]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/dlmalloc.c
avr32: asm/io.h needs asm/types.h
[people/ms/u-boot.git] / common / dlmalloc.c
1 #include <common.h>
2
3 #if 0 /* Moved to malloc.h */
4 /* ---------- To make a malloc.h, start cutting here ------------ */
5
6 /*
7 A version of malloc/free/realloc written by Doug Lea and released to the
8 public domain. Send questions/comments/complaints/performance data
9 to dl@cs.oswego.edu
10
11 * VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee)
12
13 Note: There may be an updated version of this malloc obtainable at
14 ftp://g.oswego.edu/pub/misc/malloc.c
15 Check before installing!
16
17 * Why use this malloc?
18
19 This is not the fastest, most space-conserving, most portable, or
20 most tunable malloc ever written. However it is among the fastest
21 while also being among the most space-conserving, portable and tunable.
22 Consistent balance across these factors results in a good general-purpose
23 allocator. For a high-level description, see
24 http://g.oswego.edu/dl/html/malloc.html
25
26 * Synopsis of public routines
27
28 (Much fuller descriptions are contained in the program documentation below.)
29
30 malloc(size_t n);
31 Return a pointer to a newly allocated chunk of at least n bytes, or null
32 if no space is available.
33 free(Void_t* p);
34 Release the chunk of memory pointed to by p, or no effect if p is null.
35 realloc(Void_t* p, size_t n);
36 Return a pointer to a chunk of size n that contains the same data
37 as does chunk p up to the minimum of (n, p's size) bytes, or null
38 if no space is available. The returned pointer may or may not be
39 the same as p. If p is null, equivalent to malloc. Unless the
40 #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
41 size argument of zero (re)allocates a minimum-sized chunk.
42 memalign(size_t alignment, size_t n);
43 Return a pointer to a newly allocated chunk of n bytes, aligned
44 in accord with the alignment argument, which must be a power of
45 two.
46 valloc(size_t n);
47 Equivalent to memalign(pagesize, n), where pagesize is the page
48 size of the system (or as near to this as can be figured out from
49 all the includes/defines below.)
50 pvalloc(size_t n);
51 Equivalent to valloc(minimum-page-that-holds(n)), that is,
52 round up n to nearest pagesize.
53 calloc(size_t unit, size_t quantity);
54 Returns a pointer to quantity * unit bytes, with all locations
55 set to zero.
56 cfree(Void_t* p);
57 Equivalent to free(p).
58 malloc_trim(size_t pad);
59 Release all but pad bytes of freed top-most memory back
60 to the system. Return 1 if successful, else 0.
61 malloc_usable_size(Void_t* p);
62 Report the number usable allocated bytes associated with allocated
63 chunk p. This may or may not report more bytes than were requested,
64 due to alignment and minimum size constraints.
65 malloc_stats();
66 Prints brief summary statistics.
67 mallinfo()
68 Returns (by copy) a struct containing various summary statistics.
69 mallopt(int parameter_number, int parameter_value)
70 Changes one of the tunable parameters described below. Returns
71 1 if successful in changing the parameter, else 0.
72
73 * Vital statistics:
74
75 Alignment: 8-byte
76 8 byte alignment is currently hardwired into the design. This
77 seems to suffice for all current machines and C compilers.
78
79 Assumed pointer representation: 4 or 8 bytes
80 Code for 8-byte pointers is untested by me but has worked
81 reliably by Wolfram Gloger, who contributed most of the
82 changes supporting this.
83
84 Assumed size_t representation: 4 or 8 bytes
85 Note that size_t is allowed to be 4 bytes even if pointers are 8.
86
87 Minimum overhead per allocated chunk: 4 or 8 bytes
88 Each malloced chunk has a hidden overhead of 4 bytes holding size
89 and status information.
90
91 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
92 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
93
94 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
95 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
96 needed; 4 (8) for a trailing size field
97 and 8 (16) bytes for free list pointers. Thus, the minimum
98 allocatable size is 16/24/32 bytes.
99
100 Even a request for zero bytes (i.e., malloc(0)) returns a
101 pointer to something of the minimum allocatable size.
102
103 Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
104 8-byte size_t: 2^63 - 16 bytes
105
106 It is assumed that (possibly signed) size_t bit values suffice to
107 represent chunk sizes. `Possibly signed' is due to the fact
108 that `size_t' may be defined on a system as either a signed or
109 an unsigned type. To be conservative, values that would appear
110 as negative numbers are avoided.
111 Requests for sizes with a negative sign bit when the request
112 size is treaded as a long will return null.
113
114 Maximum overhead wastage per allocated chunk: normally 15 bytes
115
116 Alignnment demands, plus the minimum allocatable size restriction
117 make the normal worst-case wastage 15 bytes (i.e., up to 15
118 more bytes will be allocated than were requested in malloc), with
119 two exceptions:
120 1. Because requests for zero bytes allocate non-zero space,
121 the worst case wastage for a request of zero bytes is 24 bytes.
122 2. For requests >= mmap_threshold that are serviced via
123 mmap(), the worst case wastage is 8 bytes plus the remainder
124 from a system page (the minimal mmap unit); typically 4096 bytes.
125
126 * Limitations
127
128 Here are some features that are NOT currently supported
129
130 * No user-definable hooks for callbacks and the like.
131 * No automated mechanism for fully checking that all accesses
132 to malloced memory stay within their bounds.
133 * No support for compaction.
134
135 * Synopsis of compile-time options:
136
137 People have reported using previous versions of this malloc on all
138 versions of Unix, sometimes by tweaking some of the defines
139 below. It has been tested most extensively on Solaris and
140 Linux. It is also reported to work on WIN32 platforms.
141 People have also reported adapting this malloc for use in
142 stand-alone embedded systems.
143
144 The implementation is in straight, hand-tuned ANSI C. Among other
145 consequences, it uses a lot of macros. Because of this, to be at
146 all usable, this code should be compiled using an optimizing compiler
147 (for example gcc -O2) that can simplify expressions and control
148 paths.
149
150 __STD_C (default: derived from C compiler defines)
151 Nonzero if using ANSI-standard C compiler, a C++ compiler, or
152 a C compiler sufficiently close to ANSI to get away with it.
153 DEBUG (default: NOT defined)
154 Define to enable debugging. Adds fairly extensive assertion-based
155 checking to help track down memory errors, but noticeably slows down
156 execution.
157 REALLOC_ZERO_BYTES_FREES (default: NOT defined)
158 Define this if you think that realloc(p, 0) should be equivalent
159 to free(p). Otherwise, since malloc returns a unique pointer for
160 malloc(0), so does realloc(p, 0).
161 HAVE_MEMCPY (default: defined)
162 Define if you are not otherwise using ANSI STD C, but still
163 have memcpy and memset in your C library and want to use them.
164 Otherwise, simple internal versions are supplied.
165 USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
166 Define as 1 if you want the C library versions of memset and
167 memcpy called in realloc and calloc (otherwise macro versions are used).
168 At least on some platforms, the simple macro versions usually
169 outperform libc versions.
170 HAVE_MMAP (default: defined as 1)
171 Define to non-zero to optionally make malloc() use mmap() to
172 allocate very large blocks.
173 HAVE_MREMAP (default: defined as 0 unless Linux libc set)
174 Define to non-zero to optionally make realloc() use mremap() to
175 reallocate very large blocks.
176 malloc_getpagesize (default: derived from system #includes)
177 Either a constant or routine call returning the system page size.
178 HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
179 Optionally define if you are on a system with a /usr/include/malloc.h
180 that declares struct mallinfo. It is not at all necessary to
181 define this even if you do, but will ensure consistency.
182 INTERNAL_SIZE_T (default: size_t)
183 Define to a 32-bit type (probably `unsigned int') if you are on a
184 64-bit machine, yet do not want or need to allow malloc requests of
185 greater than 2^31 to be handled. This saves space, especially for
186 very small chunks.
187 INTERNAL_LINUX_C_LIB (default: NOT defined)
188 Defined only when compiled as part of Linux libc.
189 Also note that there is some odd internal name-mangling via defines
190 (for example, internally, `malloc' is named `mALLOc') needed
191 when compiling in this case. These look funny but don't otherwise
192 affect anything.
193 WIN32 (default: undefined)
194 Define this on MS win (95, nt) platforms to compile in sbrk emulation.
195 LACKS_UNISTD_H (default: undefined if not WIN32)
196 Define this if your system does not have a <unistd.h>.
197 LACKS_SYS_PARAM_H (default: undefined if not WIN32)
198 Define this if your system does not have a <sys/param.h>.
199 MORECORE (default: sbrk)
200 The name of the routine to call to obtain more memory from the system.
201 MORECORE_FAILURE (default: -1)
202 The value returned upon failure of MORECORE.
203 MORECORE_CLEARS (default 1)
204 True (1) if the routine mapped to MORECORE zeroes out memory (which
205 holds for sbrk).
206 DEFAULT_TRIM_THRESHOLD
207 DEFAULT_TOP_PAD
208 DEFAULT_MMAP_THRESHOLD
209 DEFAULT_MMAP_MAX
210 Default values of tunable parameters (described in detail below)
211 controlling interaction with host system routines (sbrk, mmap, etc).
212 These values may also be changed dynamically via mallopt(). The
213 preset defaults are those that give best performance for typical
214 programs/systems.
215 USE_DL_PREFIX (default: undefined)
216 Prefix all public routines with the string 'dl'. Useful to
217 quickly avoid procedure declaration conflicts and linker symbol
218 conflicts with existing memory allocation routines.
219
220
221 */
222
223 \f
224
225
226 /* Preliminaries */
227
228 #ifndef __STD_C
229 #ifdef __STDC__
230 #define __STD_C 1
231 #else
232 #if __cplusplus
233 #define __STD_C 1
234 #else
235 #define __STD_C 0
236 #endif /*__cplusplus*/
237 #endif /*__STDC__*/
238 #endif /*__STD_C*/
239
240 #ifndef Void_t
241 #if (__STD_C || defined(WIN32))
242 #define Void_t void
243 #else
244 #define Void_t char
245 #endif
246 #endif /*Void_t*/
247
248 #if __STD_C
249 #include <stddef.h> /* for size_t */
250 #else
251 #include <sys/types.h>
252 #endif
253
254 #ifdef __cplusplus
255 extern "C" {
256 #endif
257
258 #include <stdio.h> /* needed for malloc_stats */
259
260
261 /*
262 Compile-time options
263 */
264
265
266 /*
267 Debugging:
268
269 Because freed chunks may be overwritten with link fields, this
270 malloc will often die when freed memory is overwritten by user
271 programs. This can be very effective (albeit in an annoying way)
272 in helping track down dangling pointers.
273
274 If you compile with -DDEBUG, a number of assertion checks are
275 enabled that will catch more memory errors. You probably won't be
276 able to make much sense of the actual assertion errors, but they
277 should help you locate incorrectly overwritten memory. The
278 checking is fairly extensive, and will slow down execution
279 noticeably. Calling malloc_stats or mallinfo with DEBUG set will
280 attempt to check every non-mmapped allocated and free chunk in the
281 course of computing the summmaries. (By nature, mmapped regions
282 cannot be checked very much automatically.)
283
284 Setting DEBUG may also be helpful if you are trying to modify
285 this code. The assertions in the check routines spell out in more
286 detail the assumptions and invariants underlying the algorithms.
287
288 */
289
290 #ifdef DEBUG
291 #include <assert.h>
292 #else
293 #define assert(x) ((void)0)
294 #endif
295
296
297 /*
298 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
299 of chunk sizes. On a 64-bit machine, you can reduce malloc
300 overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
301 at the expense of not being able to handle requests greater than
302 2^31. This limitation is hardly ever a concern; you are encouraged
303 to set this. However, the default version is the same as size_t.
304 */
305
306 #ifndef INTERNAL_SIZE_T
307 #define INTERNAL_SIZE_T size_t
308 #endif
309
310 /*
311 REALLOC_ZERO_BYTES_FREES should be set if a call to
312 realloc with zero bytes should be the same as a call to free.
313 Some people think it should. Otherwise, since this malloc
314 returns a unique pointer for malloc(0), so does realloc(p, 0).
315 */
316
317
318 /* #define REALLOC_ZERO_BYTES_FREES */
319
320
321 /*
322 WIN32 causes an emulation of sbrk to be compiled in
323 mmap-based options are not currently supported in WIN32.
324 */
325
326 /* #define WIN32 */
327 #ifdef WIN32
328 #define MORECORE wsbrk
329 #define HAVE_MMAP 0
330
331 #define LACKS_UNISTD_H
332 #define LACKS_SYS_PARAM_H
333
334 /*
335 Include 'windows.h' to get the necessary declarations for the
336 Microsoft Visual C++ data structures and routines used in the 'sbrk'
337 emulation.
