
1094 puts ("CAS latency(s) ");
1095 decode_bits (data[18], decode_CAS_default, 0);
1096 putc ('\n');
1097 break;
1098 }
1099
1100 if (DDR2 != type) {
1101 puts ("CS latency(s) ");
1102 decode_bits (data[19], decode_CS_WE_default, 0);
1103 putc ('\n');
1104 }
1105
1106 if (DDR2 != type) {
1107 puts ("WE latency(s) ");
1108 decode_bits (data[20], decode_CS_WE_default, 0);
1109 putc ('\n');
1110 }
1111
1112 switch (type) {
1113 case DDR2:
1114 puts ("Module attributes:\n");
1115 if (data[21] & 0x80)
1116 puts (" TBD (bit 7)\n");
1117 if (data[21] & 0x40)
1118 puts (" Analysis probe installed\n");
1119 if (data[21] & 0x20)
1120 puts (" TBD (bit 5)\n");
1121 if (data[21] & 0x10)
1122 puts (" FET switch external enable\n");
1123 printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1124 if (data[20] & 0x11) {
1125 printf (" %d active registers on DIMM\n",
1126 (data[21] & 0x03) + 1);
1127 }
1128 break;
1129 default:
1130 puts ("Module attributes:\n");
1131 if (!data[21])
1132 puts (" (none)\n");
1133 else
1134 decode_bits (data[21], decode_byte21_default, 0);
1135 break;
1136 }
1137
1138 switch (type) {
1139 case DDR2:
1140 decode_bits (data[22], decode_byte22_DDR2, 0);
1141 break;
1142 default:
1143 puts ("Device attributes:\n");
1144 if (data[22] & 0x80) puts (" TBD (bit 7)\n");
1145 if (data[22] & 0x40) puts (" TBD (bit 6)\n");
1146 if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
1147 else puts (" Upper Vcc tolerance 10%\n");
1148 if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
1149 else puts (" Lower Vcc tolerance 10%\n");
1150 if (data[22] & 0x08) puts (" Supports write1/read burst\n");
1151 if (data[22] & 0x04) puts (" Supports precharge all\n");
1152 if (data[22] & 0x02) puts (" Supports auto precharge\n");
1153 if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
1154 break;
1155 }
1156
1157 switch (type) {
1158 case DDR2:
1159 printf ("SDRAM cycle time (2nd highest CAS latency) ");
1160 print_ddr2_tcyc (data[23]);
1161 break;
1162 default:
1163 printf ("SDRAM cycle time (2nd highest CAS latency) %d."
1164 "%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1165 break;
1166 }
1167
1168 switch (type) {
1169 case DDR2:
1170 printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1171 "%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1172 break;
1173 default:
1174 printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1175 "%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1176 break;
1177 }
1178
1179 switch (type) {
1180 case DDR2:
1181 printf ("SDRAM cycle time (3rd highest CAS latency) ");
1182 print_ddr2_tcyc (data[25]);
1183 break;
1184 default:
1185 printf ("SDRAM cycle time (3rd highest CAS latency) %d."
