]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/image.c
bootstage: Replace show_boot_progress/error() with bootstage_...()
[people/ms/u-boot.git] / common / image.c
1 /*
2 * (C) Copyright 2008 Semihalf
3 *
4 * (C) Copyright 2000-2006
5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
6 *
7 * See file CREDITS for list of people who contributed to this
8 * project.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of
13 * the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23 * MA 02111-1307 USA
24 */
25
26 #ifndef USE_HOSTCC
27 #include <common.h>
28 #include <watchdog.h>
29
30 #ifdef CONFIG_SHOW_BOOT_PROGRESS
31 #include <status_led.h>
32 #endif
33
34 #ifdef CONFIG_HAS_DATAFLASH
35 #include <dataflash.h>
36 #endif
37
38 #ifdef CONFIG_LOGBUFFER
39 #include <logbuff.h>
40 #endif
41
42 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE)
43 #include <rtc.h>
44 #endif
45
46 #include <image.h>
47
48 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
49 #include <fdt.h>
50 #include <libfdt.h>
51 #include <fdt_support.h>
52 #endif
53
54 #if defined(CONFIG_FIT)
55 #include <u-boot/md5.h>
56 #include <sha1.h>
57
58 static int fit_check_ramdisk(const void *fit, int os_noffset,
59 uint8_t arch, int verify);
60 #endif
61
62 #ifdef CONFIG_CMD_BDI
63 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
64 #endif
65
66 DECLARE_GLOBAL_DATA_PTR;
67
68 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
69 int verify);
70 #else
71 #include "mkimage.h"
72 #include <u-boot/md5.h>
73 #include <time.h>
74 #include <image.h>
75 #endif /* !USE_HOSTCC*/
76
77 static const table_entry_t uimage_arch[] = {
78 { IH_ARCH_INVALID, NULL, "Invalid ARCH", },
79 { IH_ARCH_ALPHA, "alpha", "Alpha", },
80 { IH_ARCH_ARM, "arm", "ARM", },
81 { IH_ARCH_I386, "x86", "Intel x86", },
82 { IH_ARCH_IA64, "ia64", "IA64", },
83 { IH_ARCH_M68K, "m68k", "M68K", },
84 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", },
85 { IH_ARCH_MIPS, "mips", "MIPS", },
86 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", },
87 { IH_ARCH_NIOS2, "nios2", "NIOS II", },
88 { IH_ARCH_PPC, "powerpc", "PowerPC", },
89 { IH_ARCH_PPC, "ppc", "PowerPC", },
90 { IH_ARCH_S390, "s390", "IBM S390", },
91 { IH_ARCH_SH, "sh", "SuperH", },
92 { IH_ARCH_SPARC, "sparc", "SPARC", },
93 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", },
94 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", },
95 { IH_ARCH_AVR32, "avr32", "AVR32", },
96 { IH_ARCH_NDS32, "nds32", "NDS32", },
97 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",},
98 { -1, "", "", },
99 };
100
101 static const table_entry_t uimage_os[] = {
102 { IH_OS_INVALID, NULL, "Invalid OS", },
103 { IH_OS_LINUX, "linux", "Linux", },
104 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC)
105 { IH_OS_LYNXOS, "lynxos", "LynxOS", },
106 #endif
107 { IH_OS_NETBSD, "netbsd", "NetBSD", },
108 { IH_OS_OSE, "ose", "Enea OSE", },
109 { IH_OS_RTEMS, "rtems", "RTEMS", },
110 { IH_OS_U_BOOT, "u-boot", "U-Boot", },
111 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC)
112 { IH_OS_QNX, "qnx", "QNX", },
113 { IH_OS_VXWORKS, "vxworks", "VxWorks", },
114 #endif
115 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC)
116 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", },
117 #endif
118 #ifdef USE_HOSTCC
119 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", },
120 { IH_OS_DELL, "dell", "Dell", },
121 { IH_OS_ESIX, "esix", "Esix", },
122 { IH_OS_FREEBSD, "freebsd", "FreeBSD", },
123 { IH_OS_IRIX, "irix", "Irix", },
124 { IH_OS_NCR, "ncr", "NCR", },
125 { IH_OS_OPENBSD, "openbsd", "OpenBSD", },
126 { IH_OS_PSOS, "psos", "pSOS", },
127 { IH_OS_SCO, "sco", "SCO", },
128 { IH_OS_SOLARIS, "solaris", "Solaris", },
129 { IH_OS_SVR4, "svr4", "SVR4", },
130 #endif
131 { -1, "", "", },
132 };
133
134 static const table_entry_t uimage_type[] = {
135 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",},
136 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", },
137 { IH_TYPE_FIRMWARE, "firmware", "Firmware", },
138 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", },
139 { IH_TYPE_KERNEL, "kernel", "Kernel Image", },
140 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", },
141 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",},
142 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",},
143 { IH_TYPE_INVALID, NULL, "Invalid Image", },
144 { IH_TYPE_MULTI, "multi", "Multi-File Image", },
145 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",},
146 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", },
147 { IH_TYPE_SCRIPT, "script", "Script", },
148 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", },
149 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",},
150 { -1, "", "", },
151 };
152
153 static const table_entry_t uimage_comp[] = {
154 { IH_COMP_NONE, "none", "uncompressed", },
155 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", },
156 { IH_COMP_GZIP, "gzip", "gzip compressed", },
157 { IH_COMP_LZMA, "lzma", "lzma compressed", },
158 { IH_COMP_LZO, "lzo", "lzo compressed", },
159 { -1, "", "", },
160 };
161
162 uint32_t crc32(uint32_t, const unsigned char *, uint);
163 uint32_t crc32_wd(uint32_t, const unsigned char *, uint, uint);
164 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
165 static void genimg_print_time(time_t timestamp);
166 #endif
167
168 /*****************************************************************************/
169 /* Legacy format routines */
170 /*****************************************************************************/
171 int image_check_hcrc(const image_header_t *hdr)
172 {
173 ulong hcrc;
174 ulong len = image_get_header_size();
175 image_header_t header;
176
177 /* Copy header so we can blank CRC field for re-calculation */
178 memmove(&header, (char *)hdr, image_get_header_size());
179 image_set_hcrc(&header, 0);
180
181 hcrc = crc32(0, (unsigned char *)&header, len);
182
183 return (hcrc == image_get_hcrc(hdr));
184 }
185
186 int image_check_dcrc(const image_header_t *hdr)
187 {
188 ulong data = image_get_data(hdr);
189 ulong len = image_get_data_size(hdr);
190 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32);
191
192 return (dcrc == image_get_dcrc(hdr));
193 }
194
195 /**
196 * image_multi_count - get component (sub-image) count
197 * @hdr: pointer to the header of the multi component image
198 *
199 * image_multi_count() returns number of components in a multi
200 * component image.
201 *
202 * Note: no checking of the image type is done, caller must pass
203 * a valid multi component image.
204 *
205 * returns:
206 * number of components
207 */
208 ulong image_multi_count(const image_header_t *hdr)
209 {
210 ulong i, count = 0;
211 uint32_t *size;
212
213 /* get start of the image payload, which in case of multi
214 * component images that points to a table of component sizes */
215 size = (uint32_t *)image_get_data(hdr);
216
217 /* count non empty slots */
218 for (i = 0; size[i]; ++i)
219 count++;
220
221 return count;
222 }
223
224 /**
225 * image_multi_getimg - get component data address and size
226 * @hdr: pointer to the header of the multi component image
227 * @idx: index of the requested component
228 * @data: pointer to a ulong variable, will hold component data address
229 * @len: pointer to a ulong variable, will hold component size
230 *
231 * image_multi_getimg() returns size and data address for the requested
232 * component in a multi component image.
233 *
234 * Note: no checking of the image type is done, caller must pass
235 * a valid multi component image.
236 *
237 * returns:
238 * data address and size of the component, if idx is valid
239 * 0 in data and len, if idx is out of range
240 */
241 void image_multi_getimg(const image_header_t *hdr, ulong idx,
242 ulong *data, ulong *len)
243 {
244 int i;
245 uint32_t *size;
246 ulong offset, count, img_data;
247
248 /* get number of component */
249 count = image_multi_count(hdr);
250
251 /* get start of the image payload, which in case of multi
252 * component images that points to a table of component sizes */
253 size = (uint32_t *)image_get_data(hdr);
254
255 /* get address of the proper component data start, which means
256 * skipping sizes table (add 1 for last, null entry) */
257 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t);
258
259 if (idx < count) {
260 *len = uimage_to_cpu(size[idx]);
261 offset = 0;
262
263 /* go over all indices preceding requested component idx */
264 for (i = 0; i < idx; i++) {
265 /* add up i-th component size, rounding up to 4 bytes */
266 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ;
267 }
268
269 /* calculate idx-th component data address */
270 *data = img_data + offset;
271 } else {
272 *len = 0;
273 *data = 0;
274 }
275 }
276
277 static void image_print_type(const image_header_t *hdr)
278 {
279 const char *os, *arch, *type, *comp;
280
281 os = genimg_get_os_name(image_get_os(hdr));
282 arch = genimg_get_arch_name(image_get_arch(hdr));
283 type = genimg_get_type_name(image_get_type(hdr));
284 comp = genimg_get_comp_name(image_get_comp(hdr));
285
286 printf("%s %s %s (%s)\n", arch, os, type, comp);
287 }
288
289 /**
290 * image_print_contents - prints out the contents of the legacy format image
291 * @ptr: pointer to the legacy format image header
292 * @p: pointer to prefix string
293 *
294 * image_print_contents() formats a multi line legacy image contents description.
295 * The routine prints out all header fields followed by the size/offset data
296 * for MULTI/SCRIPT images.
297 *
298 * returns:
299 * no returned results
300 */
301 void image_print_contents(const void *ptr)
302 {
303 const image_header_t *hdr = (const image_header_t *)ptr;
304 const char *p;
305
306 #ifdef USE_HOSTCC
307 p = "";
308 #else
309 p = " ";
310 #endif
311
312 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr));
313 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
314 printf("%sCreated: ", p);
315 genimg_print_time((time_t)image_get_time(hdr));
316 #endif
317 printf("%sImage Type: ", p);
318 image_print_type(hdr);
319 printf("%sData Size: ", p);
320 genimg_print_size(image_get_data_size(hdr));
321 printf("%sLoad Address: %08x\n", p, image_get_load(hdr));
322 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr));
323
324 if (image_check_type(hdr, IH_TYPE_MULTI) ||
325 image_check_type(hdr, IH_TYPE_SCRIPT)) {
326 int i;
327 ulong data, len;
328 ulong count = image_multi_count(hdr);
329
330 printf("%sContents:\n", p);
331 for (i = 0; i < count; i++) {
332 image_multi_getimg(hdr, i, &data, &len);
333
334 printf("%s Image %d: ", p, i);
335 genimg_print_size(len);
336
337 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) {
338 /*
339 * the user may need to know offsets
340 * if planning to do something with
341 * multiple files
342 */
343 printf("%s Offset = 0x%08lx\n", p, data);
344 }
345 }
346 }
347 }
348
349
350 #ifndef USE_HOSTCC
351 /**
352 * image_get_ramdisk - get and verify ramdisk image
353 * @rd_addr: ramdisk image start address
354 * @arch: expected ramdisk architecture
355 * @verify: checksum verification flag
356 *
357 * image_get_ramdisk() returns a pointer to the verified ramdisk image
358 * header. Routine receives image start address and expected architecture
359 * flag. Verification done covers data and header integrity and os/type/arch
360 * fields checking.
361 *
362 * If dataflash support is enabled routine checks for dataflash addresses
363 * and handles required dataflash reads.