338
339 Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
340 Visual C++ header files are included.
341 */
342 #define WIN32_LEAN_AND_MEAN
343 #include <windows.h>
344 #endif
345
346
347 /*
348 HAVE_MEMCPY should be defined if you are not otherwise using
349 ANSI STD C, but still have memcpy and memset in your C library
350 and want to use them in calloc and realloc. Otherwise simple
351 macro versions are defined here.
352
353 USE_MEMCPY should be defined as 1 if you actually want to
354 have memset and memcpy called. People report that the macro
355 versions are often enough faster than libc versions on many
356 systems that it is better to use them.
357
358 */
359
360 #define HAVE_MEMCPY
361
362 #ifndef USE_MEMCPY
363 #ifdef HAVE_MEMCPY
364 #define USE_MEMCPY 1
365 #else
366 #define USE_MEMCPY 0
367 #endif
368 #endif
369
370 #if (__STD_C || defined(HAVE_MEMCPY))
371
372 #if __STD_C
373 void* memset(void*, int, size_t);
374 void* memcpy(void*, const void*, size_t);
375 #else
376 #ifdef WIN32
377 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
378 /* 'windows.h' */
379 #else
380 Void_t* memset();
381 Void_t* memcpy();
382 #endif
383 #endif
384 #endif
385
386 #if USE_MEMCPY
387
388 /* The following macros are only invoked with (2n+1)-multiples of
389 INTERNAL_SIZE_T units, with a positive integer n. This is exploited
390 for fast inline execution when n is small. */
391
392 #define MALLOC_ZERO(charp, nbytes) \
393 do { \
394 INTERNAL_SIZE_T mzsz = (nbytes); \
395 if(mzsz <= 9*sizeof(mzsz)) { \
396 INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
397 if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
398 *mz++ = 0; \
399 if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
400 *mz++ = 0; \
401 if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
402 *mz++ = 0; }}} \
403 *mz++ = 0; \
404 *mz++ = 0; \
405 *mz = 0; \
406 } else memset((charp), 0, mzsz); \
407 } while(0)
408
409 #define MALLOC_COPY(dest,src,nbytes) \
410 do { \
411 INTERNAL_SIZE_T mcsz = (nbytes); \
412 if(mcsz <= 9*sizeof(mcsz)) { \
413 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
414 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
415 if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
416 *mcdst++ = *mcsrc++; \
417 if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
418 *mcdst++ = *mcsrc++; \
419 if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
420 *mcdst++ = *mcsrc++; }}} \
421 *mcdst++ = *mcsrc++; \
422 *mcdst++ = *mcsrc++; \
423 *mcdst = *mcsrc ; \
424 } else memcpy(dest, src, mcsz); \
425 } while(0)
426
427 #else /* !USE_MEMCPY */
428
429 /* Use Duff's device for good zeroing/copying performance. */
430
431 #define MALLOC_ZERO(charp, nbytes) \
432 do { \
433 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
434 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
435 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
436 switch (mctmp) { \
437 case 0: for(;;) { *mzp++ = 0; \
438 case 7: *mzp++ = 0; \
439 case 6: *mzp++ = 0; \
440 case 5: *mzp++ = 0; \
441 case 4: *mzp++ = 0; \
442 case 3: *mzp++ = 0; \
443 case 2: *mzp++ = 0; \
444 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
445 } \
446 } while(0)
447
448 #define MALLOC_COPY(dest,src,nbytes) \
449 do { \
450 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
451 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
452 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
453 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
454 switch (mctmp) { \
455 case 0: for(;;) { *mcdst++ = *mcsrc++; \
456 case 7: *mcdst++ = *mcsrc++; \
457 case 6: *mcdst++ = *mcsrc++; \
458 case 5: *mcdst++ = *mcsrc++; \
459 case 4: *mcdst++ = *mcsrc++; \
460 case 3: *mcdst++ = *mcsrc++; \
461 case 2: *mcdst++ = *mcsrc++; \
462 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
463 } \
464 } while(0)
465
466 #endif
467
468
469 /*
470 Define HAVE_MMAP to optionally make malloc() use mmap() to
471 allocate very large blocks. These will be returned to the
472 operating system immediately after a free().
473 */
474
475 #ifndef HAVE_MMAP
476 #define HAVE_MMAP 1
477 #endif
478
479 /*
480 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
481 large blocks. This is currently only possible on Linux with
482 kernel versions newer than 1.3.77.
483 */
484
485 #ifndef HAVE_MREMAP
486 #ifdef INTERNAL_LINUX_C_LIB
487 #define HAVE_MREMAP 1
488 #else
489 #define HAVE_MREMAP 0
490 #endif
491 #endif
492
493 #if HAVE_MMAP
494
495 #include <unistd.h>
496 #include <fcntl.h>
497 #include <sys/mman.h>
498
499 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
500 #define MAP_ANONYMOUS MAP_ANON
501 #endif
502
503 #endif /* HAVE_MMAP */
504
505 /*
506 Access to system page size. To the extent possible, this malloc
507 manages memory from the system in page-size units.
508
509 The following mechanics for getpagesize were adapted from
510 bsd/gnu getpagesize.h
511 */
512
513 #ifndef LACKS_UNISTD_H
514 # include <unistd.h>
515 #endif
516
517 #ifndef malloc_getpagesize
518 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
519 # ifndef _SC_PAGE_SIZE
520 # define _SC_PAGE_SIZE _SC_PAGESIZE
521 # endif
522 # endif
523 # ifdef _SC_PAGE_SIZE
524 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
525 # else
526 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
527 extern size_t getpagesize();
528 # define malloc_getpagesize getpagesize()
529 # else
530 # ifdef WIN32
531 # define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
532 # else
533 # ifndef LACKS_SYS_PARAM_H
534 # include <sys/param.h>
535 # endif
536 # ifdef EXEC_PAGESIZE
537 # define malloc_getpagesize EXEC_PAGESIZE
538 # else
539 # ifdef NBPG
540 # ifndef CLSIZE
541 # define malloc_getpagesize NBPG
542 # else
543 # define malloc_getpagesize (NBPG * CLSIZE)
544 # endif
545 # else
546 # ifdef NBPC
547 # define malloc_getpagesize NBPC
548 # else
549 # ifdef PAGESIZE
550 # define malloc_getpagesize PAGESIZE
551 # else
552 # define malloc_getpagesize (4096) /* just guess */
553 # endif
554 # endif
555 # endif
556 # endif
557 # endif
558 # endif
559 # endif
560 #endif
561
562
563 /*
564
565 This version of malloc supports the standard SVID/XPG mallinfo
566 routine that returns a struct containing the same kind of
567 information you can get from malloc_stats. It should work on
568 any SVID/XPG compliant system that has a /usr/include/malloc.h
569 defining struct mallinfo. (If you'd like to install such a thing
570 yourself, cut out the preliminary declarations as described above
571 and below and save them in a malloc.h file. But there's no
572 compelling reason to bother to do this.)
573
574 The main declaration needed is the mallinfo struct that is returned
575 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
576 bunch of fields, most of which are not even meaningful in this
577 version of malloc. Some of these fields are are instead filled by
578 mallinfo() with other numbers that might possibly be of interest.
579
580 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
581 /usr/include/malloc.h file that includes a declaration of struct
582 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
583 version is declared below. These must be precisely the same for
584 mallinfo() to work.
585
586 */
587
588 /* #define HAVE_USR_INCLUDE_MALLOC_H */
589
590 #if HAVE_USR_INCLUDE_MALLOC_H
591 #include "/usr/include/malloc.h"
592 #else
593
594 /* SVID2/XPG mallinfo structure */
595
596 struct mallinfo {
597 int arena; /* total space allocated from system */
598 int ordblks; /* number of non-inuse chunks */
599 int smblks; /* unused -- always zero */
600 int hblks; /* number of mmapped regions */
601 int hblkhd; /* total space in mmapped regions */
602 int usmblks; /* unused -- always zero */
603 int fsmblks; /* unused -- always zero */
604 int uordblks; /* total allocated space */
605 int fordblks; /* total non-inuse space */
606 int keepcost; /* top-most, releasable (via malloc_trim) space */
607 };
608
609 /* SVID2/XPG mallopt options */
610
611 #define M_MXFAST 1 /* UNUSED in this malloc */
612 #define M_NLBLKS 2 /* UNUSED in this malloc */
613 #define M_GRAIN 3 /* UNUSED in this malloc */
614 #define M_KEEP 4 /* UNUSED in this malloc */
615
616 #endif
617
618 /* mallopt options that actually do something */
619
620 #define M_TRIM_THRESHOLD -1
621 #define M_TOP_PAD -2
622 #define M_MMAP_THRESHOLD -3
623 #define M_MMAP_MAX -4
624
625
626 #ifndef DEFAULT_TRIM_THRESHOLD
627 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
628 #endif
629
630 /*
631 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
632 to keep before releasing via malloc_trim in free().
633
634 Automatic trimming is mainly useful in long-lived programs.
635 Because trimming via sbrk can be slow on some systems, and can
636 sometimes be wasteful (in cases where programs immediately
637 afterward allocate more large chunks) the value should be high
638 enough so that your overall system performance would improve by
639 releasing.
640
641 The trim threshold and the mmap control parameters (see below)
642 can be traded off with one another. Trimming and mmapping are
643 two different ways of releasing unused memory back to the
644 system. Between these two, it is often possible to keep
645 system-level demands of a long-lived program down to a bare
646 minimum. For example, in one test suite of sessions measuring
647 the XF86 X server on Linux, using a trim threshold of 128K and a
648 mmap threshold of 192K led to near-minimal long term resource
649 consumption.
650
651 If you are using this malloc in a long-lived program, it should
652 pay to experiment with these values. As a rough guide, you
653 might set to a value close to the average size of a process
654 (program) running on your system. Releasing this much memory
655 would allow such a process to run in memory. Generally, it's
656 worth it to tune for trimming rather tham memory mapping when a
657 program undergoes phases where several large chunks are
658 allocated and released in ways that can reuse each other's
659 storage, perhaps mixed with phases where there are no such
660 chunks at all. And in well-behaved long-lived programs,
661 controlling release of large blocks via trimming versus mapping
662 is usually faster.
663
664 However, in most programs, these parameters serve mainly as
665 protection against the system-level effects of carrying around
666 massive amounts of unneeded memory. Since frequent calls to
667 sbrk, mmap, and munmap otherwise degrade performance, the default
668 parameters are set to relatively high values that serve only as
669 safeguards.
670
671 The default trim value is high enough to cause trimming only in
672 fairly extreme (by current memory consumption standards) cases.
673 It must be greater than page size to have any useful effect. To
674 disable trimming completely, you can set to (unsigned long)(-1);
675
676
677 */
678
679
680 #ifndef DEFAULT_TOP_PAD
681 #define DEFAULT_TOP_PAD (0)
682 #endif
683
684 /*
685 M_TOP_PAD is the amount of extra `padding' space to allocate or
686 retain whenever sbrk is called. It is used in two ways internally:
687
688 * When sbrk is called to extend the top of the arena to satisfy
689 a new malloc request, this much padding is added to the sbrk
690 request.
691
692 * When malloc_trim is called automatically from free(),
693 it is used as the `pad' argument.
694
695 In both cases, the actual amount of padding is rounded
696 so that the end of the arena is always a system page boundary.
697
698 The main reason for using padding is to avoid calling sbrk so
699 often. Having even a small pad greatly reduces the likelihood
700 that nearly every malloc request during program start-up (or
701 after trimming) will invoke sbrk, which needlessly wastes
702 time.
703
704 Automatic rounding-up to page-size units is normally sufficient
705 to avoid measurable overhead, so the default is 0. However, in
706 systems where sbrk is relatively slow, it can pay to increase
707 this value, at the expense of carrying around more memory than
708 the program needs.
709
710 */
711
712
713 #ifndef DEFAULT_MMAP_THRESHOLD
714 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
715 #endif
716
717 /*
718
719 M_MMAP_THRESHOLD is the request size threshold for using mmap()
720 to service a request. Requests of at least this size that cannot
721 be allocated using already-existing space will be serviced via mmap.
722 (If enough normal freed space already exists it is used instead.)
723
724 Using mmap segregates relatively large chunks of memory so that
725 they can be individually obtained and released from the host
726 system. A request serviced through mmap is never reused by any
727 other request (at least not directly; the system may just so
728 happen to remap successive requests to the same locations).
729
730 Segregating space in this way has the benefit that mmapped space
731 can ALWAYS be individually released back to the system, which
732 helps keep the system level memory demands of a long-lived
733 program low. Mapped memory can never become `locked' between
734 other chunks, as can happen with normally allocated chunks, which
735 menas that even trimming via malloc_trim would not release them.
