]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/image.c
Merge branch 'for-v2013.04'
[people/ms/u-boot.git] / common / image.c
1 /*
2 * (C) Copyright 2008 Semihalf
3 *
4 * (C) Copyright 2000-2006
5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
6 *
7 * See file CREDITS for list of people who contributed to this
8 * project.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of
13 * the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23 * MA 02111-1307 USA
24 */
25
26 #ifndef USE_HOSTCC
27 #include <common.h>
28 #include <watchdog.h>
29
30 #ifdef CONFIG_SHOW_BOOT_PROGRESS
31 #include <status_led.h>
32 #endif
33
34 #ifdef CONFIG_HAS_DATAFLASH
35 #include <dataflash.h>
36 #endif
37
38 #ifdef CONFIG_LOGBUFFER
39 #include <logbuff.h>
40 #endif
41
42 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE)
43 #include <rtc.h>
44 #endif
45
46 #include <environment.h>
47 #include <image.h>
48
49 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
50 #include <libfdt.h>
51 #include <fdt_support.h>
52 #endif
53
54 #if defined(CONFIG_FIT)
55 #include <u-boot/md5.h>
56 #include <sha1.h>
57
58 static int fit_check_ramdisk(const void *fit, int os_noffset,
59 uint8_t arch, int verify);
60 #endif
61
62 #ifdef CONFIG_CMD_BDI
63 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
64 #endif
65
66 DECLARE_GLOBAL_DATA_PTR;
67
68 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
69 int verify);
70 #else
71 #include "mkimage.h"
72 #include <u-boot/md5.h>
73 #include <time.h>
74 #include <image.h>
75 #endif /* !USE_HOSTCC*/
76
77 #include <u-boot/crc.h>
78
79 static const table_entry_t uimage_arch[] = {
80 { IH_ARCH_INVALID, NULL, "Invalid ARCH", },
81 { IH_ARCH_ALPHA, "alpha", "Alpha", },
82 { IH_ARCH_ARM, "arm", "ARM", },
83 { IH_ARCH_I386, "x86", "Intel x86", },
84 { IH_ARCH_IA64, "ia64", "IA64", },
85 { IH_ARCH_M68K, "m68k", "M68K", },
86 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", },
87 { IH_ARCH_MIPS, "mips", "MIPS", },
88 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", },
89 { IH_ARCH_NIOS2, "nios2", "NIOS II", },
90 { IH_ARCH_PPC, "powerpc", "PowerPC", },
91 { IH_ARCH_PPC, "ppc", "PowerPC", },
92 { IH_ARCH_S390, "s390", "IBM S390", },
93 { IH_ARCH_SH, "sh", "SuperH", },
94 { IH_ARCH_SPARC, "sparc", "SPARC", },
95 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", },
96 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", },
97 { IH_ARCH_AVR32, "avr32", "AVR32", },
98 { IH_ARCH_NDS32, "nds32", "NDS32", },
99 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",},
100 { -1, "", "", },
101 };
102
103 static const table_entry_t uimage_os[] = {
104 { IH_OS_INVALID, NULL, "Invalid OS", },
105 { IH_OS_LINUX, "linux", "Linux", },
106 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC)
107 { IH_OS_LYNXOS, "lynxos", "LynxOS", },
108 #endif
109 { IH_OS_NETBSD, "netbsd", "NetBSD", },
110 { IH_OS_OSE, "ose", "Enea OSE", },
111 { IH_OS_PLAN9, "plan9", "Plan 9", },
112 { IH_OS_RTEMS, "rtems", "RTEMS", },
113 { IH_OS_U_BOOT, "u-boot", "U-Boot", },
114 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC)
115 { IH_OS_QNX, "qnx", "QNX", },
116 { IH_OS_VXWORKS, "vxworks", "VxWorks", },
117 #endif
118 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC)
119 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", },
120 #endif
121 #ifdef USE_HOSTCC
122 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", },
123 { IH_OS_DELL, "dell", "Dell", },
124 { IH_OS_ESIX, "esix", "Esix", },
125 { IH_OS_FREEBSD, "freebsd", "FreeBSD", },
126 { IH_OS_IRIX, "irix", "Irix", },
127 { IH_OS_NCR, "ncr", "NCR", },
128 { IH_OS_OPENBSD, "openbsd", "OpenBSD", },
129 { IH_OS_PSOS, "psos", "pSOS", },
130 { IH_OS_SCO, "sco", "SCO", },
131 { IH_OS_SOLARIS, "solaris", "Solaris", },
132 { IH_OS_SVR4, "svr4", "SVR4", },
133 #endif
134 { -1, "", "", },
135 };
136
137 static const table_entry_t uimage_type[] = {
138 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",},
139 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", },
140 { IH_TYPE_FIRMWARE, "firmware", "Firmware", },
141 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", },
142 { IH_TYPE_KERNEL, "kernel", "Kernel Image", },
143 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", },
144 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",},
145 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",},
146 { IH_TYPE_INVALID, NULL, "Invalid Image", },
147 { IH_TYPE_MULTI, "multi", "Multi-File Image", },
148 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",},
149 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",},
150 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", },
151 { IH_TYPE_SCRIPT, "script", "Script", },
152 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", },
153 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",},
154 { -1, "", "", },
155 };
156
157 static const table_entry_t uimage_comp[] = {
158 { IH_COMP_NONE, "none", "uncompressed", },
159 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", },
160 { IH_COMP_GZIP, "gzip", "gzip compressed", },
161 { IH_COMP_LZMA, "lzma", "lzma compressed", },
162 { IH_COMP_LZO, "lzo", "lzo compressed", },
163 { -1, "", "", },
164 };
165
166 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
167 static void genimg_print_time(time_t timestamp);
168 #endif
169
170 /*****************************************************************************/
171 /* Legacy format routines */
172 /*****************************************************************************/
173 int image_check_hcrc(const image_header_t *hdr)
174 {
175 ulong hcrc;
176 ulong len = image_get_header_size();
177 image_header_t header;
178
179 /* Copy header so we can blank CRC field for re-calculation */
180 memmove(&header, (char *)hdr, image_get_header_size());
181 image_set_hcrc(&header, 0);
182
183 hcrc = crc32(0, (unsigned char *)&header, len);
184
185 return (hcrc == image_get_hcrc(hdr));
186 }
187
188 int image_check_dcrc(const image_header_t *hdr)
189 {
190 ulong data = image_get_data(hdr);
191 ulong len = image_get_data_size(hdr);
192 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32);
193
194 return (dcrc == image_get_dcrc(hdr));
195 }
196
197 /**
198 * image_multi_count - get component (sub-image) count
199 * @hdr: pointer to the header of the multi component image
200 *
201 * image_multi_count() returns number of components in a multi
202 * component image.
203 *
204 * Note: no checking of the image type is done, caller must pass
205 * a valid multi component image.
206 *
207 * returns:
208 * number of components
209 */
210 ulong image_multi_count(const image_header_t *hdr)
211 {
212 ulong i, count = 0;
213 uint32_t *size;
214
215 /* get start of the image payload, which in case of multi
216 * component images that points to a table of component sizes */
217 size = (uint32_t *)image_get_data(hdr);
218
219 /* count non empty slots */
220 for (i = 0; size[i]; ++i)
221 count++;
222
223 return count;
224 }
225
226 /**
227 * image_multi_getimg - get component data address and size
228 * @hdr: pointer to the header of the multi component image
229 * @idx: index of the requested component
230 * @data: pointer to a ulong variable, will hold component data address
231 * @len: pointer to a ulong variable, will hold component size
232 *
233 * image_multi_getimg() returns size and data address for the requested
234 * component in a multi component image.
235 *
236 * Note: no checking of the image type is done, caller must pass
237 * a valid multi component image.
238 *
239 * returns:
240 * data address and size of the component, if idx is valid
241 * 0 in data and len, if idx is out of range
242 */
243 void image_multi_getimg(const image_header_t *hdr, ulong idx,
244 ulong *data, ulong *len)
245 {
246 int i;
247 uint32_t *size;
248 ulong offset, count, img_data;
249
250 /* get number of component */
251 count = image_multi_count(hdr);
252
253 /* get start of the image payload, which in case of multi
254 * component images that points to a table of component sizes */
255 size = (uint32_t *)image_get_data(hdr);
256
257 /* get address of the proper component data start, which means
258 * skipping sizes table (add 1 for last, null entry) */
259 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t);
260
261 if (idx < count) {
262 *len = uimage_to_cpu(size[idx]);
263 offset = 0;
264
265 /* go over all indices preceding requested component idx */
266 for (i = 0; i < idx; i++) {
267 /* add up i-th component size, rounding up to 4 bytes */
268 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ;
269 }
270
271 /* calculate idx-th component data address */
272 *data = img_data + offset;
273 } else {
274 *len = 0;
275 *data = 0;
276 }
277 }
278
279 static void image_print_type(const image_header_t *hdr)
280 {
281 const char *os, *arch, *type, *comp;
282
283 os = genimg_get_os_name(image_get_os(hdr));
284 arch = genimg_get_arch_name(image_get_arch(hdr));
285 type = genimg_get_type_name(image_get_type(hdr));
286 comp = genimg_get_comp_name(image_get_comp(hdr));
287
288 printf("%s %s %s (%s)\n", arch, os, type, comp);
289 }
290
291 /**
292 * image_print_contents - prints out the contents of the legacy format image
293 * @ptr: pointer to the legacy format image header
294 * @p: pointer to prefix string
295 *
296 * image_print_contents() formats a multi line legacy image contents description.
297 * The routine prints out all header fields followed by the size/offset data
298 * for MULTI/SCRIPT images.
299 *
300 * returns:
301 * no returned results
302 */
303 void image_print_contents(const void *ptr)
304 {
305 const image_header_t *hdr = (const image_header_t *)ptr;
306 const char *p;
307
308 #ifdef USE_HOSTCC
309 p = "";
310 #else
311 p = " ";
312 #endif
313
314 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr));
315 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
316 printf("%sCreated: ", p);
317 genimg_print_time((time_t)image_get_time(hdr));
318 #endif
319 printf("%sImage Type: ", p);
320 image_print_type(hdr);
321 printf("%sData Size: ", p);
322 genimg_print_size(image_get_data_size(hdr));
323 printf("%sLoad Address: %08x\n", p, image_get_load(hdr));
324 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr));
325
326 if (image_check_type(hdr, IH_TYPE_MULTI) ||
327 image_check_type(hdr, IH_TYPE_SCRIPT)) {
328 int i;
329 ulong data, len;
330 ulong count = image_multi_count(hdr);
331
332 printf("%sContents:\n", p);
333 for (i = 0; i < count; i++) {
334 image_multi_getimg(hdr, i, &data, &len);
335
336 printf("%s Image %d: ", p, i);
337 genimg_print_size(len);
338
339 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) {
340 /*
341 * the user may need to know offsets
342 * if planning to do something with
343 * multiple files
344 */
345 printf("%s Offset = 0x%08lx\n", p, data);
346 }
347 }
348 }
349 }
350
351
352 #ifndef USE_HOSTCC
353 /**
354 * image_get_ramdisk - get and verify ramdisk image
355 * @rd_addr: ramdisk image start address
356 * @arch: expected ramdisk architecture
357 * @verify: checksum verification flag
358 *
359 * image_get_ramdisk() returns a pointer to the verified ramdisk image
360 * header. Routine receives image start address and expected architecture
361 * flag. Verification done covers data and header integrity and os/type/arch
362 * fields checking.
363 *
364 * If dataflash support is enabled routine checks for dataflash addresses
365 * and handles required dataflash reads.
366 *
367 * returns:
368 * pointer to a ramdisk image header, if image was found and valid
369 * otherwise, return NULL
370 */
371 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
372 int verify)
373 {
374 const image_header_t *rd_hdr = (const image_header_t *)rd_addr;
375
376 if (!image_check_magic(rd_hdr)) {
377 puts("Bad Magic Number\n");
378 bootstage_error(BOOTSTAGE_ID_RD_MAGIC);
379 return NULL;
380 }
381
382 if (!image_check_hcrc(rd_hdr)) {
383 puts("Bad Header Checksum\n");
384 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
385 return NULL;
386 }
387
388 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC);
389 image_print_contents(rd_hdr);
390
391 if (verify) {
392 puts(" Verifying Checksum ... ");
393 if (!image_check_dcrc(rd_hdr)) {
394 puts("Bad Data CRC\n");
395 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM);
396 return NULL;
397 }
398 puts("OK\n");
399 }
400
401 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
402
403 if (!image_check_os(rd_hdr, IH_OS_LINUX) ||
404 !image_check_arch(rd_hdr, arch) ||
405 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) {
406 printf("No Linux %s Ramdisk Image\n",
407 genimg_get_arch_name(arch));
408 bootstage_error(BOOTSTAGE_ID_RAMDISK);
409 return NULL;
410 }
411
412 return rd_hdr;
413 }
414 #endif /* !USE_HOSTCC */
415
416 /*****************************************************************************/
417 /* Shared dual-format routines */
418 /*****************************************************************************/
419 #ifndef USE_HOSTCC
420 ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */
421 ulong save_addr; /* Default Save Address */
422 ulong save_size; /* Default Save Size (in bytes) */
423
424 static int on_loadaddr(const char *name, const char *value, enum env_op op,
425 int flags)
426 {
427 switch (op) {
428 case env_op_create:
429 case env_op_overwrite:
430 load_addr = simple_strtoul(value, NULL, 16);
431 break;
432 default:
433 break;
434 }
435
436 return 0;
437 }
438 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr);
439
440 ulong getenv_bootm_low(void)
441 {
442 char *s = getenv("bootm_low");
443 if (s) {
444 ulong tmp = simple_strtoul(s, NULL, 16);
445 return tmp;
446 }
447
448 #if defined(CONFIG_SYS_SDRAM_BASE)
449 return CONFIG_SYS_SDRAM_BASE;
450 #elif defined(CONFIG_ARM)
451 return gd->bd->bi_dram[0].start;
452 #else
453 return 0;
454 #endif
455 }
456
457 phys_size_t getenv_bootm_size(void)
458 {
459 phys_size_t tmp;
460 char *s = getenv("bootm_size");
461 if (s) {
462 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
463 return tmp;
464 }
465 s = getenv("bootm_low");
466 if (s)
467 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
468 else
469 tmp = 0;
470
471
472 #if defined(CONFIG_ARM)
473 return gd->bd->bi_dram[0].size - tmp;
474 #else
475 return gd->bd->bi_memsize - tmp;
476 #endif
477 }
478
479 phys_size_t getenv_bootm_mapsize(void)
480 {
481 phys_size_t tmp;
482 char *s = getenv("bootm_mapsize");
483 if (s) {
484 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
485 return tmp;
486 }
487
488 #if defined(CONFIG_SYS_BOOTMAPSZ)
489 return CONFIG_SYS_BOOTMAPSZ;
490 #else
491 return getenv_bootm_size();
492 #endif
493 }
494
495 void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
496 {
497 if (to == from)
498 return;
499
500 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
501 while (len > 0) {
502 size_t tail = (len > chunksz) ? chunksz : len;
503 WATCHDOG_RESET();
504 memmove(to, from, tail);
505 to += tail;
506 from += tail;
507 len -= tail;
508 }
509 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */
510 memmove(to, from, len);
511 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */
512 }
513 #endif /* !USE_HOSTCC */
514
515 void genimg_print_size(uint32_t size)
516 {
517 #ifndef USE_HOSTCC
518 printf("%d Bytes = ", size);
519 print_size(size, "\n");
520 #else
521 printf("%d Bytes = %.2f kB = %.2f MB\n",
522 size, (double)size / 1.024e3,
523 (double)size / 1.048576e6);
524 #endif
525 }
526
527 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
528 static void genimg_print_time(time_t timestamp)
529 {
530 #ifndef USE_HOSTCC
531 struct rtc_time tm;
532
533 to_tm(timestamp, &tm);
534 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n",
535 tm.tm_year, tm.tm_mon, tm.tm_mday,
536 tm.tm_hour, tm.tm_min, tm.tm_sec);
537 #else
538 printf("%s", ctime(&timestamp));
539 #endif
540 }
541 #endif /* CONFIG_TIMESTAMP || CONFIG_CMD_DATE || USE_HOSTCC */
542
543 /**
544 * get_table_entry_name - translate entry id to long name
545 * @table: pointer to a translation table for entries of a specific type
546 * @msg: message to be returned when translation fails
547 * @id: entry id to be translated
548 *
549 * get_table_entry_name() will go over translation table trying to find
550 * entry that matches given id. If matching entry is found, its long
551 * name is returned to the caller.