364 *
365 * returns:
366 * pointer to a ramdisk image header, if image was found and valid
367 * otherwise, return NULL
368 */
369 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
370 int verify)
371 {
372 const image_header_t *rd_hdr = (const image_header_t *)rd_addr;
373
374 if (!image_check_magic(rd_hdr)) {
375 puts("Bad Magic Number\n");
376 bootstage_error(BOOTSTAGE_ID_RD_MAGIC);
377 return NULL;
378 }
379
380 if (!image_check_hcrc(rd_hdr)) {
381 puts("Bad Header Checksum\n");
382 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
383 return NULL;
384 }
385
386 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC);
387 image_print_contents(rd_hdr);
388
389 if (verify) {
390 puts(" Verifying Checksum ... ");
391 if (!image_check_dcrc(rd_hdr)) {
392 puts("Bad Data CRC\n");
393 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM);
394 return NULL;
395 }
396 puts("OK\n");
397 }
398
399 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
400
401 if (!image_check_os(rd_hdr, IH_OS_LINUX) ||
402 !image_check_arch(rd_hdr, arch) ||
403 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) {
404 printf("No Linux %s Ramdisk Image\n",
405 genimg_get_arch_name(arch));
406 bootstage_error(BOOTSTAGE_ID_RAMDISK);
407 return NULL;
408 }
409
410 return rd_hdr;
411 }
412 #endif /* !USE_HOSTCC */
413
414 /*****************************************************************************/
415 /* Shared dual-format routines */
416 /*****************************************************************************/
417 #ifndef USE_HOSTCC
418 int getenv_yesno(char *var)
419 {
420 char *s = getenv(var);
421 return (s && (*s == 'n')) ? 0 : 1;
422 }
423
424 ulong getenv_bootm_low(void)
425 {
426 char *s = getenv("bootm_low");
427 if (s) {
428 ulong tmp = simple_strtoul(s, NULL, 16);
429 return tmp;
430 }
431
432 #if defined(CONFIG_SYS_SDRAM_BASE)
433 return CONFIG_SYS_SDRAM_BASE;
434 #elif defined(CONFIG_ARM)
435 return gd->bd->bi_dram[0].start;
436 #else
437 return 0;
438 #endif
439 }
440
441 phys_size_t getenv_bootm_size(void)
442 {
443 phys_size_t tmp;
444 char *s = getenv("bootm_size");
445 if (s) {
446 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
447 return tmp;
448 }
449 s = getenv("bootm_low");
450 if (s)
451 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
452 else
453 tmp = 0;
454
455
456 #if defined(CONFIG_ARM)
457 return gd->bd->bi_dram[0].size - tmp;
458 #else
459 return gd->bd->bi_memsize - tmp;
460 #endif
461 }
462
463 phys_size_t getenv_bootm_mapsize(void)
464 {
465 phys_size_t tmp;
466 char *s = getenv("bootm_mapsize");
467 if (s) {
468 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
469 return tmp;
470 }
471
472 #if defined(CONFIG_SYS_BOOTMAPSZ)
473 return CONFIG_SYS_BOOTMAPSZ;
474 #else
475 return getenv_bootm_size();
476 #endif
477 }
478
479 void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
480 {
481 if (to == from)
482 return;
483
484 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
485 while (len > 0) {
486 size_t tail = (len > chunksz) ? chunksz : len;
487 WATCHDOG_RESET();
488 memmove(to, from, tail);
489 to += tail;
490 from += tail;
491 len -= tail;
492 }
493 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */
494 memmove(to, from, len);
495 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */
496 }
497 #endif /* !USE_HOSTCC */
498
499 void genimg_print_size(uint32_t size)
500 {
501 #ifndef USE_HOSTCC
502 printf("%d Bytes = ", size);
503 print_size(size, "\n");
504 #else
505 printf("%d Bytes = %.2f kB = %.2f MB\n",
506 size, (double)size / 1.024e3,
507 (double)size / 1.048576e6);
508 #endif
509 }
510
511 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
512 static void genimg_print_time(time_t timestamp)
513 {
514 #ifndef USE_HOSTCC
515 struct rtc_time tm;
516
517 to_tm(timestamp, &tm);
518 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n",
519 tm.tm_year, tm.tm_mon, tm.tm_mday,
520 tm.tm_hour, tm.tm_min, tm.tm_sec);
521 #else
522 printf("%s", ctime(&timestamp));
523 #endif
524 }
525 #endif /* CONFIG_TIMESTAMP || CONFIG_CMD_DATE || USE_HOSTCC */
526
527 /**
528 * get_table_entry_name - translate entry id to long name
529 * @table: pointer to a translation table for entries of a specific type
530 * @msg: message to be returned when translation fails
531 * @id: entry id to be translated
532 *
533 * get_table_entry_name() will go over translation table trying to find
534 * entry that matches given id. If matching entry is found, its long
535 * name is returned to the caller.
536 *
537 * returns:
538 * long entry name if translation succeeds
539 * msg otherwise
540 */
541 char *get_table_entry_name(const table_entry_t *table, char *msg, int id)
542 {
543 for (; table->id >= 0; ++table) {
544 if (table->id == id)
545 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
546 return table->lname;
547 #else
548 return table->lname + gd->reloc_off;
549 #endif
550 }
551 return (msg);
552 }
553
554 const char *genimg_get_os_name(uint8_t os)
555 {
556 return (get_table_entry_name(uimage_os, "Unknown OS", os));
557 }
558
559 const char *genimg_get_arch_name(uint8_t arch)
560 {
561 return (get_table_entry_name(uimage_arch, "Unknown Architecture",
562 arch));
563 }
564
565 const char *genimg_get_type_name(uint8_t type)
566 {
567 return (get_table_entry_name(uimage_type, "Unknown Image", type));
568 }
569
570 const char *genimg_get_comp_name(uint8_t comp)
571 {
572 return (get_table_entry_name(uimage_comp, "Unknown Compression",
573 comp));
574 }
575
576 /**
577 * get_table_entry_id - translate short entry name to id
578 * @table: pointer to a translation table for entries of a specific type
579 * @table_name: to be used in case of error
580 * @name: entry short name to be translated
581 *
582 * get_table_entry_id() will go over translation table trying to find
583 * entry that matches given short name. If matching entry is found,
584 * its id returned to the caller.
585 *
586 * returns:
587 * entry id if translation succeeds
588 * -1 otherwise
589 */
590 int get_table_entry_id(const table_entry_t *table,
591 const char *table_name, const char *name)
592 {
593 const table_entry_t *t;
594 #ifdef USE_HOSTCC
595 int first = 1;
596
597 for (t = table; t->id >= 0; ++t) {
598 if (t->sname && strcasecmp(t->sname, name) == 0)
599 return(t->id);
600 }
601
602 fprintf(stderr, "\nInvalid %s Type - valid names are", table_name);
603 for (t = table; t->id >= 0; ++t) {
604 if (t->sname == NULL)
605 continue;
606 fprintf(stderr, "%c %s", (first) ? ':' : ',', t->sname);
607 first = 0;
608 }
609 fprintf(stderr, "\n");
610 #else
611 for (t = table; t->id >= 0; ++t) {
612 #ifdef CONFIG_NEEDS_MANUAL_RELOC
613 if (t->sname && strcmp(t->sname + gd->reloc_off, name) == 0)
614 #else
615 if (t->sname && strcmp(t->sname, name) == 0)
616 #endif
617 return (t->id);
618 }
619 debug("Invalid %s Type: %s\n", table_name, name);
620 #endif /* USE_HOSTCC */
621 return (-1);
622 }
623
624 int genimg_get_os_id(const char *name)
625 {
626 return (get_table_entry_id(uimage_os, "OS", name));
627 }
628
629 int genimg_get_arch_id(const char *name)
630 {
631 return (get_table_entry_id(uimage_arch, "CPU", name));
632 }
633
634 int genimg_get_type_id(const char *name)
635 {
636 return (get_table_entry_id(uimage_type, "Image", name));
637 }
638
639 int genimg_get_comp_id(const char *name)
640 {
641 return (get_table_entry_id(uimage_comp, "Compression", name));
642 }
643
644 #ifndef USE_HOSTCC
645 /**
646 * genimg_get_format - get image format type
647 * @img_addr: image start address
648 *
649 * genimg_get_format() checks whether provided address points to a valid
650 * legacy or FIT image.
651 *
652 * New uImage format and FDT blob are based on a libfdt. FDT blob
653 * may be passed directly or embedded in a FIT image. In both situations
654 * genimg_get_format() must be able to dectect libfdt header.
655 *
656 * returns:
657 * image format type or IMAGE_FORMAT_INVALID if no image is present
658 */
659 int genimg_get_format(void *img_addr)
660 {
661 ulong format = IMAGE_FORMAT_INVALID;
662 const image_header_t *hdr;
663 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
664 char *fit_hdr;
665 #endif
666
667 hdr = (const image_header_t *)img_addr;
668 if (image_check_magic(hdr))
669 format = IMAGE_FORMAT_LEGACY;
670 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
671 else {
672 fit_hdr = (char *)img_addr;
673 if (fdt_check_header(fit_hdr) == 0)
674 format = IMAGE_FORMAT_FIT;
675 }
676 #endif
677
678 return format;
679 }
680
681 /**
682 * genimg_get_image - get image from special storage (if necessary)
683 * @img_addr: image start address
684 *
685 * genimg_get_image() checks if provided image start adddress is located
686 * in a dataflash storage. If so, image is moved to a system RAM memory.
687 *
688 * returns:
689 * image start address after possible relocation from special storage
690 */
691 ulong genimg_get_image(ulong img_addr)
692 {
693 ulong ram_addr = img_addr;
694
695 #ifdef CONFIG_HAS_DATAFLASH
696 ulong h_size, d_size;
697
698 if (addr_dataflash(img_addr)) {
699 /* ger RAM address */
700 ram_addr = CONFIG_SYS_LOAD_ADDR;
701
702 /* get header size */
703 h_size = image_get_header_size();
704 #if defined(CONFIG_FIT)
705 if (sizeof(struct fdt_header) > h_size)
706 h_size = sizeof(struct fdt_header);
707 #endif
708
709 /* read in header */
710 debug(" Reading image header from dataflash address "
711 "%08lx to RAM address %08lx\n", img_addr, ram_addr);
712
713 read_dataflash(img_addr, h_size, (char *)ram_addr);
714
715 /* get data size */
716 switch (genimg_get_format((void *)ram_addr)) {
717 case IMAGE_FORMAT_LEGACY:
718 d_size = image_get_data_size(
719 (const image_header_t *)ram_addr);
720 debug(" Legacy format image found at 0x%08lx, "
721 "size 0x%08lx\n",
722 ram_addr, d_size);
723 break;
724 #if defined(CONFIG_FIT)
725 case IMAGE_FORMAT_FIT:
726 d_size = fit_get_size((const void *)ram_addr) - h_size;
727 debug(" FIT/FDT format image found at 0x%08lx, "
728 "size 0x%08lx\n",
729 ram_addr, d_size);
730 break;
731 #endif
732 default:
733 printf(" No valid image found at 0x%08lx\n",
734 img_addr);
735 return ram_addr;
736 }
737
738 /* read in image data */
739 debug(" Reading image remaining data from dataflash address "
740 "%08lx to RAM address %08lx\n", img_addr + h_size,
741 ram_addr + h_size);
742
743 read_dataflash(img_addr + h_size, d_size,
744 (char *)(ram_addr + h_size));
745
746 }
747 #endif /* CONFIG_HAS_DATAFLASH */
748
749 return ram_addr;
750 }
751
752 /**
753 * fit_has_config - check if there is a valid FIT configuration
754 * @images: pointer to the bootm command headers structure
755 *
756 * fit_has_config() checks if there is a FIT configuration in use
757 * (if FTI support is present).
758 *
759 * returns:
760 * 0, no FIT support or no configuration found
761 * 1, configuration found
762 */
763 int genimg_has_config(bootm_headers_t *images)
764 {
765 #if defined(CONFIG_FIT)
766 if (images->fit_uname_cfg)
767 return 1;
768 #endif
769 return 0;
770 }
771
772 /**
773 * boot_get_ramdisk - main ramdisk handling routine
774 * @argc: command argument count
775 * @argv: command argument list
776 * @images: pointer to the bootm images structure
777 * @arch: expected ramdisk architecture
778 * @rd_start: pointer to a ulong variable, will hold ramdisk start address
779 * @rd_end: pointer to a ulong variable, will hold ramdisk end
780 *
781 * boot_get_ramdisk() is responsible for finding a valid ramdisk image.
782 * Curently supported are the following ramdisk sources:
783 * - multicomponent kernel/ramdisk image,
784 * - commandline provided address of decicated ramdisk image.
785 *
786 * returns:
787 * 0, if ramdisk image was found and valid, or skiped
788 * rd_start and rd_end are set to ramdisk start/end addresses if
789 * ramdisk image is found and valid
790 *
791 * 1, if ramdisk image is found but corrupted, or invalid
792 * rd_start and rd_end are set to 0 if no ramdisk exists
793 */
794 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images,
795 uint8_t arch, ulong *rd_start, ulong *rd_end)
796 {
797 ulong rd_addr, rd_load;
798 ulong rd_data, rd_len;
799 const image_header_t *rd_hdr;
800 #if defined(CONFIG_FIT)
801 void *fit_hdr;
802 const char *fit_uname_config = NULL;
803 const char *fit_uname_ramdisk = NULL;
804 ulong default_addr;
805 int rd_noffset;
806 int cfg_noffset;
807 const void *data;
808 size_t size;
809 #endif
810
811 *rd_start = 0;
812 *rd_end = 0;
813
814 /*
815 * Look for a '-' which indicates to ignore the
816 * ramdisk argument
817 */
818 if ((argc >= 3) && (strcmp(argv[2], "-") == 0)) {
819 debug("## Skipping init Ramdisk\n");
820 rd_len = rd_data = 0;
821 } else if (argc >= 3 || genimg_has_config(images)) {
822 #if defined(CONFIG_FIT)
823 if (argc >= 3) {
824 /*
825 * If the init ramdisk comes from the FIT image and
826 * the FIT image address is omitted in the command
827 * line argument, try to use os FIT image address or
828 * default load address.
829 */
830 if (images->fit_uname_os)
831 default_addr = (ulong)images->fit_hdr_os;
832 else
833 default_addr = load_addr;
834
835 if (fit_parse_conf(argv[2], default_addr,
836 &rd_addr, &fit_uname_config)) {
837 debug("* ramdisk: config '%s' from image at "
838 "0x%08lx\n",
839 fit_uname_config, rd_addr);
840 } else if (fit_parse_subimage(argv[2], default_addr,
841 &rd_addr, &fit_uname_ramdisk)) {
842 debug("* ramdisk: subimage '%s' from image at "
843 "0x%08lx\n",
844 fit_uname_ramdisk, rd_addr);
845 } else
846 #endif
847 {
848 rd_addr = simple_strtoul(argv[2], NULL, 16);
849 debug("* ramdisk: cmdline image address = "
850 "0x%08lx\n",
851 rd_addr);
852 }
853 #if defined(CONFIG_FIT)
854 } else {
855 /* use FIT configuration provided in first bootm
856 * command argument
857 */
858 rd_addr = (ulong)images->fit_hdr_os;
859 fit_uname_config = images->fit_uname_cfg;
860 debug("* ramdisk: using config '%s' from image "
861 "at 0x%08lx\n",
862 fit_uname_config, rd_addr);
863
864 /*
865 * Check whether configuration has ramdisk defined,
866 * if not, don't try to use it, quit silently.