1186 "%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1187 break;
1188 }
1189
1190 switch (type) {
1191 case DDR2:
1192 printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1193 "%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1194 break;
1195 default:
1196 printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1197 "%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1198 break;
1199 }
1200
1201 switch (type) {
1202 case DDR2:
1203 printf ("Minimum row precharge %d.%02d ns\n",
1204 (data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1205 break;
1206 default:
1207 printf ("Minimum row precharge %d ns\n", data[27]);
1208 break;
1209 }
1210
1211 switch (type) {
1212 case DDR2:
1213 printf ("Row active to row active min %d.%02d ns\n",
1214 (data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1215 break;
1216 default:
1217 printf ("Row active to row active min %d ns\n", data[28]);
1218 break;
1219 }
1220
1221 switch (type) {
1222 case DDR2:
1223 printf ("RAS to CAS delay min %d.%02d ns\n",
1224 (data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1225 break;
1226 default:
1227 printf ("RAS to CAS delay min %d ns\n", data[29]);
1228 break;
1229 }
1230
1231 printf ("Minimum RAS pulse width %d ns\n", data[30]);
1232
1233 switch (type) {
1234 case DDR2:
1235 puts ("Density of each row ");
1236 decode_bits (data[31], decode_row_density_DDR2, 1);
1237 putc ('\n');
1238 break;
1239 default:
1240 puts ("Density of each row ");
1241 decode_bits (data[31], decode_row_density_default, 1);
1242 putc ('\n');
1243 break;
1244 }
1245
1246 switch (type) {
1247 case DDR2:
1248 puts ("Command and Address setup ");
1249 if (data[32] >= 0xA0) {
1250 printf ("1.%d%d ns\n",
1251 ((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1252 } else {
1253 printf ("0.%d%d ns\n",
1254 ((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1255 }
1256 break;
1257 default:
1258 printf ("Command and Address setup %c%d.%d ns\n",
1259 (data[32] & 0x80) ? '-' : '+',
1260 (data[32] >> 4) & 0x07, data[32] & 0x0F);
1261 break;
1262 }
1263
1264 switch (type) {
1265 case DDR2:
1266 puts ("Command and Address hold ");
1267 if (data[33] >= 0xA0) {
1268 printf ("1.%d%d ns\n",
1269 ((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1270 } else {
1271 printf ("0.%d%d ns\n",
1272 ((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1273 }
1274 break;
1275 default:
1276 printf ("Command and Address hold %c%d.%d ns\n",
1277 (data[33] & 0x80) ? '-' : '+',
1278 (data[33] >> 4) & 0x07, data[33] & 0x0F);
1279 break;
1280 }
1281
1282 switch (type) {
1283 case DDR2:
1284 printf ("Data signal input setup 0.%d%d ns\n",
1285 (data[34] >> 4) & 0x0F, data[34] & 0x0F);
1286 break;
1287 default:
1288 printf ("Data signal input setup %c%d.%d ns\n",
1289 (data[34] & 0x80) ? '-' : '+',
1290 (data[34] >> 4) & 0x07, data[34] & 0x0F);
1291 break;
1292 }
1293
1294 switch (type) {
1295 case DDR2:
1296 printf ("Data signal input hold 0.%d%d ns\n",
1297 (data[35] >> 4) & 0x0F, data[35] & 0x0F);
1298 break;
1299 default:
1300 printf ("Data signal input hold %c%d.%d ns\n",
1301 (data[35] & 0x80) ? '-' : '+',
1302 (data[35] >> 4) & 0x07, data[35] & 0x0F);
1303 break;
1304 }
1305
1306 puts ("Manufacturer's JEDEC ID ");
1307 for (j = 64; j <= 71; j++)
1308 printf ("%02X ", data[j]);
1309 putc ('\n');
1310 printf ("Manufacturing Location %02X\n", data[72]);
1311 puts ("Manufacturer's Part Number ");
1312 for (j = 73; j <= 90; j++)
1313 printf ("%02X ", data[j]);
1314 putc ('\n');
1315 printf ("Revision Code %02X %02X\n", data[91], data[92]);
1316 printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
1317 puts ("Assembly Serial Number ");
1318 for (j = 95; j <= 98; j++)
1319 printf ("%02X ", data[j]);
1320 putc ('\n');
1321
1322 if (DDR2 != type) {
1323 printf ("Speed rating PC%d\n",
1324 data[126] == 0x66 ? 66 : data[126]);
1325 }
1326 return 0;
1327 }
1328 #endif
1329
1330 /*
1331 * Syntax:
1332 * i2c edid {i2c_chip}
1333 */
1334 #if defined(CONFIG_I2C_EDID)
1335 int do_edid(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1336 {
1337 u_char chip;
1338 struct edid1_info edid;
1339
1340 if (argc < 2) {
1341 cmd_usage(cmdtp);
1342 return 1;
1343 }
1344
1345 chip = simple_strtoul(argv[1], NULL, 16);
1346 if (i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid)) != 0) {
1347 puts("Error reading EDID content.\n");
1348 return 1;
1349 }
1350
1351 if (edid_check_info(&edid)) {
1352 puts("Content isn't valid EDID.\n");
1353 return 1;
1354 }
1355
1356 edid_print_info(&edid);
1357 return 0;
1358
1359 }
1360 #endif /* CONFIG_I2C_EDID */
1361
1362 /**
1363 * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1364 * @cmdtp: Command data struct pointer
1365 * @flag: Command flag
1366 * @argc: Command-line argument count
1367 * @argv: Array of command-line arguments
1368 *
1369 * Returns zero always.
