]> git.ipfire.org Git - thirdparty/squid.git/blob - compat/GnuRegex.c
Merge from trunk
[thirdparty/squid.git] / compat / GnuRegex.c
1 /*
2 * $Id$
3 */
4
5 /* Extended regular expression matching and search library,
6 * version 0.12.
7 * (Implements POSIX draft P10003.2/D11.2, except for
8 * internationalization features.)
9 *
10 * Copyright (C) 1993 Free Software Foundation, Inc.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. */
25
26 /* AIX requires this to be the first thing in the file. */
27 #if defined (_AIX) && !defined(REGEX_MALLOC)
28 #pragma alloca
29 #endif
30
31 #ifndef _GNU_SOURCE
32 #define _GNU_SOURCE 1
33 #endif
34
35 #define SQUID_NO_ALLOC_PROTECT 1
36 #include "config.h"
37
38 #if USE_GNUREGEX /* only if squid needs it. Usually not */
39
40 #if !HAVE_ALLOCA
41 #define REGEX_MALLOC 1
42 #endif
43
44 /* We used to test for `BSTRING' here, but only GCC and Emacs define
45 * `BSTRING', as far as I know, and neither of them use this code. */
46 #if HAVE_STRING_H || STDC_HEADERS
47 #include <string.h>
48 #else
49 #include <strings.h>
50 #endif
51
52
53 /* Define the syntax stuff for \<, \>, etc. */
54
55 /* This must be nonzero for the wordchar and notwordchar pattern
56 * commands in re_match_2. */
57 #ifndef Sword
58 #define Sword 1
59 #endif
60
61 #ifdef SYNTAX_TABLE
62
63 extern char *re_syntax_table;
64
65 #else /* not SYNTAX_TABLE */
66
67 /* How many characters in the character set. */
68 #define CHAR_SET_SIZE 256
69
70 static char re_syntax_table[CHAR_SET_SIZE];
71
72 static void
73 init_syntax_once(void)
74 {
75 register int c;
76 static int done = 0;
77
78 if (done)
79 return;
80
81 memset(re_syntax_table, 0, sizeof re_syntax_table);
82
83 for (c = 'a'; c <= 'z'; c++)
84 re_syntax_table[c] = Sword;
85
86 for (c = 'A'; c <= 'Z'; c++)
87 re_syntax_table[c] = Sword;
88
89 for (c = '0'; c <= '9'; c++)
90 re_syntax_table[c] = Sword;
91
92 re_syntax_table['_'] = Sword;
93
94 done = 1;
95 }
96
97 #endif /* not SYNTAX_TABLE */
98
99 #define SYNTAX(c) re_syntax_table[c]
100
101 /* Get the interface, including the syntax bits. */
102 #include "compat/GnuRegex.h"
103
104 /* Compile a fastmap for the compiled pattern in BUFFER; used to
105 * accelerate searches. Return 0 if successful and -2 if was an
106 * internal error. */
107 static int re_compile_fastmap(struct re_pattern_buffer * buffer);
108
109
110 /* Search in the string STRING (with length LENGTH) for the pattern
111 * compiled into BUFFER. Start searching at position START, for RANGE
112 * characters. Return the starting position of the match, -1 for no
113 * match, or -2 for an internal error. Also return register
114 * information in REGS (if REGS and BUFFER->no_sub are nonzero). */
115 static int re_search(struct re_pattern_buffer * buffer, const char *string,
116 int length, int start, int range, struct re_registers * regs);
117
118
119 /* Like `re_search', but search in the concatenation of STRING1 and
120 * STRING2. Also, stop searching at index START + STOP. */
121 static int re_search_2(struct re_pattern_buffer * buffer, const char *string1,
122 int length1, const char *string2, int length2,
123 int start, int range, struct re_registers * regs, int stop);
124
125
126 /* Like `re_search_2', but return how many characters in STRING the regexp
127 * in BUFFER matched, starting at position START. */
128 static int re_match_2(struct re_pattern_buffer * buffer, const char *string1,
129 int length1, const char *string2, int length2,
130 int start, struct re_registers * regs, int stop);
131
132
133 /* isalpha etc. are used for the character classes. */
134 #include <ctype.h>
135
136 #ifndef isascii
137 #define isascii(c) 1
138 #endif
139
140 #ifdef isblank
141 #define ISBLANK(c) (isascii ((unsigned char)c) && isblank ((unsigned char)c))
142 #else
143 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
144 #endif
145 #ifdef isgraph
146 #define ISGRAPH(c) (isascii ((unsigned char)c) && isgraph ((unsigned char)c))
147 #else
148 #define ISGRAPH(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c) && !isspace ((unsigned char)c))
149 #endif
150
151 #define ISPRINT(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c))
152 #define ISDIGIT(c) (isascii ((unsigned char)c) && isdigit ((unsigned char)c))
153 #define ISALNUM(c) (isascii ((unsigned char)c) && isalnum ((unsigned char)c))
154 #define ISALPHA(c) (isascii ((unsigned char)c) && isalpha ((unsigned char)c))
155 #define ISCNTRL(c) (isascii ((unsigned char)c) && iscntrl ((unsigned char)c))
156 #define ISLOWER(c) (isascii ((unsigned char)c) && islower ((unsigned char)c))
157 #define ISPUNCT(c) (isascii ((unsigned char)c) && ispunct ((unsigned char)c))
158 #define ISSPACE(c) (isascii ((unsigned char)c) && isspace ((unsigned char)c))
159 #define ISUPPER(c) (isascii ((unsigned char)c) && isupper ((unsigned char)c))
160 #define ISXDIGIT(c) (isascii ((unsigned char)c) && isxdigit ((unsigned char)c))
161
162 #ifndef NULL
163 #define NULL 0
164 #endif
165
166 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
167 * since ours (we hope) works properly with all combinations of
168 * machines, compilers, `char' and `unsigned char' argument types.
169 * (Per Bothner suggested the basic approach.) */
170 #undef SIGN_EXTEND_CHAR
171 #ifdef __STDC__
172 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
173 #else /* not __STDC__ */
174 /* As in Harbison and Steele. */
175 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
176 #endif
177 \f
178 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
179 * use `alloca' instead of `malloc'. This is because using malloc in
180 * re_search* or re_match* could cause memory leaks when C-g is used in
181 * Emacs; also, malloc is slower and causes storage fragmentation. On
182 * the other hand, malloc is more portable, and easier to debug.
183 *
184 * Because we sometimes use alloca, some routines have to be macros,
185 * not functions -- `alloca'-allocated space disappears at the end of the
186 * function it is called in. */
187
188 #ifdef REGEX_MALLOC
189
190 #define REGEX_ALLOCATE malloc
191 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
192
193 #else /* not REGEX_MALLOC */
194
195 /* Emacs already defines alloca, sometimes. */
196 #ifndef alloca
197
198 /* Make alloca work the best possible way. */
199 #ifdef __GNUC__
200 #define alloca __builtin_alloca
201 #else /* not __GNUC__ */
202 #if HAVE_ALLOCA_H
203 #include <alloca.h>
204 #else /* not __GNUC__ or HAVE_ALLOCA_H */
205 #ifndef _AIX /* Already did AIX, up at the top. */
206 char *alloca();
207 #endif /* not _AIX */
208 #endif /* not HAVE_ALLOCA_H */
209 #endif /* not __GNUC__ */
210
211 #endif /* not alloca */
212
213 #define REGEX_ALLOCATE alloca
214
215 /* Assumes a `char *destination' variable. */
216 #define REGEX_REALLOCATE(source, osize, nsize) \
217 (destination = (char *) alloca (nsize), \
218 xmemcpy (destination, source, osize), \
219 destination)
220
221 #endif /* not REGEX_MALLOC */
222
223
224 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
225 * `string1' or just past its end. This works if PTR is NULL, which is
226 * a good thing. */
227 #define FIRST_STRING_P(ptr) \
228 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
229
230 /* (Re)Allocate N items of type T using malloc, or fail. */
231 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
232 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
233 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
234
235 #define BYTEWIDTH 8 /* In bits. */
236
237 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
238
239 #define MAX(a, b) ((a) > (b) ? (a) : (b))
240 #define MIN(a, b) ((a) < (b) ? (a) : (b))
241
242 #if !defined(__MINGW32__) /* MinGW defines boolean */
243 typedef char boolean;
244 #endif
245 #define false 0
246 #define true 1
247 \f
248 /* These are the command codes that appear in compiled regular
249 * expressions. Some opcodes are followed by argument bytes. A
250 * command code can specify any interpretation whatsoever for its
251 * arguments. Zero bytes may appear in the compiled regular expression.
252 *
253 * The value of `exactn' is needed in search.c (search_buffer) in Emacs.