867 */
868 fit_hdr = (void *)rd_addr;
869 cfg_noffset = fit_conf_get_node(fit_hdr,
870 fit_uname_config);
871 if (cfg_noffset < 0) {
872 debug("* ramdisk: no such config\n");
873 return 1;
874 }
875
876 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr,
877 cfg_noffset);
878 if (rd_noffset < 0) {
879 debug("* ramdisk: no ramdisk in config\n");
880 return 0;
881 }
882 }
883 #endif
884
885 /* copy from dataflash if needed */
886 rd_addr = genimg_get_image(rd_addr);
887
888 /*
889 * Check if there is an initrd image at the
890 * address provided in the second bootm argument
891 * check image type, for FIT images get FIT node.
892 */
893 switch (genimg_get_format((void *)rd_addr)) {
894 case IMAGE_FORMAT_LEGACY:
895 printf("## Loading init Ramdisk from Legacy "
896 "Image at %08lx ...\n", rd_addr);
897
898 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK);
899 rd_hdr = image_get_ramdisk(rd_addr, arch,
900 images->verify);
901
902 if (rd_hdr == NULL)
903 return 1;
904
905 rd_data = image_get_data(rd_hdr);
906 rd_len = image_get_data_size(rd_hdr);
907 rd_load = image_get_load(rd_hdr);
908 break;
909 #if defined(CONFIG_FIT)
910 case IMAGE_FORMAT_FIT:
911 fit_hdr = (void *)rd_addr;
912 printf("## Loading init Ramdisk from FIT "
913 "Image at %08lx ...\n", rd_addr);
914
915 bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT);
916 if (!fit_check_format(fit_hdr)) {
917 puts("Bad FIT ramdisk image format!\n");
918 bootstage_error(
919 BOOTSTAGE_ID_FIT_RD_FORMAT);
920 return 1;
921 }
922 bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT_OK);
923
924 if (!fit_uname_ramdisk) {
925 /*
926 * no ramdisk image node unit name, try to get config
927 * node first. If config unit node name is NULL
928 * fit_conf_get_node() will try to find default config node
929 */
930 bootstage_mark(
931 BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME);
932 cfg_noffset = fit_conf_get_node(fit_hdr,
933 fit_uname_config);
934 if (cfg_noffset < 0) {
935 puts("Could not find configuration "
936 "node\n");
937 bootstage_error(
938 BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME);
939 return 1;
940 }
941 fit_uname_config = fdt_get_name(fit_hdr,
942 cfg_noffset, NULL);
943 printf(" Using '%s' configuration\n",
944 fit_uname_config);
945
946 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr,
947 cfg_noffset);
948 fit_uname_ramdisk = fit_get_name(fit_hdr,
949 rd_noffset, NULL);
950 } else {
951 /* get ramdisk component image node offset */
952 bootstage_mark(
953 BOOTSTAGE_ID_FIT_RD_UNIT_NAME);
954 rd_noffset = fit_image_get_node(fit_hdr,
955 fit_uname_ramdisk);
956 }
957 if (rd_noffset < 0) {
958 puts("Could not find subimage node\n");
959 bootstage_error(BOOTSTAGE_ID_FIT_RD_SUBNODE);
960 return 1;
961 }
962
963 printf(" Trying '%s' ramdisk subimage\n",
964 fit_uname_ramdisk);
965
966 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK);
967 if (!fit_check_ramdisk(fit_hdr, rd_noffset, arch,
968 images->verify))
969 return 1;
970
971 /* get ramdisk image data address and length */
972 if (fit_image_get_data(fit_hdr, rd_noffset, &data,
973 &size)) {
974 puts("Could not find ramdisk subimage data!\n");
975 bootstage_error(BOOTSTAGE_ID_FIT_RD_GET_DATA);
976 return 1;
977 }
978 bootstage_mark(BOOTSTAGE_ID_FIT_RD_GET_DATA_OK);
979
980 rd_data = (ulong)data;
981 rd_len = size;
982
983 if (fit_image_get_load(fit_hdr, rd_noffset, &rd_load)) {
984 puts("Can't get ramdisk subimage load "
985 "address!\n");
986 bootstage_error(BOOTSTAGE_ID_FIT_RD_LOAD);
987 return 1;
988 }
989 bootstage_mark(BOOTSTAGE_ID_FIT_RD_LOAD);
990
991 images->fit_hdr_rd = fit_hdr;
992 images->fit_uname_rd = fit_uname_ramdisk;
993 images->fit_noffset_rd = rd_noffset;
994 break;
995 #endif
996 default:
997 puts("Wrong Ramdisk Image Format\n");
998 rd_data = rd_len = rd_load = 0;
999 return 1;
1000 }
1001 } else if (images->legacy_hdr_valid &&
1002 image_check_type(&images->legacy_hdr_os_copy,
1003 IH_TYPE_MULTI)) {
1004
1005 /*
1006 * Now check if we have a legacy mult-component image,
1007 * get second entry data start address and len.
1008 */
1009 bootstage_mark(BOOTSTAGE_ID_RAMDISK);
1010 printf("## Loading init Ramdisk from multi component "
1011 "Legacy Image at %08lx ...\n",
1012 (ulong)images->legacy_hdr_os);
1013
1014 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len);
1015 } else {
1016 /*
1017 * no initrd image
1018 */
1019 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK);
1020 rd_len = rd_data = 0;
1021 }
1022
1023 if (!rd_data) {
1024 debug("## No init Ramdisk\n");
1025 } else {
1026 *rd_start = rd_data;
1027 *rd_end = rd_data + rd_len;
1028 }
1029 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n",
1030 *rd_start, *rd_end);
1031
1032 return 0;
1033 }
1034
1035 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
1036 /**
1037 * boot_ramdisk_high - relocate init ramdisk
1038 * @lmb: pointer to lmb handle, will be used for memory mgmt
1039 * @rd_data: ramdisk data start address
1040 * @rd_len: ramdisk data length
1041 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk
1042 * start address (after possible relocation)
1043 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk
1044 * end address (after possible relocation)
1045 *
1046 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environement
1047 * variable and if requested ramdisk data is moved to a specified location.
1048 *
1049 * Initrd_start and initrd_end are set to final (after relocation) ramdisk
1050 * start/end addresses if ramdisk image start and len were provided,
1051 * otherwise set initrd_start and initrd_end set to zeros.
1052 *
1053 * returns:
1054 * 0 - success
1055 * -1 - failure
1056 */
1057 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len,
1058 ulong *initrd_start, ulong *initrd_end)
1059 {
1060 char *s;
1061 ulong initrd_high;
1062 int initrd_copy_to_ram = 1;
1063
1064 if ((s = getenv("initrd_high")) != NULL) {
1065 /* a value of "no" or a similar string will act like 0,
1066 * turning the "load high" feature off. This is intentional.
1067 */
1068 initrd_high = simple_strtoul(s, NULL, 16);
1069 if (initrd_high == ~0)
1070 initrd_copy_to_ram = 0;
1071 } else {
1072 /* not set, no restrictions to load high */
1073 initrd_high = ~0;
1074 }
1075
1076
1077 #ifdef CONFIG_LOGBUFFER
1078 /* Prevent initrd from overwriting logbuffer */
1079 lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE);
1080 #endif
1081
1082 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n",
1083 initrd_high, initrd_copy_to_ram);
1084
1085 if (rd_data) {
1086 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */
1087 debug(" in-place initrd\n");
1088 *initrd_start = rd_data;
1089 *initrd_end = rd_data + rd_len;
1090 lmb_reserve(lmb, rd_data, rd_len);
1091 } else {
1092 if (initrd_high)
1093 *initrd_start = (ulong)lmb_alloc_base(lmb,
1094 rd_len, 0x1000, initrd_high);
1095 else
1096 *initrd_start = (ulong)lmb_alloc(lmb, rd_len,
1097 0x1000);
1098
1099 if (*initrd_start == 0) {
1100 puts("ramdisk - allocation error\n");
1101 goto error;
1102 }
1103 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK);
1104
1105 *initrd_end = *initrd_start + rd_len;
1106 printf(" Loading Ramdisk to %08lx, end %08lx ... ",
1107 *initrd_start, *initrd_end);
1108
1109 memmove_wd((void *)*initrd_start,
1110 (void *)rd_data, rd_len, CHUNKSZ);
1111
1112 #ifdef CONFIG_MP
1113 /*
1114 * Ensure the image is flushed to memory to handle
1115 * AMP boot scenarios in which we might not be
1116 * HW cache coherent
1117 */
1118 flush_cache((unsigned long)*initrd_start, rd_len);
1119 #endif
1120 puts("OK\n");
1121 }
1122 } else {
1123 *initrd_start = 0;
1124 *initrd_end = 0;
1125 }
1126 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n",
1127 *initrd_start, *initrd_end);
1128
1129 return 0;
1130
1131 error:
1132 return -1;
1133 }
1134 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */
1135
1136 #ifdef CONFIG_OF_LIBFDT
1137 static void fdt_error(const char *msg)
1138 {
1139 puts("ERROR: ");
1140 puts(msg);
1141 puts(" - must RESET the board to recover.\n");
1142 }
1143
1144 static const image_header_t *image_get_fdt(ulong fdt_addr)
1145 {
1146 const image_header_t *fdt_hdr = (const image_header_t *)fdt_addr;
1147
1148 image_print_contents(fdt_hdr);
1149
1150 puts(" Verifying Checksum ... ");
1151 if (!image_check_hcrc(fdt_hdr)) {
1152 fdt_error("fdt header checksum invalid");
1153 return NULL;
1154 }
1155
1156 if (!image_check_dcrc(fdt_hdr)) {
1157 fdt_error("fdt checksum invalid");
1158 return NULL;
1159 }
1160 puts("OK\n");
1161
1162 if (!image_check_type(fdt_hdr, IH_TYPE_FLATDT)) {
1163 fdt_error("uImage is not a fdt");
1164 return NULL;
1165 }
1166 if (image_get_comp(fdt_hdr) != IH_COMP_NONE) {
1167 fdt_error("uImage is compressed");
1168 return NULL;
1169 }
1170 if (fdt_check_header((char *)image_get_data(fdt_hdr)) != 0) {
1171 fdt_error("uImage data is not a fdt");
1172 return NULL;
1173 }
1174 return fdt_hdr;
1175 }
1176
1177 /**
1178 * fit_check_fdt - verify FIT format FDT subimage
1179 * @fit_hdr: pointer to the FIT header
1180 * fdt_noffset: FDT subimage node offset within FIT image
1181 * @verify: data CRC verification flag
1182 *
1183 * fit_check_fdt() verifies integrity of the FDT subimage and from
1184 * specified FIT image.
1185 *
1186 * returns:
1187 * 1, on success
1188 * 0, on failure
1189 */
1190 #if defined(CONFIG_FIT)
1191 static int fit_check_fdt(const void *fit, int fdt_noffset, int verify)
1192 {
1193 fit_image_print(fit, fdt_noffset, " ");
1194
1195 if (verify) {
1196 puts(" Verifying Hash Integrity ... ");
1197 if (!fit_image_check_hashes(fit, fdt_noffset)) {
1198 fdt_error("Bad Data Hash");
1199 return 0;
1200 }
1201 puts("OK\n");
1202 }
1203
1204 if (!fit_image_check_type(fit, fdt_noffset, IH_TYPE_FLATDT)) {
1205 fdt_error("Not a FDT image");
1206 return 0;
1207 }
1208
1209 if (!fit_image_check_comp(fit, fdt_noffset, IH_COMP_NONE)) {
1210 fdt_error("FDT image is compressed");
1211 return 0;
1212 }
1213
1214 return 1;
1215 }
1216 #endif /* CONFIG_FIT */
1217
1218 #ifndef CONFIG_SYS_FDT_PAD
1219 #define CONFIG_SYS_FDT_PAD 0x3000
1220 #endif
1221
1222 #if defined(CONFIG_OF_LIBFDT)
1223 /**
1224 * boot_fdt_add_mem_rsv_regions - Mark the memreserve sections as unusable
1225 * @lmb: pointer to lmb handle, will be used for memory mgmt
1226 * @fdt_blob: pointer to fdt blob base address
1227 *
1228 * Adds the memreserve regions in the dtb to the lmb block. Adding the
1229 * memreserve regions prevents u-boot from using them to store the initrd
1230 * or the fdt blob.
1231 */
1232 void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob)
1233 {
1234 uint64_t addr, size;
1235 int i, total;
1236
1237 if (fdt_check_header(fdt_blob) != 0)
1238 return;
1239
1240 total = fdt_num_mem_rsv(fdt_blob);
1241 for (i = 0; i < total; i++) {
1242 if (fdt_get_mem_rsv(fdt_blob, i, &addr, &size) != 0)
1243 continue;
1244 printf(" reserving fdt memory region: addr=%llx size=%llx\n",
1245 (unsigned long long)addr, (unsigned long long)size);
1246 lmb_reserve(lmb, addr, size);
1247 }
1248 }
1249
1250 /**
1251 * boot_relocate_fdt - relocate flat device tree
1252 * @lmb: pointer to lmb handle, will be used for memory mgmt
1253 * @of_flat_tree: pointer to a char* variable, will hold fdt start address
1254 * @of_size: pointer to a ulong variable, will hold fdt length
1255 *
1256 * boot_relocate_fdt() allocates a region of memory within the bootmap and
1257 * relocates the of_flat_tree into that region, even if the fdt is already in
1258 * the bootmap. It also expands the size of the fdt by CONFIG_SYS_FDT_PAD
1259 * bytes.