736
737 However, it has the disadvantages that:
738
739 1. The space cannot be reclaimed, consolidated, and then
740 used to service later requests, as happens with normal chunks.
741 2. It can lead to more wastage because of mmap page alignment
742 requirements
743 3. It causes malloc performance to be more dependent on host
744 system memory management support routines which may vary in
745 implementation quality and may impose arbitrary
746 limitations. Generally, servicing a request via normal
747 malloc steps is faster than going through a system's mmap.
748
749 All together, these considerations should lead you to use mmap
750 only for relatively large requests.
751
752
753 */
754
755
756 #ifndef DEFAULT_MMAP_MAX
757 #if HAVE_MMAP
758 #define DEFAULT_MMAP_MAX (64)
759 #else
760 #define DEFAULT_MMAP_MAX (0)
761 #endif
762 #endif
763
764 /*
765 M_MMAP_MAX is the maximum number of requests to simultaneously
766 service using mmap. This parameter exists because:
767
768 1. Some systems have a limited number of internal tables for
769 use by mmap.
770 2. In most systems, overreliance on mmap can degrade overall
771 performance.
772 3. If a program allocates many large regions, it is probably
773 better off using normal sbrk-based allocation routines that
774 can reclaim and reallocate normal heap memory. Using a
775 small value allows transition into this mode after the
776 first few allocations.
777
778 Setting to 0 disables all use of mmap. If HAVE_MMAP is not set,
779 the default value is 0, and attempts to set it to non-zero values
780 in mallopt will fail.
781 */
782
783
784 /*
785 USE_DL_PREFIX will prefix all public routines with the string 'dl'.
786 Useful to quickly avoid procedure declaration conflicts and linker
787 symbol conflicts with existing memory allocation routines.
788
789 */
790
791 /* #define USE_DL_PREFIX */
792
793
794 /*
795
796 Special defines for linux libc
797
798 Except when compiled using these special defines for Linux libc
799 using weak aliases, this malloc is NOT designed to work in
800 multithreaded applications. No semaphores or other concurrency
801 control are provided to ensure that multiple malloc or free calls
802 don't run at the same time, which could be disasterous. A single
803 semaphore could be used across malloc, realloc, and free (which is
804 essentially the effect of the linux weak alias approach). It would
805 be hard to obtain finer granularity.
806
807 */
808
809
810 #ifdef INTERNAL_LINUX_C_LIB
811
812 #if __STD_C
813
814 Void_t * __default_morecore_init (ptrdiff_t);
815 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
816
817 #else
818
819 Void_t * __default_morecore_init ();
820 Void_t *(*__morecore)() = __default_morecore_init;
821
822 #endif
823
824 #define MORECORE (*__morecore)
825 #define MORECORE_FAILURE 0
826 #define MORECORE_CLEARS 1
827
828 #else /* INTERNAL_LINUX_C_LIB */
829
830 #if __STD_C
831 extern Void_t* sbrk(ptrdiff_t);
832 #else
833 extern Void_t* sbrk();
834 #endif
835
836 #ifndef MORECORE
837 #define MORECORE sbrk
838 #endif
839
840 #ifndef MORECORE_FAILURE
841 #define MORECORE_FAILURE -1
842 #endif
843
844 #ifndef MORECORE_CLEARS
845 #define MORECORE_CLEARS 1
846 #endif
847
848 #endif /* INTERNAL_LINUX_C_LIB */
849
850 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
851
852 #define cALLOc __libc_calloc
853 #define fREe __libc_free
854 #define mALLOc __libc_malloc
855 #define mEMALIGn __libc_memalign
856 #define rEALLOc __libc_realloc
857 #define vALLOc __libc_valloc
858 #define pvALLOc __libc_pvalloc
859 #define mALLINFo __libc_mallinfo
860 #define mALLOPt __libc_mallopt
861
862 #pragma weak calloc = __libc_calloc
863 #pragma weak free = __libc_free
864 #pragma weak cfree = __libc_free
865 #pragma weak malloc = __libc_malloc
866 #pragma weak memalign = __libc_memalign
867 #pragma weak realloc = __libc_realloc
868 #pragma weak valloc = __libc_valloc
869 #pragma weak pvalloc = __libc_pvalloc
870 #pragma weak mallinfo = __libc_mallinfo
871 #pragma weak mallopt = __libc_mallopt
872
873 #else
874
875 #ifdef USE_DL_PREFIX
876 #define cALLOc dlcalloc
877 #define fREe dlfree
878 #define mALLOc dlmalloc
879 #define mEMALIGn dlmemalign
880 #define rEALLOc dlrealloc
881 #define vALLOc dlvalloc
882 #define pvALLOc dlpvalloc
883 #define mALLINFo dlmallinfo
884 #define mALLOPt dlmallopt
885 #else /* USE_DL_PREFIX */
886 #define cALLOc calloc
887 #define fREe free
888 #define mALLOc malloc
889 #define mEMALIGn memalign
890 #define rEALLOc realloc
891 #define vALLOc valloc
892 #define pvALLOc pvalloc
893 #define mALLINFo mallinfo
894 #define mALLOPt mallopt
895 #endif /* USE_DL_PREFIX */
896
897 #endif
898
899 /* Public routines */
900
901 #if __STD_C
902
903 Void_t* mALLOc(size_t);
904 void fREe(Void_t*);
905 Void_t* rEALLOc(Void_t*, size_t);
906 Void_t* mEMALIGn(size_t, size_t);
907 Void_t* vALLOc(size_t);
908 Void_t* pvALLOc(size_t);
909 Void_t* cALLOc(size_t, size_t);
910 void cfree(Void_t*);
911 int malloc_trim(size_t);
912 size_t malloc_usable_size(Void_t*);
913 void malloc_stats();
914 int mALLOPt(int, int);
915 struct mallinfo mALLINFo(void);
916 #else
917 Void_t* mALLOc();
918 void fREe();
919 Void_t* rEALLOc();
920 Void_t* mEMALIGn();
921 Void_t* vALLOc();
922 Void_t* pvALLOc();
923 Void_t* cALLOc();
924 void cfree();
925 int malloc_trim();
926 size_t malloc_usable_size();
927 void malloc_stats();
928 int mALLOPt();
929 struct mallinfo mALLINFo();
930 #endif
931
932
933 #ifdef __cplusplus
934 }; /* end of extern "C" */
935 #endif
936
937 /* ---------- To make a malloc.h, end cutting here ------------ */
938 #else /* Moved to malloc.h */
939
940 #include <malloc.h>
941 #if 0
942 #if __STD_C
943 static void malloc_update_mallinfo (void);
944 void malloc_stats (void);
945 #else
946 static void malloc_update_mallinfo ();
947 void malloc_stats();
948 #endif
949 #endif /* 0 */
950
951 #endif /* 0 */ /* Moved to malloc.h */
952
953 DECLARE_GLOBAL_DATA_PTR;
954
955 /*
956 Emulation of sbrk for WIN32
957 All code within the ifdef WIN32 is untested by me.
958
959 Thanks to Martin Fong and others for supplying this.
960 */
961
962
963 #ifdef WIN32
964
965 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
966 ~(malloc_getpagesize-1))
967 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
968
969 /* resrve 64MB to insure large contiguous space */
970 #define RESERVED_SIZE (1024*1024*64)
971 #define NEXT_SIZE (2048*1024)
972 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
973
974 struct GmListElement;
975 typedef struct GmListElement GmListElement;
976
977 struct GmListElement
978 {
979 GmListElement* next;
980 void* base;
981 };
982
983 static GmListElement* head = 0;
984 static unsigned int gNextAddress = 0;
985 static unsigned int gAddressBase = 0;
986 static unsigned int gAllocatedSize = 0;
987
988 static
989 GmListElement* makeGmListElement (void* bas)
990 {
991 GmListElement* this;
992 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
993 assert (this);
994 if (this)
995 {
996 this->base = bas;
997 this->next = head;
998 head = this;
999 }
1000 return this;
1001 }
1002
1003 void gcleanup ()
1004 {
1005 BOOL rval;
1006 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1007 if (gAddressBase && (gNextAddress - gAddressBase))
1008 {
1009 rval = VirtualFree ((void*)gAddressBase,
1010 gNextAddress - gAddressBase,
1011 MEM_DECOMMIT);
1012 assert (rval);
1013 }
1014 while (head)
1015 {
1016 GmListElement* next = head->next;
1017 rval = VirtualFree (head->base, 0, MEM_RELEASE);
1018 assert (rval);
1019 LocalFree (head);
1020 head = next;
1021 }
1022 }
1023
1024 static
1025 void* findRegion (void* start_address, unsigned long size)
1026 {
1027 MEMORY_BASIC_INFORMATION info;
1028 if (size >= TOP_MEMORY) return NULL;
1029
1030 while ((unsigned long)start_address + size < TOP_MEMORY)
1031 {
1032 VirtualQuery (start_address, &info, sizeof (info));
1033 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1034 return start_address;
1035 else
1036 {
1037 /* Requested region is not available so see if the */
1038 /* next region is available. Set 'start_address' */
1039 /* to the next region and call 'VirtualQuery()' */
1040 /* again. */
1041
1042 start_address = (char*)info.BaseAddress + info.RegionSize;
1043
1044 /* Make sure we start looking for the next region */
1045 /* on the *next* 64K boundary. Otherwise, even if */
1046 /* the new region is free according to */
1047 /* 'VirtualQuery()', the subsequent call to */
1048 /* 'VirtualAlloc()' (which follows the call to */
1049 /* this routine in 'wsbrk()') will round *down* */
1050 /* the requested address to a 64K boundary which */
1051 /* we already know is an address in the */
1052 /* unavailable region. Thus, the subsequent call */
1053 /* to 'VirtualAlloc()' will fail and bring us back */
1054 /* here, causing us to go into an infinite loop. */
1055
1056 start_address =
1057 (void *) AlignPage64K((unsigned long) start_address);
1058 }
1059 }
1060 return NULL;
1061
1062 }
1063
1064
1065 void* wsbrk (long size)
1066 {
1067 void* tmp;
1068 if (size > 0)
1069 {
1070 if (gAddressBase == 0)
1071 {
1072 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1073 gNextAddress = gAddressBase =
1074 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1075 MEM_RESERVE, PAGE_NOACCESS);
1076 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
1077 gAllocatedSize))
1078 {
1079 long new_size = max (NEXT_SIZE, AlignPage (size));
1080 void* new_address = (void*)(gAddressBase+gAllocatedSize);
1081 do
1082 {
1083 new_address = findRegion (new_address, new_size);
1084
1085 if (new_address == 0)
1086 return (void*)-1;
1087
1088 gAddressBase = gNextAddress =
1089 (unsigned int)VirtualAlloc (new_address, new_size,
1090 MEM_RESERVE, PAGE_NOACCESS);
1091 /* repeat in case of race condition */
1092 /* The region that we found has been snagged */
1093 /* by another thread */
1094 }
1095 while (gAddressBase == 0);
1096
1097 assert (new_address == (void*)gAddressBase);
1098
1099 gAllocatedSize = new_size;
1100
1101 if (!makeGmListElement ((void*)gAddressBase))
1102 return (void*)-1;
1103 }
1104 if ((size + gNextAddress) > AlignPage (gNextAddress))
1105 {
1106 void* res;
1107 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1108 (size + gNextAddress -
1109 AlignPage (gNextAddress)),
1110 MEM_COMMIT, PAGE_READWRITE);
1111 if (res == 0)
1112 return (void*)-1;
1113 }
1114 tmp = (void*)gNextAddress;
1115 gNextAddress = (unsigned int)tmp + size;
1116 return tmp;
1117 }
1118 else if (size < 0)
1119 {
1120 unsigned int alignedGoal = AlignPage (gNextAddress + size);
1121 /* Trim by releasing the virtual memory */
1122 if (alignedGoal >= gAddressBase)
1123 {
1124 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1125 MEM_DECOMMIT);
1126 gNextAddress = gNextAddress + size;
1127 return (void*)gNextAddress;
1128 }
1129 else
1130 {
1131 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1132 MEM_DECOMMIT);
1133 gNextAddress = gAddressBase;
1134 return (void*)-1;
1135 }
1136 }
1137 else
1138 {
1139 return (void*)gNextAddress;
1140 }
1141 }
1142
1143 #endif
1144
1145 \f
1146
1147 /*
1148 Type declarations
1149 */
1150
1151
1152 struct malloc_chunk
1153 {
1154 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1155 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1156 struct malloc_chunk* fd; /* double links -- used only if free. */
1157 struct malloc_chunk* bk;
1158 };
1159
1160 typedef struct malloc_chunk* mchunkptr;
1161
1162 /*
1163
1164 malloc_chunk details:
1165
1166 (The following includes lightly edited explanations by Colin Plumb.)