254 * So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
255 * `exactn' we use here must also be 1. */
256
257 typedef enum {
258 no_op = 0,
259
260 /* Followed by one byte giving n, then by n literal bytes. */
261 exactn = 1,
262
263 /* Matches any (more or less) character. */
264 anychar,
265
266 /* Matches any one char belonging to specified set. First
267 * following byte is number of bitmap bytes. Then come bytes
268 * for a bitmap saying which chars are in. Bits in each byte
269 * are ordered low-bit-first. A character is in the set if its
270 * bit is 1. A character too large to have a bit in the map is
271 * automatically not in the set. */
272 charset,
273
274 /* Same parameters as charset, but match any character that is
275 * not one of those specified. */
276 charset_not,
277
278 /* Start remembering the text that is matched, for storing in a
279 * register. Followed by one byte with the register number, in
280 * the range 0 to one less than the pattern buffer's re_nsub
281 * field. Then followed by one byte with the number of groups
282 * inner to this one. (This last has to be part of the
283 * start_memory only because we need it in the on_failure_jump
284 * of re_match_2.) */
285 start_memory,
286
287 /* Stop remembering the text that is matched and store it in a
288 * memory register. Followed by one byte with the register
289 * number, in the range 0 to one less than `re_nsub' in the
290 * pattern buffer, and one byte with the number of inner groups,
291 * just like `start_memory'. (We need the number of inner
292 * groups here because we don't have any easy way of finding the
293 * corresponding start_memory when we're at a stop_memory.) */
294 stop_memory,
295
296 /* Match a duplicate of something remembered. Followed by one
297 * byte containing the register number. */
298 duplicate,
299
300 /* Fail unless at beginning of line. */
301 begline,
302
303 /* Fail unless at end of line. */
304 endline,
305
306 /* Succeeds if or at beginning of string to be matched. */
307 begbuf,
308
309 /* Analogously, for end of buffer/string. */
310 endbuf,
311
312 /* Followed by two byte relative address to which to jump. */
313 jump,
314
315 /* Same as jump, but marks the end of an alternative. */
316 jump_past_alt,
317
318 /* Followed by two-byte relative address of place to resume at
319 * in case of failure. */
320 on_failure_jump,
321
322 /* Like on_failure_jump, but pushes a placeholder instead of the
323 * current string position when executed. */
324 on_failure_keep_string_jump,
325
326 /* Throw away latest failure point and then jump to following
327 * two-byte relative address. */
328 pop_failure_jump,
329
330 /* Change to pop_failure_jump if know won't have to backtrack to
331 * match; otherwise change to jump. This is used to jump
332 * back to the beginning of a repeat. If what follows this jump
333 * clearly won't match what the repeat does, such that we can be
334 * sure that there is no use backtracking out of repetitions
335 * already matched, then we change it to a pop_failure_jump.
336 * Followed by two-byte address. */
337 maybe_pop_jump,
338
339 /* Jump to following two-byte address, and push a dummy failure
340 * point. This failure point will be thrown away if an attempt
341 * is made to use it for a failure. A `+' construct makes this
342 * before the first repeat. Also used as an intermediary kind
343 * of jump when compiling an alternative. */
344 dummy_failure_jump,
345
346 /* Push a dummy failure point and continue. Used at the end of
347 * alternatives. */
348 push_dummy_failure,
349
350 /* Followed by two-byte relative address and two-byte number n.
351 * After matching N times, jump to the address upon failure. */
352 succeed_n,
353
354 /* Followed by two-byte relative address, and two-byte number n.
355 * Jump to the address N times, then fail. */
356 jump_n,
357
358 /* Set the following two-byte relative address to the
359 * subsequent two-byte number. The address *includes* the two
360 * bytes of number. */
361 set_number_at,
362
363 wordchar, /* Matches any word-constituent character. */
364 notwordchar, /* Matches any char that is not a word-constituent. */
365
366 wordbeg, /* Succeeds if at word beginning. */
367 wordend, /* Succeeds if at word end. */
368
369 wordbound, /* Succeeds if at a word boundary. */
370 notwordbound /* Succeeds if not at a word boundary. */
371
372 } re_opcode_t;
373 \f
374 /* Common operations on the compiled pattern. */
375
376 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
377
378 #define STORE_NUMBER(destination, number) \
379 do { \
380 (destination)[0] = (number) & 0377; \
381 (destination)[1] = (number) >> 8; \
382 } while (0)
383
384 /* Same as STORE_NUMBER, except increment DESTINATION to
385 * the byte after where the number is stored. Therefore, DESTINATION
386 * must be an lvalue. */
387
388 #define STORE_NUMBER_AND_INCR(destination, number) \
389 do { \
390 STORE_NUMBER (destination, number); \
391 (destination) += 2; \
392 } while (0)
393
394 /* Put into DESTINATION a number stored in two contiguous bytes starting
395 * at SOURCE. */
396
397 #define EXTRACT_NUMBER(destination, source) \
398 do { \
399 (destination) = *(source) & 0377; \
400 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
401 } while (0)
402
403 #ifdef DEBUG
404 static void
405 extract_number(dest, source)
406 int *dest;
407 unsigned char *source;
408 {
409 int temp = SIGN_EXTEND_CHAR(*(source + 1));
410 *dest = *source & 0377;
411 *dest += temp << 8;
412 }
413
414 #ifndef EXTRACT_MACROS /* To debug the macros. */
415 #undef EXTRACT_NUMBER
416 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
417 #endif /* not EXTRACT_MACROS */
418
419 #endif /* DEBUG */
420
421 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
422 * SOURCE must be an lvalue. */
423
424 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
425 do { \
426 EXTRACT_NUMBER (destination, source); \
427 (source) += 2; \
428 } while (0)
429
430 #ifdef DEBUG
431 static void
432 extract_number_and_incr(destination, source)
433 int *destination;
434 unsigned char **source;
435 {
436 extract_number(destination, *source);
437 *source += 2;
438 }
439
440 #ifndef EXTRACT_MACROS
441 #undef EXTRACT_NUMBER_AND_INCR
442 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
443 extract_number_and_incr (&dest, &src)
444 #endif /* not EXTRACT_MACROS */
445
446 #endif /* DEBUG */
447 \f
448 /* If DEBUG is defined, Regex prints many voluminous messages about what
449 * it is doing (if the variable `debug' is nonzero). If linked with the
450 * main program in `iregex.c', you can enter patterns and strings
451 * interactively. And if linked with the main program in `main.c' and
452 * the other test files, you can run the already-written tests. */
453
454 #ifdef DEBUG
455
456 /* We use standard I/O for debugging. */
457 #include <stdio.h>
458
459 /* It is useful to test things that ``must'' be true when debugging. */
460 #include <assert.h>
461
462 static int debug = 0;
463
464 #define DEBUG_STATEMENT(e) e
465 #define DEBUG_PRINT1(x) if (debug) printf (x)
466 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
467 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
468 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
469 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
470 if (debug) print_partial_compiled_pattern (s, e)
471 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
472 if (debug) print_double_string (w, s1, sz1, s2, sz2)
473
474
475 extern void printchar();
476
477 /* Print the fastmap in human-readable form. */
478
479 void
480 print_fastmap(fastmap)
481 char *fastmap;
482 {
483 unsigned was_a_range = 0;
484 unsigned i = 0;
485
486 while (i < (1 << BYTEWIDTH)) {
487 if (fastmap[i++]) {
488 was_a_range = 0;
489 printchar(i - 1);
490 while (i < (1 << BYTEWIDTH) && fastmap[i]) {