1260 *
1261 * of_flat_tree and of_size are set to final (after relocation) values
1262 *
1263 * returns:
1264 * 0 - success
1265 * 1 - failure
1266 */
1267 int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size)
1268 {
1269 void *fdt_blob = *of_flat_tree;
1270 void *of_start = 0;
1271 char *fdt_high;
1272 ulong of_len = 0;
1273 int err;
1274 int disable_relocation = 0;
1275
1276 /* nothing to do */
1277 if (*of_size == 0)
1278 return 0;
1279
1280 if (fdt_check_header(fdt_blob) != 0) {
1281 fdt_error("image is not a fdt");
1282 goto error;
1283 }
1284
1285 /* position on a 4K boundary before the alloc_current */
1286 /* Pad the FDT by a specified amount */
1287 of_len = *of_size + CONFIG_SYS_FDT_PAD;
1288
1289 /* If fdt_high is set use it to select the relocation address */
1290 fdt_high = getenv("fdt_high");
1291 if (fdt_high) {
1292 void *desired_addr = (void *)simple_strtoul(fdt_high, NULL, 16);
1293
1294 if (((ulong) desired_addr) == ~0UL) {
1295 /* All ones means use fdt in place */
1296 of_start = fdt_blob;
1297 lmb_reserve(lmb, (ulong)of_start, of_len);
1298 disable_relocation = 1;
1299 } else if (desired_addr) {
1300 of_start =
1301 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000,
1302 (ulong)desired_addr);
1303 if (of_start == 0) {
1304 puts("Failed using fdt_high value for Device Tree");
1305 goto error;
1306 }
1307 } else {
1308 of_start =
1309 (void *)(ulong) lmb_alloc(lmb, of_len, 0x1000);
1310 }
1311 } else {
1312 of_start =
1313 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000,
1314 getenv_bootm_mapsize()
1315 + getenv_bootm_low());
1316 }
1317
1318 if (of_start == 0) {
1319 puts("device tree - allocation error\n");
1320 goto error;
1321 }
1322
1323 if (disable_relocation) {
1324 /* We assume there is space after the existing fdt to use for padding */
1325 fdt_set_totalsize(of_start, of_len);
1326 printf(" Using Device Tree in place at %p, end %p\n",
1327 of_start, of_start + of_len - 1);
1328 } else {
1329 debug("## device tree at %p ... %p (len=%ld [0x%lX])\n",
1330 fdt_blob, fdt_blob + *of_size - 1, of_len, of_len);
1331
1332 printf(" Loading Device Tree to %p, end %p ... ",
1333 of_start, of_start + of_len - 1);
1334
1335 err = fdt_open_into(fdt_blob, of_start, of_len);
1336 if (err != 0) {
1337 fdt_error("fdt move failed");
1338 goto error;
1339 }
1340 puts("OK\n");
1341 }
1342
1343 *of_flat_tree = of_start;
1344 *of_size = of_len;
1345
1346 set_working_fdt_addr(*of_flat_tree);
1347 return 0;
1348
1349 error:
1350 return 1;
1351 }
1352 #endif /* CONFIG_OF_LIBFDT */
1353
1354 /**
1355 * boot_get_fdt - main fdt handling routine
1356 * @argc: command argument count
1357 * @argv: command argument list
1358 * @images: pointer to the bootm images structure
1359 * @of_flat_tree: pointer to a char* variable, will hold fdt start address
1360 * @of_size: pointer to a ulong variable, will hold fdt length
1361 *
1362 * boot_get_fdt() is responsible for finding a valid flat device tree image.
1363 * Curently supported are the following ramdisk sources:
1364 * - multicomponent kernel/ramdisk image,
1365 * - commandline provided address of decicated ramdisk image.
1366 *
1367 * returns:
1368 * 0, if fdt image was found and valid, or skipped
1369 * of_flat_tree and of_size are set to fdt start address and length if
1370 * fdt image is found and valid
1371 *
1372 * 1, if fdt image is found but corrupted
1373 * of_flat_tree and of_size are set to 0 if no fdt exists
1374 */
1375 int boot_get_fdt(int flag, int argc, char * const argv[],
1376 bootm_headers_t *images, char **of_flat_tree, ulong *of_size)
1377 {
1378 const image_header_t *fdt_hdr;
1379 ulong fdt_addr;
1380 char *fdt_blob = NULL;
1381 ulong image_start, image_data, image_end;
1382 ulong load_start, load_end;
1383 #if defined(CONFIG_FIT)
1384 void *fit_hdr;
1385 const char *fit_uname_config = NULL;
1386 const char *fit_uname_fdt = NULL;
1387 ulong default_addr;
1388 int cfg_noffset;
1389 int fdt_noffset;
1390 const void *data;
1391 size_t size;
1392 #endif
1393
1394 *of_flat_tree = NULL;
1395 *of_size = 0;
1396
1397 if (argc > 3 || genimg_has_config(images)) {
1398 #if defined(CONFIG_FIT)
1399 if (argc > 3) {
1400 /*
1401 * If the FDT blob comes from the FIT image and the
1402 * FIT image address is omitted in the command line
1403 * argument, try to use ramdisk or os FIT image
1404 * address or default load address.
1405 */
1406 if (images->fit_uname_rd)
1407 default_addr = (ulong)images->fit_hdr_rd;
1408 else if (images->fit_uname_os)
1409 default_addr = (ulong)images->fit_hdr_os;
1410 else
1411 default_addr = load_addr;
1412
1413 if (fit_parse_conf(argv[3], default_addr,
1414 &fdt_addr, &fit_uname_config)) {
1415 debug("* fdt: config '%s' from image at "
1416 "0x%08lx\n",
1417 fit_uname_config, fdt_addr);
1418 } else if (fit_parse_subimage(argv[3], default_addr,
1419 &fdt_addr, &fit_uname_fdt)) {
1420 debug("* fdt: subimage '%s' from image at "
1421 "0x%08lx\n",
1422 fit_uname_fdt, fdt_addr);
1423 } else
1424 #endif
1425 {
1426 fdt_addr = simple_strtoul(argv[3], NULL, 16);
1427 debug("* fdt: cmdline image address = "
1428 "0x%08lx\n",
1429 fdt_addr);
1430 }
1431 #if defined(CONFIG_FIT)
1432 } else {
1433 /* use FIT configuration provided in first bootm
1434 * command argument
1435 */
1436 fdt_addr = (ulong)images->fit_hdr_os;
1437 fit_uname_config = images->fit_uname_cfg;
1438 debug("* fdt: using config '%s' from image "
1439 "at 0x%08lx\n",
1440 fit_uname_config, fdt_addr);
1441
1442 /*
1443 * Check whether configuration has FDT blob defined,
1444 * if not quit silently.
1445 */
1446 fit_hdr = (void *)fdt_addr;
1447 cfg_noffset = fit_conf_get_node(fit_hdr,
1448 fit_uname_config);
1449 if (cfg_noffset < 0) {
1450 debug("* fdt: no such config\n");
1451 return 0;
1452 }
1453
1454 fdt_noffset = fit_conf_get_fdt_node(fit_hdr,
1455 cfg_noffset);
1456 if (fdt_noffset < 0) {
1457 debug("* fdt: no fdt in config\n");
1458 return 0;
1459 }
1460 }
1461 #endif
1462
1463 debug("## Checking for 'FDT'/'FDT Image' at %08lx\n",
1464 fdt_addr);
1465
1466 /* copy from dataflash if needed */
1467 fdt_addr = genimg_get_image(fdt_addr);
1468
1469 /*
1470 * Check if there is an FDT image at the
1471 * address provided in the second bootm argument
1472 * check image type, for FIT images get a FIT node.
1473 */
1474 switch (genimg_get_format((void *)fdt_addr)) {
1475 case IMAGE_FORMAT_LEGACY:
1476 /* verify fdt_addr points to a valid image header */
1477 printf("## Flattened Device Tree from Legacy Image "
1478 "at %08lx\n",
1479 fdt_addr);
1480 fdt_hdr = image_get_fdt(fdt_addr);
1481 if (!fdt_hdr)
1482 goto error;
1483
1484 /*
1485 * move image data to the load address,
1486 * make sure we don't overwrite initial image
1487 */
1488 image_start = (ulong)fdt_hdr;
1489 image_data = (ulong)image_get_data(fdt_hdr);
1490 image_end = image_get_image_end(fdt_hdr);
1491
1492 load_start = image_get_load(fdt_hdr);
1493 load_end = load_start + image_get_data_size(fdt_hdr);
1494
1495 if (load_start == image_start ||
1496 load_start == image_data) {
1497 fdt_blob = (char *)image_data;
1498 break;
1499 }
1500
1501 if ((load_start < image_end) && (load_end > image_start)) {
1502 fdt_error("fdt overwritten");
1503 goto error;
1504 }
1505
1506 debug(" Loading FDT from 0x%08lx to 0x%08lx\n",
1507 image_data, load_start);
1508
1509 memmove((void *)load_start,
1510 (void *)image_data,
1511 image_get_data_size(fdt_hdr));
1512
1513 fdt_blob = (char *)load_start;
1514 break;
1515 case IMAGE_FORMAT_FIT:
1516 /*
1517 * This case will catch both: new uImage format
1518 * (libfdt based) and raw FDT blob (also libfdt
1519 * based).
1520 */
1521 #if defined(CONFIG_FIT)
1522 /* check FDT blob vs FIT blob */
1523 if (fit_check_format((const void *)fdt_addr)) {
1524 /*
1525 * FIT image
1526 */
1527 fit_hdr = (void *)fdt_addr;
1528 printf("## Flattened Device Tree from FIT "
1529 "Image at %08lx\n",
1530 fdt_addr);
1531
1532 if (!fit_uname_fdt) {
1533 /*
1534 * no FDT blob image node unit name,
1535 * try to get config node first. If
1536 * config unit node name is NULL
1537 * fit_conf_get_node() will try to
1538 * find default config node
1539 */
1540 cfg_noffset = fit_conf_get_node(fit_hdr,
1541 fit_uname_config);
1542
1543 if (cfg_noffset < 0) {
1544 fdt_error("Could not find "
1545 "configuration "
1546 "node\n");
1547 goto error;
1548 }
1549
1550 fit_uname_config = fdt_get_name(fit_hdr,
1551 cfg_noffset, NULL);
1552 printf(" Using '%s' configuration\n",
1553 fit_uname_config);
1554
1555 fdt_noffset = fit_conf_get_fdt_node(
1556 fit_hdr,
1557 cfg_noffset);
1558 fit_uname_fdt = fit_get_name(fit_hdr,
1559 fdt_noffset, NULL);
1560 } else {
1561 /* get FDT component image node offset */
1562 fdt_noffset = fit_image_get_node(
1563 fit_hdr,
1564 fit_uname_fdt);
1565 }
1566 if (fdt_noffset < 0) {
1567 fdt_error("Could not find subimage "
1568 "node\n");
1569 goto error;
1570 }
1571
1572 printf(" Trying '%s' FDT blob subimage\n",
1573 fit_uname_fdt);
1574
1575 if (!fit_check_fdt(fit_hdr, fdt_noffset,
1576 images->verify))
1577 goto error;
1578
1579 /* get ramdisk image data address and length */
1580 if (fit_image_get_data(fit_hdr, fdt_noffset,
1581 &data, &size)) {
1582 fdt_error("Could not find FDT "
1583 "subimage data");
1584 goto error;
1585 }
1586
1587 /* verift that image data is a proper FDT blob */
1588 if (fdt_check_header((char *)data) != 0) {
1589 fdt_error("Subimage data is not a FTD");
1590 goto error;
1591 }
1592
1593 /*
1594 * move image data to the load address,
1595 * make sure we don't overwrite initial image
1596 */
1597 image_start = (ulong)fit_hdr;
1598 image_end = fit_get_end(fit_hdr);
1599
1600 if (fit_image_get_load(fit_hdr, fdt_noffset,
1601 &load_start) == 0) {
1602 load_end = load_start + size;
1603
1604 if ((load_start < image_end) &&
1605 (load_end > image_start)) {
1606 fdt_error("FDT overwritten");
1607 goto error;
1608 }
1609
1610 printf(" Loading FDT from 0x%08lx "
1611 "to 0x%08lx\n",
1612 (ulong)data,
1613 load_start);
1614
1615 memmove((void *)load_start,
1616 (void *)data, size);
1617
1618 fdt_blob = (char *)load_start;
1619 } else {
1620 fdt_blob = (char *)data;
1621 }
1622
1623 images->fit_hdr_fdt = fit_hdr;
1624 images->fit_uname_fdt = fit_uname_fdt;
1625 images->fit_noffset_fdt = fdt_noffset;
1626 break;
1627 } else
1628 #endif
1629 {
1630 /*
1631 * FDT blob
1632 */
1633 fdt_blob = (char *)fdt_addr;
1634 debug("* fdt: raw FDT blob\n");
1635 printf("## Flattened Device Tree blob at "
1636 "%08lx\n", (long)fdt_blob);
1637 }
1638 break;
1639 default:
1640 puts("ERROR: Did not find a cmdline Flattened Device "
1641 "Tree\n");
1642 goto error;
1643 }
1644
1645 printf(" Booting using the fdt blob at 0x%p\n", fdt_blob);
1646
1647 } else if (images->legacy_hdr_valid &&
1648 image_check_type(&images->legacy_hdr_os_copy,
1649 IH_TYPE_MULTI)) {
1650
1651 ulong fdt_data, fdt_len;
1652
1653 /*
1654 * Now check if we have a legacy multi-component image,
1655 * get second entry data start address and len.