1167
1168 Chunks of memory are maintained using a `boundary tag' method as
1169 described in e.g., Knuth or Standish. (See the paper by Paul
1170 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1171 survey of such techniques.) Sizes of free chunks are stored both
1172 in the front of each chunk and at the end. This makes
1173 consolidating fragmented chunks into bigger chunks very fast. The
1174 size fields also hold bits representing whether chunks are free or
1175 in use.
1176
1177 An allocated chunk looks like this:
1178
1179
1180 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181 | Size of previous chunk, if allocated | |
1182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1183 | Size of chunk, in bytes |P|
1184 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1185 | User data starts here... .
1186 . .
1187 . (malloc_usable_space() bytes) .
1188 . |
1189 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1190 | Size of chunk |
1191 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1192
1193
1194 Where "chunk" is the front of the chunk for the purpose of most of
1195 the malloc code, but "mem" is the pointer that is returned to the
1196 user. "Nextchunk" is the beginning of the next contiguous chunk.
1197
1198 Chunks always begin on even word boundries, so the mem portion
1199 (which is returned to the user) is also on an even word boundary, and
1200 thus double-word aligned.
1201
1202 Free chunks are stored in circular doubly-linked lists, and look like this:
1203
1204 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1205 | Size of previous chunk |
1206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1207 `head:' | Size of chunk, in bytes |P|
1208 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209 | Forward pointer to next chunk in list |
1210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1211 | Back pointer to previous chunk in list |
1212 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1213 | Unused space (may be 0 bytes long) .
1214 . .
1215 . |
1216 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1217 `foot:' | Size of chunk, in bytes |
1218 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1219
1220 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1221 chunk size (which is always a multiple of two words), is an in-use
1222 bit for the *previous* chunk. If that bit is *clear*, then the
1223 word before the current chunk size contains the previous chunk
1224 size, and can be used to find the front of the previous chunk.
1225 (The very first chunk allocated always has this bit set,
1226 preventing access to non-existent (or non-owned) memory.)
1227
1228 Note that the `foot' of the current chunk is actually represented
1229 as the prev_size of the NEXT chunk. (This makes it easier to
1230 deal with alignments etc).
1231
1232 The two exceptions to all this are
1233
1234 1. The special chunk `top', which doesn't bother using the
1235 trailing size field since there is no
1236 next contiguous chunk that would have to index off it. (After
1237 initialization, `top' is forced to always exist. If it would
1238 become less than MINSIZE bytes long, it is replenished via
1239 malloc_extend_top.)
1240
1241 2. Chunks allocated via mmap, which have the second-lowest-order
1242 bit (IS_MMAPPED) set in their size fields. Because they are
1243 never merged or traversed from any other chunk, they have no
1244 foot size or inuse information.
1245
1246 Available chunks are kept in any of several places (all declared below):
1247
1248 * `av': An array of chunks serving as bin headers for consolidated
1249 chunks. Each bin is doubly linked. The bins are approximately
1250 proportionally (log) spaced. There are a lot of these bins
1251 (128). This may look excessive, but works very well in
1252 practice. All procedures maintain the invariant that no
1253 consolidated chunk physically borders another one. Chunks in
1254 bins are kept in size order, with ties going to the
1255 approximately least recently used chunk.
1256
1257 The chunks in each bin are maintained in decreasing sorted order by
1258 size. This is irrelevant for the small bins, which all contain
1259 the same-sized chunks, but facilitates best-fit allocation for
1260 larger chunks. (These lists are just sequential. Keeping them in
1261 order almost never requires enough traversal to warrant using
1262 fancier ordered data structures.) Chunks of the same size are
1263 linked with the most recently freed at the front, and allocations
1264 are taken from the back. This results in LRU or FIFO allocation
1265 order, which tends to give each chunk an equal opportunity to be
1266 consolidated with adjacent freed chunks, resulting in larger free
1267 chunks and less fragmentation.
1268
1269 * `top': The top-most available chunk (i.e., the one bordering the
1270 end of available memory) is treated specially. It is never
1271 included in any bin, is used only if no other chunk is
1272 available, and is released back to the system if it is very
1273 large (see M_TRIM_THRESHOLD).
1274
1275 * `last_remainder': A bin holding only the remainder of the
1276 most recently split (non-top) chunk. This bin is checked
1277 before other non-fitting chunks, so as to provide better
1278 locality for runs of sequentially allocated chunks.
1279
1280 * Implicitly, through the host system's memory mapping tables.
1281 If supported, requests greater than a threshold are usually
1282 serviced via calls to mmap, and then later released via munmap.
1283
1284 */
1285 \f
1286 /* sizes, alignments */
1287
1288 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
1289 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
1290 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
1291 #define MINSIZE (sizeof(struct malloc_chunk))
1292
1293 /* conversion from malloc headers to user pointers, and back */
1294
1295 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1296 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1297
1298 /* pad request bytes into a usable size */
1299
1300 #define request2size(req) \
1301 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1302 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1303 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1304
1305 /* Check if m has acceptable alignment */
1306
1307 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1308
1309
1310 \f
1311
1312 /*
1313 Physical chunk operations
1314 */
1315
1316
1317 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1318
1319 #define PREV_INUSE 0x1
1320
1321 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1322
1323 #define IS_MMAPPED 0x2
1324
1325 /* Bits to mask off when extracting size */
1326
1327 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1328
1329
1330 /* Ptr to next physical malloc_chunk. */
1331
1332 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1333
1334 /* Ptr to previous physical malloc_chunk */
1335
1336 #define prev_chunk(p)\
1337 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1338
1339
1340 /* Treat space at ptr + offset as a chunk */
1341
1342 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1343
1344
1345 \f
1346
1347 /*
1348 Dealing with use bits
1349 */
1350
1351 /* extract p's inuse bit */
1352
1353 #define inuse(p)\
1354 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1355
1356 /* extract inuse bit of previous chunk */
1357
1358 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1359
1360 /* check for mmap()'ed chunk */
1361
1362 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1363
1364 /* set/clear chunk as in use without otherwise disturbing */
1365
1366 #define set_inuse(p)\
1367 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1368
1369 #define clear_inuse(p)\
1370 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1371
1372 /* check/set/clear inuse bits in known places */
1373
1374 #define inuse_bit_at_offset(p, s)\
1375 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1376
1377 #define set_inuse_bit_at_offset(p, s)\
1378 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1379
1380 #define clear_inuse_bit_at_offset(p, s)\
1381 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1382
1383
1384 \f
1385
1386 /*
1387 Dealing with size fields
1388 */
1389
1390 /* Get size, ignoring use bits */
1391
1392 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1393
1394 /* Set size at head, without disturbing its use bit */
1395
1396 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1397
1398 /* Set size/use ignoring previous bits in header */
1399
1400 #define set_head(p, s) ((p)->size = (s))
1401
1402 /* Set size at footer (only when chunk is not in use) */
1403
1404 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1405
1406
1407 \f
1408
1409
1410 /*
1411 Bins
1412
1413 The bins, `av_' are an array of pairs of pointers serving as the
1414 heads of (initially empty) doubly-linked lists of chunks, laid out
1415 in a way so that each pair can be treated as if it were in a
1416 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1417 and chunks are the same).
1418
1419 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1420 8 bytes apart. Larger bins are approximately logarithmically
1421 spaced. (See the table below.) The `av_' array is never mentioned
1422 directly in the code, but instead via bin access macros.
1423
1424 Bin layout:
1425
1426 64 bins of size 8
1427 32 bins of size 64
1428 16 bins of size 512
1429 8 bins of size 4096
1430 4 bins of size 32768
1431 2 bins of size 262144
1432 1 bin of size what's left
1433
1434 There is actually a little bit of slop in the numbers in bin_index
1435 for the sake of speed. This makes no difference elsewhere.
1436
1437 The special chunks `top' and `last_remainder' get their own bins,
1438 (this is implemented via yet more trickery with the av_ array),
1439 although `top' is never properly linked to its bin since it is
1440 always handled specially.
1441
1442 */
1443
1444 #define NAV 128 /* number of bins */
1445
1446 typedef struct malloc_chunk* mbinptr;
1447
1448 /* access macros */
1449
1450 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1451 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1452 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1453
1454 /*
1455 The first 2 bins are never indexed. The corresponding av_ cells are instead
1456 used for bookkeeping. This is not to save space, but to simplify
1457 indexing, maintain locality, and avoid some initialization tests.
1458 */
1459
1460 #define top (bin_at(0)->fd) /* The topmost chunk */
1461 #define last_remainder (bin_at(1)) /* remainder from last split */
1462
1463
1464 /*
1465 Because top initially points to its own bin with initial
1466 zero size, thus forcing extension on the first malloc request,
1467 we avoid having any special code in malloc to check whether
1468 it even exists yet. But we still need to in malloc_extend_top.
1469 */
1470
1471 #define initial_top ((mchunkptr)(bin_at(0)))
1472
1473 /* Helper macro to initialize bins */
1474
1475 #define IAV(i) bin_at(i), bin_at(i)
1476
1477 static mbinptr av_[NAV * 2 + 2] = {
1478 0, 0,
1479 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
1480 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
1481 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
1482 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
1483 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
1484 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
1485 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
1486 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
1487 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
1488 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
1489 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
1490 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
1491 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
1492 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1493 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1494 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1495 };
1496
1497 void malloc_bin_reloc (void)
1498 {
1499 unsigned long *p = (unsigned long *)(&av_[2]);
1500 int i;
1501 for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) {
1502 *p++ += gd->reloc_off;
1503 }
1504 }
1505 \f
1506
1507 /* field-extraction macros */
1508
1509 #define first(b) ((b)->fd)
1510 #define last(b) ((b)->bk)
1511
1512 /*
1513 Indexing into bins
1514 */
1515
1516 #define bin_index(sz) \
1517 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
1518 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
1519 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
1520 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
1521 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
1522 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1523 126)
1524 /*
1525 bins for chunks < 512 are all spaced 8 bytes apart, and hold
1526 identically sized chunks. This is exploited in malloc.
1527 */
1528
1529 #define MAX_SMALLBIN 63
1530 #define MAX_SMALLBIN_SIZE 512
1531 #define SMALLBIN_WIDTH 8
1532
1533 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
1534
1535 /*
1536 Requests are `small' if both the corresponding and the next bin are small
1537 */
1538
1539 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1540
1541 \f
1542
1543 /*
1544 To help compensate for the large number of bins, a one-level index
1545 structure is used for bin-by-bin searching. `binblocks' is a
1546 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1547 have any (possibly) non-empty bins, so they can be skipped over
1548 all at once during during traversals. The bits are NOT always
1549 cleared as soon as all bins in a block are empty, but instead only
1550 when all are noticed to be empty during traversal in malloc.
1551 */
1552
1553 #define BINBLOCKWIDTH 4 /* bins per block */
1554
1555 #define binblocks (bin_at(0)->size) /* bitvector of nonempty blocks */
1556
1557 /* bin<->block macros */
1558
1559 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
1560 #define mark_binblock(ii) (binblocks |= idx2binblock(ii))
1561 #define clear_binblock(ii) (binblocks &= ~(idx2binblock(ii)))
1562
1563
1564 \f
1565
1566
1567 /* Other static bookkeeping data */
1568
1569 /* variables holding tunable values */
1570
1571 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
1572 static unsigned long top_pad = DEFAULT_TOP_PAD;
1573 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
1574 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1575
1576 /* The first value returned from sbrk */
1577 static char* sbrk_base = (char*)(-1);
1578
1579 /* The maximum memory obtained from system via sbrk */
1580 static unsigned long max_sbrked_mem = 0;
1581
1582 /* The maximum via either sbrk or mmap */
1583 static unsigned long max_total_mem = 0;
1584
1585 /* internal working copy of mallinfo */
1586 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1587
1588 /* The total memory obtained from system via sbrk */
1589 #define sbrked_mem (current_mallinfo.arena)
1590
1591 /* Tracking mmaps */
1592
1593 #if 0
1594 static unsigned int n_mmaps = 0;
1595 #endif /* 0 */
1596 static unsigned long mmapped_mem = 0;
1597 #if HAVE_MMAP
1598 static unsigned int max_n_mmaps = 0;
1599 static unsigned long max_mmapped_mem = 0;
1600 #endif
1601
1602 \f
1603
1604 /*
1605 Debugging support
1606 */
1607
1608 #ifdef DEBUG
1609
1610
1611 /*
1612 These routines make a number of assertions about the states
1613 of data structures that should be true at all times. If any
1614 are not true, it's very likely that a user program has somehow
1615 trashed memory. (It's also possible that there is a coding error
1616 in malloc. In which case, please report it!)