491 was_a_range = 1;
492 i++;
493 }
494 if (was_a_range) {
495 printf("-");
496 printchar(i - 1);
497 }
498 }
499 }
500 putchar('\n');
501 }
502
503
504 /* Print a compiled pattern string in human-readable form, starting at
505 * the START pointer into it and ending just before the pointer END. */
506
507 void
508 print_partial_compiled_pattern(start, end)
509 unsigned char *start;
510 unsigned char *end;
511 {
512 int mcnt, mcnt2;
513 unsigned char *p = start;
514 unsigned char *pend = end;
515
516 if (start == NULL) {
517 printf("(null)\n");
518 return;
519 }
520 /* Loop over pattern commands. */
521 while (p < pend) {
522 switch ((re_opcode_t) * p++) {
523 case no_op:
524 printf("/no_op");
525 break;
526
527 case exactn:
528 mcnt = *p++;
529 printf("/exactn/%d", mcnt);
530 do {
531 putchar('/');
532 printchar(*p++);
533 } while (--mcnt);
534 break;
535
536 case start_memory:
537 mcnt = *p++;
538 printf("/start_memory/%d/%d", mcnt, *p++);
539 break;
540
541 case stop_memory:
542 mcnt = *p++;
543 printf("/stop_memory/%d/%d", mcnt, *p++);
544 break;
545
546 case duplicate:
547 printf("/duplicate/%d", *p++);
548 break;
549
550 case anychar:
551 printf("/anychar");
552 break;
553
554 case charset:
555 case charset_not: {
556 register int c;
557
558 printf("/charset%s",
559 (re_opcode_t) * (p - 1) == charset_not ? "_not" : "");
560
561 assert(p + *p < pend);
562
563 for (c = 0; c < *p; c++) {
564 unsigned bit;
565 unsigned char map_byte = p[1 + c];
566
567 putchar('/');
568
569 for (bit = 0; bit < BYTEWIDTH; bit++)
570 if (map_byte & (1 << bit))
571 printchar(c * BYTEWIDTH + bit);
572 }
573 p += 1 + *p;
574 break;
575 }
576
577 case begline:
578 printf("/begline");
579 break;
580
581 case endline:
582 printf("/endline");
583 break;
584
585 case on_failure_jump:
586 extract_number_and_incr(&mcnt, &p);
587 printf("/on_failure_jump/0/%d", mcnt);
588 break;
589
590 case on_failure_keep_string_jump:
591 extract_number_and_incr(&mcnt, &p);
592 printf("/on_failure_keep_string_jump/0/%d", mcnt);
593 break;
594
595 case dummy_failure_jump:
596 extract_number_and_incr(&mcnt, &p);
597 printf("/dummy_failure_jump/0/%d", mcnt);
598 break;
599
600 case push_dummy_failure:
601 printf("/push_dummy_failure");
602 break;
603
604 case maybe_pop_jump:
605 extract_number_and_incr(&mcnt, &p);
606 printf("/maybe_pop_jump/0/%d", mcnt);
607 break;
608
609 case pop_failure_jump:
610 extract_number_and_incr(&mcnt, &p);
611 printf("/pop_failure_jump/0/%d", mcnt);
612 break;
613
614 case jump_past_alt:
615 extract_number_and_incr(&mcnt, &p);
616 printf("/jump_past_alt/0/%d", mcnt);
617 break;
618
619 case jump:
620 extract_number_and_incr(&mcnt, &p);
621 printf("/jump/0/%d", mcnt);
622 break;
623
624 case succeed_n:
625 extract_number_and_incr(&mcnt, &p);
626 extract_number_and_incr(&mcnt2, &p);
627 printf("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
628 break;
629
630 case jump_n:
631 extract_number_and_incr(&mcnt, &p);
632 extract_number_and_incr(&mcnt2, &p);
633 printf("/jump_n/0/%d/0/%d", mcnt, mcnt2);
634 break;
635
636 case set_number_at:
637 extract_number_and_incr(&mcnt, &p);
638 extract_number_and_incr(&mcnt2, &p);
639 printf("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
640 break;
641
642 case wordbound:
643 printf("/wordbound");
644 break;
645
646 case notwordbound:
647 printf("/notwordbound");
648 break;
649
650 case wordbeg:
651 printf("/wordbeg");
652 break;
653
654 case wordend:
655 printf("/wordend");
656
657 case wordchar:
658 printf("/wordchar");
659 break;
660
661 case notwordchar:
662 printf("/notwordchar");
663 break;
664
665 case begbuf:
666 printf("/begbuf");
667 break;
668
669 case endbuf:
670 printf("/endbuf");
671 break;
672
673 default:
674 printf("?%d", *(p - 1));
675 }
676 }
677 printf("/\n");
678 }
679
680
681 void
682 print_compiled_pattern(bufp)
683 struct re_pattern_buffer *bufp;
684 {
685 unsigned char *buffer = bufp->buffer;
686
687 print_partial_compiled_pattern(buffer, buffer + bufp->used);
688 printf("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
689
690 if (bufp->fastmap_accurate && bufp->fastmap) {
691 printf("fastmap: ");
692 print_fastmap(bufp->fastmap);
693 }
694 printf("re_nsub: %d\t", bufp->re_nsub);
695 printf("regs_alloc: %d\t", bufp->regs_allocated);
696 printf("can_be_null: %d\t", bufp->can_be_null);
697 printf("newline_anchor: %d\n", bufp->newline_anchor);
698 printf("no_sub: %d\t", bufp->no_sub);
699 printf("not_bol: %d\t", bufp->not_bol);
700 printf("not_eol: %d\t", bufp->not_eol);
701 printf("syntax: %d\n", bufp->syntax);
702 /* Perhaps we should print the translate table? */
703 }
704
705
706 void
707 print_double_string(where, string1, size1, string2, size2)
708 const char *where;
709 const char *string1;
710 const char *string2;
711 int size1;
712 int size2;
713 {
714 unsigned this_char;
715
716 if (where == NULL)
717 printf("(null)");
718 else {
719 if (FIRST_STRING_P(where)) {
720 for (this_char = where - string1; this_char < size1; this_char++)
721 printchar(string1[this_char]);
722
723 where = string2;
724 }
725 for (this_char = where - string2; this_char < size2; this_char++)
726 printchar(string2[this_char]);
727 }
728 }
729
730 #else /* not DEBUG */
731
732 #undef assert
733 #define assert(e)
734
735 #define DEBUG_STATEMENT(e)
736 #define DEBUG_PRINT1(x)
737 #define DEBUG_PRINT2(x1, x2)
738 #define DEBUG_PRINT3(x1, x2, x3)
739 #define DEBUG_PRINT4(x1, x2, x3, x4)
740 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
741 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
742
743 #endif /* not DEBUG */
744 \f
745 /* This table gives an error message for each of the error codes listed
746 * in regex.h. Obviously the order here has to be same as there. */
747
748 static const char *re_error_msg[] = {NULL, /* REG_NOERROR */
749 "No match", /* REG_NOMATCH */
750 "Invalid regular expression", /* REG_BADPAT */
751 "Invalid collation character", /* REG_ECOLLATE */
752 "Invalid character class name", /* REG_ECTYPE */
753 "Trailing backslash", /* REG_EESCAPE */
754 "Invalid back reference", /* REG_ESUBREG */
755 "Unmatched [ or [^", /* REG_EBRACK */
756 "Unmatched ( or \\(", /* REG_EPAREN */
757 "Unmatched \\{", /* REG_EBRACE */
758 "Invalid content of \\{\\}", /* REG_BADBR */
759 "Invalid range end", /* REG_ERANGE */
760 "Memory exhausted", /* REG_ESPACE */
761 "Invalid preceding regular expression", /* REG_BADRPT */
762 "Premature end of regular expression", /* REG_EEND */
763 "Regular expression too big", /* REG_ESIZE */
764 "Unmatched ) or \\)", /* REG_ERPAREN */
765 };
766 \f
767 /* Subroutine declarations and macros for regex_compile. */
768
769 /* Fetch the next character in the uncompiled pattern---translating it
770 * if necessary. Also cast from a signed character in the constant
771 * string passed to us by the user to an unsigned char that we can use
772 * as an array index (in, e.g., `translate'). */
773 #define PATFETCH(c) \
774 do {if (p == pend) return REG_EEND; \
775 c = (unsigned char) *p++; \
776 if (translate) c = translate[c]; \
777 } while (0)
778
779 /* Fetch the next character in the uncompiled pattern, with no
780 * translation. */
781 #define PATFETCH_RAW(c) \
782 do {if (p == pend) return REG_EEND; \
783 c = (unsigned char) *p++; \
784 } while (0)
785
786 /* Go backwards one character in the pattern. */
787 #define PATUNFETCH p--
788
789
790 /* If `translate' is non-null, return translate[D], else just D. We
791 * cast the subscript to translate because some data is declared as
792 * `char *', to avoid warnings when a string constant is passed. But
793 * when we use a character as a subscript we must make it unsigned. */
794 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
795
796
797 /* Macros for outputting the compiled pattern into `buffer'. */
798