1656 */
1657 printf("## Flattened Device Tree from multi "
1658 "component Image at %08lX\n",
1659 (ulong)images->legacy_hdr_os);
1660
1661 image_multi_getimg(images->legacy_hdr_os, 2, &fdt_data,
1662 &fdt_len);
1663 if (fdt_len) {
1664
1665 fdt_blob = (char *)fdt_data;
1666 printf(" Booting using the fdt at 0x%p\n", fdt_blob);
1667
1668 if (fdt_check_header(fdt_blob) != 0) {
1669 fdt_error("image is not a fdt");
1670 goto error;
1671 }
1672
1673 if (fdt_totalsize(fdt_blob) != fdt_len) {
1674 fdt_error("fdt size != image size");
1675 goto error;
1676 }
1677 } else {
1678 debug("## No Flattened Device Tree\n");
1679 return 0;
1680 }
1681 } else {
1682 debug("## No Flattened Device Tree\n");
1683 return 0;
1684 }
1685
1686 *of_flat_tree = fdt_blob;
1687 *of_size = fdt_totalsize(fdt_blob);
1688 debug(" of_flat_tree at 0x%08lx size 0x%08lx\n",
1689 (ulong)*of_flat_tree, *of_size);
1690
1691 return 0;
1692
1693 error:
1694 *of_flat_tree = 0;
1695 *of_size = 0;
1696 return 1;
1697 }
1698 #endif /* CONFIG_OF_LIBFDT */
1699
1700 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE
1701 /**
1702 * boot_get_cmdline - allocate and initialize kernel cmdline
1703 * @lmb: pointer to lmb handle, will be used for memory mgmt
1704 * @cmd_start: pointer to a ulong variable, will hold cmdline start
1705 * @cmd_end: pointer to a ulong variable, will hold cmdline end
1706 *
1707 * boot_get_cmdline() allocates space for kernel command line below
1708 * BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-boot environemnt
1709 * variable is present its contents is copied to allocated kernel
1710 * command line.
1711 *
1712 * returns:
1713 * 0 - success
1714 * -1 - failure
1715 */
1716 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end)
1717 {
1718 char *cmdline;
1719 char *s;
1720
1721 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf,
1722 getenv_bootm_mapsize() + getenv_bootm_low());
1723
1724 if (cmdline == NULL)
1725 return -1;
1726
1727 if ((s = getenv("bootargs")) == NULL)
1728 s = "";
1729
1730 strcpy(cmdline, s);
1731
1732 *cmd_start = (ulong) & cmdline[0];
1733 *cmd_end = *cmd_start + strlen(cmdline);
1734
1735 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end);
1736
1737 return 0;
1738 }
1739 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */
1740
1741 #ifdef CONFIG_SYS_BOOT_GET_KBD
1742 /**
1743 * boot_get_kbd - allocate and initialize kernel copy of board info
1744 * @lmb: pointer to lmb handle, will be used for memory mgmt
1745 * @kbd: double pointer to board info data
1746 *
1747 * boot_get_kbd() allocates space for kernel copy of board info data below
1748 * BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized
1749 * with the current u-boot board info data.
1750 *
1751 * returns:
1752 * 0 - success
1753 * -1 - failure
1754 */
1755 int boot_get_kbd(struct lmb *lmb, bd_t **kbd)
1756 {
1757 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf,
1758 getenv_bootm_mapsize() + getenv_bootm_low());
1759 if (*kbd == NULL)
1760 return -1;
1761
1762 **kbd = *(gd->bd);
1763
1764 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd);
1765
1766 #if defined(DEBUG) && defined(CONFIG_CMD_BDI)
1767 do_bdinfo(NULL, 0, 0, NULL);
1768 #endif
1769
1770 return 0;
1771 }
1772 #endif /* CONFIG_SYS_BOOT_GET_KBD */
1773 #endif /* !USE_HOSTCC */
1774
1775 #if defined(CONFIG_FIT)
1776 /*****************************************************************************/
1777 /* New uImage format routines */
1778 /*****************************************************************************/
1779 #ifndef USE_HOSTCC
1780 static int fit_parse_spec(const char *spec, char sepc, ulong addr_curr,
1781 ulong *addr, const char **name)
1782 {
1783 const char *sep;
1784
1785 *addr = addr_curr;
1786 *name = NULL;
1787
1788 sep = strchr(spec, sepc);
1789 if (sep) {
1790 if (sep - spec > 0)
1791 *addr = simple_strtoul(spec, NULL, 16);
1792
1793 *name = sep + 1;
1794 return 1;
1795 }
1796
1797 return 0;
1798 }
1799
1800 /**
1801 * fit_parse_conf - parse FIT configuration spec
1802 * @spec: input string, containing configuration spec
1803 * @add_curr: current image address (to be used as a possible default)
1804 * @addr: pointer to a ulong variable, will hold FIT image address of a given
1805 * configuration
1806 * @conf_name double pointer to a char, will hold pointer to a configuration
1807 * unit name
1808 *
1809 * fit_parse_conf() expects configuration spec in the for of [<addr>]#<conf>,
1810 * where <addr> is a FIT image address that contains configuration
1811 * with a <conf> unit name.
1812 *
1813 * Address part is optional, and if omitted default add_curr will
1814 * be used instead.
1815 *
1816 * returns:
1817 * 1 if spec is a valid configuration string,
1818 * addr and conf_name are set accordingly
1819 * 0 otherwise
1820 */
1821 inline int fit_parse_conf(const char *spec, ulong addr_curr,
1822 ulong *addr, const char **conf_name)
1823 {
1824 return fit_parse_spec(spec, '#', addr_curr, addr, conf_name);
1825 }
1826
1827 /**
1828 * fit_parse_subimage - parse FIT subimage spec
1829 * @spec: input string, containing subimage spec
1830 * @add_curr: current image address (to be used as a possible default)
1831 * @addr: pointer to a ulong variable, will hold FIT image address of a given
1832 * subimage
1833 * @image_name: double pointer to a char, will hold pointer to a subimage name
1834 *
1835 * fit_parse_subimage() expects subimage spec in the for of
1836 * [<addr>]:<subimage>, where <addr> is a FIT image address that contains
1837 * subimage with a <subimg> unit name.
1838 *
1839 * Address part is optional, and if omitted default add_curr will
1840 * be used instead.
1841 *
1842 * returns:
1843 * 1 if spec is a valid subimage string,
1844 * addr and image_name are set accordingly
1845 * 0 otherwise
1846 */
1847 inline int fit_parse_subimage(const char *spec, ulong addr_curr,
1848 ulong *addr, const char **image_name)
1849 {
1850 return fit_parse_spec(spec, ':', addr_curr, addr, image_name);
1851 }
1852 #endif /* !USE_HOSTCC */
1853
1854 static void fit_get_debug(const void *fit, int noffset,
1855 char *prop_name, int err)
1856 {
1857 debug("Can't get '%s' property from FIT 0x%08lx, "
1858 "node: offset %d, name %s (%s)\n",
1859 prop_name, (ulong)fit, noffset,
1860 fit_get_name(fit, noffset, NULL),
1861 fdt_strerror(err));
1862 }
1863
1864 /**
1865 * fit_print_contents - prints out the contents of the FIT format image
1866 * @fit: pointer to the FIT format image header
1867 * @p: pointer to prefix string
1868 *
1869 * fit_print_contents() formats a multi line FIT image contents description.
1870 * The routine prints out FIT image properties (root node level) follwed by
1871 * the details of each component image.
1872 *
1873 * returns:
1874 * no returned results
1875 */
1876 void fit_print_contents(const void *fit)
1877 {
1878 char *desc;
1879 char *uname;
1880 int images_noffset;
1881 int confs_noffset;
1882 int noffset;
1883 int ndepth;
1884 int count = 0;
1885 int ret;
1886 const char *p;
1887 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
1888 time_t timestamp;
1889 #endif
1890
1891 #ifdef USE_HOSTCC
1892 p = "";
1893 #else
1894 p = " ";
1895 #endif
1896
1897 /* Root node properties */
1898 ret = fit_get_desc(fit, 0, &desc);
1899 printf("%sFIT description: ", p);
1900 if (ret)
1901 printf("unavailable\n");
1902 else
1903 printf("%s\n", desc);
1904
1905 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
1906 ret = fit_get_timestamp(fit, 0, &timestamp);
1907 printf("%sCreated: ", p);
1908 if (ret)
1909 printf("unavailable\n");
1910 else
1911 genimg_print_time(timestamp);
1912 #endif
1913
1914 /* Find images parent node offset */
1915 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
1916 if (images_noffset < 0) {
1917 printf("Can't find images parent node '%s' (%s)\n",
1918 FIT_IMAGES_PATH, fdt_strerror(images_noffset));
1919 return;
1920 }
1921
1922 /* Process its subnodes, print out component images details */
1923 for (ndepth = 0, count = 0,
1924 noffset = fdt_next_node(fit, images_noffset, &ndepth);
1925 (noffset >= 0) && (ndepth > 0);
1926 noffset = fdt_next_node(fit, noffset, &ndepth)) {
1927 if (ndepth == 1) {
1928 /*
1929 * Direct child node of the images parent node,
1930 * i.e. component image node.
1931 */
1932 printf("%s Image %u (%s)\n", p, count++,
1933 fit_get_name(fit, noffset, NULL));
1934
1935 fit_image_print(fit, noffset, p);
1936 }
1937 }
1938
1939 /* Find configurations parent node offset */
1940 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH);
1941 if (confs_noffset < 0) {
1942 debug("Can't get configurations parent node '%s' (%s)\n",
1943 FIT_CONFS_PATH, fdt_strerror(confs_noffset));
1944 return;
1945 }
1946
1947 /* get default configuration unit name from default property */
1948 uname = (char *)fdt_getprop(fit, noffset, FIT_DEFAULT_PROP, NULL);
1949 if (uname)
1950 printf("%s Default Configuration: '%s'\n", p, uname);
1951
1952 /* Process its subnodes, print out configurations details */
1953 for (ndepth = 0, count = 0,
1954 noffset = fdt_next_node(fit, confs_noffset, &ndepth);
1955 (noffset >= 0) && (ndepth > 0);
1956 noffset = fdt_next_node(fit, noffset, &ndepth)) {
1957 if (ndepth == 1) {
1958 /*
1959 * Direct child node of the configurations parent node,
1960 * i.e. configuration node.
1961 */
1962 printf("%s Configuration %u (%s)\n", p, count++,
1963 fit_get_name(fit, noffset, NULL));
1964
1965 fit_conf_print(fit, noffset, p);
1966 }
1967 }
1968 }
1969
1970 /**
1971 * fit_image_print - prints out the FIT component image details
1972 * @fit: pointer to the FIT format image header
1973 * @image_noffset: offset of the component image node
1974 * @p: pointer to prefix string
1975 *
1976 * fit_image_print() lists all mandatory properies for the processed component
1977 * image. If present, hash nodes are printed out as well. Load
1978 * address for images of type firmware is also printed out. Since the load
1979 * address is not mandatory for firmware images, it will be output as
1980 * "unavailable" when not present.