1617 */
1618
1619 #if __STD_C
1620 static void do_check_chunk(mchunkptr p)
1621 #else
1622 static void do_check_chunk(p) mchunkptr p;
1623 #endif
1624 {
1625 #if 0 /* causes warnings because assert() is off */
1626 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1627 #endif /* 0 */
1628
1629 /* No checkable chunk is mmapped */
1630 assert(!chunk_is_mmapped(p));
1631
1632 /* Check for legal address ... */
1633 assert((char*)p >= sbrk_base);
1634 if (p != top)
1635 assert((char*)p + sz <= (char*)top);
1636 else
1637 assert((char*)p + sz <= sbrk_base + sbrked_mem);
1638
1639 }
1640
1641
1642 #if __STD_C
1643 static void do_check_free_chunk(mchunkptr p)
1644 #else
1645 static void do_check_free_chunk(p) mchunkptr p;
1646 #endif
1647 {
1648 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1649 #if 0 /* causes warnings because assert() is off */
1650 mchunkptr next = chunk_at_offset(p, sz);
1651 #endif /* 0 */
1652
1653 do_check_chunk(p);
1654
1655 /* Check whether it claims to be free ... */
1656 assert(!inuse(p));
1657
1658 /* Unless a special marker, must have OK fields */
1659 if ((long)sz >= (long)MINSIZE)
1660 {
1661 assert((sz & MALLOC_ALIGN_MASK) == 0);
1662 assert(aligned_OK(chunk2mem(p)));
1663 /* ... matching footer field */
1664 assert(next->prev_size == sz);
1665 /* ... and is fully consolidated */
1666 assert(prev_inuse(p));
1667 assert (next == top || inuse(next));
1668
1669 /* ... and has minimally sane links */
1670 assert(p->fd->bk == p);
1671 assert(p->bk->fd == p);
1672 }
1673 else /* markers are always of size SIZE_SZ */
1674 assert(sz == SIZE_SZ);
1675 }
1676
1677 #if __STD_C
1678 static void do_check_inuse_chunk(mchunkptr p)
1679 #else
1680 static void do_check_inuse_chunk(p) mchunkptr p;
1681 #endif
1682 {
1683 mchunkptr next = next_chunk(p);
1684 do_check_chunk(p);
1685
1686 /* Check whether it claims to be in use ... */
1687 assert(inuse(p));
1688
1689 /* ... and is surrounded by OK chunks.
1690 Since more things can be checked with free chunks than inuse ones,
1691 if an inuse chunk borders them and debug is on, it's worth doing them.
1692 */
1693 if (!prev_inuse(p))
1694 {
1695 mchunkptr prv = prev_chunk(p);
1696 assert(next_chunk(prv) == p);
1697 do_check_free_chunk(prv);
1698 }
1699 if (next == top)
1700 {
1701 assert(prev_inuse(next));
1702 assert(chunksize(next) >= MINSIZE);
1703 }
1704 else if (!inuse(next))
1705 do_check_free_chunk(next);
1706
1707 }
1708
1709 #if __STD_C
1710 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1711 #else
1712 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1713 #endif
1714 {
1715 #if 0 /* causes warnings because assert() is off */
1716 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1717 long room = sz - s;
1718 #endif /* 0 */
1719
1720 do_check_inuse_chunk(p);
1721
1722 /* Legal size ... */
1723 assert((long)sz >= (long)MINSIZE);
1724 assert((sz & MALLOC_ALIGN_MASK) == 0);
1725 assert(room >= 0);
1726 assert(room < (long)MINSIZE);
1727
1728 /* ... and alignment */
1729 assert(aligned_OK(chunk2mem(p)));
1730
1731
1732 /* ... and was allocated at front of an available chunk */
1733 assert(prev_inuse(p));
1734
1735 }
1736
1737
1738 #define check_free_chunk(P) do_check_free_chunk(P)
1739 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1740 #define check_chunk(P) do_check_chunk(P)
1741 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1742 #else
1743 #define check_free_chunk(P)
1744 #define check_inuse_chunk(P)
1745 #define check_chunk(P)
1746 #define check_malloced_chunk(P,N)
1747 #endif
1748
1749 \f
1750
1751 /*
1752 Macro-based internal utilities
1753 */
1754
1755
1756 /*
1757 Linking chunks in bin lists.
1758 Call these only with variables, not arbitrary expressions, as arguments.
1759 */
1760
1761 /*
1762 Place chunk p of size s in its bin, in size order,
1763 putting it ahead of others of same size.
1764 */
1765
1766
1767 #define frontlink(P, S, IDX, BK, FD) \
1768 { \
1769 if (S < MAX_SMALLBIN_SIZE) \
1770 { \
1771 IDX = smallbin_index(S); \
1772 mark_binblock(IDX); \
1773 BK = bin_at(IDX); \
1774 FD = BK->fd; \
1775 P->bk = BK; \
1776 P->fd = FD; \
1777 FD->bk = BK->fd = P; \
1778 } \
1779 else \
1780 { \
1781 IDX = bin_index(S); \
1782 BK = bin_at(IDX); \
1783 FD = BK->fd; \
1784 if (FD == BK) mark_binblock(IDX); \
1785 else \
1786 { \
1787 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
1788 BK = FD->bk; \
1789 } \
1790 P->bk = BK; \
1791 P->fd = FD; \
1792 FD->bk = BK->fd = P; \
1793 } \
1794 }
1795
1796
1797 /* take a chunk off a list */
1798
1799 #define unlink(P, BK, FD) \
1800 { \
1801 BK = P->bk; \
1802 FD = P->fd; \
1803 FD->bk = BK; \
1804 BK->fd = FD; \
1805 } \
1806
1807 /* Place p as the last remainder */
1808
1809 #define link_last_remainder(P) \
1810 { \
1811 last_remainder->fd = last_remainder->bk = P; \
1812 P->fd = P->bk = last_remainder; \
1813 }
1814
1815 /* Clear the last_remainder bin */
1816
1817 #define clear_last_remainder \
1818 (last_remainder->fd = last_remainder->bk = last_remainder)
1819
1820
1821 \f
1822
1823
1824 /* Routines dealing with mmap(). */
1825
1826 #if HAVE_MMAP
1827
1828 #if __STD_C
1829 static mchunkptr mmap_chunk(size_t size)
1830 #else
1831 static mchunkptr mmap_chunk(size) size_t size;
1832 #endif
1833 {
1834 size_t page_mask = malloc_getpagesize - 1;
1835 mchunkptr p;
1836
1837 #ifndef MAP_ANONYMOUS
1838 static int fd = -1;
1839 #endif
1840
1841 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1842
1843 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1844 * there is no following chunk whose prev_size field could be used.
1845 */
1846 size = (size + SIZE_SZ + page_mask) & ~page_mask;
1847
1848 #ifdef MAP_ANONYMOUS
1849 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1850 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1851 #else /* !MAP_ANONYMOUS */
1852 if (fd < 0)
1853 {
1854 fd = open("/dev/zero", O_RDWR);
1855 if(fd < 0) return 0;
1856 }
1857 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1858 #endif
1859
1860 if(p == (mchunkptr)-1) return 0;
1861
1862 n_mmaps++;
1863 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1864
1865 /* We demand that eight bytes into a page must be 8-byte aligned. */
1866 assert(aligned_OK(chunk2mem(p)));
1867
1868 /* The offset to the start of the mmapped region is stored
1869 * in the prev_size field of the chunk; normally it is zero,
1870 * but that can be changed in memalign().
1871 */
1872 p->prev_size = 0;
1873 set_head(p, size|IS_MMAPPED);
1874
1875 mmapped_mem += size;
1876 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1877 max_mmapped_mem = mmapped_mem;
1878 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1879 max_total_mem = mmapped_mem + sbrked_mem;
1880 return p;
1881 }
1882
1883 #if __STD_C
1884 static void munmap_chunk(mchunkptr p)
1885 #else
1886 static void munmap_chunk(p) mchunkptr p;
1887 #endif
1888 {
1889 INTERNAL_SIZE_T size = chunksize(p);
1890 int ret;
1891
1892 assert (chunk_is_mmapped(p));
1893 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1894 assert((n_mmaps > 0));
1895 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1896
1897 n_mmaps--;
1898 mmapped_mem -= (size + p->prev_size);
1899
1900 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1901
1902 /* munmap returns non-zero on failure */
1903 assert(ret == 0);
1904 }
1905
1906 #if HAVE_MREMAP
1907
1908 #if __STD_C
1909 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1910 #else
1911 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1912 #endif
1913 {
1914 size_t page_mask = malloc_getpagesize - 1;
1915 INTERNAL_SIZE_T offset = p->prev_size;
1916 INTERNAL_SIZE_T size = chunksize(p);
1917 char *cp;
1918
1919 assert (chunk_is_mmapped(p));
1920 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1921 assert((n_mmaps > 0));
1922 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1923
1924 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1925 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1926
1927 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1928
1929 if (cp == (char *)-1) return 0;
1930
1931 p = (mchunkptr)(cp + offset);
1932
1933 assert(aligned_OK(chunk2mem(p)));
1934
1935 assert((p->prev_size == offset));
1936 set_head(p, (new_size - offset)|IS_MMAPPED);
1937
1938 mmapped_mem -= size + offset;
1939 mmapped_mem += new_size;
1940 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1941 max_mmapped_mem = mmapped_mem;
1942 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1943 max_total_mem = mmapped_mem + sbrked_mem;
1944 return p;
1945 }
1946
1947 #endif /* HAVE_MREMAP */
1948
1949 #endif /* HAVE_MMAP */
1950
1951
1952 \f
1953
1954 /*
1955 Extend the top-most chunk by obtaining memory from system.
1956 Main interface to sbrk (but see also malloc_trim).
1957 */
1958
1959 #if __STD_C
1960 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1961 #else
1962 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1963 #endif
1964 {
1965 char* brk; /* return value from sbrk */
1966 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1967 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
1968 char* new_brk; /* return of 2nd sbrk call */
1969 INTERNAL_SIZE_T top_size; /* new size of top chunk */
1970
1971 mchunkptr old_top = top; /* Record state of old top */
1972 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1973 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
1974
1975 /* Pad request with top_pad plus minimal overhead */
1976
1977 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
1978 unsigned long pagesz = malloc_getpagesize;
1979
1980 /* If not the first time through, round to preserve page boundary */
1981 /* Otherwise, we need to correct to a page size below anyway. */
1982 /* (We also correct below if an intervening foreign sbrk call.) */
1983
1984 if (sbrk_base != (char*)(-1))
1985 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1986
1987 brk = (char*)(MORECORE (sbrk_size));
1988
1989 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1990 if (brk == (char*)(MORECORE_FAILURE) ||
1991 (brk < old_end && old_top != initial_top))
1992 return;
1993
1994 sbrked_mem += sbrk_size;
1995
1996 if (brk == old_end) /* can just add bytes to current top */
1997 {
1998 top_size = sbrk_size + old_top_size;
1999 set_head(top, top_size | PREV_INUSE);
2000 }
2001 else
2002 {
2003 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
2004 sbrk_base = brk;
2005 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
2006 sbrked_mem += brk - (char*)old_end;
2007
2008 /* Guarantee alignment of first new chunk made from this space */
2009 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2010 if (front_misalign > 0)
2011 {
2012 correction = (MALLOC_ALIGNMENT) - front_misalign;
2013 brk += correction;
2014 }
2015 else
2016 correction = 0;
2017
2018 /* Guarantee the next brk will be at a page boundary */
2019
2020 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2021 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2022
2023 /* Allocate correction */
2024 new_brk = (char*)(MORECORE (correction));
2025 if (new_brk == (char*)(MORECORE_FAILURE)) return;
2026
2027 sbrked_mem += correction;
2028
2029 top = (mchunkptr)brk;
2030 top_size = new_brk - brk + correction;
2031 set_head(top, top_size | PREV_INUSE);
2032
2033 if (old_top != initial_top)
2034 {
2035
2036 /* There must have been an intervening foreign sbrk call. */
2037 /* A double fencepost is necessary to prevent consolidation */
2038
2039 /* If not enough space to do this, then user did something very wrong */
2040 if (old_top_size < MINSIZE)
2041 {
2042 set_head(top, PREV_INUSE); /* will force null return from malloc */
2043 return;
2044 }
2045
2046 /* Also keep size a multiple of MALLOC_ALIGNMENT */
2047 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2048 set_head_size(old_top, old_top_size);
2049 chunk_at_offset(old_top, old_top_size )->size =
2050 SIZE_SZ|PREV_INUSE;
2051 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2052 SIZE_SZ|PREV_INUSE;
2053 /* If possible, release the rest. */
2054 if (old_top_size >= MINSIZE)
2055 fREe(chunk2mem(old_top));
2056 }
2057 }
2058
2059 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2060 max_sbrked_mem = sbrked_mem;
2061 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2062 max_total_mem = mmapped_mem + sbrked_mem;
2063
2064 /* We always land on a page boundary */
2065 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2066 }
2067
2068
2069 \f
2070
2071 /* Main public routines */
2072
2073
2074 /*
2075 Malloc Algorthim:
2076
2077 The requested size is first converted into a usable form, `nb'.
2078 This currently means to add 4 bytes overhead plus possibly more to
2079 obtain 8-byte alignment and/or to obtain a size of at least
2080 MINSIZE (currently 16 bytes), the smallest allocatable size.
2081 (All fits are considered `exact' if they are within MINSIZE bytes.)