799 /* If the buffer isn't allocated when it comes in, use this. */
800 #define INIT_BUF_SIZE 32
801
802 /* Make sure we have at least N more bytes of space in buffer. */
803 #define GET_BUFFER_SPACE(n) \
804 while (b - bufp->buffer + (n) > bufp->allocated) \
805 EXTEND_BUFFER ()
806
807 /* Make sure we have one more byte of buffer space and then add C to it. */
808 #define BUF_PUSH(c) \
809 do { \
810 GET_BUFFER_SPACE (1); \
811 *b++ = (unsigned char) (c); \
812 } while (0)
813
814
815 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
816 #define BUF_PUSH_2(c1, c2) \
817 do { \
818 GET_BUFFER_SPACE (2); \
819 *b++ = (unsigned char) (c1); \
820 *b++ = (unsigned char) (c2); \
821 } while (0)
822
823
824 /* As with BUF_PUSH_2, except for three bytes. */
825 #define BUF_PUSH_3(c1, c2, c3) \
826 do { \
827 GET_BUFFER_SPACE (3); \
828 *b++ = (unsigned char) (c1); \
829 *b++ = (unsigned char) (c2); \
830 *b++ = (unsigned char) (c3); \
831 } while (0)
832
833
834 /* Store a jump with opcode OP at LOC to location TO. We store a
835 * relative address offset by the three bytes the jump itself occupies. */
836 #define STORE_JUMP(op, loc, to) \
837 store_op1 (op, loc, (to) - (loc) - 3)
838
839 /* Likewise, for a two-argument jump. */
840 #define STORE_JUMP2(op, loc, to, arg) \
841 store_op2 (op, loc, (to) - (loc) - 3, arg)
842
843 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
844 #define INSERT_JUMP(op, loc, to) \
845 insert_op1 (op, loc, (to) - (loc) - 3, b)
846
847 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
848 #define INSERT_JUMP2(op, loc, to, arg) \
849 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
850
851
852 /* This is not an arbitrary limit: the arguments which represent offsets
853 * into the pattern are two bytes long. So if 2^16 bytes turns out to
854 * be too small, many things would have to change. */
855 #define MAX_BUF_SIZE (1L << 16)
856
857
858 /* Extend the buffer by twice its current size via realloc and
859 * reset the pointers that pointed into the old block to point to the
860 * correct places in the new one. If extending the buffer results in it
861 * being larger than MAX_BUF_SIZE, then flag memory exhausted. */
862 #define EXTEND_BUFFER() \
863 do { \
864 unsigned char *old_buffer = bufp->buffer; \
865 if (bufp->allocated == MAX_BUF_SIZE) \
866 return REG_ESIZE; \
867 bufp->allocated <<= 1; \
868 if (bufp->allocated > MAX_BUF_SIZE) \
869 bufp->allocated = MAX_BUF_SIZE; \
870 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
871 if (bufp->buffer == NULL) \
872 return REG_ESPACE; \
873 /* If the buffer moved, move all the pointers into it. */ \
874 if (old_buffer != bufp->buffer) \
875 { \
876 b = (b - old_buffer) + bufp->buffer; \
877 begalt = (begalt - old_buffer) + bufp->buffer; \
878 if (fixup_alt_jump) \
879 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
880 if (laststart) \
881 laststart = (laststart - old_buffer) + bufp->buffer; \
882 if (pending_exact) \
883 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
884 } \
885 } while (0)
886
887
888 /* Since we have one byte reserved for the register number argument to
889 * {start,stop}_memory, the maximum number of groups we can report
890 * things about is what fits in that byte. */
891 #define MAX_REGNUM 255
892
893 /* But patterns can have more than `MAX_REGNUM' registers. We just
894 * ignore the excess. */
895 typedef unsigned regnum_t;
896
897
898 /* Macros for the compile stack. */
899
900 /* Since offsets can go either forwards or backwards, this type needs to
901 * be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
902 typedef int pattern_offset_t;
903
904 typedef struct {
905 pattern_offset_t begalt_offset;
906 pattern_offset_t fixup_alt_jump;
907 pattern_offset_t inner_group_offset;
908 pattern_offset_t laststart_offset;
909 regnum_t regnum;
910 } compile_stack_elt_t;
911
912
913 typedef struct {
914 compile_stack_elt_t *stack;
915 unsigned size;
916 unsigned avail; /* Offset of next open position. */
917 } compile_stack_type;
918
919 static void store_op1(re_opcode_t op, unsigned char *loc, int arg);
920 static void store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2);
921 static void insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end);
922 static void insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end);
923 static boolean at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax);
924 static boolean at_endline_loc_p(const char *p, const char *pend, int syntax);
925 static boolean group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum);
926 static reg_errcode_t compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b);
927
928 #define INIT_COMPILE_STACK_SIZE 32
929
930 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
931 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
932
933 /* The next available element. */
934 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
935
936
937 /* Set the bit for character C in a list. */
938 #define SET_LIST_BIT(c) \
939 (b[((unsigned char) (c)) / BYTEWIDTH] \
940 |= 1 << (((unsigned char) c) % BYTEWIDTH))
941
942
943 /* Get the next unsigned number in the uncompiled pattern. */
944 #define GET_UNSIGNED_NUMBER(num) \
945 { if (p != pend) \
946 { \
947 PATFETCH (c); \
948 while (ISDIGIT (c)) \
949 { \
950 if (num < 0) \
951 num = 0; \
952 num = num * 10 + c - '0'; \
953 if (p == pend) \
954 break; \
955 PATFETCH (c); \
956 } \
957 } \
958 }
959
960 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
961
962 #define IS_CHAR_CLASS(string) \
963 (STREQ (string, "alpha") || STREQ (string, "upper") \
964 || STREQ (string, "lower") || STREQ (string, "digit") \
965 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
966 || STREQ (string, "space") || STREQ (string, "print") \
967 || STREQ (string, "punct") || STREQ (string, "graph") \
968 || STREQ (string, "cntrl") || STREQ (string, "blank"))
969 \f
970 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
971 * Returns one of error codes defined in `regex.h', or zero for success.
972 *
973 * Assumes the `allocated' (and perhaps `buffer') and `translate'
974 * fields are set in BUFP on entry.
975 *
976 * If it succeeds, results are put in BUFP (if it returns an error, the
977 * contents of BUFP are undefined):
978 * `buffer' is the compiled pattern;
979 * `syntax' is set to SYNTAX;
980 * `used' is set to the length of the compiled pattern;
981 * `fastmap_accurate' is zero;
982 * `re_nsub' is the number of subexpressions in PATTERN;
983 * `not_bol' and `not_eol' are zero;
984 *
985 * The `fastmap' and `newline_anchor' fields are neither
986 * examined nor set. */
987
988 static reg_errcode_t
989 regex_compile(const char *pattern, int size, reg_syntax_t syntax, struct re_pattern_buffer *bufp)
990 {
991 /* We fetch characters from PATTERN here. Even though PATTERN is
992 * `char *' (i.e., signed), we declare these variables as unsigned, so
993 * they can be reliably used as array indices. */
994 register unsigned char c, c1;
995
996 /* A random tempory spot in PATTERN. */
997 const char *p1;
998
999 /* Points to the end of the buffer, where we should append. */
1000 register unsigned char *b;
1001
1002 /* Keeps track of unclosed groups. */
1003 compile_stack_type compile_stack;
1004
1005 /* Points to the current (ending) position in the pattern. */
1006 const char *p = pattern;
1007 const char *pend = pattern + size;
1008
1009 /* How to translate the characters in the pattern. */
1010 char *translate = bufp->translate;
1011
1012 /* Address of the count-byte of the most recently inserted `exactn'
1013 * command. This makes it possible to tell if a new exact-match
1014 * character can be added to that command or if the character requires
1015 * a new `exactn' command. */
1016 unsigned char *pending_exact = 0;
1017
1018 /* Address of start of the most recently finished expression.