1981 *
1982 * returns:
1983 * no returned results
1984 */
1985 void fit_image_print(const void *fit, int image_noffset, const char *p)
1986 {
1987 char *desc;
1988 uint8_t type, arch, os, comp;
1989 size_t size;
1990 ulong load, entry;
1991 const void *data;
1992 int noffset;
1993 int ndepth;
1994 int ret;
1995
1996 /* Mandatory properties */
1997 ret = fit_get_desc(fit, image_noffset, &desc);
1998 printf("%s Description: ", p);
1999 if (ret)
2000 printf("unavailable\n");
2001 else
2002 printf("%s\n", desc);
2003
2004 fit_image_get_type(fit, image_noffset, &type);
2005 printf("%s Type: %s\n", p, genimg_get_type_name(type));
2006
2007 fit_image_get_comp(fit, image_noffset, &comp);
2008 printf("%s Compression: %s\n", p, genimg_get_comp_name(comp));
2009
2010 ret = fit_image_get_data(fit, image_noffset, &data, &size);
2011
2012 #ifndef USE_HOSTCC
2013 printf("%s Data Start: ", p);
2014 if (ret)
2015 printf("unavailable\n");
2016 else
2017 printf("0x%08lx\n", (ulong)data);
2018 #endif
2019
2020 printf("%s Data Size: ", p);
2021 if (ret)
2022 printf("unavailable\n");
2023 else
2024 genimg_print_size(size);
2025
2026 /* Remaining, type dependent properties */
2027 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) ||
2028 (type == IH_TYPE_RAMDISK) || (type == IH_TYPE_FIRMWARE) ||
2029 (type == IH_TYPE_FLATDT)) {
2030 fit_image_get_arch(fit, image_noffset, &arch);
2031 printf("%s Architecture: %s\n", p, genimg_get_arch_name(arch));
2032 }
2033
2034 if (type == IH_TYPE_KERNEL) {
2035 fit_image_get_os(fit, image_noffset, &os);
2036 printf("%s OS: %s\n", p, genimg_get_os_name(os));
2037 }
2038
2039 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) ||
2040 (type == IH_TYPE_FIRMWARE)) {
2041 ret = fit_image_get_load(fit, image_noffset, &load);
2042 printf("%s Load Address: ", p);
2043 if (ret)
2044 printf("unavailable\n");
2045 else
2046 printf("0x%08lx\n", load);
2047 }
2048
2049 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE)) {
2050 fit_image_get_entry(fit, image_noffset, &entry);
2051 printf("%s Entry Point: ", p);
2052 if (ret)
2053 printf("unavailable\n");
2054 else
2055 printf("0x%08lx\n", entry);
2056 }
2057
2058 /* Process all hash subnodes of the component image node */
2059 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth);
2060 (noffset >= 0) && (ndepth > 0);
2061 noffset = fdt_next_node(fit, noffset, &ndepth)) {
2062 if (ndepth == 1) {
2063 /* Direct child node of the component image node */
2064 fit_image_print_hash(fit, noffset, p);
2065 }
2066 }
2067 }
2068
2069 /**
2070 * fit_image_print_hash - prints out the hash node details
2071 * @fit: pointer to the FIT format image header
2072 * @noffset: offset of the hash node
2073 * @p: pointer to prefix string
2074 *
2075 * fit_image_print_hash() lists properies for the processed hash node
2076 *
2077 * returns:
2078 * no returned results
2079 */
2080 void fit_image_print_hash(const void *fit, int noffset, const char *p)
2081 {
2082 char *algo;
2083 uint8_t *value;
2084 int value_len;
2085 int i, ret;
2086
2087 /*
2088 * Check subnode name, must be equal to "hash".
2089 * Multiple hash nodes require unique unit node
2090 * names, e.g. hash@1, hash@2, etc.
2091 */
2092 if (strncmp(fit_get_name(fit, noffset, NULL),
2093 FIT_HASH_NODENAME,
2094 strlen(FIT_HASH_NODENAME)) != 0)
2095 return;
2096
2097 debug("%s Hash node: '%s'\n", p,
2098 fit_get_name(fit, noffset, NULL));
2099
2100 printf("%s Hash algo: ", p);
2101 if (fit_image_hash_get_algo(fit, noffset, &algo)) {
2102 printf("invalid/unsupported\n");
2103 return;
2104 }
2105 printf("%s\n", algo);
2106
2107 ret = fit_image_hash_get_value(fit, noffset, &value,
2108 &value_len);
2109 printf("%s Hash value: ", p);
2110 if (ret) {
2111 printf("unavailable\n");
2112 } else {
2113 for (i = 0; i < value_len; i++)
2114 printf("%02x", value[i]);
2115 printf("\n");
2116 }
2117
2118 debug("%s Hash len: %d\n", p, value_len);
2119 }
2120
2121 /**
2122 * fit_get_desc - get node description property
2123 * @fit: pointer to the FIT format image header
2124 * @noffset: node offset
2125 * @desc: double pointer to the char, will hold pointer to the descrption
2126 *
2127 * fit_get_desc() reads description property from a given node, if
2128 * description is found pointer to it is returened in third call argument.
2129 *
2130 * returns:
2131 * 0, on success
2132 * -1, on failure
2133 */
2134 int fit_get_desc(const void *fit, int noffset, char **desc)
2135 {
2136 int len;
2137
2138 *desc = (char *)fdt_getprop(fit, noffset, FIT_DESC_PROP, &len);
2139 if (*desc == NULL) {
2140 fit_get_debug(fit, noffset, FIT_DESC_PROP, len);
2141 return -1;
2142 }
2143
2144 return 0;
2145 }
2146
2147 /**
2148 * fit_get_timestamp - get node timestamp property
2149 * @fit: pointer to the FIT format image header
2150 * @noffset: node offset
2151 * @timestamp: pointer to the time_t, will hold read timestamp
2152 *
2153 * fit_get_timestamp() reads timestamp poperty from given node, if timestamp
2154 * is found and has a correct size its value is retured in third call
2155 * argument.
2156 *
2157 * returns:
2158 * 0, on success
2159 * -1, on property read failure
2160 * -2, on wrong timestamp size
2161 */
2162 int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp)
2163 {
2164 int len;
2165 const void *data;
2166
2167 data = fdt_getprop(fit, noffset, FIT_TIMESTAMP_PROP, &len);
2168 if (data == NULL) {
2169 fit_get_debug(fit, noffset, FIT_TIMESTAMP_PROP, len);
2170 return -1;
2171 }
2172 if (len != sizeof(uint32_t)) {
2173 debug("FIT timestamp with incorrect size of (%u)\n", len);
2174 return -2;
2175 }
2176
2177 *timestamp = uimage_to_cpu(*((uint32_t *)data));
2178 return 0;
2179 }
2180
2181 /**
2182 * fit_image_get_node - get node offset for component image of a given unit name
2183 * @fit: pointer to the FIT format image header
2184 * @image_uname: component image node unit name
2185 *
2186 * fit_image_get_node() finds a component image (withing the '/images'
2187 * node) of a provided unit name. If image is found its node offset is
2188 * returned to the caller.
2189 *
2190 * returns:
2191 * image node offset when found (>=0)
2192 * negative number on failure (FDT_ERR_* code)
2193 */
2194 int fit_image_get_node(const void *fit, const char *image_uname)
2195 {
2196 int noffset, images_noffset;
2197
2198 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
2199 if (images_noffset < 0) {
2200 debug("Can't find images parent node '%s' (%s)\n",
2201 FIT_IMAGES_PATH, fdt_strerror(images_noffset));
2202 return images_noffset;
2203 }
2204
2205 noffset = fdt_subnode_offset(fit, images_noffset, image_uname);
2206 if (noffset < 0) {
2207 debug("Can't get node offset for image unit name: '%s' (%s)\n",
2208 image_uname, fdt_strerror(noffset));
2209 }
2210
2211 return noffset;
2212 }
2213
2214 /**
2215 * fit_image_get_os - get os id for a given component image node
2216 * @fit: pointer to the FIT format image header
2217 * @noffset: component image node offset
2218 * @os: pointer to the uint8_t, will hold os numeric id
2219 *
2220 * fit_image_get_os() finds os property in a given component image node.
2221 * If the property is found, its (string) value is translated to the numeric
2222 * id which is returned to the caller.
2223 *
2224 * returns:
2225 * 0, on success
2226 * -1, on failure
2227 */
2228 int fit_image_get_os(const void *fit, int noffset, uint8_t *os)
2229 {
2230 int len;
2231 const void *data;
2232
2233 /* Get OS name from property data */
2234 data = fdt_getprop(fit, noffset, FIT_OS_PROP, &len);
2235 if (data == NULL) {
2236 fit_get_debug(fit, noffset, FIT_OS_PROP, len);
2237 *os = -1;
2238 return -1;
2239 }
2240
2241 /* Translate OS name to id */
2242 *os = genimg_get_os_id(data);
2243 return 0;
2244 }
2245
2246 /**
2247 * fit_image_get_arch - get arch id for a given component image node
2248 * @fit: pointer to the FIT format image header
2249 * @noffset: component image node offset
2250 * @arch: pointer to the uint8_t, will hold arch numeric id
2251 *
2252 * fit_image_get_arch() finds arch property in a given component image node.
2253 * If the property is found, its (string) value is translated to the numeric
2254 * id which is returned to the caller.
2255 *
2256 * returns:
2257 * 0, on success
2258 * -1, on failure
2259 */
2260 int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch)
2261 {
2262 int len;
2263 const void *data;
2264
2265 /* Get architecture name from property data */
2266 data = fdt_getprop(fit, noffset, FIT_ARCH_PROP, &len);
2267 if (data == NULL) {
2268 fit_get_debug(fit, noffset, FIT_ARCH_PROP, len);
2269 *arch = -1;
2270 return -1;
2271 }
2272
2273 /* Translate architecture name to id */
2274 *arch = genimg_get_arch_id(data);
2275 return 0;
2276 }
2277
2278 /**
2279 * fit_image_get_type - get type id for a given component image node
2280 * @fit: pointer to the FIT format image header
2281 * @noffset: component image node offset
2282 * @type: pointer to the uint8_t, will hold type numeric id
2283 *
2284 * fit_image_get_type() finds type property in a given component image node.
2285 * If the property is found, its (string) value is translated to the numeric
2286 * id which is returned to the caller.
2287 *
2288 * returns:
2289 * 0, on success
2290 * -1, on failure
2291 */
2292 int fit_image_get_type(const void *fit, int noffset, uint8_t *type)
2293 {
2294 int len;
2295 const void *data;
2296
2297 /* Get image type name from property data */
2298 data = fdt_getprop(fit, noffset, FIT_TYPE_PROP, &len);
2299 if (data == NULL) {
2300 fit_get_debug(fit, noffset, FIT_TYPE_PROP, len);
2301 *type = -1;
2302 return -1;
2303 }
2304
2305 /* Translate image type name to id */
2306 *type = genimg_get_type_id(data);
2307 return 0;
2308 }
2309
2310 /**
2311 * fit_image_get_comp - get comp id for a given component image node
2312 * @fit: pointer to the FIT format image header
2313 * @noffset: component image node offset
2314 * @comp: pointer to the uint8_t, will hold comp numeric id
2315 *
2316 * fit_image_get_comp() finds comp property in a given component image node.
2317 * If the property is found, its (string) value is translated to the numeric
2318 * id which is returned to the caller.
2319 *
2320 * returns:
2321 * 0, on success
2322 * -1, on failure
2323 */
2324 int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp)
2325 {
2326 int len;
2327 const void *data;
2328
2329 /* Get compression name from property data */
2330 data = fdt_getprop(fit, noffset, FIT_COMP_PROP, &len);
2331 if (data == NULL) {
2332 fit_get_debug(fit, noffset, FIT_COMP_PROP, len);
2333 *comp = -1;
2334 return -1;
2335 }
2336
2337 /* Translate compression name to id */
2338 *comp = genimg_get_comp_id(data);
2339 return 0;
2340 }
2341
2342 /**
2343 * fit_image_get_load - get load address property for a given component image node
2344 * @fit: pointer to the FIT format image header
2345 * @noffset: component image node offset
2346 * @load: pointer to the uint32_t, will hold load address
2347 *
2348 * fit_image_get_load() finds load address property in a given component image node.
2349 * If the property is found, its value is returned to the caller.
2350 *
2351 * returns:
2352 * 0, on success
2353 * -1, on failure
2354 */
2355 int fit_image_get_load(const void *fit, int noffset, ulong *load)
2356 {
2357 int len;
2358 const uint32_t *data;
2359
2360 data = fdt_getprop(fit, noffset, FIT_LOAD_PROP, &len);
2361 if (data == NULL) {
2362 fit_get_debug(fit, noffset, FIT_LOAD_PROP, len);
2363 return -1;
2364 }
2365
2366 *load = uimage_to_cpu(*data);
2367 return 0;
2368 }
2369
2370 /**
2371 * fit_image_get_entry - get entry point address property for a given component image node
2372 * @fit: pointer to the FIT format image header
2373 * @noffset: component image node offset
2374 * @entry: pointer to the uint32_t, will hold entry point address
2375 *
2376 * fit_image_get_entry() finds entry point address property in a given component image node.
2377 * If the property is found, its value is returned to the caller.
2378 *
2379 * returns:
2380 * 0, on success
2381 * -1, on failure
2382 */
2383 int fit_image_get_entry(const void *fit, int noffset, ulong *entry)
2384 {
2385 int len;
2386 const uint32_t *data;
2387
2388 data = fdt_getprop(fit, noffset, FIT_ENTRY_PROP, &len);
2389 if (data == NULL) {
2390 fit_get_debug(fit, noffset, FIT_ENTRY_PROP, len);
2391 return -1;
2392 }
2393
2394 *entry = uimage_to_cpu(*data);
2395 return 0;
2396 }
2397
2398 /**
2399 * fit_image_get_data - get data property and its size for a given component image node
2400 * @fit: pointer to the FIT format image header
2401 * @noffset: component image node offset
2402 * @data: double pointer to void, will hold data property's data address
2403 * @size: pointer to size_t, will hold data property's data size
2404 *
2405 * fit_image_get_data() finds data property in a given component image node.
2406 * If the property is found its data start address and size are returned to
2407 * the caller.
2408 *
2409 * returns:
2410 * 0, on success
2411 * -1, on failure
2412 */
2413 int fit_image_get_data(const void *fit, int noffset,
2414 const void **data, size_t *size)
2415 {
2416 int len;
2417
2418 *data = fdt_getprop(fit, noffset, FIT_DATA_PROP, &len);
2419 if (*data == NULL) {
2420 fit_get_debug(fit, noffset, FIT_DATA_PROP, len);
2421 *size = 0;
2422 return -1;
2423 }
2424
2425 *size = len;
2426 return 0;
2427 }
2428
2429 /**
2430 * fit_image_hash_get_algo - get hash algorithm name
2431 * @fit: pointer to the FIT format image header
2432 * @noffset: hash node offset
2433 * @algo: double pointer to char, will hold pointer to the algorithm name
2434 *
2435 * fit_image_hash_get_algo() finds hash algorithm property in a given hash node.