552 *
553 * returns:
554 * long entry name if translation succeeds
555 * msg otherwise
556 */
557 char *get_table_entry_name(const table_entry_t *table, char *msg, int id)
558 {
559 for (; table->id >= 0; ++table) {
560 if (table->id == id)
561 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
562 return table->lname;
563 #else
564 return table->lname + gd->reloc_off;
565 #endif
566 }
567 return (msg);
568 }
569
570 const char *genimg_get_os_name(uint8_t os)
571 {
572 return (get_table_entry_name(uimage_os, "Unknown OS", os));
573 }
574
575 const char *genimg_get_arch_name(uint8_t arch)
576 {
577 return (get_table_entry_name(uimage_arch, "Unknown Architecture",
578 arch));
579 }
580
581 const char *genimg_get_type_name(uint8_t type)
582 {
583 return (get_table_entry_name(uimage_type, "Unknown Image", type));
584 }
585
586 const char *genimg_get_comp_name(uint8_t comp)
587 {
588 return (get_table_entry_name(uimage_comp, "Unknown Compression",
589 comp));
590 }
591
592 /**
593 * get_table_entry_id - translate short entry name to id
594 * @table: pointer to a translation table for entries of a specific type
595 * @table_name: to be used in case of error
596 * @name: entry short name to be translated
597 *
598 * get_table_entry_id() will go over translation table trying to find
599 * entry that matches given short name. If matching entry is found,
600 * its id returned to the caller.
601 *
602 * returns:
603 * entry id if translation succeeds
604 * -1 otherwise
605 */
606 int get_table_entry_id(const table_entry_t *table,
607 const char *table_name, const char *name)
608 {
609 const table_entry_t *t;
610 #ifdef USE_HOSTCC
611 int first = 1;
612
613 for (t = table; t->id >= 0; ++t) {
614 if (t->sname && strcasecmp(t->sname, name) == 0)
615 return(t->id);
616 }
617
618 fprintf(stderr, "\nInvalid %s Type - valid names are", table_name);
619 for (t = table; t->id >= 0; ++t) {
620 if (t->sname == NULL)
621 continue;
622 fprintf(stderr, "%c %s", (first) ? ':' : ',', t->sname);
623 first = 0;
624 }
625 fprintf(stderr, "\n");
626 #else
627 for (t = table; t->id >= 0; ++t) {
628 #ifdef CONFIG_NEEDS_MANUAL_RELOC
629 if (t->sname && strcmp(t->sname + gd->reloc_off, name) == 0)
630 #else
631 if (t->sname && strcmp(t->sname, name) == 0)
632 #endif
633 return (t->id);
634 }
635 debug("Invalid %s Type: %s\n", table_name, name);
636 #endif /* USE_HOSTCC */
637 return (-1);
638 }
639
640 int genimg_get_os_id(const char *name)
641 {
642 return (get_table_entry_id(uimage_os, "OS", name));
643 }
644
645 int genimg_get_arch_id(const char *name)
646 {
647 return (get_table_entry_id(uimage_arch, "CPU", name));
648 }
649
650 int genimg_get_type_id(const char *name)
651 {
652 return (get_table_entry_id(uimage_type, "Image", name));
653 }
654
655 int genimg_get_comp_id(const char *name)
656 {
657 return (get_table_entry_id(uimage_comp, "Compression", name));
658 }
659
660 #ifndef USE_HOSTCC
661 /**
662 * genimg_get_format - get image format type
663 * @img_addr: image start address
664 *
665 * genimg_get_format() checks whether provided address points to a valid
666 * legacy or FIT image.
667 *
668 * New uImage format and FDT blob are based on a libfdt. FDT blob
669 * may be passed directly or embedded in a FIT image. In both situations
670 * genimg_get_format() must be able to dectect libfdt header.
671 *
672 * returns:
673 * image format type or IMAGE_FORMAT_INVALID if no image is present
674 */
675 int genimg_get_format(void *img_addr)
676 {
677 ulong format = IMAGE_FORMAT_INVALID;
678 const image_header_t *hdr;
679 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
680 char *fit_hdr;
681 #endif
682
683 hdr = (const image_header_t *)img_addr;
684 if (image_check_magic(hdr))
685 format = IMAGE_FORMAT_LEGACY;
686 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
687 else {
688 fit_hdr = (char *)img_addr;
689 if (fdt_check_header(fit_hdr) == 0)
690 format = IMAGE_FORMAT_FIT;
691 }
692 #endif
693
694 return format;
695 }
696
697 /**
698 * genimg_get_image - get image from special storage (if necessary)
699 * @img_addr: image start address
700 *
701 * genimg_get_image() checks if provided image start adddress is located
702 * in a dataflash storage. If so, image is moved to a system RAM memory.
703 *
704 * returns:
705 * image start address after possible relocation from special storage
706 */
707 ulong genimg_get_image(ulong img_addr)
708 {
709 ulong ram_addr = img_addr;
710
711 #ifdef CONFIG_HAS_DATAFLASH
712 ulong h_size, d_size;
713
714 if (addr_dataflash(img_addr)) {
715 /* ger RAM address */
716 ram_addr = CONFIG_SYS_LOAD_ADDR;
717
718 /* get header size */
719 h_size = image_get_header_size();
720 #if defined(CONFIG_FIT)
721 if (sizeof(struct fdt_header) > h_size)
722 h_size = sizeof(struct fdt_header);
723 #endif
724
725 /* read in header */
726 debug(" Reading image header from dataflash address "
727 "%08lx to RAM address %08lx\n", img_addr, ram_addr);
728
729 read_dataflash(img_addr, h_size, (char *)ram_addr);
730
731 /* get data size */
732 switch (genimg_get_format((void *)ram_addr)) {
733 case IMAGE_FORMAT_LEGACY:
734 d_size = image_get_data_size(
735 (const image_header_t *)ram_addr);
736 debug(" Legacy format image found at 0x%08lx, "
737 "size 0x%08lx\n",
738 ram_addr, d_size);
739 break;
740 #if defined(CONFIG_FIT)
741 case IMAGE_FORMAT_FIT:
742 d_size = fit_get_size((const void *)ram_addr) - h_size;
743 debug(" FIT/FDT format image found at 0x%08lx, "
744 "size 0x%08lx\n",
745 ram_addr, d_size);
746 break;
747 #endif
748 default:
749 printf(" No valid image found at 0x%08lx\n",
750 img_addr);
751 return ram_addr;
752 }
753
754 /* read in image data */
755 debug(" Reading image remaining data from dataflash address "
756 "%08lx to RAM address %08lx\n", img_addr + h_size,
757 ram_addr + h_size);
758
759 read_dataflash(img_addr + h_size, d_size,
760 (char *)(ram_addr + h_size));
761
762 }
763 #endif /* CONFIG_HAS_DATAFLASH */
764
765 return ram_addr;
766 }
767
768 /**
769 * fit_has_config - check if there is a valid FIT configuration
770 * @images: pointer to the bootm command headers structure
771 *
772 * fit_has_config() checks if there is a FIT configuration in use
773 * (if FTI support is present).
774 *
775 * returns:
776 * 0, no FIT support or no configuration found
777 * 1, configuration found
778 */
779 int genimg_has_config(bootm_headers_t *images)
780 {
781 #if defined(CONFIG_FIT)
782 if (images->fit_uname_cfg)
783 return 1;
784 #endif
785 return 0;
786 }
787
788 /**
789 * boot_get_ramdisk - main ramdisk handling routine
790 * @argc: command argument count
791 * @argv: command argument list
792 * @images: pointer to the bootm images structure
793 * @arch: expected ramdisk architecture
794 * @rd_start: pointer to a ulong variable, will hold ramdisk start address
795 * @rd_end: pointer to a ulong variable, will hold ramdisk end
796 *
797 * boot_get_ramdisk() is responsible for finding a valid ramdisk image.
798 * Curently supported are the following ramdisk sources:
799 * - multicomponent kernel/ramdisk image,
800 * - commandline provided address of decicated ramdisk image.
801 *
802 * returns:
803 * 0, if ramdisk image was found and valid, or skiped
804 * rd_start and rd_end are set to ramdisk start/end addresses if
805 * ramdisk image is found and valid
806 *
807 * 1, if ramdisk image is found but corrupted, or invalid
808 * rd_start and rd_end are set to 0 if no ramdisk exists
809 */
810 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images,
811 uint8_t arch, ulong *rd_start, ulong *rd_end)
812 {
813 ulong rd_addr, rd_load;
814 ulong rd_data, rd_len;
815 const image_header_t *rd_hdr;
816 #ifdef CONFIG_SUPPORT_RAW_INITRD
817 char *end;
818 #endif
819 #if defined(CONFIG_FIT)
820 void *fit_hdr;
821 const char *fit_uname_config = NULL;
822 const char *fit_uname_ramdisk = NULL;
823 ulong default_addr;
824 int rd_noffset;
825 int cfg_noffset;
826 const void *data;
827 size_t size;
828 #endif
829
830 *rd_start = 0;
831 *rd_end = 0;
832
833 /*
834 * Look for a '-' which indicates to ignore the
835 * ramdisk argument
836 */
837 if ((argc >= 3) && (strcmp(argv[2], "-") == 0)) {
838 debug("## Skipping init Ramdisk\n");
839 rd_len = rd_data = 0;
840 } else if (argc >= 3 || genimg_has_config(images)) {
841 #if defined(CONFIG_FIT)
842 if (argc >= 3) {
843 /*
844 * If the init ramdisk comes from the FIT image and
845 * the FIT image address is omitted in the command
846 * line argument, try to use os FIT image address or
847 * default load address.
848 */
849 if (images->fit_uname_os)
850 default_addr = (ulong)images->fit_hdr_os;
851 else
852 default_addr = load_addr;
853
854 if (fit_parse_conf(argv[2], default_addr,
855 &rd_addr, &fit_uname_config)) {
856 debug("* ramdisk: config '%s' from image at "
857 "0x%08lx\n",
858 fit_uname_config, rd_addr);
859 } else if (fit_parse_subimage(argv[2], default_addr,
860 &rd_addr, &fit_uname_ramdisk)) {
861 debug("* ramdisk: subimage '%s' from image at "
862 "0x%08lx\n",
863 fit_uname_ramdisk, rd_addr);
864 } else
865 #endif
866 {
867 rd_addr = simple_strtoul(argv[2], NULL, 16);
868 debug("* ramdisk: cmdline image address = "
869 "0x%08lx\n",
870 rd_addr);
871 }
872 #if defined(CONFIG_FIT)
873 } else {
874 /* use FIT configuration provided in first bootm
875 * command argument
876 */
877 rd_addr = (ulong)images->fit_hdr_os;
878 fit_uname_config = images->fit_uname_cfg;
879 debug("* ramdisk: using config '%s' from image "
880 "at 0x%08lx\n",
881 fit_uname_config, rd_addr);
882
883 /*
884 * Check whether configuration has ramdisk defined,
885 * if not, don't try to use it, quit silently.
886 */
887 fit_hdr = (void *)rd_addr;
888 cfg_noffset = fit_conf_get_node(fit_hdr,
889 fit_uname_config);
890 if (cfg_noffset < 0) {
891 debug("* ramdisk: no such config\n");
892 return 1;
893 }
894
895 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr,
896 cfg_noffset);
897 if (rd_noffset < 0) {
898 debug("* ramdisk: no ramdisk in config\n");
899 return 0;
900 }
901 }
902 #endif
903
904 /* copy from dataflash if needed */
905 rd_addr = genimg_get_image(rd_addr);
906
907 /*
908 * Check if there is an initrd image at the
909 * address provided in the second bootm argument
910 * check image type, for FIT images get FIT node.