1019 * This tells, e.g., postfix * where to find the start of its
1020 * operand. Reset at the beginning of groups and alternatives. */
1021 unsigned char *laststart = 0;
1022
1023 /* Address of beginning of regexp, or inside of last group. */
1024 unsigned char *begalt;
1025
1026 /* Place in the uncompiled pattern (i.e., the {) to
1027 * which to go back if the interval is invalid. */
1028 const char *beg_interval;
1029
1030 /* Address of the place where a forward jump should go to the end of
1031 * the containing expression. Each alternative of an `or' -- except the
1032 * last -- ends with a forward jump of this sort. */
1033 unsigned char *fixup_alt_jump = 0;
1034
1035 /* Counts open-groups as they are encountered. Remembered for the
1036 * matching close-group on the compile stack, so the same register
1037 * number is put in the stop_memory as the start_memory. */
1038 regnum_t regnum = 0;
1039
1040 #ifdef DEBUG
1041 DEBUG_PRINT1("\nCompiling pattern: ");
1042 if (debug) {
1043 unsigned debug_count;
1044
1045 for (debug_count = 0; debug_count < size; debug_count++)
1046 printchar(pattern[debug_count]);
1047 putchar('\n');
1048 }
1049 #endif /* DEBUG */
1050
1051 /* Initialize the compile stack. */
1052 compile_stack.stack = TALLOC(INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1053 if (compile_stack.stack == NULL)
1054 return REG_ESPACE;
1055
1056 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1057 compile_stack.avail = 0;
1058
1059 /* Initialize the pattern buffer. */
1060 bufp->syntax = syntax;
1061 bufp->fastmap_accurate = 0;
1062 bufp->not_bol = bufp->not_eol = 0;
1063
1064 /* Set `used' to zero, so that if we return an error, the pattern
1065 * printer (for debugging) will think there's no pattern. We reset it
1066 * at the end. */
1067 bufp->used = 0;
1068
1069 /* Always count groups, whether or not bufp->no_sub is set. */
1070 bufp->re_nsub = 0;
1071
1072 #if !defined (SYNTAX_TABLE)
1073 /* Initialize the syntax table. */
1074 init_syntax_once();
1075 #endif
1076
1077 if (bufp->allocated == 0) {
1078 if (bufp->buffer) { /* If zero allocated, but buffer is non-null, try to realloc
1079 * enough space. This loses if buffer's address is bogus, but
1080 * that is the user's responsibility. */
1081 RETALLOC(bufp->buffer, INIT_BUF_SIZE, unsigned char);
1082 } else { /* Caller did not allocate a buffer. Do it for them. */
1083 bufp->buffer = TALLOC(INIT_BUF_SIZE, unsigned char);
1084 }
1085 if (!bufp->buffer)
1086 return REG_ESPACE;
1087
1088 bufp->allocated = INIT_BUF_SIZE;
1089 }
1090 begalt = b = bufp->buffer;
1091
1092 /* Loop through the uncompiled pattern until we're at the end. */
1093 while (p != pend) {
1094 PATFETCH(c);
1095
1096 switch (c) {
1097 case '^': {
1098 if ( /* If at start of pattern, it's an operator. */
1099 p == pattern + 1
1100 /* If context independent, it's an operator. */
1101 || syntax & RE_CONTEXT_INDEP_ANCHORS
1102 /* Otherwise, depends on what's come before. */
1103 || at_begline_loc_p(pattern, p, syntax))
1104 BUF_PUSH(begline);
1105 else
1106 goto normal_char;
1107 }
1108 break;
1109
1110
1111 case '$': {
1112 if ( /* If at end of pattern, it's an operator. */
1113 p == pend
1114 /* If context independent, it's an operator. */
1115 || syntax & RE_CONTEXT_INDEP_ANCHORS
1116 /* Otherwise, depends on what's next. */
1117 || at_endline_loc_p(p, pend, syntax))
1118 BUF_PUSH(endline);
1119 else
1120 goto normal_char;
1121 }
1122 break;
1123
1124
1125 case '+':
1126 case '?':
1127 if ((syntax & RE_BK_PLUS_QM)
1128 || (syntax & RE_LIMITED_OPS))
1129 goto normal_char;
1130 handle_plus:
1131 case '*':
1132 /* If there is no previous pattern... */
1133 if (!laststart) {
1134 if (syntax & RE_CONTEXT_INVALID_OPS)
1135 return REG_BADRPT;
1136 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1137 goto normal_char;
1138 } {
1139 /* Are we optimizing this jump? */
1140 boolean keep_string_p = false;
1141
1142 /* 1 means zero (many) matches is allowed. */
1143 char zero_times_ok = 0, many_times_ok = 0;
1144
1145 /* If there is a sequence of repetition chars, collapse it
1146 * down to just one (the right one). We can't combine
1147 * interval operators with these because of, e.g., `a{2}*',
1148 * which should only match an even number of `a's. */
1149
1150 for (;;) {
1151 zero_times_ok |= c != '+';
1152 many_times_ok |= c != '?';
1153
1154 if (p == pend)
1155 break;
1156
1157 PATFETCH(c);
1158
1159 if (c == '*'
1160 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')));
1161
1162 else if (syntax & RE_BK_PLUS_QM && c == '\\') {
1163 if (p == pend)
1164 return REG_EESCAPE;
1165
1166 PATFETCH(c1);
1167 if (!(c1 == '+' || c1 == '?')) {
1168 PATUNFETCH;
1169 PATUNFETCH;
1170 break;
1171 }
1172 c = c1;
1173 } else {
1174 PATUNFETCH;
1175 break;
1176 }
1177
1178 /* If we get here, we found another repeat character. */
1179 }
1180
1181 /* Star, etc. applied to an empty pattern is equivalent
1182 * to an empty pattern. */
1183 if (!laststart)
1184 break;
1185
1186 /* Now we know whether or not zero matches is allowed
1187 * and also whether or not two or more matches is allowed. */
1188 if (many_times_ok) { /* More than one repetition is allowed, so put in at the
1189 * end a backward relative jump from `b' to before the next
1190 * jump we're going to put in below (which jumps from
1191 * laststart to after this jump).
1192 *
1193 * But if we are at the `*' in the exact sequence `.*\n',
1194 * insert an unconditional jump backwards to the .,
1195 * instead of the beginning of the loop. This way we only
1196 * push a failure point once, instead of every time
1197 * through the loop. */
1198 assert(p - 1 > pattern);
1199
1200 /* Allocate the space for the jump. */
1201 GET_BUFFER_SPACE(3);
1202
1203 /* We know we are not at the first character of the pattern,
1204 * because laststart was nonzero. And we've already
1205 * incremented `p', by the way, to be the character after
1206 * the `*'. Do we have to do something analogous here
1207 * for null bytes, because of RE_DOT_NOT_NULL? */
1208 if (TRANSLATE(*(p - 2)) == TRANSLATE('.')
1209 && zero_times_ok
1210 && p < pend && TRANSLATE(*p) == TRANSLATE('\n')
1211 && !(syntax & RE_DOT_NEWLINE)) { /* We have .*\n. */
1212 STORE_JUMP(jump, b, laststart);
1213 keep_string_p = true;
1214 } else
1215 /* Anything else. */
1216 STORE_JUMP(maybe_pop_jump, b, laststart - 3);
1217
1218 /* We've added more stuff to the buffer. */
1219 b += 3;
1220 }
1221 /* On failure, jump from laststart to b + 3, which will be the
1222 * end of the buffer after this jump is inserted. */
1223 GET_BUFFER_SPACE(3);
1224 INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump
1225 : on_failure_jump,
1226 laststart, b + 3);
1227 pending_exact = 0;
1228 b += 3;
1229
1230 if (!zero_times_ok) {
1231 /* At least one repetition is required, so insert a
1232 * `dummy_failure_jump' before the initial
1233 * `on_failure_jump' instruction of the loop. This
1234 * effects a skip over that instruction the first time
1235 * we hit that loop. */
1236 GET_BUFFER_SPACE(3);
1237 INSERT_JUMP(dummy_failure_jump, laststart, laststart + 6);
1238 b += 3;
1239 }
1240 }
1241 break;
1242
1243
1244 case '.':
1245 laststart = b;
1246 BUF_PUSH(anychar);
1247 break;
1248
1249
1250 case '[': {
1251 boolean had_char_class = false;
1252
1253 if (p == pend)
1254 return REG_EBRACK;
1255
1256 /* Ensure that we have enough space to push a charset: the
1257 * opcode, the length count, and the bitset; 34 bytes in all. */
1258 GET_BUFFER_SPACE(34);
1259
1260 laststart = b;
1261
1262 /* We test `*p == '^' twice, instead of using an if
1263 * statement, so we only need one BUF_PUSH. */
1264 BUF_PUSH(*p == '^' ? charset_not : charset);
1265 if (*p == '^')
1266 p++;
1267
1268 /* Remember the first position in the bracket expression. */
1269 p1 = p;
1270
1271 /* Push the number of bytes in the bitmap. */
1272 BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH);
1273
1274 /* Clear the whole map. */
1275 memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
1276
1277 /* charset_not matches newline according to a syntax bit. */
1278 if ((re_opcode_t) b[-2] == charset_not
1279 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1280 SET_LIST_BIT('\n');
1281
1282 /* Read in characters and ranges, setting map bits. */
1283 for (;;) {
1284 if (p == pend)
1285 return REG_EBRACK;
1286
1287 PATFETCH(c);