2436 * If the property is found its data start address is returned to the caller.
2437 *
2438 * returns:
2439 * 0, on success
2440 * -1, on failure
2441 */
2442 int fit_image_hash_get_algo(const void *fit, int noffset, char **algo)
2443 {
2444 int len;
2445
2446 *algo = (char *)fdt_getprop(fit, noffset, FIT_ALGO_PROP, &len);
2447 if (*algo == NULL) {
2448 fit_get_debug(fit, noffset, FIT_ALGO_PROP, len);
2449 return -1;
2450 }
2451
2452 return 0;
2453 }
2454
2455 /**
2456 * fit_image_hash_get_value - get hash value and length
2457 * @fit: pointer to the FIT format image header
2458 * @noffset: hash node offset
2459 * @value: double pointer to uint8_t, will hold address of a hash value data
2460 * @value_len: pointer to an int, will hold hash data length
2461 *
2462 * fit_image_hash_get_value() finds hash value property in a given hash node.
2463 * If the property is found its data start address and size are returned to
2464 * the caller.
2465 *
2466 * returns:
2467 * 0, on success
2468 * -1, on failure
2469 */
2470 int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value,
2471 int *value_len)
2472 {
2473 int len;
2474
2475 *value = (uint8_t *)fdt_getprop(fit, noffset, FIT_VALUE_PROP, &len);
2476 if (*value == NULL) {
2477 fit_get_debug(fit, noffset, FIT_VALUE_PROP, len);
2478 *value_len = 0;
2479 return -1;
2480 }
2481
2482 *value_len = len;
2483 return 0;
2484 }
2485
2486 /**
2487 * fit_set_timestamp - set node timestamp property
2488 * @fit: pointer to the FIT format image header
2489 * @noffset: node offset
2490 * @timestamp: timestamp value to be set
2491 *
2492 * fit_set_timestamp() attempts to set timestamp property in the requested
2493 * node and returns operation status to the caller.
2494 *
2495 * returns:
2496 * 0, on success
2497 * -1, on property read failure
2498 */
2499 int fit_set_timestamp(void *fit, int noffset, time_t timestamp)
2500 {
2501 uint32_t t;
2502 int ret;
2503
2504 t = cpu_to_uimage(timestamp);
2505 ret = fdt_setprop(fit, noffset, FIT_TIMESTAMP_PROP, &t,
2506 sizeof(uint32_t));
2507 if (ret) {
2508 printf("Can't set '%s' property for '%s' node (%s)\n",
2509 FIT_TIMESTAMP_PROP, fit_get_name(fit, noffset, NULL),
2510 fdt_strerror(ret));
2511 return -1;
2512 }
2513
2514 return 0;
2515 }
2516
2517 /**
2518 * calculate_hash - calculate and return hash for provided input data
2519 * @data: pointer to the input data
2520 * @data_len: data length
2521 * @algo: requested hash algorithm
2522 * @value: pointer to the char, will hold hash value data (caller must
2523 * allocate enough free space)
2524 * value_len: length of the calculated hash
2525 *
2526 * calculate_hash() computes input data hash according to the requested algorithm.
2527 * Resulting hash value is placed in caller provided 'value' buffer, length
2528 * of the calculated hash is returned via value_len pointer argument.
2529 *
2530 * returns:
2531 * 0, on success
2532 * -1, when algo is unsupported
2533 */
2534 static int calculate_hash(const void *data, int data_len, const char *algo,
2535 uint8_t *value, int *value_len)
2536 {
2537 if (strcmp(algo, "crc32") == 0) {
2538 *((uint32_t *)value) = crc32_wd(0, data, data_len,
2539 CHUNKSZ_CRC32);
2540 *((uint32_t *)value) = cpu_to_uimage(*((uint32_t *)value));
2541 *value_len = 4;
2542 } else if (strcmp(algo, "sha1") == 0) {
2543 sha1_csum_wd((unsigned char *) data, data_len,
2544 (unsigned char *) value, CHUNKSZ_SHA1);
2545 *value_len = 20;
2546 } else if (strcmp(algo, "md5") == 0) {
2547 md5_wd((unsigned char *)data, data_len, value, CHUNKSZ_MD5);
2548 *value_len = 16;
2549 } else {
2550 debug("Unsupported hash alogrithm\n");
2551 return -1;
2552 }
2553 return 0;
2554 }
2555
2556 #ifdef USE_HOSTCC
2557 /**
2558 * fit_set_hashes - process FIT component image nodes and calculate hashes
2559 * @fit: pointer to the FIT format image header
2560 *
2561 * fit_set_hashes() adds hash values for all component images in the FIT blob.
2562 * Hashes are calculated for all component images which have hash subnodes
2563 * with algorithm property set to one of the supported hash algorithms.
2564 *
2565 * returns
2566 * 0, on success
2567 * libfdt error code, on failure
2568 */
2569 int fit_set_hashes(void *fit)
2570 {
2571 int images_noffset;
2572 int noffset;
2573 int ndepth;
2574 int ret;
2575
2576 /* Find images parent node offset */
2577 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
2578 if (images_noffset < 0) {
2579 printf("Can't find images parent node '%s' (%s)\n",
2580 FIT_IMAGES_PATH, fdt_strerror(images_noffset));
2581 return images_noffset;
2582 }
2583
2584 /* Process its subnodes, print out component images details */
2585 for (ndepth = 0, noffset = fdt_next_node(fit, images_noffset, &ndepth);
2586 (noffset >= 0) && (ndepth > 0);
2587 noffset = fdt_next_node(fit, noffset, &ndepth)) {
2588 if (ndepth == 1) {
2589 /*
2590 * Direct child node of the images parent node,
2591 * i.e. component image node.
2592 */
2593 ret = fit_image_set_hashes(fit, noffset);
2594 if (ret)
2595 return ret;
2596 }
2597 }
2598
2599 return 0;
2600 }
2601
2602 /**
2603 * fit_image_set_hashes - calculate/set hashes for given component image node
2604 * @fit: pointer to the FIT format image header
2605 * @image_noffset: requested component image node
2606 *
2607 * fit_image_set_hashes() adds hash values for an component image node. All
2608 * existing hash subnodes are checked, if algorithm property is set to one of
2609 * the supported hash algorithms, hash value is computed and corresponding
2610 * hash node property is set, for example:
2611 *
2612 * Input component image node structure:
2613 *
2614 * o image@1 (at image_noffset)
2615 * | - data = [binary data]
2616 * o hash@1
2617 * |- algo = "sha1"
2618 *
2619 * Output component image node structure:
2620 *
2621 * o image@1 (at image_noffset)
2622 * | - data = [binary data]
2623 * o hash@1
2624 * |- algo = "sha1"
2625 * |- value = sha1(data)
2626 *
2627 * returns:
2628 * 0 on sucess
2629 * <0 on failure
2630 */
2631 int fit_image_set_hashes(void *fit, int image_noffset)
2632 {
2633 const void *data;
2634 size_t size;
2635 char *algo;
2636 uint8_t value[FIT_MAX_HASH_LEN];
2637 int value_len;
2638 int noffset;
2639 int ndepth;
2640
2641 /* Get image data and data length */
2642 if (fit_image_get_data(fit, image_noffset, &data, &size)) {
2643 printf("Can't get image data/size\n");
2644 return -1;
2645 }
2646
2647 /* Process all hash subnodes of the component image node */
2648 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth);
2649 (noffset >= 0) && (ndepth > 0);
2650 noffset = fdt_next_node(fit, noffset, &ndepth)) {
2651 if (ndepth == 1) {
2652 /* Direct child node of the component image node */
2653
2654 /*
2655 * Check subnode name, must be equal to "hash".
2656 * Multiple hash nodes require unique unit node
2657 * names, e.g. hash@1, hash@2, etc.
2658 */
2659 if (strncmp(fit_get_name(fit, noffset, NULL),
2660 FIT_HASH_NODENAME,
2661 strlen(FIT_HASH_NODENAME)) != 0) {
2662 /* Not a hash subnode, skip it */
2663 continue;
2664 }
2665
2666 if (fit_image_hash_get_algo(fit, noffset, &algo)) {
2667 printf("Can't get hash algo property for "
2668 "'%s' hash node in '%s' image node\n",
2669 fit_get_name(fit, noffset, NULL),
2670 fit_get_name(fit, image_noffset, NULL));
2671 return -1;
2672 }
2673
2674 if (calculate_hash(data, size, algo, value,
2675 &value_len)) {
2676 printf("Unsupported hash algorithm (%s) for "
2677 "'%s' hash node in '%s' image node\n",
2678 algo, fit_get_name(fit, noffset, NULL),
2679 fit_get_name(fit, image_noffset,
2680 NULL));
2681 return -1;
2682 }
2683
2684 if (fit_image_hash_set_value(fit, noffset, value,
2685 value_len)) {
2686 printf("Can't set hash value for "
2687 "'%s' hash node in '%s' image node\n",
2688 fit_get_name(fit, noffset, NULL),
2689 fit_get_name(fit, image_noffset, NULL));
2690 return -1;
2691 }
2692 }
2693 }
2694
2695 return 0;
2696 }
2697
2698 /**
2699 * fit_image_hash_set_value - set hash value in requested has node
2700 * @fit: pointer to the FIT format image header
2701 * @noffset: hash node offset
2702 * @value: hash value to be set
2703 * @value_len: hash value length
2704 *
2705 * fit_image_hash_set_value() attempts to set hash value in a node at offset
2706 * given and returns operation status to the caller.
2707 *
2708 * returns
2709 * 0, on success
2710 * -1, on failure
2711 */
2712 int fit_image_hash_set_value(void *fit, int noffset, uint8_t *value,
2713 int value_len)
2714 {
2715 int ret;
2716
2717 ret = fdt_setprop(fit, noffset, FIT_VALUE_PROP, value, value_len);
2718 if (ret) {
2719 printf("Can't set hash '%s' property for '%s' node(%s)\n",
2720 FIT_VALUE_PROP, fit_get_name(fit, noffset, NULL),
2721 fdt_strerror(ret));
2722 return -1;
2723 }
2724
2725 return 0;
2726 }
2727 #endif /* USE_HOSTCC */
2728
2729 /**
2730 * fit_image_check_hashes - verify data intergity
2731 * @fit: pointer to the FIT format image header
2732 * @image_noffset: component image node offset
2733 *
2734 * fit_image_check_hashes() goes over component image hash nodes,
2735 * re-calculates each data hash and compares with the value stored in hash
2736 * node.
2737 *
2738 * returns:
2739 * 1, if all hashes are valid
2740 * 0, otherwise (or on error)
2741 */
2742 int fit_image_check_hashes(const void *fit, int image_noffset)
2743 {
2744 const void *data;
2745 size_t size;
2746 char *algo;
2747 uint8_t *fit_value;
2748 int fit_value_len;
2749 uint8_t value[FIT_MAX_HASH_LEN];
2750 int value_len;
2751 int noffset;
2752 int ndepth;
2753 char *err_msg = "";
2754
2755 /* Get image data and data length */
2756 if (fit_image_get_data(fit, image_noffset, &data, &size)) {
2757 printf("Can't get image data/size\n");
2758 return 0;
2759 }
2760
2761 /* Process all hash subnodes of the component image node */
2762 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth);
2763 (noffset >= 0) && (ndepth > 0);
2764 noffset = fdt_next_node(fit, noffset, &ndepth)) {
2765 if (ndepth == 1) {
2766 /* Direct child node of the component image node */
2767
2768 /*
2769 * Check subnode name, must be equal to "hash".
2770 * Multiple hash nodes require unique unit node
2771 * names, e.g. hash@1, hash@2, etc.
2772 */
2773 if (strncmp(fit_get_name(fit, noffset, NULL),
2774 FIT_HASH_NODENAME,
2775 strlen(FIT_HASH_NODENAME)) != 0)
2776 continue;
2777
2778 if (fit_image_hash_get_algo(fit, noffset, &algo)) {
2779 err_msg = " error!\nCan't get hash algo "
2780 "property";
2781 goto error;
2782 }
2783 printf("%s", algo);
2784
2785 if (fit_image_hash_get_value(fit, noffset, &fit_value,
2786 &fit_value_len)) {
2787 err_msg = " error!\nCan't get hash value "
2788 "property";
2789 goto error;
2790 }
2791
2792 if (calculate_hash(data, size, algo, value,
2793 &value_len)) {
2794 err_msg = " error!\n"
2795 "Unsupported hash algorithm";
2796 goto error;
2797 }
2798
2799 if (value_len != fit_value_len) {
2800 err_msg = " error !\nBad hash value len";
2801 goto error;
2802 } else if (memcmp(value, fit_value, value_len) != 0) {
2803 err_msg = " error!\nBad hash value";
2804 goto error;
2805 }
2806 printf("+ ");
2807 }
2808 }
2809
2810 return 1;
2811
2812 error:
2813 printf("%s for '%s' hash node in '%s' image node\n",
2814 err_msg, fit_get_name(fit, noffset, NULL),
2815 fit_get_name(fit, image_noffset, NULL));
2816 return 0;
2817 }
2818
2819 /**
2820 * fit_all_image_check_hashes - verify data intergity for all images
2821 * @fit: pointer to the FIT format image header
2822 *
2823 * fit_all_image_check_hashes() goes over all images in the FIT and
2824 * for every images checks if all it's hashes are valid.