911 */
912 switch (genimg_get_format((void *)rd_addr)) {
913 case IMAGE_FORMAT_LEGACY:
914 printf("## Loading init Ramdisk from Legacy "
915 "Image at %08lx ...\n", rd_addr);
916
917 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK);
918 rd_hdr = image_get_ramdisk(rd_addr, arch,
919 images->verify);
920
921 if (rd_hdr == NULL)
922 return 1;
923
924 rd_data = image_get_data(rd_hdr);
925 rd_len = image_get_data_size(rd_hdr);
926 rd_load = image_get_load(rd_hdr);
927 break;
928 #if defined(CONFIG_FIT)
929 case IMAGE_FORMAT_FIT:
930 fit_hdr = (void *)rd_addr;
931 printf("## Loading init Ramdisk from FIT "
932 "Image at %08lx ...\n", rd_addr);
933
934 bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT);
935 if (!fit_check_format(fit_hdr)) {
936 puts("Bad FIT ramdisk image format!\n");
937 bootstage_error(
938 BOOTSTAGE_ID_FIT_RD_FORMAT);
939 return 1;
940 }
941 bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT_OK);
942
943 if (!fit_uname_ramdisk) {
944 /*
945 * no ramdisk image node unit name, try to get config
946 * node first. If config unit node name is NULL
947 * fit_conf_get_node() will try to find default config node
948 */
949 bootstage_mark(
950 BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME);
951 cfg_noffset = fit_conf_get_node(fit_hdr,
952 fit_uname_config);
953 if (cfg_noffset < 0) {
954 puts("Could not find configuration "
955 "node\n");
956 bootstage_error(
957 BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME);
958 return 1;
959 }
960 fit_uname_config = fdt_get_name(fit_hdr,
961 cfg_noffset, NULL);
962 printf(" Using '%s' configuration\n",
963 fit_uname_config);
964
965 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr,
966 cfg_noffset);
967 fit_uname_ramdisk = fit_get_name(fit_hdr,
968 rd_noffset, NULL);
969 } else {
970 /* get ramdisk component image node offset */
971 bootstage_mark(
972 BOOTSTAGE_ID_FIT_RD_UNIT_NAME);
973 rd_noffset = fit_image_get_node(fit_hdr,
974 fit_uname_ramdisk);
975 }
976 if (rd_noffset < 0) {
977 puts("Could not find subimage node\n");
978 bootstage_error(BOOTSTAGE_ID_FIT_RD_SUBNODE);
979 return 1;
980 }
981
982 printf(" Trying '%s' ramdisk subimage\n",
983 fit_uname_ramdisk);
984
985 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK);
986 if (!fit_check_ramdisk(fit_hdr, rd_noffset, arch,
987 images->verify))
988 return 1;
989
990 /* get ramdisk image data address and length */
991 if (fit_image_get_data(fit_hdr, rd_noffset, &data,
992 &size)) {
993 puts("Could not find ramdisk subimage data!\n");
994 bootstage_error(BOOTSTAGE_ID_FIT_RD_GET_DATA);
995 return 1;
996 }
997 bootstage_mark(BOOTSTAGE_ID_FIT_RD_GET_DATA_OK);
998
999 rd_data = (ulong)data;
1000 rd_len = size;
1001
1002 if (fit_image_get_load(fit_hdr, rd_noffset, &rd_load)) {
1003 puts("Can't get ramdisk subimage load "
1004 "address!\n");
1005 bootstage_error(BOOTSTAGE_ID_FIT_RD_LOAD);
1006 return 1;
1007 }
1008 bootstage_mark(BOOTSTAGE_ID_FIT_RD_LOAD);
1009
1010 images->fit_hdr_rd = fit_hdr;
1011 images->fit_uname_rd = fit_uname_ramdisk;
1012 images->fit_noffset_rd = rd_noffset;
1013 break;
1014 #endif
1015 default:
1016 #ifdef CONFIG_SUPPORT_RAW_INITRD
1017 if (argc >= 3 && (end = strchr(argv[2], ':'))) {
1018 rd_len = simple_strtoul(++end, NULL, 16);
1019 rd_data = rd_addr;
1020 } else
1021 #endif
1022 {
1023 puts("Wrong Ramdisk Image Format\n");
1024 rd_data = rd_len = rd_load = 0;
1025 return 1;
1026 }
1027 }
1028 } else if (images->legacy_hdr_valid &&
1029 image_check_type(&images->legacy_hdr_os_copy,
1030 IH_TYPE_MULTI)) {
1031
1032 /*
1033 * Now check if we have a legacy mult-component image,
1034 * get second entry data start address and len.
1035 */
1036 bootstage_mark(BOOTSTAGE_ID_RAMDISK);
1037 printf("## Loading init Ramdisk from multi component "
1038 "Legacy Image at %08lx ...\n",
1039 (ulong)images->legacy_hdr_os);
1040
1041 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len);
1042 } else {
1043 /*
1044 * no initrd image
1045 */
1046 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK);
1047 rd_len = rd_data = 0;
1048 }
1049
1050 if (!rd_data) {
1051 debug("## No init Ramdisk\n");
1052 } else {
1053 *rd_start = rd_data;
1054 *rd_end = rd_data + rd_len;
1055 }
1056 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n",
1057 *rd_start, *rd_end);
1058
1059 return 0;
1060 }
1061
1062 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
1063 /**
1064 * boot_ramdisk_high - relocate init ramdisk
1065 * @lmb: pointer to lmb handle, will be used for memory mgmt
1066 * @rd_data: ramdisk data start address
1067 * @rd_len: ramdisk data length
1068 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk
1069 * start address (after possible relocation)
1070 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk
1071 * end address (after possible relocation)
1072 *
1073 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environement
1074 * variable and if requested ramdisk data is moved to a specified location.
1075 *
1076 * Initrd_start and initrd_end are set to final (after relocation) ramdisk
1077 * start/end addresses if ramdisk image start and len were provided,
1078 * otherwise set initrd_start and initrd_end set to zeros.
1079 *
1080 * returns:
1081 * 0 - success
1082 * -1 - failure
1083 */
1084 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len,
1085 ulong *initrd_start, ulong *initrd_end)
1086 {
1087 char *s;
1088 ulong initrd_high;
1089 int initrd_copy_to_ram = 1;
1090
1091 if ((s = getenv("initrd_high")) != NULL) {
1092 /* a value of "no" or a similar string will act like 0,
1093 * turning the "load high" feature off. This is intentional.
1094 */
1095 initrd_high = simple_strtoul(s, NULL, 16);
1096 if (initrd_high == ~0)
1097 initrd_copy_to_ram = 0;
1098 } else {
1099 /* not set, no restrictions to load high */
1100 initrd_high = ~0;
1101 }
1102
1103
1104 #ifdef CONFIG_LOGBUFFER
1105 /* Prevent initrd from overwriting logbuffer */
1106 lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE);
1107 #endif
1108
1109 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n",
1110 initrd_high, initrd_copy_to_ram);
1111
1112 if (rd_data) {
1113 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */
1114 debug(" in-place initrd\n");
1115 *initrd_start = rd_data;
1116 *initrd_end = rd_data + rd_len;
1117 lmb_reserve(lmb, rd_data, rd_len);
1118 } else {
1119 if (initrd_high)
1120 *initrd_start = (ulong)lmb_alloc_base(lmb,
1121 rd_len, 0x1000, initrd_high);
1122 else
1123 *initrd_start = (ulong)lmb_alloc(lmb, rd_len,
1124 0x1000);
1125
1126 if (*initrd_start == 0) {
1127 puts("ramdisk - allocation error\n");
1128 goto error;
1129 }
1130 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK);
1131
1132 *initrd_end = *initrd_start + rd_len;
1133 printf(" Loading Ramdisk to %08lx, end %08lx ... ",
1134 *initrd_start, *initrd_end);
1135
1136 memmove_wd((void *)*initrd_start,
1137 (void *)rd_data, rd_len, CHUNKSZ);
1138
1139 #ifdef CONFIG_MP
1140 /*
1141 * Ensure the image is flushed to memory to handle
1142 * AMP boot scenarios in which we might not be
1143 * HW cache coherent
1144 */
1145 flush_cache((unsigned long)*initrd_start, rd_len);
1146 #endif
1147 puts("OK\n");
1148 }
1149 } else {
1150 *initrd_start = 0;
1151 *initrd_end = 0;
1152 }
1153 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n",
1154 *initrd_start, *initrd_end);
1155
1156 return 0;
1157
1158 error:
1159 return -1;
1160 }
1161 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */
1162
1163 #ifdef CONFIG_OF_LIBFDT
1164 static void fdt_error(const char *msg)
1165 {
1166 puts("ERROR: ");
1167 puts(msg);
1168 puts(" - must RESET the board to recover.\n");
1169 }
1170
1171 static const image_header_t *image_get_fdt(ulong fdt_addr)
1172 {
1173 const image_header_t *fdt_hdr = (const image_header_t *)fdt_addr;
1174
1175 image_print_contents(fdt_hdr);
1176
1177 puts(" Verifying Checksum ... ");
1178 if (!image_check_hcrc(fdt_hdr)) {
1179 fdt_error("fdt header checksum invalid");
1180 return NULL;
1181 }
1182
1183 if (!image_check_dcrc(fdt_hdr)) {
1184 fdt_error("fdt checksum invalid");
1185 return NULL;
1186 }
1187 puts("OK\n");
1188
1189 if (!image_check_type(fdt_hdr, IH_TYPE_FLATDT)) {
1190 fdt_error("uImage is not a fdt");
1191 return NULL;
1192 }
1193 if (image_get_comp(fdt_hdr) != IH_COMP_NONE) {
1194 fdt_error("uImage is compressed");
1195 return NULL;
1196 }
1197 if (fdt_check_header((char *)image_get_data(fdt_hdr)) != 0) {
1198 fdt_error("uImage data is not a fdt");
1199 return NULL;
1200 }
1201 return fdt_hdr;
1202 }
1203
1204 /**
1205 * fit_check_fdt - verify FIT format FDT subimage
1206 * @fit_hdr: pointer to the FIT header
1207 * fdt_noffset: FDT subimage node offset within FIT image
1208 * @verify: data CRC verification flag
1209 *
1210 * fit_check_fdt() verifies integrity of the FDT subimage and from
1211 * specified FIT image.
1212 *
1213 * returns:
1214 * 1, on success
1215 * 0, on failure
1216 */
1217 #if defined(CONFIG_FIT)
1218 static int fit_check_fdt(const void *fit, int fdt_noffset, int verify)
1219 {
1220 fit_image_print(fit, fdt_noffset, " ");
1221
1222 if (verify) {
1223 puts(" Verifying Hash Integrity ... ");
1224 if (!fit_image_check_hashes(fit, fdt_noffset)) {
1225 fdt_error("Bad Data Hash");
1226 return 0;
1227 }
1228 puts("OK\n");
1229 }
1230
1231 if (!fit_image_check_type(fit, fdt_noffset, IH_TYPE_FLATDT)) {
1232 fdt_error("Not a FDT image");
1233 return 0;
1234 }
1235
1236 if (!fit_image_check_comp(fit, fdt_noffset, IH_COMP_NONE)) {
1237 fdt_error("FDT image is compressed");
1238 return 0;
1239 }
1240
1241 return 1;
1242 }
1243 #endif /* CONFIG_FIT */
1244
1245 #ifndef CONFIG_SYS_FDT_PAD
1246 #define CONFIG_SYS_FDT_PAD 0x3000
1247 #endif
1248
1249 #if defined(CONFIG_OF_LIBFDT)
1250 /**
1251 * boot_fdt_add_mem_rsv_regions - Mark the memreserve sections as unusable
1252 * @lmb: pointer to lmb handle, will be used for memory mgmt
1253 * @fdt_blob: pointer to fdt blob base address
1254 *
1255 * Adds the memreserve regions in the dtb to the lmb block. Adding the
1256 * memreserve regions prevents u-boot from using them to store the initrd
1257 * or the fdt blob.
1258 */
1259 void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob)
1260 {
1261 uint64_t addr, size;
1262 int i, total;
1263
1264 if (fdt_check_header(fdt_blob) != 0)
1265 return;
1266
1267 total = fdt_num_mem_rsv(fdt_blob);
1268 for (i = 0; i < total; i++) {
1269 if (fdt_get_mem_rsv(fdt_blob, i, &addr, &size) != 0)
1270 continue;
1271 printf(" reserving fdt memory region: addr=%llx size=%llx\n",
1272 (unsigned long long)addr, (unsigned long long)size);
1273 lmb_reserve(lmb, addr, size);
1274 }
1275 }
1276
1277 /**
1278 * boot_relocate_fdt - relocate flat device tree
1279 * @lmb: pointer to lmb handle, will be used for memory mgmt
1280 * @of_flat_tree: pointer to a char* variable, will hold fdt start address
1281 * @of_size: pointer to a ulong variable, will hold fdt length
1282 *
1283 * boot_relocate_fdt() allocates a region of memory within the bootmap and
1284 * relocates the of_flat_tree into that region, even if the fdt is already in
1285 * the bootmap. It also expands the size of the fdt by CONFIG_SYS_FDT_PAD
1286 * bytes.