1288
1289 /* \ might escape characters inside [...] and [^...]. */
1290 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') {
1291 if (p == pend)
1292 return REG_EESCAPE;
1293
1294 PATFETCH(c1);
1295 SET_LIST_BIT(c1);
1296 continue;
1297 }
1298 /* Could be the end of the bracket expression. If it's
1299 * not (i.e., when the bracket expression is `[]' so
1300 * far), the ']' character bit gets set way below. */
1301 if (c == ']' && p != p1 + 1)
1302 break;
1303
1304 /* Look ahead to see if it's a range when the last thing
1305 * was a character class. */
1306 if (had_char_class && c == '-' && *p != ']')
1307 return REG_ERANGE;
1308
1309 /* Look ahead to see if it's a range when the last thing
1310 * was a character: if this is a hyphen not at the
1311 * beginning or the end of a list, then it's the range
1312 * operator. */
1313 if (c == '-'
1314 && !(p - 2 >= pattern && p[-2] == '[')
1315 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1316 && *p != ']') {
1317 reg_errcode_t ret
1318 = compile_range(&p, pend, translate, syntax, b);
1319 if (ret != REG_NOERROR)
1320 return ret;
1321 } else if (p[0] == '-' && p[1] != ']') { /* This handles ranges made up of characters only. */
1322 reg_errcode_t ret;
1323
1324 /* Move past the `-'. */
1325 PATFETCH(c1);
1326
1327 ret = compile_range(&p, pend, translate, syntax, b);
1328 if (ret != REG_NOERROR)
1329 return ret;
1330 }
1331 /* See if we're at the beginning of a possible character
1332 * class. */
1333
1334 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') { /* Leave room for the null. */
1335 char str[CHAR_CLASS_MAX_LENGTH + 1];
1336
1337 PATFETCH(c);
1338 c1 = 0;
1339
1340 /* If pattern is `[[:'. */
1341 if (p == pend)
1342 return REG_EBRACK;
1343
1344 for (;;) {
1345 PATFETCH(c);
1346 if (c == ':' || c == ']' || p == pend
1347 || c1 == CHAR_CLASS_MAX_LENGTH)
1348 break;
1349 str[c1++] = c;
1350 }
1351 str[c1] = '\0';
1352
1353 /* If isn't a word bracketed by `[:' and:`]':
1354 * undo the ending character, the letters, and leave
1355 * the leading `:' and `[' (but set bits for them). */
1356 if (c == ':' && *p == ']') {
1357 int ch;
1358 boolean is_alnum = STREQ(str, "alnum");
1359 boolean is_alpha = STREQ(str, "alpha");
1360 boolean is_blank = STREQ(str, "blank");
1361 boolean is_cntrl = STREQ(str, "cntrl");
1362 boolean is_digit = STREQ(str, "digit");
1363 boolean is_graph = STREQ(str, "graph");
1364 boolean is_lower = STREQ(str, "lower");
1365 boolean is_print = STREQ(str, "print");
1366 boolean is_punct = STREQ(str, "punct");
1367 boolean is_space = STREQ(str, "space");
1368 boolean is_upper = STREQ(str, "upper");
1369 boolean is_xdigit = STREQ(str, "xdigit");
1370
1371 if (!IS_CHAR_CLASS(str))
1372 return REG_ECTYPE;
1373
1374 /* Throw away the ] at the end of the character
1375 * class. */
1376 PATFETCH(c);
1377
1378 if (p == pend)
1379 return REG_EBRACK;
1380
1381 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
1382 if ((is_alnum && ISALNUM(ch))
1383 || (is_alpha && ISALPHA(ch))
1384 || (is_blank && ISBLANK(ch))
1385 || (is_cntrl && ISCNTRL(ch))
1386 || (is_digit && ISDIGIT(ch))
1387 || (is_graph && ISGRAPH(ch))
1388 || (is_lower && ISLOWER(ch))
1389 || (is_print && ISPRINT(ch))
1390 || (is_punct && ISPUNCT(ch))
1391 || (is_space && ISSPACE(ch))
1392 || (is_upper && ISUPPER(ch))
1393 || (is_xdigit && ISXDIGIT(ch)))
1394 SET_LIST_BIT(ch);
1395 }
1396 had_char_class = true;
1397 } else {
1398 c1++;
1399 while (c1--)
1400 PATUNFETCH;
1401 SET_LIST_BIT('[');
1402 SET_LIST_BIT(':');
1403 had_char_class = false;
1404 }
1405 } else {
1406 had_char_class = false;
1407 SET_LIST_BIT(c);
1408 }
1409 }
1410
1411 /* Discard any (non)matching list bytes that are all 0 at the
1412 * end of the map. Decrease the map-length byte too. */
1413 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1414 b[-1]--;
1415 b += b[-1];
1416 }
1417 break;
1418
1419
1420 case '(':
1421 if (syntax & RE_NO_BK_PARENS)
1422 goto handle_open;
1423 else
1424 goto normal_char;
1425
1426
1427 case ')':
1428 if (syntax & RE_NO_BK_PARENS)
1429 goto handle_close;
1430 else
1431 goto normal_char;
1432
1433
1434 case '\n':
1435 if (syntax & RE_NEWLINE_ALT)
1436 goto handle_alt;
1437 else
1438 goto normal_char;
1439
1440
1441 case '|':
1442 if (syntax & RE_NO_BK_VBAR)
1443 goto handle_alt;
1444 else
1445 goto normal_char;
1446
1447
1448 case '{':
1449 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1450 goto handle_interval;
1451 else
1452 goto normal_char;
1453
1454
1455 case '\\':
1456 if (p == pend)
1457 return REG_EESCAPE;
1458
1459 /* Do not translate the character after the \, so that we can
1460 * distinguish, e.g., \B from \b, even if we normally would
1461 * translate, e.g., B to b. */
1462 PATFETCH_RAW(c);
1463
1464 switch (c) {
1465 case '(':
1466 if (syntax & RE_NO_BK_PARENS)
1467 goto normal_backslash;
1468
1469 handle_open:
1470 bufp->re_nsub++;
1471 regnum++;
1472
1473 if (COMPILE_STACK_FULL) {
1474 RETALLOC(compile_stack.stack, compile_stack.size << 1,
1475 compile_stack_elt_t);
1476 if (compile_stack.stack == NULL)
1477 return REG_ESPACE;
1478
1479 compile_stack.size <<= 1;
1480 }
1481 /* These are the values to restore when we hit end of this
1482 * group. They are all relative offsets, so that if the
1483 * whole pattern moves because of realloc, they will still
1484 * be valid. */
1485 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1486 COMPILE_STACK_TOP.fixup_alt_jump
1487 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1488 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1489 COMPILE_STACK_TOP.regnum = regnum;
1490
1491 /* We will eventually replace the 0 with the number of
1492 * groups inner to this one. But do not push a
1493 * start_memory for groups beyond the last one we can
1494 * represent in the compiled pattern. */
1495 if (regnum <= MAX_REGNUM) {
1496 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1497 BUF_PUSH_3(start_memory, regnum, 0);
1498 }
1499 compile_stack.avail++;
1500
1501 fixup_alt_jump = 0;
1502 laststart = 0;
1503 begalt = b;
1504 /* If we've reached MAX_REGNUM groups, then this open
1505 * won't actually generate any code, so we'll have to
1506 * clear pending_exact explicitly. */
1507 pending_exact = 0;
1508 break;
1509
1510
1511 case ')':
1512 if (syntax & RE_NO_BK_PARENS)
1513 goto normal_backslash;
1514
1515 if (COMPILE_STACK_EMPTY) {
1516 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1517 goto normal_backslash;
1518 else
1519 return REG_ERPAREN;
1520 }
1521 handle_close:
1522 if (fixup_alt_jump) { /* Push a dummy failure point at the end of the
1523 * alternative for a possible future
1524 * `pop_failure_jump' to pop. See comments at
1525 * `push_dummy_failure' in `re_match_2'. */
1526 BUF_PUSH(push_dummy_failure);
1527
1528 /* We allocated space for this jump when we assigned
1529 * to `fixup_alt_jump', in the `handle_alt' case below. */
1530 STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1);
1531 }
1532 /* See similar code for backslashed left paren above. */
1533 if (COMPILE_STACK_EMPTY) {
1534 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1535 goto normal_char;
1536 else
1537 return REG_ERPAREN;
1538 }
1539 /* Since we just checked for an empty stack above, this
1540 * ``can't happen''. */
1541 assert(compile_stack.avail != 0);
1542 {
1543 /* We don't just want to restore into `regnum', because
1544 * later groups should continue to be numbered higher,
1545 * as in `(ab)c(de)' -- the second group is #2. */
1546 regnum_t this_group_regnum;
1547
1548 compile_stack.avail--;
1549 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1550 fixup_alt_jump
1551 = COMPILE_STACK_TOP.fixup_alt_jump
1552 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1553 : 0;
1554 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1555 this_group_regnum = COMPILE_STACK_TOP.regnum;
1556 /* If we've reached MAX_REGNUM groups, then this open
1557 * won't actually generate any code, so we'll have to
1558 * clear pending_exact explicitly. */
1559 pending_exact = 0;
1560
1561 /* We're at the end of the group, so now we know how many
1562 * groups were inside this one. */
1563 if (this_group_regnum <= MAX_REGNUM) {
1564 unsigned char *inner_group_loc
1565 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1566
1567 *inner_group_loc = regnum - this_group_regnum;
1568 BUF_PUSH_3(stop_memory, this_group_regnum,