2825 *
2826 * returns:
2827 * 1, if all hashes of all images are valid
2828 * 0, otherwise (or on error)
2829 */
2830 int fit_all_image_check_hashes(const void *fit)
2831 {
2832 int images_noffset;
2833 int noffset;
2834 int ndepth;
2835 int count;
2836
2837 /* Find images parent node offset */
2838 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
2839 if (images_noffset < 0) {
2840 printf("Can't find images parent node '%s' (%s)\n",
2841 FIT_IMAGES_PATH, fdt_strerror(images_noffset));
2842 return 0;
2843 }
2844
2845 /* Process all image subnodes, check hashes for each */
2846 printf("## Checking hash(es) for FIT Image at %08lx ...\n",
2847 (ulong)fit);
2848 for (ndepth = 0, count = 0,
2849 noffset = fdt_next_node(fit, images_noffset, &ndepth);
2850 (noffset >= 0) && (ndepth > 0);
2851 noffset = fdt_next_node(fit, noffset, &ndepth)) {
2852 if (ndepth == 1) {
2853 /*
2854 * Direct child node of the images parent node,
2855 * i.e. component image node.
2856 */
2857 printf(" Hash(es) for Image %u (%s): ", count++,
2858 fit_get_name(fit, noffset, NULL));
2859
2860 if (!fit_image_check_hashes(fit, noffset))
2861 return 0;
2862 printf("\n");
2863 }
2864 }
2865 return 1;
2866 }
2867
2868 /**
2869 * fit_image_check_os - check whether image node is of a given os type
2870 * @fit: pointer to the FIT format image header
2871 * @noffset: component image node offset
2872 * @os: requested image os
2873 *
2874 * fit_image_check_os() reads image os property and compares its numeric
2875 * id with the requested os. Comparison result is returned to the caller.
2876 *
2877 * returns:
2878 * 1 if image is of given os type
2879 * 0 otherwise (or on error)
2880 */
2881 int fit_image_check_os(const void *fit, int noffset, uint8_t os)
2882 {
2883 uint8_t image_os;
2884
2885 if (fit_image_get_os(fit, noffset, &image_os))
2886 return 0;
2887 return (os == image_os);
2888 }
2889
2890 /**
2891 * fit_image_check_arch - check whether image node is of a given arch
2892 * @fit: pointer to the FIT format image header
2893 * @noffset: component image node offset
2894 * @arch: requested imagearch
2895 *
2896 * fit_image_check_arch() reads image arch property and compares its numeric
2897 * id with the requested arch. Comparison result is returned to the caller.
2898 *
2899 * returns:
2900 * 1 if image is of given arch
2901 * 0 otherwise (or on error)
2902 */
2903 int fit_image_check_arch(const void *fit, int noffset, uint8_t arch)
2904 {
2905 uint8_t image_arch;
2906
2907 if (fit_image_get_arch(fit, noffset, &image_arch))
2908 return 0;
2909 return (arch == image_arch);
2910 }
2911
2912 /**
2913 * fit_image_check_type - check whether image node is of a given type
2914 * @fit: pointer to the FIT format image header
2915 * @noffset: component image node offset
2916 * @type: requested image type
2917 *
2918 * fit_image_check_type() reads image type property and compares its numeric
2919 * id with the requested type. Comparison result is returned to the caller.
2920 *
2921 * returns:
2922 * 1 if image is of given type
2923 * 0 otherwise (or on error)
2924 */
2925 int fit_image_check_type(const void *fit, int noffset, uint8_t type)
2926 {
2927 uint8_t image_type;
2928
2929 if (fit_image_get_type(fit, noffset, &image_type))
2930 return 0;
2931 return (type == image_type);
2932 }
2933
2934 /**
2935 * fit_image_check_comp - check whether image node uses given compression
2936 * @fit: pointer to the FIT format image header
2937 * @noffset: component image node offset
2938 * @comp: requested image compression type
2939 *
2940 * fit_image_check_comp() reads image compression property and compares its
2941 * numeric id with the requested compression type. Comparison result is
2942 * returned to the caller.
2943 *
2944 * returns:
2945 * 1 if image uses requested compression
2946 * 0 otherwise (or on error)
2947 */
2948 int fit_image_check_comp(const void *fit, int noffset, uint8_t comp)
2949 {
2950 uint8_t image_comp;
2951
2952 if (fit_image_get_comp(fit, noffset, &image_comp))
2953 return 0;
2954 return (comp == image_comp);
2955 }
2956
2957 /**
2958 * fit_check_format - sanity check FIT image format
2959 * @fit: pointer to the FIT format image header
2960 *
2961 * fit_check_format() runs a basic sanity FIT image verification.
2962 * Routine checks for mandatory properties, nodes, etc.
2963 *
2964 * returns:
2965 * 1, on success
2966 * 0, on failure
2967 */
2968 int fit_check_format(const void *fit)
2969 {
2970 /* mandatory / node 'description' property */
2971 if (fdt_getprop(fit, 0, FIT_DESC_PROP, NULL) == NULL) {
2972 debug("Wrong FIT format: no description\n");
2973 return 0;
2974 }
2975
2976 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
2977 /* mandatory / node 'timestamp' property */
2978 if (fdt_getprop(fit, 0, FIT_TIMESTAMP_PROP, NULL) == NULL) {
2979 debug("Wrong FIT format: no timestamp\n");
2980 return 0;
2981 }
2982 #endif
2983
2984 /* mandatory subimages parent '/images' node */
2985 if (fdt_path_offset(fit, FIT_IMAGES_PATH) < 0) {
2986 debug("Wrong FIT format: no images parent node\n");
2987 return 0;
2988 }
2989
2990 return 1;
2991 }
2992
2993 /**
2994 * fit_conf_get_node - get node offset for configuration of a given unit name
2995 * @fit: pointer to the FIT format image header
2996 * @conf_uname: configuration node unit name
2997 *
2998 * fit_conf_get_node() finds a configuration (withing the '/configurations'
2999 * parant node) of a provided unit name. If configuration is found its node offset
3000 * is returned to the caller.
3001 *
3002 * When NULL is provided in second argument fit_conf_get_node() will search
3003 * for a default configuration node instead. Default configuration node unit name
3004 * is retrived from FIT_DEFAULT_PROP property of the '/configurations' node.
3005 *
3006 * returns:
3007 * configuration node offset when found (>=0)
3008 * negative number on failure (FDT_ERR_* code)
3009 */
3010 int fit_conf_get_node(const void *fit, const char *conf_uname)
3011 {
3012 int noffset, confs_noffset;
3013 int len;
3014
3015 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH);
3016 if (confs_noffset < 0) {
3017 debug("Can't find configurations parent node '%s' (%s)\n",
3018 FIT_CONFS_PATH, fdt_strerror(confs_noffset));
3019 return confs_noffset;
3020 }
3021
3022 if (conf_uname == NULL) {
3023 /* get configuration unit name from the default property */
3024 debug("No configuration specified, trying default...\n");
3025 conf_uname = (char *)fdt_getprop(fit, confs_noffset,
3026 FIT_DEFAULT_PROP, &len);
3027 if (conf_uname == NULL) {
3028 fit_get_debug(fit, confs_noffset, FIT_DEFAULT_PROP,
3029 len);
3030 return len;
3031 }
3032 debug("Found default configuration: '%s'\n", conf_uname);
3033 }
3034
3035 noffset = fdt_subnode_offset(fit, confs_noffset, conf_uname);
3036 if (noffset < 0) {
3037 debug("Can't get node offset for configuration unit name: "
3038 "'%s' (%s)\n",
3039 conf_uname, fdt_strerror(noffset));
3040 }
3041
3042 return noffset;
3043 }
3044
3045 static int __fit_conf_get_prop_node(const void *fit, int noffset,
3046 const char *prop_name)
3047 {
3048 char *uname;
3049 int len;
3050
3051 /* get kernel image unit name from configuration kernel property */
3052 uname = (char *)fdt_getprop(fit, noffset, prop_name, &len);
3053 if (uname == NULL)
3054 return len;
3055
3056 return fit_image_get_node(fit, uname);
3057 }
3058
3059 /**
3060 * fit_conf_get_kernel_node - get kernel image node offset that corresponds to
3061 * a given configuration
3062 * @fit: pointer to the FIT format image header
3063 * @noffset: configuration node offset
3064 *
3065 * fit_conf_get_kernel_node() retrives kernel image node unit name from
3066 * configuration FIT_KERNEL_PROP property and translates it to the node
3067 * offset.
3068 *
3069 * returns:
3070 * image node offset when found (>=0)
3071 * negative number on failure (FDT_ERR_* code)
3072 */
3073 int fit_conf_get_kernel_node(const void *fit, int noffset)
3074 {
3075 return __fit_conf_get_prop_node(fit, noffset, FIT_KERNEL_PROP);
3076 }
3077
3078 /**
3079 * fit_conf_get_ramdisk_node - get ramdisk image node offset that corresponds to
3080 * a given configuration
3081 * @fit: pointer to the FIT format image header
3082 * @noffset: configuration node offset
3083 *
3084 * fit_conf_get_ramdisk_node() retrives ramdisk image node unit name from
3085 * configuration FIT_KERNEL_PROP property and translates it to the node
3086 * offset.
3087 *
3088 * returns:
3089 * image node offset when found (>=0)
3090 * negative number on failure (FDT_ERR_* code)
3091 */
3092 int fit_conf_get_ramdisk_node(const void *fit, int noffset)
3093 {
3094 return __fit_conf_get_prop_node(fit, noffset, FIT_RAMDISK_PROP);
3095 }
3096
3097 /**
3098 * fit_conf_get_fdt_node - get fdt image node offset that corresponds to
3099 * a given configuration
3100 * @fit: pointer to the FIT format image header
3101 * @noffset: configuration node offset
3102 *
3103 * fit_conf_get_fdt_node() retrives fdt image node unit name from
3104 * configuration FIT_KERNEL_PROP property and translates it to the node
3105 * offset.
3106 *
3107 * returns:
3108 * image node offset when found (>=0)
3109 * negative number on failure (FDT_ERR_* code)
3110 */
3111 int fit_conf_get_fdt_node(const void *fit, int noffset)
3112 {
3113 return __fit_conf_get_prop_node(fit, noffset, FIT_FDT_PROP);
3114 }
3115
3116 /**
3117 * fit_conf_print - prints out the FIT configuration details
3118 * @fit: pointer to the FIT format image header
3119 * @noffset: offset of the configuration node
3120 * @p: pointer to prefix string
3121 *
3122 * fit_conf_print() lists all mandatory properies for the processed
3123 * configuration node.
3124 *
3125 * returns:
3126 * no returned results
3127 */
3128 void fit_conf_print(const void *fit, int noffset, const char *p)
3129 {
3130 char *desc;
3131 char *uname;
3132 int ret;
3133
3134 /* Mandatory properties */
3135 ret = fit_get_desc(fit, noffset, &desc);
3136 printf("%s Description: ", p);
3137 if (ret)
3138 printf("unavailable\n");
3139 else
3140 printf("%s\n", desc);
3141
3142 uname = (char *)fdt_getprop(fit, noffset, FIT_KERNEL_PROP, NULL);
3143 printf("%s Kernel: ", p);
3144 if (uname == NULL)
3145 printf("unavailable\n");
3146 else
3147 printf("%s\n", uname);
3148
3149 /* Optional properties */
3150 uname = (char *)fdt_getprop(fit, noffset, FIT_RAMDISK_PROP, NULL);
3151 if (uname)
3152 printf("%s Init Ramdisk: %s\n", p, uname);
3153
3154 uname = (char *)fdt_getprop(fit, noffset, FIT_FDT_PROP, NULL);
3155 if (uname)
3156 printf("%s FDT: %s\n", p, uname);
3157 }
3158
3159 /**
3160 * fit_check_ramdisk - verify FIT format ramdisk subimage
3161 * @fit_hdr: pointer to the FIT ramdisk header
3162 * @rd_noffset: ramdisk subimage node offset within FIT image
3163 * @arch: requested ramdisk image architecture type
3164 * @verify: data CRC verification flag
3165 *
3166 * fit_check_ramdisk() verifies integrity of the ramdisk subimage and from
3167 * specified FIT image.
3168 *
3169 * returns:
3170 * 1, on success
3171 * 0, on failure
3172 */
3173 #ifndef USE_HOSTCC
3174 static int fit_check_ramdisk(const void *fit, int rd_noffset, uint8_t arch,
3175 int verify)
3176 {
3177 fit_image_print(fit, rd_noffset, " ");
3178
3179 if (verify) {
3180 puts(" Verifying Hash Integrity ... ");
3181 if (!fit_image_check_hashes(fit, rd_noffset)) {
3182 puts("Bad Data Hash\n");
3183 bootstage_error(BOOTSTAGE_ID_FIT_RD_HASH);
3184 return 0;
3185 }
3186 puts("OK\n");
3187 }
3188
3189 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL);
3190 if (!fit_image_check_os(fit, rd_noffset, IH_OS_LINUX) ||
3191 !fit_image_check_arch(fit, rd_noffset, arch) ||
3192 !fit_image_check_type(fit, rd_noffset, IH_TYPE_RAMDISK)) {
3193 printf("No Linux %s Ramdisk Image\n",
3194 genimg_get_arch_name(arch));
3195 bootstage_error(BOOTSTAGE_ID_FIT_RD_CHECK_ALL);
3196 return 0;
3197 }
3198
3199 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL_OK);
3200 return 1;
3201 }
3202 #endif /* USE_HOSTCC */
3203 #endif /* CONFIG_FIT */