1287 *
1288 * of_flat_tree and of_size are set to final (after relocation) values
1289 *
1290 * returns:
1291 * 0 - success
1292 * 1 - failure
1293 */
1294 int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size)
1295 {
1296 void *fdt_blob = *of_flat_tree;
1297 void *of_start = NULL;
1298 char *fdt_high;
1299 ulong of_len = 0;
1300 int err;
1301 int disable_relocation = 0;
1302
1303 /* nothing to do */
1304 if (*of_size == 0)
1305 return 0;
1306
1307 if (fdt_check_header(fdt_blob) != 0) {
1308 fdt_error("image is not a fdt");
1309 goto error;
1310 }
1311
1312 /* position on a 4K boundary before the alloc_current */
1313 /* Pad the FDT by a specified amount */
1314 of_len = *of_size + CONFIG_SYS_FDT_PAD;
1315
1316 /* If fdt_high is set use it to select the relocation address */
1317 fdt_high = getenv("fdt_high");
1318 if (fdt_high) {
1319 void *desired_addr = (void *)simple_strtoul(fdt_high, NULL, 16);
1320
1321 if (((ulong) desired_addr) == ~0UL) {
1322 /* All ones means use fdt in place */
1323 of_start = fdt_blob;
1324 lmb_reserve(lmb, (ulong)of_start, of_len);
1325 disable_relocation = 1;
1326 } else if (desired_addr) {
1327 of_start =
1328 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000,
1329 (ulong)desired_addr);
1330 if (of_start == NULL) {
1331 puts("Failed using fdt_high value for Device Tree");
1332 goto error;
1333 }
1334 } else {
1335 of_start =
1336 (void *)(ulong) lmb_alloc(lmb, of_len, 0x1000);
1337 }
1338 } else {
1339 of_start =
1340 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000,
1341 getenv_bootm_mapsize()
1342 + getenv_bootm_low());
1343 }
1344
1345 if (of_start == NULL) {
1346 puts("device tree - allocation error\n");
1347 goto error;
1348 }
1349
1350 if (disable_relocation) {
1351 /* We assume there is space after the existing fdt to use for padding */
1352 fdt_set_totalsize(of_start, of_len);
1353 printf(" Using Device Tree in place at %p, end %p\n",
1354 of_start, of_start + of_len - 1);
1355 } else {
1356 debug("## device tree at %p ... %p (len=%ld [0x%lX])\n",
1357 fdt_blob, fdt_blob + *of_size - 1, of_len, of_len);
1358
1359 printf(" Loading Device Tree to %p, end %p ... ",
1360 of_start, of_start + of_len - 1);
1361
1362 err = fdt_open_into(fdt_blob, of_start, of_len);
1363 if (err != 0) {
1364 fdt_error("fdt move failed");
1365 goto error;
1366 }
1367 puts("OK\n");
1368 }
1369
1370 *of_flat_tree = of_start;
1371 *of_size = of_len;
1372
1373 set_working_fdt_addr(*of_flat_tree);
1374 return 0;
1375
1376 error:
1377 return 1;
1378 }
1379 #endif /* CONFIG_OF_LIBFDT */
1380
1381 /**
1382 * boot_get_fdt - main fdt handling routine
1383 * @argc: command argument count
1384 * @argv: command argument list
1385 * @images: pointer to the bootm images structure
1386 * @of_flat_tree: pointer to a char* variable, will hold fdt start address
1387 * @of_size: pointer to a ulong variable, will hold fdt length
1388 *
1389 * boot_get_fdt() is responsible for finding a valid flat device tree image.
1390 * Curently supported are the following ramdisk sources:
1391 * - multicomponent kernel/ramdisk image,
1392 * - commandline provided address of decicated ramdisk image.
1393 *
1394 * returns:
1395 * 0, if fdt image was found and valid, or skipped
1396 * of_flat_tree and of_size are set to fdt start address and length if
1397 * fdt image is found and valid
1398 *
1399 * 1, if fdt image is found but corrupted
1400 * of_flat_tree and of_size are set to 0 if no fdt exists
1401 */
1402 int boot_get_fdt(int flag, int argc, char * const argv[],
1403 bootm_headers_t *images, char **of_flat_tree, ulong *of_size)
1404 {
1405 const image_header_t *fdt_hdr;
1406 ulong fdt_addr;
1407 char *fdt_blob = NULL;
1408 ulong image_start, image_data, image_end;
1409 ulong load_start, load_end;
1410 #if defined(CONFIG_FIT)
1411 void *fit_hdr;
1412 const char *fit_uname_config = NULL;
1413 const char *fit_uname_fdt = NULL;
1414 ulong default_addr;
1415 int cfg_noffset;
1416 int fdt_noffset;
1417 const void *data;
1418 size_t size;
1419 #endif
1420
1421 *of_flat_tree = NULL;
1422 *of_size = 0;
1423
1424 if (argc > 3 || genimg_has_config(images)) {
1425 #if defined(CONFIG_FIT)
1426 if (argc > 3) {
1427 /*
1428 * If the FDT blob comes from the FIT image and the
1429 * FIT image address is omitted in the command line
1430 * argument, try to use ramdisk or os FIT image
1431 * address or default load address.
1432 */
1433 if (images->fit_uname_rd)
1434 default_addr = (ulong)images->fit_hdr_rd;
1435 else if (images->fit_uname_os)
1436 default_addr = (ulong)images->fit_hdr_os;
1437 else
1438 default_addr = load_addr;
1439
1440 if (fit_parse_conf(argv[3], default_addr,
1441 &fdt_addr, &fit_uname_config)) {
1442 debug("* fdt: config '%s' from image at "
1443 "0x%08lx\n",
1444 fit_uname_config, fdt_addr);
1445 } else if (fit_parse_subimage(argv[3], default_addr,
1446 &fdt_addr, &fit_uname_fdt)) {
1447 debug("* fdt: subimage '%s' from image at "
1448 "0x%08lx\n",
1449 fit_uname_fdt, fdt_addr);
1450 } else
1451 #endif
1452 {
1453 fdt_addr = simple_strtoul(argv[3], NULL, 16);
1454 debug("* fdt: cmdline image address = "
1455 "0x%08lx\n",
1456 fdt_addr);
1457 }
1458 #if defined(CONFIG_FIT)
1459 } else {
1460 /* use FIT configuration provided in first bootm
1461 * command argument
1462 */
1463 fdt_addr = (ulong)images->fit_hdr_os;
1464 fit_uname_config = images->fit_uname_cfg;
1465 debug("* fdt: using config '%s' from image "
1466 "at 0x%08lx\n",
1467 fit_uname_config, fdt_addr);
1468
1469 /*
1470 * Check whether configuration has FDT blob defined,
1471 * if not quit silently.
1472 */
1473 fit_hdr = (void *)fdt_addr;
1474 cfg_noffset = fit_conf_get_node(fit_hdr,
1475 fit_uname_config);
1476 if (cfg_noffset < 0) {
1477 debug("* fdt: no such config\n");
1478 return 0;
1479 }
1480
1481 fdt_noffset = fit_conf_get_fdt_node(fit_hdr,
1482 cfg_noffset);
1483 if (fdt_noffset < 0) {
1484 debug("* fdt: no fdt in config\n");
1485 return 0;
1486 }
1487 }
1488 #endif
1489
1490 debug("## Checking for 'FDT'/'FDT Image' at %08lx\n",
1491 fdt_addr);
1492
1493 /* copy from dataflash if needed */
1494 fdt_addr = genimg_get_image(fdt_addr);
1495
1496 /*
1497 * Check if there is an FDT image at the
1498 * address provided in the second bootm argument
1499 * check image type, for FIT images get a FIT node.
1500 */
1501 switch (genimg_get_format((void *)fdt_addr)) {
1502 case IMAGE_FORMAT_LEGACY:
1503 /* verify fdt_addr points to a valid image header */
1504 printf("## Flattened Device Tree from Legacy Image "
1505 "at %08lx\n",
1506 fdt_addr);
1507 fdt_hdr = image_get_fdt(fdt_addr);
1508 if (!fdt_hdr)
1509 goto error;
1510
1511 /*
1512 * move image data to the load address,
1513 * make sure we don't overwrite initial image
1514 */
1515 image_start = (ulong)fdt_hdr;
1516 image_data = (ulong)image_get_data(fdt_hdr);
1517 image_end = image_get_image_end(fdt_hdr);
1518
1519 load_start = image_get_load(fdt_hdr);
1520 load_end = load_start + image_get_data_size(fdt_hdr);
1521
1522 if (load_start == image_start ||
1523 load_start == image_data) {
1524 fdt_blob = (char *)image_data;
1525 break;
1526 }
1527
1528 if ((load_start < image_end) && (load_end > image_start)) {
1529 fdt_error("fdt overwritten");
1530 goto error;
1531 }
1532
1533 debug(" Loading FDT from 0x%08lx to 0x%08lx\n",
1534 image_data, load_start);
1535
1536 memmove((void *)load_start,
1537 (void *)image_data,
1538 image_get_data_size(fdt_hdr));
1539
1540 fdt_blob = (char *)load_start;
1541 break;
1542 case IMAGE_FORMAT_FIT:
1543 /*
1544 * This case will catch both: new uImage format
1545 * (libfdt based) and raw FDT blob (also libfdt
1546 * based).
1547 */
1548 #if defined(CONFIG_FIT)
1549 /* check FDT blob vs FIT blob */
1550 if (fit_check_format((const void *)fdt_addr)) {
1551 /*
1552 * FIT image
1553 */
1554 fit_hdr = (void *)fdt_addr;
1555 printf("## Flattened Device Tree from FIT "
1556 "Image at %08lx\n",
1557 fdt_addr);
1558
1559 if (!fit_uname_fdt) {
1560 /*
1561 * no FDT blob image node unit name,
1562 * try to get config node first. If
1563 * config unit node name is NULL
1564 * fit_conf_get_node() will try to
1565 * find default config node
1566 */
1567 cfg_noffset = fit_conf_get_node(fit_hdr,
1568 fit_uname_config);
1569
1570 if (cfg_noffset < 0) {
1571 fdt_error("Could not find "
1572 "configuration "
1573 "node\n");
1574 goto error;
1575 }
1576
1577 fit_uname_config = fdt_get_name(fit_hdr,
1578 cfg_noffset, NULL);
1579 printf(" Using '%s' configuration\n",
1580 fit_uname_config);
1581
1582 fdt_noffset = fit_conf_get_fdt_node(
1583 fit_hdr,
1584 cfg_noffset);
1585 fit_uname_fdt = fit_get_name(fit_hdr,
1586 fdt_noffset, NULL);
1587 } else {
1588 /* get FDT component image node offset */
1589 fdt_noffset = fit_image_get_node(
1590 fit_hdr,
1591 fit_uname_fdt);
1592 }
1593 if (fdt_noffset < 0) {
1594 fdt_error("Could not find subimage "
1595 "node\n");
1596 goto error;
1597 }
1598
1599 printf(" Trying '%s' FDT blob subimage\n",
1600 fit_uname_fdt);
1601
1602 if (!fit_check_fdt(fit_hdr, fdt_noffset,
1603 images->verify))
1604 goto error;
1605
1606 /* get ramdisk image data address and length */
1607 if (fit_image_get_data(fit_hdr, fdt_noffset,
1608 &data, &size)) {
1609 fdt_error("Could not find FDT "
1610 "subimage data");
1611 goto error;
1612 }
1613
1614 /* verift that image data is a proper FDT blob */
1615 if (fdt_check_header((char *)data) != 0) {
1616 fdt_error("Subimage data is not a FTD");
1617 goto error;
1618 }
1619
1620 /*
1621 * move image data to the load address,
1622 * make sure we don't overwrite initial image
1623 */
1624 image_start = (ulong)fit_hdr;
1625 image_end = fit_get_end(fit_hdr);
1626
1627 if (fit_image_get_load(fit_hdr, fdt_noffset,
1628 &load_start) == 0) {
1629 load_end = load_start + size;
1630
1631 if ((load_start < image_end) &&
1632 (load_end > image_start)) {
1633 fdt_error("FDT overwritten");
1634 goto error;
1635 }
1636
1637 printf(" Loading FDT from 0x%08lx "
1638 "to 0x%08lx\n",
1639 (ulong)data,
1640 load_start);
1641
1642 memmove((void *)load_start,
1643 (void *)data, size);
1644
1645 fdt_blob = (char *)load_start;
1646 } else {
1647 fdt_blob = (char *)data;
1648 }
1649
1650 images->fit_hdr_fdt = fit_hdr;
1651 images->fit_uname_fdt = fit_uname_fdt;
1652 images->fit_noffset_fdt = fdt_noffset;
1653 break;
1654 } else
1655 #endif
1656 {
1657 /*
1658 * FDT blob
1659 */
1660 fdt_blob = (char *)fdt_addr;
1661 debug("* fdt: raw FDT blob\n");
1662 printf("## Flattened Device Tree blob at "
1663 "%08lx\n", (long)fdt_blob);
1664 }
1665 break;
1666 default:
1667 puts("ERROR: Did not find a cmdline Flattened Device "
1668 "Tree\n");
1669 goto error;
1670 }
1671
1672 printf(" Booting using the fdt blob at 0x%p\n", fdt_blob);
1673
1674 } else if (images->legacy_hdr_valid &&
1675 image_check_type(&images->legacy_hdr_os_copy,
1676 IH_TYPE_MULTI)) {
1677
1678 ulong fdt_data, fdt_len;
1679
1680 /*
1681 * Now check if we have a legacy multi-component image,
1682 * get second entry data start address and len.
1683 */
1684 printf("## Flattened Device Tree from multi "
1685 "component Image at %08lX\n",
1686 (ulong)images->legacy_hdr_os);
1687
1688 image_multi_getimg(images->legacy_hdr_os, 2, &fdt_data,
1689 &fdt_len);
1690 if (fdt_len) {
1691
1692 fdt_blob = (char *)fdt_data;
1693 printf(" Booting using the fdt at 0x%p\n", fdt_blob);
1694
1695 if (fdt_check_header(fdt_blob) != 0) {
1696 fdt_error("image is not a fdt");
1697 goto error;
1698 }
1699
1700 if (fdt_totalsize(fdt_blob) != fdt_len) {
1701 fdt_error("fdt size != image size");
1702 goto error;
1703 }
1704 } else {
1705 debug("## No Flattened Device Tree\n");
1706 return 0;
1707 }
1708 } else {
1709 debug("## No Flattened Device Tree\n");
1710 return 0;
1711 }
1712
1713 *of_flat_tree = fdt_blob;
1714 *of_size = fdt_totalsize(fdt_blob);
1715 debug(" of_flat_tree at 0x%08lx size 0x%08lx\n",
1716 (ulong)*of_flat_tree, *of_size);
1717
1718 return 0;
1719
1720 error:
1721 *of_flat_tree = NULL;
1722 *of_size = 0;
1723 return 1;
1724 }
1725 #endif /* CONFIG_OF_LIBFDT */
1726
1727 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE
1728 /**
1729 * boot_get_cmdline - allocate and initialize kernel cmdline
1730 * @lmb: pointer to lmb handle, will be used for memory mgmt
1731 * @cmd_start: pointer to a ulong variable, will hold cmdline start
1732 * @cmd_end: pointer to a ulong variable, will hold cmdline end
1733 *
1734 * boot_get_cmdline() allocates space for kernel command line below
1735 * BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-boot environemnt
1736 * variable is present its contents is copied to allocated kernel
1737 * command line.