1569 regnum - this_group_regnum);
1570 }
1571 }
1572 break;
1573
1574
1575 case '|': /* `\|'. */
1576 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1577 goto normal_backslash;
1578 handle_alt:
1579 if (syntax & RE_LIMITED_OPS)
1580 goto normal_char;
1581
1582 /* Insert before the previous alternative a jump which
1583 * jumps to this alternative if the former fails. */
1584 GET_BUFFER_SPACE(3);
1585 INSERT_JUMP(on_failure_jump, begalt, b + 6);
1586 pending_exact = 0;
1587 b += 3;
1588
1589 /* The alternative before this one has a jump after it
1590 * which gets executed if it gets matched. Adjust that
1591 * jump so it will jump to this alternative's analogous
1592 * jump (put in below, which in turn will jump to the next
1593 * (if any) alternative's such jump, etc.). The last such
1594 * jump jumps to the correct final destination. A picture:
1595 * _____ _____
1596 * | | | |
1597 * | v | v
1598 * a | b | c
1599 *
1600 * If we are at `b', then fixup_alt_jump right now points to a
1601 * three-byte space after `a'. We'll put in the jump, set
1602 * fixup_alt_jump to right after `b', and leave behind three
1603 * bytes which we'll fill in when we get to after `c'. */
1604
1605 if (fixup_alt_jump)
1606 STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
1607
1608 /* Mark and leave space for a jump after this alternative,
1609 * to be filled in later either by next alternative or
1610 * when know we're at the end of a series of alternatives. */
1611 fixup_alt_jump = b;
1612 GET_BUFFER_SPACE(3);
1613 b += 3;
1614
1615 laststart = 0;
1616 begalt = b;
1617 break;
1618
1619
1620 case '{':
1621 /* If \{ is a literal. */
1622 if (!(syntax & RE_INTERVALS)
1623 /* If we're at `\{' and it's not the open-interval
1624 * operator. */
1625 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1626 || (p - 2 == pattern && p == pend))
1627 goto normal_backslash;
1628
1629 handle_interval: {
1630 /* If got here, then the syntax allows intervals. */
1631
1632 /* At least (most) this many matches must be made. */
1633 int lower_bound = -1, upper_bound = -1;
1634
1635 beg_interval = p - 1;
1636
1637 if (p == pend) {
1638 if (syntax & RE_NO_BK_BRACES)
1639 goto unfetch_interval;
1640 else
1641 return REG_EBRACE;
1642 }
1643 GET_UNSIGNED_NUMBER(lower_bound);
1644
1645 if (c == ',') {
1646 GET_UNSIGNED_NUMBER(upper_bound);
1647 if (upper_bound < 0)
1648 upper_bound = RE_DUP_MAX;
1649 } else
1650 /* Interval such as `{1}' => match exactly once. */
1651 upper_bound = lower_bound;
1652
1653 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1654 || lower_bound > upper_bound) {
1655 if (syntax & RE_NO_BK_BRACES)
1656 goto unfetch_interval;
1657 else
1658 return REG_BADBR;
1659 }
1660 if (!(syntax & RE_NO_BK_BRACES)) {
1661 if (c != '\\')
1662 return REG_EBRACE;
1663
1664 PATFETCH(c);
1665 }
1666 if (c != '}') {
1667 if (syntax & RE_NO_BK_BRACES)
1668 goto unfetch_interval;
1669 else
1670 return REG_BADBR;
1671 }
1672 /* We just parsed a valid interval. */
1673
1674 /* If it's invalid to have no preceding re. */
1675 if (!laststart) {
1676 if (syntax & RE_CONTEXT_INVALID_OPS)
1677 return REG_BADRPT;
1678 else if (syntax & RE_CONTEXT_INDEP_OPS)
1679 laststart = b;
1680 else
1681 goto unfetch_interval;
1682 }
1683 /* If the upper bound is zero, don't want to succeed at
1684 * all; jump from `laststart' to `b + 3', which will be
1685 * the end of the buffer after we insert the jump. */
1686 if (upper_bound == 0) {
1687 GET_BUFFER_SPACE(3);
1688 INSERT_JUMP(jump, laststart, b + 3);
1689 b += 3;
1690 }
1691 /* Otherwise, we have a nontrivial interval. When
1692 * we're all done, the pattern will look like:
1693 * set_number_at <jump count> <upper bound>
1694 * set_number_at <succeed_n count> <lower bound>
1695 * succeed_n <after jump addr> <succed_n count>
1696 * <body of loop>
1697 * jump_n <succeed_n addr> <jump count>
1698 * (The upper bound and `jump_n' are omitted if
1699 * `upper_bound' is 1, though.) */
1700 else { /* If the upper bound is > 1, we need to insert
1701 * more at the end of the loop. */
1702 unsigned nbytes = 10 + (upper_bound > 1) * 10;
1703
1704 GET_BUFFER_SPACE(nbytes);
1705
1706 /* Initialize lower bound of the `succeed_n', even
1707 * though it will be set during matching by its
1708 * attendant `set_number_at' (inserted next),
1709 * because `re_compile_fastmap' needs to know.
1710 * Jump to the `jump_n' we might insert below. */
1711 INSERT_JUMP2(succeed_n, laststart,
1712 b + 5 + (upper_bound > 1) * 5,
1713 lower_bound);
1714 b += 5;
1715
1716 /* Code to initialize the lower bound. Insert
1717 * before the `succeed_n'. The `5' is the last two
1718 * bytes of this `set_number_at', plus 3 bytes of
1719 * the following `succeed_n'. */
1720 insert_op2(set_number_at, laststart, 5, lower_bound, b);
1721 b += 5;
1722
1723 if (upper_bound > 1) { /* More than one repetition is allowed, so
1724 * append a backward jump to the `succeed_n'
1725 * that starts this interval.
1726 *
1727 * When we've reached this during matching,
1728 * we'll have matched the interval once, so
1729 * jump back only `upper_bound - 1' times. */
1730 STORE_JUMP2(jump_n, b, laststart + 5,
1731 upper_bound - 1);
1732 b += 5;
1733
1734 /* The location we want to set is the second
1735 * parameter of the `jump_n'; that is `b-2' as
1736 * an absolute address. `laststart' will be
1737 * the `set_number_at' we're about to insert;
1738 * `laststart+3' the number to set, the source
1739 * for the relative address. But we are
1740 * inserting into the middle of the pattern --
1741 * so everything is getting moved up by 5.
1742 * Conclusion: (b - 2) - (laststart + 3) + 5,
1743 * i.e., b - laststart.
1744 *
1745 * We insert this at the beginning of the loop
1746 * so that if we fail during matching, we'll
1747 * reinitialize the bounds. */
1748 insert_op2(set_number_at, laststart, b - laststart,
1749 upper_bound - 1, b);
1750 b += 5;
1751 }
1752 }
1753 pending_exact = 0;
1754 beg_interval = NULL;
1755 }
1756 break;
1757
1758 unfetch_interval:
1759 /* If an invalid interval, match the characters as literals. */
1760 assert(beg_interval);
1761 p = beg_interval;
1762 beg_interval = NULL;
1763
1764 /* normal_char and normal_backslash need `c'. */
1765 PATFETCH(c);
1766
1767 if (!(syntax & RE_NO_BK_BRACES)) {
1768 if (p > pattern && p[-1] == '\\')
1769 goto normal_backslash;
1770 }
1771 goto normal_char;
1772
1773
1774 case 'w':
1775 laststart = b;
1776 BUF_PUSH(wordchar);
1777 break;
1778
1779
1780 case 'W':
1781 laststart = b;
1782 BUF_PUSH(notwordchar);
1783 break;
1784
1785
1786 case '<':
1787 BUF_PUSH(wordbeg);
1788 break;
1789
1790 case '>':
1791 BUF_PUSH(wordend);
1792 break;
1793
1794 case 'b':
1795 BUF_PUSH(wordbound);
1796 break;
1797
1798 case 'B':
1799 BUF_PUSH(notwordbound);
1800 break;
1801
1802 case '`':
1803 BUF_PUSH(begbuf);
1804 break;
1805
1806 case '\'':
1807 BUF_PUSH(endbuf);
1808 break;
1809
1810 case '1':
1811 case '2':
1812 case '3':
1813 case '4':
1814 case '5':
1815 case '6':
1816 case '7':
1817 case '8':
1818 case '9':
1819 if (syntax & RE_NO_BK_REFS)
1820 goto normal_char;
1821
1822 c1 = c - '0';
1823
1824 if (c1 > regnum)
1825 return REG_ESUBREG;
1826
1827 /* Can't back reference to a subexpression if inside of it. */
1828 if (group_in_compile_stack(compile_stack, c1))
1829 goto normal_char;
1830
1831 laststart = b;
1832 BUF_PUSH_2(duplicate, c1);
1833 break;
1834
1835
1836 case '+':
1837 case '?':
1838 if (syntax & RE_BK_PLUS_QM)
1839 goto handle_plus;
1840 else
1841 goto normal_backslash;
1842
1843 default:
1844 normal_backslash:
1845 /* You might think it would be useful for \ to mean
1846 * not to translate; but if we don't translate it
1847 * it will never match anything. */
1848 c = TRANSLATE(c);
1849 goto normal_char;
1850 }
1851 break;
1852
1853
1854 default:
1855 /* Expects the character in `c'. */
1856 normal_char:
1857 /* If no exactn currently being built. */
1858 if (!pending_exact
1859
1860 /* If last exactn not at current position. */
1861 || pending_exact + *pending_exact + 1 != b
1862
1863 /* We have only one byte following the exactn for the count. */
1864 || *pending_exact == (1 << BYTEWIDTH) - 1
1865
1866 /* If followed by a repetition operator. */
1867 || *p == '*' || *p == '^'
1868 || ((syntax & RE_BK_PLUS_QM)
1869 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
1870 : (*p == '+' || *p == '?'))