1370 */
1371 #if defined(CONFIG_SYS_I2C)
1372 int do_i2c_show_bus(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1373 {
1374 int i;
1375 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1376 int j;
1377 #endif
1378
1379 if (argc == 1) {
1380 /* show all busses */
1381 for (i = 0; i < CONFIG_SYS_NUM_I2C_BUSES; i++) {
1382 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1383 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1384 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1385 if (i2c_bus[i].next_hop[j].chip == 0)
1386 break;
1387 printf("->%s@0x%2x:%d",
1388 i2c_bus[i].next_hop[j].mux.name,
1389 i2c_bus[i].next_hop[j].chip,
1390 i2c_bus[i].next_hop[j].channel);
1391 }
1392 #endif
1393 printf("\n");
1394 }
1395 } else {
1396 /* show specific bus */
1397 i = simple_strtoul(argv[1], NULL, 10);
1398 if (i >= CONFIG_SYS_NUM_I2C_BUSES) {
1399 printf("Invalid bus %d\n", i);
1400 return -1;
1401 }
1402 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1403 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1404 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1405 if (i2c_bus[i].next_hop[j].chip == 0)
1406 break;
1407 printf("->%s@0x%2x:%d",
1408 i2c_bus[i].next_hop[j].mux.name,
1409 i2c_bus[i].next_hop[j].chip,
1410 i2c_bus[i].next_hop[j].channel);
1411 }
1412 #endif
1413 printf("\n");
1414 }
1415
1416 return 0;
1417 }
1418 #endif
1419
1420 /**
1421 * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1422 * @cmdtp: Command data struct pointer
1423 * @flag: Command flag
1424 * @argc: Command-line argument count
1425 * @argv: Array of command-line arguments
1426 *
1427 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1428 * on error.
1429 */
1430 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
1431 int do_i2c_bus_num(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1432 {
1433 int ret = 0;
1434 unsigned int bus_no;
1435
1436 if (argc == 1)
1437 /* querying current setting */
1438 printf("Current bus is %d\n", i2c_get_bus_num());
1439 else {
1440 bus_no = simple_strtoul(argv[1], NULL, 10);
1441 #if defined(CONFIG_SYS_I2C)
1442 if (bus_no >= CONFIG_SYS_NUM_I2C_BUSES) {
1443 printf("Invalid bus %d\n", bus_no);
1444 return -1;
1445 }
1446 #endif
1447 printf("Setting bus to %d\n", bus_no);
1448 ret = i2c_set_bus_num(bus_no);
1449 if (ret)
1450 printf("Failure changing bus number (%d)\n", ret);
1451 }
1452 return ret;
1453 }
1454 #endif /* defined(CONFIG_SYS_I2C) */
1455
1456 /**
1457 * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1458 * @cmdtp: Command data struct pointer
1459 * @flag: Command flag
1460 * @argc: Command-line argument count
1461 * @argv: Array of command-line arguments
1462 *
1463 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1464 * on error.
1465 */
1466 static int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1467 {
1468 int speed, ret=0;
1469
1470 if (argc == 1)
1471 /* querying current speed */
1472 printf("Current bus speed=%d\n", i2c_get_bus_speed());
1473 else {
1474 speed = simple_strtoul(argv[1], NULL, 10);
1475 printf("Setting bus speed to %d Hz\n", speed);
1476 ret = i2c_set_bus_speed(speed);
1477 if (ret)
1478 printf("Failure changing bus speed (%d)\n", ret);
1479 }
1480 return ret;
1481 }
1482
1483 /**
1484 * do_i2c_mm() - Handle the "i2c mm" command-line command
1485 * @cmdtp: Command data struct pointer
1486 * @flag: Command flag
1487 * @argc: Command-line argument count
1488 * @argv: Array of command-line arguments
1489 *
1490 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1491 * on error.