1738 *
1739 * returns:
1740 * 0 - success
1741 * -1 - failure
1742 */
1743 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end)
1744 {
1745 char *cmdline;
1746 char *s;
1747
1748 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf,
1749 getenv_bootm_mapsize() + getenv_bootm_low());
1750
1751 if (cmdline == NULL)
1752 return -1;
1753
1754 if ((s = getenv("bootargs")) == NULL)
1755 s = "";
1756
1757 strcpy(cmdline, s);
1758
1759 *cmd_start = (ulong) & cmdline[0];
1760 *cmd_end = *cmd_start + strlen(cmdline);
1761
1762 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end);
1763
1764 return 0;
1765 }
1766 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */
1767
1768 #ifdef CONFIG_SYS_BOOT_GET_KBD
1769 /**
1770 * boot_get_kbd - allocate and initialize kernel copy of board info
1771 * @lmb: pointer to lmb handle, will be used for memory mgmt
1772 * @kbd: double pointer to board info data
1773 *
1774 * boot_get_kbd() allocates space for kernel copy of board info data below
1775 * BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized
1776 * with the current u-boot board info data.
1777 *
1778 * returns:
1779 * 0 - success
1780 * -1 - failure
1781 */
1782 int boot_get_kbd(struct lmb *lmb, bd_t **kbd)
1783 {
1784 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf,
1785 getenv_bootm_mapsize() + getenv_bootm_low());
1786 if (*kbd == NULL)
1787 return -1;
1788
1789 **kbd = *(gd->bd);
1790
1791 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd);
1792
1793 #if defined(DEBUG) && defined(CONFIG_CMD_BDI)
1794 do_bdinfo(NULL, 0, 0, NULL);
1795 #endif
1796
1797 return 0;
1798 }
1799 #endif /* CONFIG_SYS_BOOT_GET_KBD */
1800 #endif /* !USE_HOSTCC */
1801
1802 #if defined(CONFIG_FIT)
1803 /*****************************************************************************/
1804 /* New uImage format routines */
1805 /*****************************************************************************/
1806 #ifndef USE_HOSTCC
1807 static int fit_parse_spec(const char *spec, char sepc, ulong addr_curr,
1808 ulong *addr, const char **name)
1809 {
1810 const char *sep;
1811
1812 *addr = addr_curr;
1813 *name = NULL;
1814
1815 sep = strchr(spec, sepc);
1816 if (sep) {
1817 if (sep - spec > 0)
1818 *addr = simple_strtoul(spec, NULL, 16);
1819
1820 *name = sep + 1;
1821 return 1;
1822 }
1823
1824 return 0;
1825 }
1826
1827 /**
1828 * fit_parse_conf - parse FIT configuration spec
1829 * @spec: input string, containing configuration spec
1830 * @add_curr: current image address (to be used as a possible default)
1831 * @addr: pointer to a ulong variable, will hold FIT image address of a given
1832 * configuration
1833 * @conf_name double pointer to a char, will hold pointer to a configuration
1834 * unit name
1835 *
1836 * fit_parse_conf() expects configuration spec in the for of [<addr>]#<conf>,
1837 * where <addr> is a FIT image address that contains configuration
1838 * with a <conf> unit name.
1839 *
1840 * Address part is optional, and if omitted default add_curr will
1841 * be used instead.
1842 *
1843 * returns:
1844 * 1 if spec is a valid configuration string,
1845 * addr and conf_name are set accordingly
1846 * 0 otherwise
1847 */
1848 int fit_parse_conf(const char *spec, ulong addr_curr,
1849 ulong *addr, const char **conf_name)
1850 {
1851 return fit_parse_spec(spec, '#', addr_curr, addr, conf_name);
1852 }
1853
1854 /**
1855 * fit_parse_subimage - parse FIT subimage spec
1856 * @spec: input string, containing subimage spec
1857 * @add_curr: current image address (to be used as a possible default)
1858 * @addr: pointer to a ulong variable, will hold FIT image address of a given
1859 * subimage
1860 * @image_name: double pointer to a char, will hold pointer to a subimage name
1861 *
1862 * fit_parse_subimage() expects subimage spec in the for of
1863 * [<addr>]:<subimage>, where <addr> is a FIT image address that contains
1864 * subimage with a <subimg> unit name.
1865 *
1866 * Address part is optional, and if omitted default add_curr will
1867 * be used instead.
1868 *
1869 * returns:
1870 * 1 if spec is a valid subimage string,
1871 * addr and image_name are set accordingly
1872 * 0 otherwise
1873 */
1874 int fit_parse_subimage(const char *spec, ulong addr_curr,
1875 ulong *addr, const char **image_name)
1876 {
1877 return fit_parse_spec(spec, ':', addr_curr, addr, image_name);
1878 }
1879 #endif /* !USE_HOSTCC */
1880
1881 static void fit_get_debug(const void *fit, int noffset,
1882 char *prop_name, int err)
1883 {
1884 debug("Can't get '%s' property from FIT 0x%08lx, "
1885 "node: offset %d, name %s (%s)\n",
1886 prop_name, (ulong)fit, noffset,
1887 fit_get_name(fit, noffset, NULL),
1888 fdt_strerror(err));
1889 }
1890
1891 /**
1892 * fit_print_contents - prints out the contents of the FIT format image
1893 * @fit: pointer to the FIT format image header
1894 * @p: pointer to prefix string
1895 *
1896 * fit_print_contents() formats a multi line FIT image contents description.
1897 * The routine prints out FIT image properties (root node level) follwed by
1898 * the details of each component image.
1899 *
1900 * returns:
1901 * no returned results
1902 */
1903 void fit_print_contents(const void *fit)
1904 {
1905 char *desc;
1906 char *uname;
1907 int images_noffset;
1908 int confs_noffset;
1909 int noffset;
1910 int ndepth;
1911 int count = 0;
1912 int ret;
1913 const char *p;
1914 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
1915 time_t timestamp;
1916 #endif
1917
1918 #ifdef USE_HOSTCC
1919 p = "";
1920 #else
1921 p = " ";
1922 #endif
1923
1924 /* Root node properties */
1925 ret = fit_get_desc(fit, 0, &desc);
1926 printf("%sFIT description: ", p);
1927 if (ret)
1928 printf("unavailable\n");
1929 else
1930 printf("%s\n", desc);
1931
1932 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
1933 ret = fit_get_timestamp(fit, 0, &timestamp);
1934 printf("%sCreated: ", p);
1935 if (ret)
1936 printf("unavailable\n");
1937 else
1938 genimg_print_time(timestamp);
1939 #endif
1940
1941 /* Find images parent node offset */
1942 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
1943 if (images_noffset < 0) {
1944 printf("Can't find images parent node '%s' (%s)\n",
1945 FIT_IMAGES_PATH, fdt_strerror(images_noffset));
1946 return;
1947 }
1948
1949 /* Process its subnodes, print out component images details */
1950 for (ndepth = 0, count = 0,
1951 noffset = fdt_next_node(fit, images_noffset, &ndepth);
1952 (noffset >= 0) && (ndepth > 0);
1953 noffset = fdt_next_node(fit, noffset, &ndepth)) {
1954 if (ndepth == 1) {
1955 /*
1956 * Direct child node of the images parent node,
1957 * i.e. component image node.
1958 */
1959 printf("%s Image %u (%s)\n", p, count++,
1960 fit_get_name(fit, noffset, NULL));
1961
1962 fit_image_print(fit, noffset, p);
1963 }
1964 }
1965
1966 /* Find configurations parent node offset */
1967 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH);
1968 if (confs_noffset < 0) {
1969 debug("Can't get configurations parent node '%s' (%s)\n",
1970 FIT_CONFS_PATH, fdt_strerror(confs_noffset));
1971 return;
1972 }
1973
1974 /* get default configuration unit name from default property */
1975 uname = (char *)fdt_getprop(fit, noffset, FIT_DEFAULT_PROP, NULL);
1976 if (uname)
1977 printf("%s Default Configuration: '%s'\n", p, uname);
1978
1979 /* Process its subnodes, print out configurations details */
1980 for (ndepth = 0, count = 0,
1981 noffset = fdt_next_node(fit, confs_noffset, &ndepth);
1982 (noffset >= 0) && (ndepth > 0);
1983 noffset = fdt_next_node(fit, noffset, &ndepth)) {
1984 if (ndepth == 1) {
1985 /*
1986 * Direct child node of the configurations parent node,
1987 * i.e. configuration node.
1988 */
1989 printf("%s Configuration %u (%s)\n", p, count++,
1990 fit_get_name(fit, noffset, NULL));
1991
1992 fit_conf_print(fit, noffset, p);
1993 }
1994 }
1995 }
1996
1997 /**
1998 * fit_image_print - prints out the FIT component image details
1999 * @fit: pointer to the FIT format image header
2000 * @image_noffset: offset of the component image node
2001 * @p: pointer to prefix string
2002 *
2003 * fit_image_print() lists all mandatory properies for the processed component
2004 * image. If present, hash nodes are printed out as well. Load
2005 * address for images of type firmware is also printed out. Since the load
2006 * address is not mandatory for firmware images, it will be output as
2007 * "unavailable" when not present.
2008 *
2009 * returns:
2010 * no returned results
2011 */
2012 void fit_image_print(const void *fit, int image_noffset, const char *p)
2013 {
2014 char *desc;
2015 uint8_t type, arch, os, comp;
2016 size_t size;
2017 ulong load, entry;
2018 const void *data;
2019 int noffset;
2020 int ndepth;
2021 int ret;
2022
2023 /* Mandatory properties */
2024 ret = fit_get_desc(fit, image_noffset, &desc);
2025 printf("%s Description: ", p);
2026 if (ret)
2027 printf("unavailable\n");
2028 else
2029 printf("%s\n", desc);
2030
2031 fit_image_get_type(fit, image_noffset, &type);
2032 printf("%s Type: %s\n", p, genimg_get_type_name(type));
2033
2034 fit_image_get_comp(fit, image_noffset, &comp);
2035 printf("%s Compression: %s\n", p, genimg_get_comp_name(comp));
2036
2037 ret = fit_image_get_data(fit, image_noffset, &data, &size);
2038
2039 #ifndef USE_HOSTCC
2040 printf("%s Data Start: ", p);
2041 if (ret)
2042 printf("unavailable\n");
2043 else
2044 printf("0x%08lx\n", (ulong)data);
2045 #endif
2046
2047 printf("%s Data Size: ", p);
2048 if (ret)
2049 printf("unavailable\n");
2050 else
2051 genimg_print_size(size);
2052
2053 /* Remaining, type dependent properties */
2054 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) ||
2055 (type == IH_TYPE_RAMDISK) || (type == IH_TYPE_FIRMWARE) ||
2056 (type == IH_TYPE_FLATDT)) {
2057 fit_image_get_arch(fit, image_noffset, &arch);
2058 printf("%s Architecture: %s\n", p, genimg_get_arch_name(arch));
2059 }
2060
2061 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_RAMDISK)) {
2062 fit_image_get_os(fit, image_noffset, &os);
2063 printf("%s OS: %s\n", p, genimg_get_os_name(os));
2064 }
2065
2066 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) ||
2067 (type == IH_TYPE_FIRMWARE) || (type == IH_TYPE_RAMDISK)) {
2068 ret = fit_image_get_load(fit, image_noffset, &load);
2069 printf("%s Load Address: ", p);
2070 if (ret)
2071 printf("unavailable\n");
2072 else
2073 printf("0x%08lx\n", load);
2074 }
2075
2076 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) ||
2077 (type == IH_TYPE_RAMDISK)) {
2078 fit_image_get_entry(fit, image_noffset, &entry);
2079 printf("%s Entry Point: ", p);
2080 if (ret)
2081 printf("unavailable\n");
2082 else
2083 printf("0x%08lx\n", entry);
2084 }
2085
2086 /* Process all hash subnodes of the component image node */
2087 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth);
2088 (noffset >= 0) && (ndepth > 0);
2089 noffset = fdt_next_node(fit, noffset, &ndepth)) {
2090 if (ndepth == 1) {
2091 /* Direct child node of the component image node */
2092 fit_image_print_hash(fit, noffset, p);
2093 }
2094 }
2095 }
2096
2097 /**
2098 * fit_image_print_hash - prints out the hash node details
2099 * @fit: pointer to the FIT format image header
2100 * @noffset: offset of the hash node
2101 * @p: pointer to prefix string
2102 *
2103 * fit_image_print_hash() lists properies for the processed hash node
2104 *
2105 * returns:
2106 * no returned results
2107 */
2108 void fit_image_print_hash(const void *fit, int noffset, const char *p)
2109 {
2110 char *algo;
2111 uint8_t *value;
2112 int value_len;
2113 int i, ret;
2114
2115 /*
2116 * Check subnode name, must be equal to "hash".
2117 * Multiple hash nodes require unique unit node
2118 * names, e.g. hash@1, hash@2, etc.
2119 */
2120 if (strncmp(fit_get_name(fit, noffset, NULL),
2121 FIT_HASH_NODENAME,
2122 strlen(FIT_HASH_NODENAME)) != 0)
2123 return;
2124
2125 debug("%s Hash node: '%s'\n", p,
2126 fit_get_name(fit, noffset, NULL));
2127
2128 printf("%s Hash algo: ", p);
2129 if (fit_image_hash_get_algo(fit, noffset, &algo)) {
2130 printf("invalid/unsupported\n");
2131 return;
2132 }
2133 printf("%s\n", algo);
2134
2135 ret = fit_image_hash_get_value(fit, noffset, &value,
2136 &value_len);
2137 printf("%s Hash value: ", p);
2138 if (ret) {
2139 printf("unavailable\n");
2140 } else {
2141 for (i = 0; i < value_len; i++)
2142 printf("%02x", value[i]);
2143 printf("\n");
2144 }
2145
2146 debug("%s Hash len: %d\n", p, value_len);
2147 }
2148
2149 /**
2150 * fit_get_desc - get node description property
2151 * @fit: pointer to the FIT format image header
2152 * @noffset: node offset
2153 * @desc: double pointer to the char, will hold pointer to the descrption
2154 *
2155 * fit_get_desc() reads description property from a given node, if
2156 * description is found pointer to it is returened in third call argument.