2082
2083 From there, the first successful of the following steps is taken:
2084
2085 1. The bin corresponding to the request size is scanned, and if
2086 a chunk of exactly the right size is found, it is taken.
2087
2088 2. The most recently remaindered chunk is used if it is big
2089 enough. This is a form of (roving) first fit, used only in
2090 the absence of exact fits. Runs of consecutive requests use
2091 the remainder of the chunk used for the previous such request
2092 whenever possible. This limited use of a first-fit style
2093 allocation strategy tends to give contiguous chunks
2094 coextensive lifetimes, which improves locality and can reduce
2095 fragmentation in the long run.
2096
2097 3. Other bins are scanned in increasing size order, using a
2098 chunk big enough to fulfill the request, and splitting off
2099 any remainder. This search is strictly by best-fit; i.e.,
2100 the smallest (with ties going to approximately the least
2101 recently used) chunk that fits is selected.
2102
2103 4. If large enough, the chunk bordering the end of memory
2104 (`top') is split off. (This use of `top' is in accord with
2105 the best-fit search rule. In effect, `top' is treated as
2106 larger (and thus less well fitting) than any other available
2107 chunk since it can be extended to be as large as necessary
2108 (up to system limitations).
2109
2110 5. If the request size meets the mmap threshold and the
2111 system supports mmap, and there are few enough currently
2112 allocated mmapped regions, and a call to mmap succeeds,
2113 the request is allocated via direct memory mapping.
2114
2115 6. Otherwise, the top of memory is extended by
2116 obtaining more space from the system (normally using sbrk,
2117 but definable to anything else via the MORECORE macro).
2118 Memory is gathered from the system (in system page-sized
2119 units) in a way that allows chunks obtained across different
2120 sbrk calls to be consolidated, but does not require
2121 contiguous memory. Thus, it should be safe to intersperse
2122 mallocs with other sbrk calls.
2123
2124
2125 All allocations are made from the the `lowest' part of any found
2126 chunk. (The implementation invariant is that prev_inuse is
2127 always true of any allocated chunk; i.e., that each allocated
2128 chunk borders either a previously allocated and still in-use chunk,
2129 or the base of its memory arena.)
2130
2131 */
2132
2133 #if __STD_C
2134 Void_t* mALLOc(size_t bytes)
2135 #else
2136 Void_t* mALLOc(bytes) size_t bytes;
2137 #endif
2138 {
2139 mchunkptr victim; /* inspected/selected chunk */
2140 INTERNAL_SIZE_T victim_size; /* its size */
2141 int idx; /* index for bin traversal */
2142 mbinptr bin; /* associated bin */
2143 mchunkptr remainder; /* remainder from a split */
2144 long remainder_size; /* its size */
2145 int remainder_index; /* its bin index */
2146 unsigned long block; /* block traverser bit */
2147 int startidx; /* first bin of a traversed block */
2148 mchunkptr fwd; /* misc temp for linking */
2149 mchunkptr bck; /* misc temp for linking */
2150 mbinptr q; /* misc temp */
2151
2152 INTERNAL_SIZE_T nb;
2153
2154 if ((long)bytes < 0) return 0;
2155
2156 nb = request2size(bytes); /* padded request size; */
2157
2158 /* Check for exact match in a bin */
2159
2160 if (is_small_request(nb)) /* Faster version for small requests */
2161 {
2162 idx = smallbin_index(nb);
2163
2164 /* No traversal or size check necessary for small bins. */
2165
2166 q = bin_at(idx);
2167 victim = last(q);
2168
2169 /* Also scan the next one, since it would have a remainder < MINSIZE */
2170 if (victim == q)
2171 {
2172 q = next_bin(q);
2173 victim = last(q);
2174 }
2175 if (victim != q)
2176 {
2177 victim_size = chunksize(victim);
2178 unlink(victim, bck, fwd);
2179 set_inuse_bit_at_offset(victim, victim_size);
2180 check_malloced_chunk(victim, nb);
2181 return chunk2mem(victim);
2182 }
2183
2184 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2185
2186 }
2187 else
2188 {
2189 idx = bin_index(nb);
2190 bin = bin_at(idx);
2191
2192 for (victim = last(bin); victim != bin; victim = victim->bk)
2193 {
2194 victim_size = chunksize(victim);
2195 remainder_size = victim_size - nb;
2196
2197 if (remainder_size >= (long)MINSIZE) /* too big */
2198 {
2199 --idx; /* adjust to rescan below after checking last remainder */
2200 break;
2201 }
2202
2203 else if (remainder_size >= 0) /* exact fit */
2204 {
2205 unlink(victim, bck, fwd);
2206 set_inuse_bit_at_offset(victim, victim_size);
2207 check_malloced_chunk(victim, nb);
2208 return chunk2mem(victim);
2209 }
2210 }
2211
2212 ++idx;
2213
2214 }
2215
2216 /* Try to use the last split-off remainder */
2217
2218 if ( (victim = last_remainder->fd) != last_remainder)
2219 {
2220 victim_size = chunksize(victim);
2221 remainder_size = victim_size - nb;
2222
2223 if (remainder_size >= (long)MINSIZE) /* re-split */
2224 {
2225 remainder = chunk_at_offset(victim, nb);
2226 set_head(victim, nb | PREV_INUSE);
2227 link_last_remainder(remainder);
2228 set_head(remainder, remainder_size | PREV_INUSE);
2229 set_foot(remainder, remainder_size);
2230 check_malloced_chunk(victim, nb);
2231 return chunk2mem(victim);
2232 }
2233
2234 clear_last_remainder;
2235
2236 if (remainder_size >= 0) /* exhaust */
2237 {
2238 set_inuse_bit_at_offset(victim, victim_size);
2239 check_malloced_chunk(victim, nb);
2240 return chunk2mem(victim);
2241 }
2242
2243 /* Else place in bin */
2244
2245 frontlink(victim, victim_size, remainder_index, bck, fwd);
2246 }
2247
2248 /*
2249 If there are any possibly nonempty big-enough blocks,
2250 search for best fitting chunk by scanning bins in blockwidth units.
2251 */
2252
2253 if ( (block = idx2binblock(idx)) <= binblocks)
2254 {
2255
2256 /* Get to the first marked block */
2257
2258 if ( (block & binblocks) == 0)
2259 {
2260 /* force to an even block boundary */
2261 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2262 block <<= 1;
2263 while ((block & binblocks) == 0)
2264 {
2265 idx += BINBLOCKWIDTH;
2266 block <<= 1;
2267 }
2268 }
2269
2270 /* For each possibly nonempty block ... */
2271 for (;;)
2272 {
2273 startidx = idx; /* (track incomplete blocks) */
2274 q = bin = bin_at(idx);
2275
2276 /* For each bin in this block ... */
2277 do
2278 {
2279 /* Find and use first big enough chunk ... */
2280
2281 for (victim = last(bin); victim != bin; victim = victim->bk)
2282 {
2283 victim_size = chunksize(victim);
2284 remainder_size = victim_size - nb;
2285
2286 if (remainder_size >= (long)MINSIZE) /* split */
2287 {
2288 remainder = chunk_at_offset(victim, nb);
2289 set_head(victim, nb | PREV_INUSE);
2290 unlink(victim, bck, fwd);
2291 link_last_remainder(remainder);
2292 set_head(remainder, remainder_size | PREV_INUSE);
2293 set_foot(remainder, remainder_size);
2294 check_malloced_chunk(victim, nb);
2295 return chunk2mem(victim);
2296 }
2297
2298 else if (remainder_size >= 0) /* take */
2299 {
2300 set_inuse_bit_at_offset(victim, victim_size);
2301 unlink(victim, bck, fwd);
2302 check_malloced_chunk(victim, nb);
2303 return chunk2mem(victim);
2304 }
2305
2306 }
2307
2308 bin = next_bin(bin);
2309
2310 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2311
2312 /* Clear out the block bit. */
2313
2314 do /* Possibly backtrack to try to clear a partial block */
2315 {
2316 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2317 {
2318 binblocks &= ~block;
2319 break;
2320 }
2321 --startidx;
2322 q = prev_bin(q);
2323 } while (first(q) == q);
2324
2325 /* Get to the next possibly nonempty block */
2326
2327 if ( (block <<= 1) <= binblocks && (block != 0) )
2328 {
2329 while ((block & binblocks) == 0)
2330 {
2331 idx += BINBLOCKWIDTH;
2332 block <<= 1;
2333 }
2334 }
2335 else
2336 break;
2337 }
2338 }
2339
2340
2341 /* Try to use top chunk */
2342
2343 /* Require that there be a remainder, ensuring top always exists */
2344 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2345 {
2346
2347 #if HAVE_MMAP
2348 /* If big and would otherwise need to extend, try to use mmap instead */
2349 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2350 (victim = mmap_chunk(nb)) != 0)
2351 return chunk2mem(victim);
2352 #endif
2353
2354 /* Try to extend */
2355 malloc_extend_top(nb);
2356 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2357 return 0; /* propagate failure */
2358 }
2359
2360 victim = top;
2361 set_head(victim, nb | PREV_INUSE);
2362 top = chunk_at_offset(victim, nb);
2363 set_head(top, remainder_size | PREV_INUSE);
2364 check_malloced_chunk(victim, nb);
2365 return chunk2mem(victim);
2366
2367 }
2368
2369
2370 \f
2371
2372 /*
2373
2374 free() algorithm :
2375
2376 cases:
2377
2378 1. free(0) has no effect.
2379
2380 2. If the chunk was allocated via mmap, it is release via munmap().
2381
2382 3. If a returned chunk borders the current high end of memory,
2383 it is consolidated into the top, and if the total unused
2384 topmost memory exceeds the trim threshold, malloc_trim is
2385 called.
2386
2387 4. Other chunks are consolidated as they arrive, and
2388 placed in corresponding bins. (This includes the case of
2389 consolidating with the current `last_remainder').
2390
2391 */
2392
2393
2394 #if __STD_C
2395 void fREe(Void_t* mem)
2396 #else
2397 void fREe(mem) Void_t* mem;
2398 #endif
2399 {
2400 mchunkptr p; /* chunk corresponding to mem */
2401 INTERNAL_SIZE_T hd; /* its head field */
2402 INTERNAL_SIZE_T sz; /* its size */
2403 int idx; /* its bin index */
2404 mchunkptr next; /* next contiguous chunk */
2405 INTERNAL_SIZE_T nextsz; /* its size */
2406 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2407 mchunkptr bck; /* misc temp for linking */
2408 mchunkptr fwd; /* misc temp for linking */
2409 int islr; /* track whether merging with last_remainder */
2410
2411 if (mem == 0) /* free(0) has no effect */
2412 return;
2413
2414 p = mem2chunk(mem);
2415 hd = p->size;
2416
2417 #if HAVE_MMAP
2418 if (hd & IS_MMAPPED) /* release mmapped memory. */
2419 {
2420 munmap_chunk(p);
2421 return;
2422 }
2423 #endif
2424
2425 check_inuse_chunk(p);
2426
2427 sz = hd & ~PREV_INUSE;
2428 next = chunk_at_offset(p, sz);
2429 nextsz = chunksize(next);
2430
2431 if (next == top) /* merge with top */
2432 {
2433 sz += nextsz;
2434
2435 if (!(hd & PREV_INUSE)) /* consolidate backward */
2436 {
2437 prevsz = p->prev_size;
2438 p = chunk_at_offset(p, -((long) prevsz));
2439 sz += prevsz;
2440 unlink(p, bck, fwd);
2441 }
2442
2443 set_head(p, sz | PREV_INUSE);
2444 top = p;
2445 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2446 malloc_trim(top_pad);
2447 return;
2448 }
2449
2450 set_head(next, nextsz); /* clear inuse bit */
2451
2452 islr = 0;
2453
2454 if (!(hd & PREV_INUSE)) /* consolidate backward */
2455 {
2456 prevsz = p->prev_size;
2457 p = chunk_at_offset(p, -((long) prevsz));
2458 sz += prevsz;
2459
2460 if (p->fd == last_remainder) /* keep as last_remainder */
2461 islr = 1;
2462 else
2463 unlink(p, bck, fwd);
2464 }
2465
2466 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
2467 {
2468 sz += nextsz;
2469
2470 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
2471 {
2472 islr = 1;
2473 link_last_remainder(p);
2474 }
2475 else
2476 unlink(next, bck, fwd);
2477 }
2478
2479
2480 set_head(p, sz | PREV_INUSE);
2481 set_foot(p, sz);
2482 if (!islr)
2483 frontlink(p, sz, idx, bck, fwd);
2484 }
2485
2486
2487 \f
2488
2489
2490 /*
2491
2492 Realloc algorithm:
2493
2494 Chunks that were obtained via mmap cannot be extended or shrunk
2495 unless HAVE_MREMAP is defined, in which case mremap is used.