1492 */
1493 static int do_i2c_mm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1494 {
1495 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1496 }
1497
1498 /**
1499 * do_i2c_nm() - Handle the "i2c nm" command-line command
1500 * @cmdtp: Command data struct pointer
1501 * @flag: Command flag
1502 * @argc: Command-line argument count
1503 * @argv: Array of command-line arguments
1504 *
1505 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1506 * on error.
1507 */
1508 static int do_i2c_nm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1509 {
1510 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1511 }
1512
1513 /**
1514 * do_i2c_reset() - Handle the "i2c reset" command-line command
1515 * @cmdtp: Command data struct pointer
1516 * @flag: Command flag
1517 * @argc: Command-line argument count
1518 * @argv: Array of command-line arguments
1519 *
1520 * Returns zero always.
1521 */
1522 static int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1523 {
1524 #if defined(CONFIG_SYS_I2C)
1525 i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1526 #else
1527 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1528 #endif
1529 return 0;
1530 }
1531
1532 static cmd_tbl_t cmd_i2c_sub[] = {
1533 #if defined(CONFIG_SYS_I2C)
1534 U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1535 #endif
1536 U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1537 #if defined(CONFIG_SYS_I2C) || \
1538 defined(CONFIG_I2C_MULTI_BUS)
1539 U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1540 #endif /* CONFIG_I2C_MULTI_BUS */
1541 #if defined(CONFIG_I2C_EDID)
1542 U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1543 #endif /* CONFIG_I2C_EDID */
1544 U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1545 U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1546 U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1547 U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1548 U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1549 U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1550 U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1551 U_BOOT_CMD_MKENT(write, 5, 0, do_i2c_write, "", ""),
1552 U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1553 #if defined(CONFIG_CMD_SDRAM)
1554 U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1555 #endif
1556 U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1557 };
1558
1559 #ifdef CONFIG_NEEDS_MANUAL_RELOC
1560 void i2c_reloc(void) {
1561 fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
1562 }
1563 #endif
1564
1565 /**
1566 * do_i2c() - Handle the "i2c" command-line command
1567 * @cmdtp: Command data struct pointer
1568 * @flag: Command flag
1569 * @argc: Command-line argument count
1570 * @argv: Array of command-line arguments
1571 *
1572 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1573 * on error.
1574 */
1575 static int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1576 {
1577 cmd_tbl_t *c;
1578
1579 if (argc < 2)
1580 return CMD_RET_USAGE;
1581
1582 /* Strip off leading 'i2c' command argument */
1583 argc--;
1584 argv++;
1585
1586 c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
1587
1588 if (c)
1589 return c->cmd(cmdtp, flag, argc, argv);
1590 else
1591 return CMD_RET_USAGE;
1592 }
1593
1594 /***************************************************/
1595 #ifdef CONFIG_SYS_LONGHELP
1596 static char i2c_help_text[] =
1597 #if defined(CONFIG_SYS_I2C)
1598 "bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
1599 #endif
1600 "crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
1601 #if defined(CONFIG_SYS_I2C) || \
1602 defined(CONFIG_I2C_MULTI_BUS)
1603 "i2c dev [dev] - show or set current I2C bus\n"
1604 #endif /* CONFIG_I2C_MULTI_BUS */
1605 #if defined(CONFIG_I2C_EDID)
1606 "i2c edid chip - print EDID configuration information\n"
1607 #endif /* CONFIG_I2C_EDID */
1608 "i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
1609 "i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
1610 "i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
1611 "i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
1612 "i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
1613 "i2c probe [address] - test for and show device(s) on the I2C bus\n"
1614 "i2c read chip address[.0, .1, .2] length memaddress - read to memory \n"
1615 "i2c write memaddress chip address[.0, .1, .2] length - write memory to i2c\n"
1616 "i2c reset - re-init the I2C Controller\n"
1617 #if defined(CONFIG_CMD_SDRAM)
1618 "i2c sdram chip - print SDRAM configuration information\n"
1619 #endif
1620 "i2c speed [speed] - show or set I2C bus speed";
1621 #endif
1622
1623 U_BOOT_CMD(
1624 i2c, 6, 1, do_i2c,
1625 "I2C sub-system",
1626 i2c_help_text
1627 );