2157 *
2158 * returns:
2159 * 0, on success
2160 * -1, on failure
2161 */
2162 int fit_get_desc(const void *fit, int noffset, char **desc)
2163 {
2164 int len;
2165
2166 *desc = (char *)fdt_getprop(fit, noffset, FIT_DESC_PROP, &len);
2167 if (*desc == NULL) {
2168 fit_get_debug(fit, noffset, FIT_DESC_PROP, len);
2169 return -1;
2170 }
2171
2172 return 0;
2173 }
2174
2175 /**
2176 * fit_get_timestamp - get node timestamp property
2177 * @fit: pointer to the FIT format image header
2178 * @noffset: node offset
2179 * @timestamp: pointer to the time_t, will hold read timestamp
2180 *
2181 * fit_get_timestamp() reads timestamp poperty from given node, if timestamp
2182 * is found and has a correct size its value is retured in third call
2183 * argument.
2184 *
2185 * returns:
2186 * 0, on success
2187 * -1, on property read failure
2188 * -2, on wrong timestamp size
2189 */
2190 int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp)
2191 {
2192 int len;
2193 const void *data;
2194
2195 data = fdt_getprop(fit, noffset, FIT_TIMESTAMP_PROP, &len);
2196 if (data == NULL) {
2197 fit_get_debug(fit, noffset, FIT_TIMESTAMP_PROP, len);
2198 return -1;
2199 }
2200 if (len != sizeof(uint32_t)) {
2201 debug("FIT timestamp with incorrect size of (%u)\n", len);
2202 return -2;
2203 }
2204
2205 *timestamp = uimage_to_cpu(*((uint32_t *)data));
2206 return 0;
2207 }
2208
2209 /**
2210 * fit_image_get_node - get node offset for component image of a given unit name
2211 * @fit: pointer to the FIT format image header
2212 * @image_uname: component image node unit name
2213 *
2214 * fit_image_get_node() finds a component image (withing the '/images'
2215 * node) of a provided unit name. If image is found its node offset is
2216 * returned to the caller.
2217 *
2218 * returns:
2219 * image node offset when found (>=0)
2220 * negative number on failure (FDT_ERR_* code)
2221 */
2222 int fit_image_get_node(const void *fit, const char *image_uname)
2223 {
2224 int noffset, images_noffset;
2225
2226 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
2227 if (images_noffset < 0) {
2228 debug("Can't find images parent node '%s' (%s)\n",
2229 FIT_IMAGES_PATH, fdt_strerror(images_noffset));
2230 return images_noffset;
2231 }
2232
2233 noffset = fdt_subnode_offset(fit, images_noffset, image_uname);
2234 if (noffset < 0) {
2235 debug("Can't get node offset for image unit name: '%s' (%s)\n",
2236 image_uname, fdt_strerror(noffset));
2237 }
2238
2239 return noffset;
2240 }
2241
2242 /**
2243 * fit_image_get_os - get os id for a given component image node
2244 * @fit: pointer to the FIT format image header
2245 * @noffset: component image node offset
2246 * @os: pointer to the uint8_t, will hold os numeric id
2247 *
2248 * fit_image_get_os() finds os property in a given component image node.
2249 * If the property is found, its (string) value is translated to the numeric
2250 * id which is returned to the caller.
2251 *
2252 * returns:
2253 * 0, on success
2254 * -1, on failure
2255 */
2256 int fit_image_get_os(const void *fit, int noffset, uint8_t *os)
2257 {
2258 int len;
2259 const void *data;
2260
2261 /* Get OS name from property data */
2262 data = fdt_getprop(fit, noffset, FIT_OS_PROP, &len);
2263 if (data == NULL) {
2264 fit_get_debug(fit, noffset, FIT_OS_PROP, len);
2265 *os = -1;
2266 return -1;
2267 }
2268
2269 /* Translate OS name to id */
2270 *os = genimg_get_os_id(data);
2271 return 0;
2272 }
2273
2274 /**
2275 * fit_image_get_arch - get arch id for a given component image node
2276 * @fit: pointer to the FIT format image header
2277 * @noffset: component image node offset
2278 * @arch: pointer to the uint8_t, will hold arch numeric id
2279 *
2280 * fit_image_get_arch() finds arch property in a given component image node.
2281 * If the property is found, its (string) value is translated to the numeric
2282 * id which is returned to the caller.
2283 *
2284 * returns:
2285 * 0, on success
2286 * -1, on failure
2287 */
2288 int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch)
2289 {
2290 int len;
2291 const void *data;
2292
2293 /* Get architecture name from property data */
2294 data = fdt_getprop(fit, noffset, FIT_ARCH_PROP, &len);
2295 if (data == NULL) {
2296 fit_get_debug(fit, noffset, FIT_ARCH_PROP, len);
2297 *arch = -1;
2298 return -1;
2299 }
2300
2301 /* Translate architecture name to id */
2302 *arch = genimg_get_arch_id(data);
2303 return 0;
2304 }
2305
2306 /**
2307 * fit_image_get_type - get type id for a given component image node
2308 * @fit: pointer to the FIT format image header
2309 * @noffset: component image node offset
2310 * @type: pointer to the uint8_t, will hold type numeric id
2311 *
2312 * fit_image_get_type() finds type property in a given component image node.
2313 * If the property is found, its (string) value is translated to the numeric
2314 * id which is returned to the caller.
2315 *
2316 * returns:
2317 * 0, on success
2318 * -1, on failure
2319 */
2320 int fit_image_get_type(const void *fit, int noffset, uint8_t *type)
2321 {
2322 int len;
2323 const void *data;
2324
2325 /* Get image type name from property data */
2326 data = fdt_getprop(fit, noffset, FIT_TYPE_PROP, &len);
2327 if (data == NULL) {
2328 fit_get_debug(fit, noffset, FIT_TYPE_PROP, len);
2329 *type = -1;
2330 return -1;
2331 }
2332
2333 /* Translate image type name to id */
2334 *type = genimg_get_type_id(data);
2335 return 0;
2336 }
2337
2338 /**
2339 * fit_image_get_comp - get comp id for a given component image node
2340 * @fit: pointer to the FIT format image header
2341 * @noffset: component image node offset
2342 * @comp: pointer to the uint8_t, will hold comp numeric id
2343 *
2344 * fit_image_get_comp() finds comp property in a given component image node.
2345 * If the property is found, its (string) value is translated to the numeric
2346 * id which is returned to the caller.
2347 *
2348 * returns:
2349 * 0, on success
2350 * -1, on failure
2351 */
2352 int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp)
2353 {
2354 int len;
2355 const void *data;
2356
2357 /* Get compression name from property data */
2358 data = fdt_getprop(fit, noffset, FIT_COMP_PROP, &len);
2359 if (data == NULL) {
2360 fit_get_debug(fit, noffset, FIT_COMP_PROP, len);
2361 *comp = -1;
2362 return -1;
2363 }
2364
2365 /* Translate compression name to id */
2366 *comp = genimg_get_comp_id(data);
2367 return 0;
2368 }
2369
2370 /**
2371 * fit_image_get_load - get load address property for a given component image node
2372 * @fit: pointer to the FIT format image header
2373 * @noffset: component image node offset
2374 * @load: pointer to the uint32_t, will hold load address
2375 *
2376 * fit_image_get_load() finds load address property in a given component image node.
2377 * If the property is found, its value is returned to the caller.
2378 *
2379 * returns:
2380 * 0, on success
2381 * -1, on failure
2382 */
2383 int fit_image_get_load(const void *fit, int noffset, ulong *load)
2384 {
2385 int len;
2386 const uint32_t *data;
2387
2388 data = fdt_getprop(fit, noffset, FIT_LOAD_PROP, &len);
2389 if (data == NULL) {
2390 fit_get_debug(fit, noffset, FIT_LOAD_PROP, len);
2391 return -1;
2392 }
2393
2394 *load = uimage_to_cpu(*data);
2395 return 0;
2396 }
2397
2398 /**
2399 * fit_image_get_entry - get entry point address property for a given component image node
2400 * @fit: pointer to the FIT format image header
2401 * @noffset: component image node offset
2402 * @entry: pointer to the uint32_t, will hold entry point address
2403 *
2404 * fit_image_get_entry() finds entry point address property in a given component image node.
2405 * If the property is found, its value is returned to the caller.
2406 *
2407 * returns:
2408 * 0, on success
2409 * -1, on failure
2410 */
2411 int fit_image_get_entry(const void *fit, int noffset, ulong *entry)
2412 {
2413 int len;
2414 const uint32_t *data;
2415
2416 data = fdt_getprop(fit, noffset, FIT_ENTRY_PROP, &len);
2417 if (data == NULL) {
2418 fit_get_debug(fit, noffset, FIT_ENTRY_PROP, len);
2419 return -1;
2420 }
2421
2422 *entry = uimage_to_cpu(*data);
2423 return 0;
2424 }
2425
2426 /**
2427 * fit_image_get_data - get data property and its size for a given component image node
2428 * @fit: pointer to the FIT format image header
2429 * @noffset: component image node offset
2430 * @data: double pointer to void, will hold data property's data address
2431 * @size: pointer to size_t, will hold data property's data size
2432 *
2433 * fit_image_get_data() finds data property in a given component image node.
2434 * If the property is found its data start address and size are returned to
2435 * the caller.
2436 *
2437 * returns:
2438 * 0, on success
2439 * -1, on failure
2440 */
2441 int fit_image_get_data(const void *fit, int noffset,
2442 const void **data, size_t *size)
2443 {
2444 int len;
2445
2446 *data = fdt_getprop(fit, noffset, FIT_DATA_PROP, &len);
2447 if (*data == NULL) {
2448 fit_get_debug(fit, noffset, FIT_DATA_PROP, len);
2449 *size = 0;
2450 return -1;
2451 }
2452
2453 *size = len;
2454 return 0;
2455 }
2456
2457 /**
2458 * fit_image_hash_get_algo - get hash algorithm name
2459 * @fit: pointer to the FIT format image header
2460 * @noffset: hash node offset
2461 * @algo: double pointer to char, will hold pointer to the algorithm name
2462 *
2463 * fit_image_hash_get_algo() finds hash algorithm property in a given hash node.
2464 * If the property is found its data start address is returned to the caller.
2465 *
2466 * returns:
2467 * 0, on success
2468 * -1, on failure
2469 */
2470 int fit_image_hash_get_algo(const void *fit, int noffset, char **algo)
2471 {
2472 int len;
2473
2474 *algo = (char *)fdt_getprop(fit, noffset, FIT_ALGO_PROP, &len);
2475 if (*algo == NULL) {
2476 fit_get_debug(fit, noffset, FIT_ALGO_PROP, len);
2477 return -1;
2478 }
2479
2480 return 0;
2481 }
2482
2483 /**
2484 * fit_image_hash_get_value - get hash value and length
2485 * @fit: pointer to the FIT format image header
2486 * @noffset: hash node offset
2487 * @value: double pointer to uint8_t, will hold address of a hash value data
2488 * @value_len: pointer to an int, will hold hash data length
2489 *
2490 * fit_image_hash_get_value() finds hash value property in a given hash node.
2491 * If the property is found its data start address and size are returned to
2492 * the caller.
2493 *
2494 * returns:
2495 * 0, on success
2496 * -1, on failure
2497 */
2498 int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value,
2499 int *value_len)
2500 {
2501 int len;
2502
2503 *value = (uint8_t *)fdt_getprop(fit, noffset, FIT_VALUE_PROP, &len);
2504 if (*value == NULL) {
2505 fit_get_debug(fit, noffset, FIT_VALUE_PROP, len);
2506 *value_len = 0;
2507 return -1;
2508 }
2509
2510 *value_len = len;
2511 return 0;
2512 }
2513
2514 #ifndef USE_HOSTCC
2515 /**
2516 * fit_image_hash_get_ignore - get hash ignore flag
2517 * @fit: pointer to the FIT format image header
2518 * @noffset: hash node offset
2519 * @ignore: pointer to an int, will hold hash ignore flag
2520 *
2521 * fit_image_hash_get_ignore() finds hash ignore property in a given hash node.
2522 * If the property is found and non-zero, the hash algorithm is not verified by
2523 * u-boot automatically.
2524 *
2525 * returns:
2526 * 0, on ignore not found
2527 * value, on ignore found
2528 */
2529 int fit_image_hash_get_ignore(const void *fit, int noffset, int *ignore)
2530 {
2531 int len;
2532 int *value;
2533
2534 value = (int *)fdt_getprop(fit, noffset, FIT_IGNORE_PROP, &len);
2535 if (value == NULL || len != sizeof(int))
2536 *ignore = 0;
2537 else
2538 *ignore = *value;
2539
2540 return 0;
2541 }
2542 #endif
2543
2544 /**
2545 * fit_set_timestamp - set node timestamp property
2546 * @fit: pointer to the FIT format image header
2547 * @noffset: node offset
2548 * @timestamp: timestamp value to be set
2549 *
2550 * fit_set_timestamp() attempts to set timestamp property in the requested
2551 * node and returns operation status to the caller.
2552 *
2553 * returns:
2554 * 0, on success
2555 * -1, on property read failure
2556 */
2557 int fit_set_timestamp(void *fit, int noffset, time_t timestamp)
2558 {
2559 uint32_t t;
2560 int ret;
2561
2562 t = cpu_to_uimage(timestamp);
2563 ret = fdt_setprop(fit, noffset, FIT_TIMESTAMP_PROP, &t,
2564 sizeof(uint32_t));
2565 if (ret) {
2566 printf("Can't set '%s' property for '%s' node (%s)\n",
2567 FIT_TIMESTAMP_PROP, fit_get_name(fit, noffset, NULL),
2568 fdt_strerror(ret));
2569 return -1;
2570 }
2571
2572 return 0;
2573 }
2574
2575 /**
2576 * calculate_hash - calculate and return hash for provided input data
2577 * @data: pointer to the input data
2578 * @data_len: data length
2579 * @algo: requested hash algorithm
2580 * @value: pointer to the char, will hold hash value data (caller must
2581 * allocate enough free space)
2582 * value_len: length of the calculated hash
2583 *
2584 * calculate_hash() computes input data hash according to the requested algorithm.
2585 * Resulting hash value is placed in caller provided 'value' buffer, length
2586 * of the calculated hash is returned via value_len pointer argument.