2496 Otherwise, if their reallocation is for additional space, they are
2497 copied. If for less, they are just left alone.
2498
2499 Otherwise, if the reallocation is for additional space, and the
2500 chunk can be extended, it is, else a malloc-copy-free sequence is
2501 taken. There are several different ways that a chunk could be
2502 extended. All are tried:
2503
2504 * Extending forward into following adjacent free chunk.
2505 * Shifting backwards, joining preceding adjacent space
2506 * Both shifting backwards and extending forward.
2507 * Extending into newly sbrked space
2508
2509 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2510 size argument of zero (re)allocates a minimum-sized chunk.
2511
2512 If the reallocation is for less space, and the new request is for
2513 a `small' (<512 bytes) size, then the newly unused space is lopped
2514 off and freed.
2515
2516 The old unix realloc convention of allowing the last-free'd chunk
2517 to be used as an argument to realloc is no longer supported.
2518 I don't know of any programs still relying on this feature,
2519 and allowing it would also allow too many other incorrect
2520 usages of realloc to be sensible.
2521
2522
2523 */
2524
2525
2526 #if __STD_C
2527 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2528 #else
2529 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2530 #endif
2531 {
2532 INTERNAL_SIZE_T nb; /* padded request size */
2533
2534 mchunkptr oldp; /* chunk corresponding to oldmem */
2535 INTERNAL_SIZE_T oldsize; /* its size */
2536
2537 mchunkptr newp; /* chunk to return */
2538 INTERNAL_SIZE_T newsize; /* its size */
2539 Void_t* newmem; /* corresponding user mem */
2540
2541 mchunkptr next; /* next contiguous chunk after oldp */
2542 INTERNAL_SIZE_T nextsize; /* its size */
2543
2544 mchunkptr prev; /* previous contiguous chunk before oldp */
2545 INTERNAL_SIZE_T prevsize; /* its size */
2546
2547 mchunkptr remainder; /* holds split off extra space from newp */
2548 INTERNAL_SIZE_T remainder_size; /* its size */
2549
2550 mchunkptr bck; /* misc temp for linking */
2551 mchunkptr fwd; /* misc temp for linking */
2552
2553 #ifdef REALLOC_ZERO_BYTES_FREES
2554 if (bytes == 0) { fREe(oldmem); return 0; }
2555 #endif
2556
2557 if ((long)bytes < 0) return 0;
2558
2559 /* realloc of null is supposed to be same as malloc */
2560 if (oldmem == 0) return mALLOc(bytes);
2561
2562 newp = oldp = mem2chunk(oldmem);
2563 newsize = oldsize = chunksize(oldp);
2564
2565
2566 nb = request2size(bytes);
2567
2568 #if HAVE_MMAP
2569 if (chunk_is_mmapped(oldp))
2570 {
2571 #if HAVE_MREMAP
2572 newp = mremap_chunk(oldp, nb);
2573 if(newp) return chunk2mem(newp);
2574 #endif
2575 /* Note the extra SIZE_SZ overhead. */
2576 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2577 /* Must alloc, copy, free. */
2578 newmem = mALLOc(bytes);
2579 if (newmem == 0) return 0; /* propagate failure */
2580 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2581 munmap_chunk(oldp);
2582 return newmem;
2583 }
2584 #endif
2585
2586 check_inuse_chunk(oldp);
2587
2588 if ((long)(oldsize) < (long)(nb))
2589 {
2590
2591 /* Try expanding forward */
2592
2593 next = chunk_at_offset(oldp, oldsize);
2594 if (next == top || !inuse(next))
2595 {
2596 nextsize = chunksize(next);
2597
2598 /* Forward into top only if a remainder */
2599 if (next == top)
2600 {
2601 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2602 {
2603 newsize += nextsize;
2604 top = chunk_at_offset(oldp, nb);
2605 set_head(top, (newsize - nb) | PREV_INUSE);
2606 set_head_size(oldp, nb);
2607 return chunk2mem(oldp);
2608 }
2609 }
2610
2611 /* Forward into next chunk */
2612 else if (((long)(nextsize + newsize) >= (long)(nb)))
2613 {
2614 unlink(next, bck, fwd);
2615 newsize += nextsize;
2616 goto split;
2617 }
2618 }
2619 else
2620 {
2621 next = 0;
2622 nextsize = 0;
2623 }
2624
2625 /* Try shifting backwards. */
2626
2627 if (!prev_inuse(oldp))
2628 {
2629 prev = prev_chunk(oldp);
2630 prevsize = chunksize(prev);
2631
2632 /* try forward + backward first to save a later consolidation */
2633
2634 if (next != 0)
2635 {
2636 /* into top */
2637 if (next == top)
2638 {
2639 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2640 {
2641 unlink(prev, bck, fwd);
2642 newp = prev;
2643 newsize += prevsize + nextsize;
2644 newmem = chunk2mem(newp);
2645 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2646 top = chunk_at_offset(newp, nb);
2647 set_head(top, (newsize - nb) | PREV_INUSE);
2648 set_head_size(newp, nb);
2649 return newmem;
2650 }
2651 }
2652
2653 /* into next chunk */
2654 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2655 {
2656 unlink(next, bck, fwd);
2657 unlink(prev, bck, fwd);
2658 newp = prev;
2659 newsize += nextsize + prevsize;
2660 newmem = chunk2mem(newp);
2661 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2662 goto split;
2663 }
2664 }
2665
2666 /* backward only */
2667 if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2668 {
2669 unlink(prev, bck, fwd);
2670 newp = prev;
2671 newsize += prevsize;
2672 newmem = chunk2mem(newp);
2673 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2674 goto split;
2675 }
2676 }
2677
2678 /* Must allocate */
2679
2680 newmem = mALLOc (bytes);
2681
2682 if (newmem == 0) /* propagate failure */
2683 return 0;
2684
2685 /* Avoid copy if newp is next chunk after oldp. */
2686 /* (This can only happen when new chunk is sbrk'ed.) */
2687
2688 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2689 {
2690 newsize += chunksize(newp);
2691 newp = oldp;
2692 goto split;
2693 }
2694
2695 /* Otherwise copy, free, and exit */
2696 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2697 fREe(oldmem);
2698 return newmem;
2699 }
2700
2701
2702 split: /* split off extra room in old or expanded chunk */
2703
2704 if (newsize - nb >= MINSIZE) /* split off remainder */
2705 {
2706 remainder = chunk_at_offset(newp, nb);
2707 remainder_size = newsize - nb;
2708 set_head_size(newp, nb);
2709 set_head(remainder, remainder_size | PREV_INUSE);
2710 set_inuse_bit_at_offset(remainder, remainder_size);
2711 fREe(chunk2mem(remainder)); /* let free() deal with it */
2712 }
2713 else
2714 {
2715 set_head_size(newp, newsize);
2716 set_inuse_bit_at_offset(newp, newsize);
2717 }
2718
2719 check_inuse_chunk(newp);
2720 return chunk2mem(newp);
2721 }
2722
2723
2724 \f
2725
2726 /*
2727
2728 memalign algorithm:
2729
2730 memalign requests more than enough space from malloc, finds a spot
2731 within that chunk that meets the alignment request, and then
2732 possibly frees the leading and trailing space.
2733
2734 The alignment argument must be a power of two. This property is not
2735 checked by memalign, so misuse may result in random runtime errors.
2736
2737 8-byte alignment is guaranteed by normal malloc calls, so don't
2738 bother calling memalign with an argument of 8 or less.
2739
2740 Overreliance on memalign is a sure way to fragment space.
2741
2742 */
2743
2744
2745 #if __STD_C
2746 Void_t* mEMALIGn(size_t alignment, size_t bytes)
2747 #else
2748 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2749 #endif
2750 {
2751 INTERNAL_SIZE_T nb; /* padded request size */
2752 char* m; /* memory returned by malloc call */
2753 mchunkptr p; /* corresponding chunk */
2754 char* brk; /* alignment point within p */
2755 mchunkptr newp; /* chunk to return */
2756 INTERNAL_SIZE_T newsize; /* its size */
2757 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
2758 mchunkptr remainder; /* spare room at end to split off */
2759 long remainder_size; /* its size */
2760
2761 if ((long)bytes < 0) return 0;
2762
2763 /* If need less alignment than we give anyway, just relay to malloc */
2764
2765 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2766
2767 /* Otherwise, ensure that it is at least a minimum chunk size */
2768
2769 if (alignment < MINSIZE) alignment = MINSIZE;
2770
2771 /* Call malloc with worst case padding to hit alignment. */
2772
2773 nb = request2size(bytes);
2774 m = (char*)(mALLOc(nb + alignment + MINSIZE));
2775
2776 if (m == 0) return 0; /* propagate failure */
2777
2778 p = mem2chunk(m);
2779
2780 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2781 {
2782 #if HAVE_MMAP
2783 if(chunk_is_mmapped(p))
2784 return chunk2mem(p); /* nothing more to do */
2785 #endif
2786 }
2787 else /* misaligned */
2788 {
2789 /*
2790 Find an aligned spot inside chunk.
2791 Since we need to give back leading space in a chunk of at
2792 least MINSIZE, if the first calculation places us at
2793 a spot with less than MINSIZE leader, we can move to the
2794 next aligned spot -- we've allocated enough total room so that
2795 this is always possible.
2796 */
2797
2798 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2799 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2800
2801 newp = (mchunkptr)brk;
2802 leadsize = brk - (char*)(p);
2803 newsize = chunksize(p) - leadsize;
2804
2805 #if HAVE_MMAP
2806 if(chunk_is_mmapped(p))
2807 {
2808 newp->prev_size = p->prev_size + leadsize;
2809 set_head(newp, newsize|IS_MMAPPED);
2810 return chunk2mem(newp);
2811 }
2812 #endif
2813
2814 /* give back leader, use the rest */
2815
2816 set_head(newp, newsize | PREV_INUSE);
2817 set_inuse_bit_at_offset(newp, newsize);
2818 set_head_size(p, leadsize);
2819 fREe(chunk2mem(p));
2820 p = newp;
2821
2822 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2823 }
2824
2825 /* Also give back spare room at the end */
2826
2827 remainder_size = chunksize(p) - nb;
2828
2829 if (remainder_size >= (long)MINSIZE)
2830 {
2831 remainder = chunk_at_offset(p, nb);
2832 set_head(remainder, remainder_size | PREV_INUSE);
2833 set_head_size(p, nb);
2834 fREe(chunk2mem(remainder));
2835 }
2836
2837 check_inuse_chunk(p);
2838 return chunk2mem(p);
2839
2840 }
2841
2842 \f
2843
2844
2845 /*
2846 valloc just invokes memalign with alignment argument equal
2847 to the page size of the system (or as near to this as can
2848 be figured out from all the includes/defines above.)
2849 */
2850
2851 #if __STD_C
2852 Void_t* vALLOc(size_t bytes)
2853 #else
2854 Void_t* vALLOc(bytes) size_t bytes;
2855 #endif
2856 {
2857 return mEMALIGn (malloc_getpagesize, bytes);
2858 }
2859
2860 /*
2861 pvalloc just invokes valloc for the nearest pagesize
2862 that will accommodate request
2863 */
2864
2865
2866 #if __STD_C
2867 Void_t* pvALLOc(size_t bytes)
2868 #else
2869 Void_t* pvALLOc(bytes) size_t bytes;
2870 #endif
2871 {
2872 size_t pagesize = malloc_getpagesize;
2873 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2874 }
2875
2876 /*
2877
2878 calloc calls malloc, then zeroes out the allocated chunk.