2587 *
2588 * returns:
2589 * 0, on success
2590 * -1, when algo is unsupported
2591 */
2592 static int calculate_hash(const void *data, int data_len, const char *algo,
2593 uint8_t *value, int *value_len)
2594 {
2595 if (strcmp(algo, "crc32") == 0) {
2596 *((uint32_t *)value) = crc32_wd(0, data, data_len,
2597 CHUNKSZ_CRC32);
2598 *((uint32_t *)value) = cpu_to_uimage(*((uint32_t *)value));
2599 *value_len = 4;
2600 } else if (strcmp(algo, "sha1") == 0) {
2601 sha1_csum_wd((unsigned char *) data, data_len,
2602 (unsigned char *) value, CHUNKSZ_SHA1);
2603 *value_len = 20;
2604 } else if (strcmp(algo, "md5") == 0) {
2605 md5_wd((unsigned char *)data, data_len, value, CHUNKSZ_MD5);
2606 *value_len = 16;
2607 } else {
2608 debug("Unsupported hash alogrithm\n");
2609 return -1;
2610 }
2611 return 0;
2612 }
2613
2614 #ifdef USE_HOSTCC
2615 /**
2616 * fit_set_hashes - process FIT component image nodes and calculate hashes
2617 * @fit: pointer to the FIT format image header
2618 *
2619 * fit_set_hashes() adds hash values for all component images in the FIT blob.
2620 * Hashes are calculated for all component images which have hash subnodes
2621 * with algorithm property set to one of the supported hash algorithms.
2622 *
2623 * returns
2624 * 0, on success
2625 * libfdt error code, on failure
2626 */
2627 int fit_set_hashes(void *fit)
2628 {
2629 int images_noffset;
2630 int noffset;
2631 int ndepth;
2632 int ret;
2633
2634 /* Find images parent node offset */
2635 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
2636 if (images_noffset < 0) {
2637 printf("Can't find images parent node '%s' (%s)\n",
2638 FIT_IMAGES_PATH, fdt_strerror(images_noffset));
2639 return images_noffset;
2640 }
2641
2642 /* Process its subnodes, print out component images details */
2643 for (ndepth = 0, noffset = fdt_next_node(fit, images_noffset, &ndepth);
2644 (noffset >= 0) && (ndepth > 0);
2645 noffset = fdt_next_node(fit, noffset, &ndepth)) {
2646 if (ndepth == 1) {
2647 /*
2648 * Direct child node of the images parent node,
2649 * i.e. component image node.
2650 */
2651 ret = fit_image_set_hashes(fit, noffset);
2652 if (ret)
2653 return ret;
2654 }
2655 }
2656
2657 return 0;
2658 }
2659
2660 /**
2661 * fit_image_set_hashes - calculate/set hashes for given component image node
2662 * @fit: pointer to the FIT format image header
2663 * @image_noffset: requested component image node
2664 *
2665 * fit_image_set_hashes() adds hash values for an component image node. All
2666 * existing hash subnodes are checked, if algorithm property is set to one of
2667 * the supported hash algorithms, hash value is computed and corresponding
2668 * hash node property is set, for example:
2669 *
2670 * Input component image node structure:
2671 *
2672 * o image@1 (at image_noffset)
2673 * | - data = [binary data]
2674 * o hash@1
2675 * |- algo = "sha1"
2676 *
2677 * Output component image node structure:
2678 *
2679 * o image@1 (at image_noffset)
2680 * | - data = [binary data]
2681 * o hash@1
2682 * |- algo = "sha1"
2683 * |- value = sha1(data)
2684 *
2685 * returns:
2686 * 0 on sucess
2687 * <0 on failure
2688 */
2689 int fit_image_set_hashes(void *fit, int image_noffset)
2690 {
2691 const void *data;
2692 size_t size;
2693 char *algo;
2694 uint8_t value[FIT_MAX_HASH_LEN];
2695 int value_len;
2696 int noffset;
2697 int ndepth;
2698
2699 /* Get image data and data length */
2700 if (fit_image_get_data(fit, image_noffset, &data, &size)) {
2701 printf("Can't get image data/size\n");
2702 return -1;
2703 }
2704
2705 /* Process all hash subnodes of the component image node */
2706 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth);
2707 (noffset >= 0) && (ndepth > 0);
2708 noffset = fdt_next_node(fit, noffset, &ndepth)) {
2709 if (ndepth == 1) {
2710 /* Direct child node of the component image node */
2711
2712 /*
2713 * Check subnode name, must be equal to "hash".
2714 * Multiple hash nodes require unique unit node
2715 * names, e.g. hash@1, hash@2, etc.
2716 */
2717 if (strncmp(fit_get_name(fit, noffset, NULL),
2718 FIT_HASH_NODENAME,
2719 strlen(FIT_HASH_NODENAME)) != 0) {
2720 /* Not a hash subnode, skip it */
2721 continue;
2722 }
2723
2724 if (fit_image_hash_get_algo(fit, noffset, &algo)) {
2725 printf("Can't get hash algo property for "
2726 "'%s' hash node in '%s' image node\n",
2727 fit_get_name(fit, noffset, NULL),
2728 fit_get_name(fit, image_noffset, NULL));
2729 return -1;
2730 }
2731
2732 if (calculate_hash(data, size, algo, value,
2733 &value_len)) {
2734 printf("Unsupported hash algorithm (%s) for "
2735 "'%s' hash node in '%s' image node\n",
2736 algo, fit_get_name(fit, noffset, NULL),
2737 fit_get_name(fit, image_noffset,
2738 NULL));
2739 return -1;
2740 }
2741
2742 if (fit_image_hash_set_value(fit, noffset, value,
2743 value_len)) {
2744 printf("Can't set hash value for "
2745 "'%s' hash node in '%s' image node\n",
2746 fit_get_name(fit, noffset, NULL),
2747 fit_get_name(fit, image_noffset, NULL));
2748 return -1;
2749 }
2750 }
2751 }
2752
2753 return 0;
2754 }
2755
2756 /**
2757 * fit_image_hash_set_value - set hash value in requested has node
2758 * @fit: pointer to the FIT format image header
2759 * @noffset: hash node offset
2760 * @value: hash value to be set
2761 * @value_len: hash value length
2762 *
2763 * fit_image_hash_set_value() attempts to set hash value in a node at offset
2764 * given and returns operation status to the caller.
2765 *
2766 * returns
2767 * 0, on success
2768 * -1, on failure
2769 */
2770 int fit_image_hash_set_value(void *fit, int noffset, uint8_t *value,
2771 int value_len)
2772 {
2773 int ret;
2774
2775 ret = fdt_setprop(fit, noffset, FIT_VALUE_PROP, value, value_len);
2776 if (ret) {
2777 printf("Can't set hash '%s' property for '%s' node(%s)\n",
2778 FIT_VALUE_PROP, fit_get_name(fit, noffset, NULL),
2779 fdt_strerror(ret));
2780 return -1;
2781 }
2782
2783 return 0;
2784 }
2785 #endif /* USE_HOSTCC */
2786
2787 /**
2788 * fit_image_check_hashes - verify data intergity
2789 * @fit: pointer to the FIT format image header
2790 * @image_noffset: component image node offset
2791 *
2792 * fit_image_check_hashes() goes over component image hash nodes,
2793 * re-calculates each data hash and compares with the value stored in hash
2794 * node.
2795 *
2796 * returns:
2797 * 1, if all hashes are valid
2798 * 0, otherwise (or on error)
2799 */
2800 int fit_image_check_hashes(const void *fit, int image_noffset)
2801 {
2802 const void *data;
2803 size_t size;
2804 char *algo;
2805 uint8_t *fit_value;
2806 int fit_value_len;
2807 #ifndef USE_HOSTCC
2808 int ignore;
2809 #endif
2810 uint8_t value[FIT_MAX_HASH_LEN];
2811 int value_len;
2812 int noffset;
2813 int ndepth;
2814 char *err_msg = "";
2815
2816 /* Get image data and data length */
2817 if (fit_image_get_data(fit, image_noffset, &data, &size)) {
2818 printf("Can't get image data/size\n");
2819 return 0;
2820 }
2821
2822 /* Process all hash subnodes of the component image node */
2823 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth);
2824 (noffset >= 0) && (ndepth > 0);
2825 noffset = fdt_next_node(fit, noffset, &ndepth)) {
2826 if (ndepth == 1) {
2827 /* Direct child node of the component image node */
2828
2829 /*
2830 * Check subnode name, must be equal to "hash".
2831 * Multiple hash nodes require unique unit node
2832 * names, e.g. hash@1, hash@2, etc.
2833 */
2834 if (strncmp(fit_get_name(fit, noffset, NULL),
2835 FIT_HASH_NODENAME,
2836 strlen(FIT_HASH_NODENAME)) != 0)
2837 continue;
2838
2839 if (fit_image_hash_get_algo(fit, noffset, &algo)) {
2840 err_msg = " error!\nCan't get hash algo "
2841 "property";
2842 goto error;
2843 }
2844 printf("%s", algo);
2845
2846 #ifndef USE_HOSTCC
2847 fit_image_hash_get_ignore(fit, noffset, &ignore);
2848 if (ignore) {
2849 printf("-skipped ");
2850 continue;
2851 }
2852 #endif
2853
2854 if (fit_image_hash_get_value(fit, noffset, &fit_value,
2855 &fit_value_len)) {
2856 err_msg = " error!\nCan't get hash value "
2857 "property";
2858 goto error;
2859 }
2860
2861 if (calculate_hash(data, size, algo, value,
2862 &value_len)) {
2863 err_msg = " error!\n"
2864 "Unsupported hash algorithm";
2865 goto error;
2866 }
2867
2868 if (value_len != fit_value_len) {
2869 err_msg = " error !\nBad hash value len";
2870 goto error;
2871 } else if (memcmp(value, fit_value, value_len) != 0) {
2872 err_msg = " error!\nBad hash value";
2873 goto error;
2874 }
2875 printf("+ ");
2876 }
2877 }
2878
2879 if (noffset == -FDT_ERR_TRUNCATED || noffset == -FDT_ERR_BADSTRUCTURE) {
2880 err_msg = " error!\nCorrupted or truncated tree";
2881 goto error;
2882 }
2883
2884 return 1;
2885
2886 error:
2887 printf("%s for '%s' hash node in '%s' image node\n",
2888 err_msg, fit_get_name(fit, noffset, NULL),
2889 fit_get_name(fit, image_noffset, NULL));
2890 return 0;
2891 }
2892
2893 /**
2894 * fit_all_image_check_hashes - verify data intergity for all images
2895 * @fit: pointer to the FIT format image header
2896 *
2897 * fit_all_image_check_hashes() goes over all images in the FIT and
2898 * for every images checks if all it's hashes are valid.
2899 *
2900 * returns:
2901 * 1, if all hashes of all images are valid
2902 * 0, otherwise (or on error)
2903 */
2904 int fit_all_image_check_hashes(const void *fit)
2905 {
2906 int images_noffset;
2907 int noffset;
2908 int ndepth;
2909 int count;
2910
2911 /* Find images parent node offset */
2912 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
2913 if (images_noffset < 0) {
2914 printf("Can't find images parent node '%s' (%s)\n",
2915 FIT_IMAGES_PATH, fdt_strerror(images_noffset));
2916 return 0;
2917 }
2918
2919 /* Process all image subnodes, check hashes for each */
2920 printf("## Checking hash(es) for FIT Image at %08lx ...\n",
2921 (ulong)fit);
2922 for (ndepth = 0, count = 0,
2923 noffset = fdt_next_node(fit, images_noffset, &ndepth);
2924 (noffset >= 0) && (ndepth > 0);
2925 noffset = fdt_next_node(fit, noffset, &ndepth)) {
2926 if (ndepth == 1) {
2927 /*
2928 * Direct child node of the images parent node,
2929 * i.e. component image node.
2930 */
2931 printf(" Hash(es) for Image %u (%s): ", count++,
2932 fit_get_name(fit, noffset, NULL));
2933
2934 if (!fit_image_check_hashes(fit, noffset))
2935 return 0;
2936 printf("\n");
2937 }
2938 }
2939 return 1;
2940 }
2941
2942 /**
2943 * fit_image_check_os - check whether image node is of a given os type
2944 * @fit: pointer to the FIT format image header
2945 * @noffset: component image node offset
2946 * @os: requested image os
2947 *
2948 * fit_image_check_os() reads image os property and compares its numeric
2949 * id with the requested os. Comparison result is returned to the caller.
2950 *
2951 * returns:
2952 * 1 if image is of given os type
2953 * 0 otherwise (or on error)
2954 */
2955 int fit_image_check_os(const void *fit, int noffset, uint8_t os)
2956 {
2957 uint8_t image_os;
2958
2959 if (fit_image_get_os(fit, noffset, &image_os))
2960 return 0;
2961 return (os == image_os);
2962 }
2963
2964 /**
2965 * fit_image_check_arch - check whether image node is of a given arch
2966 * @fit: pointer to the FIT format image header
2967 * @noffset: component image node offset
2968 * @arch: requested imagearch
2969 *
2970 * fit_image_check_arch() reads image arch property and compares its numeric
2971 * id with the requested arch. Comparison result is returned to the caller.
2972 *
2973 * returns:
2974 * 1 if image is of given arch
2975 * 0 otherwise (or on error)
2976 */
2977 int fit_image_check_arch(const void *fit, int noffset, uint8_t arch)
2978 {
2979 uint8_t image_arch;
2980
2981 if (fit_image_get_arch(fit, noffset, &image_arch))
2982 return 0;
2983 return (arch == image_arch);
2984 }
2985
2986 /**
2987 * fit_image_check_type - check whether image node is of a given type
2988 * @fit: pointer to the FIT format image header
2989 * @noffset: component image node offset
2990 * @type: requested image type
2991 *
2992 * fit_image_check_type() reads image type property and compares its numeric
2993 * id with the requested type. Comparison result is returned to the caller.
2994 *
2995 * returns:
2996 * 1 if image is of given type
2997 * 0 otherwise (or on error)
2998 */
2999 int fit_image_check_type(const void *fit, int noffset, uint8_t type)
3000 {
3001 uint8_t image_type;
3002
3003 if (fit_image_get_type(fit, noffset, &image_type))
3004 return 0;
3005 return (type == image_type);
3006 }
3007
3008 /**
3009 * fit_image_check_comp - check whether image node uses given compression
3010 * @fit: pointer to the FIT format image header
3011 * @noffset: component image node offset
3012 * @comp: requested image compression type
3013 *
3014 * fit_image_check_comp() reads image compression property and compares its
3015 * numeric id with the requested compression type. Comparison result is
3016 * returned to the caller.
3017 *
3018 * returns:
3019 * 1 if image uses requested compression
3020 * 0 otherwise (or on error)
3021 */
3022 int fit_image_check_comp(const void *fit, int noffset, uint8_t comp)
3023 {
3024 uint8_t image_comp;
3025
3026 if (fit_image_get_comp(fit, noffset, &image_comp))
3027 return 0;
3028 return (comp == image_comp);
3029 }
3030
3031 /**
3032 * fit_check_format - sanity check FIT image format
3033 * @fit: pointer to the FIT format image header
3034 *
3035 * fit_check_format() runs a basic sanity FIT image verification.
3036 * Routine checks for mandatory properties, nodes, etc.
3037 *
3038 * returns:
3039 * 1, on success
3040 * 0, on failure
3041 */
3042 int fit_check_format(const void *fit)
3043 {
3044 /* mandatory / node 'description' property */
3045 if (fdt_getprop(fit, 0, FIT_DESC_PROP, NULL) == NULL) {
3046 debug("Wrong FIT format: no description\n");
3047 return 0;
3048 }
3049
3050 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
3051 /* mandatory / node 'timestamp' property */
3052 if (fdt_getprop(fit, 0, FIT_TIMESTAMP_PROP, NULL) == NULL) {
3053 debug("Wrong FIT format: no timestamp\n");
3054 return 0;
3055 }
3056 #endif
3057
3058 /* mandatory subimages parent '/images' node */
3059 if (fdt_path_offset(fit, FIT_IMAGES_PATH) < 0) {
3060 debug("Wrong FIT format: no images parent node\n");
3061 return 0;
3062 }
3063
3064 return 1;
3065 }
3066
3067
3068 /**
3069 * fit_conf_find_compat
3070 * @fit: pointer to the FIT format image header
3071 * @fdt: pointer to the device tree to compare against
3072 *
3073 * fit_conf_find_compat() attempts to find the configuration whose fdt is the
3074 * most compatible with the passed in device tree.
3075 *
3076 * Example:
3077 *
3078 * / o image-tree
3079 * |-o images
3080 * | |-o fdt@1
3081 * | |-o fdt@2
3082 * |
3083 * |-o configurations
3084 * |-o config@1
3085 * | |-fdt = fdt@1
3086 * |
3087 * |-o config@2
3088 * |-fdt = fdt@2
3089 *
3090 * / o U-Boot fdt
3091 * |-compatible = "foo,bar", "bim,bam"
3092 *
3093 * / o kernel fdt1
3094 * |-compatible = "foo,bar",
3095 *
3096 * / o kernel fdt2
3097 * |-compatible = "bim,bam", "baz,biz"
3098 *
3099 * Configuration 1 would be picked because the first string in U-Boot's
3100 * compatible list, "foo,bar", matches a compatible string in the root of fdt1.
3101 * "bim,bam" in fdt2 matches the second string which isn't as good as fdt1.
3102 *
3103 * returns:
3104 * offset to the configuration to use if one was found
3105 * -1 otherwise
3106 */
3107 int fit_conf_find_compat(const void *fit, const void *fdt)
3108 {
3109 int ndepth = 0;
3110 int noffset, confs_noffset, images_noffset;
3111 const void *fdt_compat;
3112 int fdt_compat_len;
3113 int best_match_offset = 0;
3114 int best_match_pos = 0;
3115
3116 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH);
3117 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH);
3118 if (confs_noffset < 0 || images_noffset < 0) {
3119 debug("Can't find configurations or images nodes.\n");
3120 return -1;
3121 }
3122
3123 fdt_compat = fdt_getprop(fdt, 0, "compatible", &fdt_compat_len);
3124 if (!fdt_compat) {
3125 debug("Fdt for comparison has no \"compatible\" property.\n");
3126 return -1;
3127 }
3128
3129 /*
3130 * Loop over the configurations in the FIT image.
3131 */
3132 for (noffset = fdt_next_node(fit, confs_noffset, &ndepth);
3133 (noffset >= 0) && (ndepth > 0);
3134 noffset = fdt_next_node(fit, noffset, &ndepth)) {
3135 const void *kfdt;
3136 const char *kfdt_name;
3137 int kfdt_noffset;
3138 const char *cur_fdt_compat;
3139 int len;
3140 size_t size;
3141 int i;
3142
3143 if (ndepth > 1)
3144 continue;
3145
3146 kfdt_name = fdt_getprop(fit, noffset, "fdt", &len);
3147 if (!kfdt_name) {
3148 debug("No fdt property found.\n");
3149 continue;
3150 }
3151 kfdt_noffset = fdt_subnode_offset(fit, images_noffset,
3152 kfdt_name);
3153 if (kfdt_noffset < 0) {
3154 debug("No image node named \"%s\" found.\n",
3155 kfdt_name);
3156 continue;
3157 }
3158 /*
3159 * Get a pointer to this configuration's fdt.
3160 */
3161 if (fit_image_get_data(fit, kfdt_noffset, &kfdt, &size)) {
3162 debug("Failed to get fdt \"%s\".\n", kfdt_name);
3163 continue;
3164 }
3165
3166 len = fdt_compat_len;
3167 cur_fdt_compat = fdt_compat;
3168 /*
3169 * Look for a match for each U-Boot compatibility string in
3170 * turn in this configuration's fdt.
3171 */
3172 for (i = 0; len > 0 &&
3173 (!best_match_offset || best_match_pos > i); i++) {
3174 int cur_len = strlen(cur_fdt_compat) + 1;
3175
3176 if (!fdt_node_check_compatible(kfdt, 0,
3177 cur_fdt_compat)) {
3178 best_match_offset = noffset;
3179 best_match_pos = i;
3180 break;
3181 }
3182 len -= cur_len;
3183 cur_fdt_compat += cur_len;
3184 }
3185 }
3186 if (!best_match_offset) {
3187 debug("No match found.\n");
3188 return -1;
3189 }
3190
3191 return best_match_offset;
3192 }
3193
3194 /**
3195 * fit_conf_get_node - get node offset for configuration of a given unit name
3196 * @fit: pointer to the FIT format image header
3197 * @conf_uname: configuration node unit name
3198 *
3199 * fit_conf_get_node() finds a configuration (withing the '/configurations'
3200 * parant node) of a provided unit name. If configuration is found its node offset
3201 * is returned to the caller.
3202 *
3203 * When NULL is provided in second argument fit_conf_get_node() will search
3204 * for a default configuration node instead. Default configuration node unit name
3205 * is retrived from FIT_DEFAULT_PROP property of the '/configurations' node.
3206 *
3207 * returns:
3208 * configuration node offset when found (>=0)
3209 * negative number on failure (FDT_ERR_* code)
3210 */
3211 int fit_conf_get_node(const void *fit, const char *conf_uname)
3212 {
3213 int noffset, confs_noffset;
3214 int len;
3215
3216 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH);
3217 if (confs_noffset < 0) {
3218 debug("Can't find configurations parent node '%s' (%s)\n",
3219 FIT_CONFS_PATH, fdt_strerror(confs_noffset));
3220 return confs_noffset;
3221 }
3222
3223 if (conf_uname == NULL) {
3224 /* get configuration unit name from the default property */
3225 debug("No configuration specified, trying default...\n");
3226 conf_uname = (char *)fdt_getprop(fit, confs_noffset,
3227 FIT_DEFAULT_PROP, &len);
3228 if (conf_uname == NULL) {
3229 fit_get_debug(fit, confs_noffset, FIT_DEFAULT_PROP,
3230 len);
3231 return len;
3232 }
3233 debug("Found default configuration: '%s'\n", conf_uname);
3234 }
3235
3236 noffset = fdt_subnode_offset(fit, confs_noffset, conf_uname);
3237 if (noffset < 0) {
3238 debug("Can't get node offset for configuration unit name: "
3239 "'%s' (%s)\n",
3240 conf_uname, fdt_strerror(noffset));
3241 }
3242
3243 return noffset;
3244 }
3245
3246 static int __fit_conf_get_prop_node(const void *fit, int noffset,
3247 const char *prop_name)
3248 {
3249 char *uname;
3250 int len;
3251
3252 /* get kernel image unit name from configuration kernel property */
3253 uname = (char *)fdt_getprop(fit, noffset, prop_name, &len);
3254 if (uname == NULL)
3255 return len;
3256
3257 return fit_image_get_node(fit, uname);
3258 }
3259
3260 /**
3261 * fit_conf_get_kernel_node - get kernel image node offset that corresponds to
3262 * a given configuration
3263 * @fit: pointer to the FIT format image header
3264 * @noffset: configuration node offset
3265 *
3266 * fit_conf_get_kernel_node() retrives kernel image node unit name from
3267 * configuration FIT_KERNEL_PROP property and translates it to the node
3268 * offset.
3269 *
3270 * returns:
3271 * image node offset when found (>=0)
3272 * negative number on failure (FDT_ERR_* code)
3273 */
3274 int fit_conf_get_kernel_node(const void *fit, int noffset)
3275 {
3276 return __fit_conf_get_prop_node(fit, noffset, FIT_KERNEL_PROP);
3277 }
3278
3279 /**
3280 * fit_conf_get_ramdisk_node - get ramdisk image node offset that corresponds to
3281 * a given configuration
3282 * @fit: pointer to the FIT format image header
3283 * @noffset: configuration node offset
3284 *
3285 * fit_conf_get_ramdisk_node() retrives ramdisk image node unit name from
3286 * configuration FIT_KERNEL_PROP property and translates it to the node
3287 * offset.
3288 *
3289 * returns:
3290 * image node offset when found (>=0)
3291 * negative number on failure (FDT_ERR_* code)
3292 */
3293 int fit_conf_get_ramdisk_node(const void *fit, int noffset)
3294 {
3295 return __fit_conf_get_prop_node(fit, noffset, FIT_RAMDISK_PROP);
3296 }
3297
3298 /**
3299 * fit_conf_get_fdt_node - get fdt image node offset that corresponds to
3300 * a given configuration
3301 * @fit: pointer to the FIT format image header
3302 * @noffset: configuration node offset
3303 *
3304 * fit_conf_get_fdt_node() retrives fdt image node unit name from
3305 * configuration FIT_KERNEL_PROP property and translates it to the node
3306 * offset.
3307 *
3308 * returns:
3309 * image node offset when found (>=0)
3310 * negative number on failure (FDT_ERR_* code)
3311 */
3312 int fit_conf_get_fdt_node(const void *fit, int noffset)
3313 {
3314 return __fit_conf_get_prop_node(fit, noffset, FIT_FDT_PROP);
3315 }
3316
3317 /**
3318 * fit_conf_print - prints out the FIT configuration details
3319 * @fit: pointer to the FIT format image header
3320 * @noffset: offset of the configuration node
3321 * @p: pointer to prefix string
3322 *
3323 * fit_conf_print() lists all mandatory properies for the processed
3324 * configuration node.
3325 *
3326 * returns:
3327 * no returned results
3328 */
3329 void fit_conf_print(const void *fit, int noffset, const char *p)
3330 {
3331 char *desc;
3332 char *uname;
3333 int ret;
3334
3335 /* Mandatory properties */
3336 ret = fit_get_desc(fit, noffset, &desc);
3337 printf("%s Description: ", p);
3338 if (ret)
3339 printf("unavailable\n");
3340 else
3341 printf("%s\n", desc);
3342
3343 uname = (char *)fdt_getprop(fit, noffset, FIT_KERNEL_PROP, NULL);
3344 printf("%s Kernel: ", p);
3345 if (uname == NULL)
3346 printf("unavailable\n");
3347 else
3348 printf("%s\n", uname);
3349
3350 /* Optional properties */
3351 uname = (char *)fdt_getprop(fit, noffset, FIT_RAMDISK_PROP, NULL);
3352 if (uname)
3353 printf("%s Init Ramdisk: %s\n", p, uname);
3354
3355 uname = (char *)fdt_getprop(fit, noffset, FIT_FDT_PROP, NULL);
3356 if (uname)
3357 printf("%s FDT: %s\n", p, uname);
3358 }
3359
3360 /**
3361 * fit_check_ramdisk - verify FIT format ramdisk subimage
3362 * @fit_hdr: pointer to the FIT ramdisk header
3363 * @rd_noffset: ramdisk subimage node offset within FIT image
3364 * @arch: requested ramdisk image architecture type
3365 * @verify: data CRC verification flag
3366 *
3367 * fit_check_ramdisk() verifies integrity of the ramdisk subimage and from
3368 * specified FIT image.
3369 *
3370 * returns:
3371 * 1, on success
3372 * 0, on failure
3373 */
3374 #ifndef USE_HOSTCC
3375 static int fit_check_ramdisk(const void *fit, int rd_noffset, uint8_t arch,
3376 int verify)
3377 {
3378 fit_image_print(fit, rd_noffset, " ");
3379
3380 if (verify) {
3381 puts(" Verifying Hash Integrity ... ");
3382 if (!fit_image_check_hashes(fit, rd_noffset)) {
3383 puts("Bad Data Hash\n");
3384 bootstage_error(BOOTSTAGE_ID_FIT_RD_HASH);
3385 return 0;
3386 }
3387 puts("OK\n");
3388 }
3389
3390 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL);
3391 if (!fit_image_check_os(fit, rd_noffset, IH_OS_LINUX) ||
3392 !fit_image_check_arch(fit, rd_noffset, arch) ||
3393 !fit_image_check_type(fit, rd_noffset, IH_TYPE_RAMDISK)) {
3394 printf("No Linux %s Ramdisk Image\n",
3395 genimg_get_arch_name(arch));
3396 bootstage_error(BOOTSTAGE_ID_FIT_RD_CHECK_ALL);
3397 return 0;
3398 }
3399
3400 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL_OK);
3401 return 1;
3402 }
3403 #endif /* USE_HOSTCC */
3404 #endif /* CONFIG_FIT */