2879
2880 */
2881
2882 #if __STD_C
2883 Void_t* cALLOc(size_t n, size_t elem_size)
2884 #else
2885 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2886 #endif
2887 {
2888 mchunkptr p;
2889 INTERNAL_SIZE_T csz;
2890
2891 INTERNAL_SIZE_T sz = n * elem_size;
2892
2893
2894 /* check if expand_top called, in which case don't need to clear */
2895 #if MORECORE_CLEARS
2896 mchunkptr oldtop = top;
2897 INTERNAL_SIZE_T oldtopsize = chunksize(top);
2898 #endif
2899 Void_t* mem = mALLOc (sz);
2900
2901 if ((long)n < 0) return 0;
2902
2903 if (mem == 0)
2904 return 0;
2905 else
2906 {
2907 p = mem2chunk(mem);
2908
2909 /* Two optional cases in which clearing not necessary */
2910
2911
2912 #if HAVE_MMAP
2913 if (chunk_is_mmapped(p)) return mem;
2914 #endif
2915
2916 csz = chunksize(p);
2917
2918 #if MORECORE_CLEARS
2919 if (p == oldtop && csz > oldtopsize)
2920 {
2921 /* clear only the bytes from non-freshly-sbrked memory */
2922 csz = oldtopsize;
2923 }
2924 #endif
2925
2926 MALLOC_ZERO(mem, csz - SIZE_SZ);
2927 return mem;
2928 }
2929 }
2930
2931 /*
2932
2933 cfree just calls free. It is needed/defined on some systems
2934 that pair it with calloc, presumably for odd historical reasons.
2935
2936 */
2937
2938 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2939 #if __STD_C
2940 void cfree(Void_t *mem)
2941 #else
2942 void cfree(mem) Void_t *mem;
2943 #endif
2944 {
2945 fREe(mem);
2946 }
2947 #endif
2948
2949 \f
2950
2951 /*
2952
2953 Malloc_trim gives memory back to the system (via negative
2954 arguments to sbrk) if there is unused memory at the `high' end of
2955 the malloc pool. You can call this after freeing large blocks of
2956 memory to potentially reduce the system-level memory requirements
2957 of a program. However, it cannot guarantee to reduce memory. Under
2958 some allocation patterns, some large free blocks of memory will be
2959 locked between two used chunks, so they cannot be given back to
2960 the system.
2961
2962 The `pad' argument to malloc_trim represents the amount of free
2963 trailing space to leave untrimmed. If this argument is zero,
2964 only the minimum amount of memory to maintain internal data
2965 structures will be left (one page or less). Non-zero arguments
2966 can be supplied to maintain enough trailing space to service
2967 future expected allocations without having to re-obtain memory
2968 from the system.
2969
2970 Malloc_trim returns 1 if it actually released any memory, else 0.
2971
2972 */
2973
2974 #if __STD_C
2975 int malloc_trim(size_t pad)
2976 #else
2977 int malloc_trim(pad) size_t pad;
2978 #endif
2979 {
2980 long top_size; /* Amount of top-most memory */
2981 long extra; /* Amount to release */
2982 char* current_brk; /* address returned by pre-check sbrk call */
2983 char* new_brk; /* address returned by negative sbrk call */
2984
2985 unsigned long pagesz = malloc_getpagesize;
2986
2987 top_size = chunksize(top);
2988 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2989
2990 if (extra < (long)pagesz) /* Not enough memory to release */
2991 return 0;
2992
2993 else
2994 {
2995 /* Test to make sure no one else called sbrk */
2996 current_brk = (char*)(MORECORE (0));
2997 if (current_brk != (char*)(top) + top_size)
2998 return 0; /* Apparently we don't own memory; must fail */
2999
3000 else
3001 {
3002 new_brk = (char*)(MORECORE (-extra));
3003
3004 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3005 {
3006 /* Try to figure out what we have */
3007 current_brk = (char*)(MORECORE (0));
3008 top_size = current_brk - (char*)top;
3009 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3010 {
3011 sbrked_mem = current_brk - sbrk_base;
3012 set_head(top, top_size | PREV_INUSE);
3013 }
3014 check_chunk(top);
3015 return 0;
3016 }
3017
3018 else
3019 {
3020 /* Success. Adjust top accordingly. */
3021 set_head(top, (top_size - extra) | PREV_INUSE);
3022 sbrked_mem -= extra;
3023 check_chunk(top);
3024 return 1;
3025 }
3026 }
3027 }
3028 }
3029
3030 \f
3031
3032 /*
3033 malloc_usable_size:
3034
3035 This routine tells you how many bytes you can actually use in an
3036 allocated chunk, which may be more than you requested (although
3037 often not). You can use this many bytes without worrying about
3038 overwriting other allocated objects. Not a particularly great
3039 programming practice, but still sometimes useful.
3040
3041 */
3042
3043 #if __STD_C
3044 size_t malloc_usable_size(Void_t* mem)
3045 #else
3046 size_t malloc_usable_size(mem) Void_t* mem;
3047 #endif
3048 {
3049 mchunkptr p;
3050 if (mem == 0)
3051 return 0;
3052 else
3053 {
3054 p = mem2chunk(mem);
3055 if(!chunk_is_mmapped(p))
3056 {
3057 if (!inuse(p)) return 0;
3058 check_inuse_chunk(p);
3059 return chunksize(p) - SIZE_SZ;
3060 }
3061 return chunksize(p) - 2*SIZE_SZ;
3062 }
3063 }
3064
3065
3066 \f
3067
3068 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3069
3070 #if 0
3071 static void malloc_update_mallinfo()
3072 {
3073 int i;
3074 mbinptr b;
3075 mchunkptr p;
3076 #ifdef DEBUG
3077 mchunkptr q;
3078 #endif
3079
3080 INTERNAL_SIZE_T avail = chunksize(top);
3081 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3082
3083 for (i = 1; i < NAV; ++i)
3084 {
3085 b = bin_at(i);
3086 for (p = last(b); p != b; p = p->bk)
3087 {
3088 #ifdef DEBUG
3089 check_free_chunk(p);
3090 for (q = next_chunk(p);
3091 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3092 q = next_chunk(q))
3093 check_inuse_chunk(q);
3094 #endif
3095 avail += chunksize(p);
3096 navail++;
3097 }
3098 }
3099
3100 current_mallinfo.ordblks = navail;
3101 current_mallinfo.uordblks = sbrked_mem - avail;
3102 current_mallinfo.fordblks = avail;
3103 current_mallinfo.hblks = n_mmaps;
3104 current_mallinfo.hblkhd = mmapped_mem;
3105 current_mallinfo.keepcost = chunksize(top);
3106
3107 }
3108 #endif /* 0 */
3109
3110 \f
3111
3112 /*
3113
3114 malloc_stats:
3115
3116 Prints on the amount of space obtain from the system (both
3117 via sbrk and mmap), the maximum amount (which may be more than
3118 current if malloc_trim and/or munmap got called), the maximum
3119 number of simultaneous mmap regions used, and the current number
3120 of bytes allocated via malloc (or realloc, etc) but not yet
3121 freed. (Note that this is the number of bytes allocated, not the
3122 number requested. It will be larger than the number requested
3123 because of alignment and bookkeeping overhead.)
3124
3125 */
3126
3127 #if 0
3128 void malloc_stats()
3129 {
3130 malloc_update_mallinfo();
3131 printf("max system bytes = %10u\n",
3132 (unsigned int)(max_total_mem));
3133 printf("system bytes = %10u\n",
3134 (unsigned int)(sbrked_mem + mmapped_mem));
3135 printf("in use bytes = %10u\n",
3136 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3137 #if HAVE_MMAP
3138 printf("max mmap regions = %10u\n",
3139 (unsigned int)max_n_mmaps);
3140 #endif
3141 }
3142 #endif /* 0 */
3143
3144 /*
3145 mallinfo returns a copy of updated current mallinfo.
3146 */
3147
3148 #if 0
3149 struct mallinfo mALLINFo()
3150 {
3151 malloc_update_mallinfo();
3152 return current_mallinfo;
3153 }
3154 #endif /* 0 */
3155
3156
3157 \f
3158
3159 /*
3160 mallopt:
3161
3162 mallopt is the general SVID/XPG interface to tunable parameters.
3163 The format is to provide a (parameter-number, parameter-value) pair.
3164 mallopt then sets the corresponding parameter to the argument
3165 value if it can (i.e., so long as the value is meaningful),
3166 and returns 1 if successful else 0.
3167
3168 See descriptions of tunable parameters above.
3169
3170 */
3171
3172 #if __STD_C
3173 int mALLOPt(int param_number, int value)
3174 #else
3175 int mALLOPt(param_number, value) int param_number; int value;
3176 #endif
3177 {
3178 switch(param_number)
3179 {
3180 case M_TRIM_THRESHOLD:
3181 trim_threshold = value; return 1;
3182 case M_TOP_PAD:
3183 top_pad = value; return 1;
3184 case M_MMAP_THRESHOLD:
3185 mmap_threshold = value; return 1;
3186 case M_MMAP_MAX:
3187 #if HAVE_MMAP
3188 n_mmaps_max = value; return 1;
3189 #else
3190 if (value != 0) return 0; else n_mmaps_max = value; return 1;
3191 #endif
3192
3193 default:
3194 return 0;
3195 }
3196 }
3197
3198 /*
3199
3200 History:
3201
3202 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
3203 * return null for negative arguments
3204 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3205 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3206 (e.g. WIN32 platforms)
3207 * Cleanup up header file inclusion for WIN32 platforms
3208 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3209 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3210 memory allocation routines
3211 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3212 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3213 usage of 'assert' in non-WIN32 code
3214 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3215 avoid infinite loop
3216 * Always call 'fREe()' rather than 'free()'
3217
3218 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
3219 * Fixed ordering problem with boundary-stamping
3220
3221 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
3222 * Added pvalloc, as recommended by H.J. Liu
3223 * Added 64bit pointer support mainly from Wolfram Gloger
3224 * Added anonymously donated WIN32 sbrk emulation
3225 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3226 * malloc_extend_top: fix mask error that caused wastage after
3227 foreign sbrks
3228 * Add linux mremap support code from HJ Liu
3229
3230 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
3231 * Integrated most documentation with the code.
3232 * Add support for mmap, with help from
3233 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3234 * Use last_remainder in more cases.
3235 * Pack bins using idea from colin@nyx10.cs.du.edu
3236 * Use ordered bins instead of best-fit threshhold
3237 * Eliminate block-local decls to simplify tracing and debugging.
3238 * Support another case of realloc via move into top
3239 * Fix error occuring when initial sbrk_base not word-aligned.
3240 * Rely on page size for units instead of SBRK_UNIT to
3241 avoid surprises about sbrk alignment conventions.
3242 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3243 (raymond@es.ele.tue.nl) for the suggestion.
3244 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3245 * More precautions for cases where other routines call sbrk,
3246 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3247 * Added macros etc., allowing use in linux libc from
3248 H.J. Lu (hjl@gnu.ai.mit.edu)
3249 * Inverted this history list
3250
3251 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
3252 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3253 * Removed all preallocation code since under current scheme
3254 the work required to undo bad preallocations exceeds
3255 the work saved in good cases for most test programs.
3256 * No longer use return list or unconsolidated bins since
3257 no scheme using them consistently outperforms those that don't
3258 given above changes.
3259 * Use best fit for very large chunks to prevent some worst-cases.
3260 * Added some support for debugging
3261
3262 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
3263 * Removed footers when chunks are in use. Thanks to
3264 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3265
3266 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
3267 * Added malloc_trim, with help from Wolfram Gloger
3268 (wmglo@Dent.MED.Uni-Muenchen.DE).
3269
3270 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
3271
3272 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
3273 * realloc: try to expand in both directions
3274 * malloc: swap order of clean-bin strategy;
3275 * realloc: only conditionally expand backwards
3276 * Try not to scavenge used bins
3277 * Use bin counts as a guide to preallocation
3278 * Occasionally bin return list chunks in first scan
3279 * Add a few optimizations from colin@nyx10.cs.du.edu
3280
3281 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
3282 * faster bin computation & slightly different binning
3283 * merged all consolidations to one part of malloc proper
3284 (eliminating old malloc_find_space & malloc_clean_bin)
3285 * Scan 2 returns chunks (not just 1)
3286 * Propagate failure in realloc if malloc returns 0
3287 * Add stuff to allow compilation on non-ANSI compilers
3288 from kpv@research.att.com
3289
3290 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
3291 * removed potential for odd address access in prev_chunk
3292 * removed dependency on getpagesize.h
3293 * misc cosmetics and a bit more internal documentation
3294 * anticosmetics: mangled names in macros to evade debugger strangeness
3295 * tested on sparc, hp-700, dec-mips, rs6000
3296 with gcc & native cc (hp, dec only) allowing
3297 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3298
3299 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
3300 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3301 structure of old version, but most details differ.)
3302
3303 */