1871 || ((syntax & RE_INTERVALS)
1872 && ((syntax & RE_NO_BK_BRACES)
1873 ? *p == '{'
1874 : (p[0] == '\\' && p[1] == '{')))) {
1875 /* Start building a new exactn. */
1876
1877 laststart = b;
1878
1879 BUF_PUSH_2(exactn, 0);
1880 pending_exact = b - 1;
1881 }
1882 BUF_PUSH(c);
1883 (*pending_exact)++;
1884 break;
1885 } /* switch (c) */
1886 } /* while p != pend */
1887
1888
1889 /* Through the pattern now. */
1890
1891 if (fixup_alt_jump)
1892 STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
1893
1894 if (!COMPILE_STACK_EMPTY)
1895 return REG_EPAREN;
1896
1897 free(compile_stack.stack);
1898
1899 /* We have succeeded; set the length of the buffer. */
1900 bufp->used = b - bufp->buffer;
1901
1902 #ifdef DEBUG
1903 if (debug) {
1904 DEBUG_PRINT1("\nCompiled pattern: ");
1905 print_compiled_pattern(bufp);
1906 }
1907 #endif /* DEBUG */
1908
1909 return REG_NOERROR;
1910 } /* regex_compile */
1911 \f
1912 /* Subroutines for `regex_compile'. */
1913
1914 /* Store OP at LOC followed by two-byte integer parameter ARG. */
1915
1916 void store_op1(re_opcode_t op, unsigned char *loc, int arg)
1917 {
1918 *loc = (unsigned char) op;
1919 STORE_NUMBER(loc + 1, arg);
1920 }
1921
1922
1923 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
1924
1925 void
1926 store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2)
1927 {
1928 *loc = (unsigned char) op;
1929 STORE_NUMBER(loc + 1, arg1);
1930 STORE_NUMBER(loc + 3, arg2);
1931 }
1932
1933
1934 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
1935 * for OP followed by two-byte integer parameter ARG. */
1936
1937 void
1938 insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
1939 {
1940 register unsigned char *pfrom = end;
1941 register unsigned char *pto = end + 3;
1942
1943 while (pfrom != loc)
1944 *--pto = *--pfrom;
1945
1946 store_op1(op, loc, arg);
1947 }
1948
1949
1950 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
1951
1952 void
1953 insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
1954 {
1955 register unsigned char *pfrom = end;
1956 register unsigned char *pto = end + 5;
1957
1958 while (pfrom != loc)
1959 *--pto = *--pfrom;
1960
1961 store_op2(op, loc, arg1, arg2);
1962 }
1963
1964
1965 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
1966 * after an alternative or a begin-subexpression. We assume there is at
1967 * least one character before the ^. */
1968
1969 boolean
1970 at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax)
1971 {
1972 const char *prev = p - 2;
1973 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
1974
1975 return
1976 /* After a subexpression? */
1977 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
1978 /* After an alternative? */
1979 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
1980 }
1981
1982
1983 /* The dual of at_begline_loc_p. This one is for $. We assume there is
1984 * at least one character after the $, i.e., `P < PEND'. */
1985
1986 boolean
1987 at_endline_loc_p(const char *p, const char *pend, int syntax)
1988 {
1989 const char *next = p;
1990 boolean next_backslash = *next == '\\';
1991 const char *next_next = p + 1 < pend ? p + 1 : NULL;
1992
1993 return
1994 /* Before a subexpression? */
1995 (syntax & RE_NO_BK_PARENS ? *next == ')'
1996 : next_backslash && next_next && *next_next == ')')
1997 /* Before an alternative? */
1998 || (syntax & RE_NO_BK_VBAR ? *next == '|'
1999 : next_backslash && next_next && *next_next == '|');
2000 }
2001
2002
2003 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2004 * false if it's not. */
2005
2006 boolean
2007 group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum)
2008 {
2009 int this_element;
2010
2011 for (this_element = compile_stack.avail - 1;
2012 this_element >= 0;
2013 this_element--)
2014 if (compile_stack.stack[this_element].regnum == regnum)
2015 return true;
2016
2017 return false;
2018 }
2019
2020
2021 /* Read the ending character of a range (in a bracket expression) from the
2022 * uncompiled pattern *P_PTR (which ends at PEND). We assume the
2023 * starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2024 * Then we set the translation of all bits between the starting and
2025 * ending characters (inclusive) in the compiled pattern B.
2026 *
2027 * Return an error code.
2028 *
2029 * We use these short variable names so we can use the same macros as
2030 * `regex_compile' itself. */
2031
2032 reg_errcode_t
2033 compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b)
2034 {
2035 unsigned this_char;
2036
2037 const char *p = *p_ptr;
2038 int range_start, range_end;
2039
2040 if (p == pend)
2041 return REG_ERANGE;
2042
2043 /* Even though the pattern is a signed `char *', we need to fetch
2044 * with unsigned char *'s; if the high bit of the pattern character
2045 * is set, the range endpoints will be negative if we fetch using a
2046 * signed char *.
2047 *
2048 * We also want to fetch the endpoints without translating them; the
2049 * appropriate translation is done in the bit-setting loop below. */
2050 range_start = ((unsigned char *) p)[-2];
2051 range_end = ((unsigned char *) p)[0];
2052
2053 /* Have to increment the pointer into the pattern string, so the
2054 * caller isn't still at the ending character. */
2055 (*p_ptr)++;
2056
2057 /* If the start is after the end, the range is empty. */
2058 if (range_start > range_end)
2059 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2060
2061 /* Here we see why `this_char' has to be larger than an `unsigned
2062 * char' -- the range is inclusive, so if `range_end' == 0xff
2063 * (assuming 8-bit characters), we would otherwise go into an infinite
2064 * loop, since all characters <= 0xff. */
2065 for (this_char = range_start; this_char <= range_end; this_char++) {
2066 SET_LIST_BIT(TRANSLATE(this_char));
2067 }
2068
2069 return REG_NOERROR;
2070 }
2071 \f
2072 /* Failure stack declarations and macros; both re_compile_fastmap and
2073 * re_match_2 use a failure stack. These have to be macros because of
2074 * REGEX_ALLOCATE. */
2075
2076
2077 /* Number of failure points for which to initially allocate space
2078 * when matching. If this number is exceeded, we allocate more
2079 * space, so it is not a hard limit. */
2080 #ifndef INIT_FAILURE_ALLOC
2081 #define INIT_FAILURE_ALLOC 5
2082 #endif
2083
2084 /* Roughly the maximum number of failure points on the stack. Would be
2085 * exactly that if always used MAX_FAILURE_SPACE each time we failed.
2086 * This is a variable only so users of regex can assign to it; we never
2087 * change it ourselves. */
2088 int re_max_failures = 2000;
2089
2090 typedef const unsigned char *fail_stack_elt_t;
2091
2092 typedef struct {
2093 fail_stack_elt_t *stack;
2094 unsigned size;
2095 unsigned avail; /* Offset of next open position. */
2096 } fail_stack_type;
2097
2098 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2099 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2100 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2101 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2102
2103
2104 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2105
2106 #define INIT_FAIL_STACK() \
2107 do { \
2108 fail_stack.stack = (fail_stack_elt_t *) \
2109 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2110 \
2111 if (fail_stack.stack == NULL) \
2112 return -2; \
2113 \
2114 fail_stack.size = INIT_FAILURE_ALLOC; \
2115 fail_stack.avail = 0; \
2116 } while (0)
2117
2118
2119 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2120 *
2121 * Return 1 if succeeds, and 0 if either ran out of memory
2122 * allocating space for it or it was already too large.
2123 *
2124 * REGEX_REALLOCATE requires `destination' be declared. */
2125
2126 #define DOUBLE_FAIL_STACK(fail_stack) \
2127 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2128 ? 0 \
2129 : ((fail_stack).stack = (fail_stack_elt_t *) \
2130 REGEX_REALLOCATE ((fail_stack).stack, \
2131 (fail_stack).size * sizeof (fail_stack_elt_t), \
2132 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2133 \
2134 (fail_stack).stack == NULL \
2135 ? 0 \
2136 : ((fail_stack).size <<= 1, \
2137 1)))
2138
2139
2140 /* Push PATTERN_OP on FAIL_STACK.
2141 *
2142 * Return 1 if was able to do so and 0 if ran out of memory allocating
2143 * space to do so. */
2144 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2145 ((FAIL_STACK_FULL () \
2146 && !DOUBLE_FAIL_STACK (fail_stack)) \
2147 ? 0 \
2148 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2149 1))
2150
2151 /* This pushes an item onto the failure stack. Must be a four-byte
2152 * value. Assumes the variable `fail_stack'. Probably should only
2153 * be called from within `PUSH_FAILURE_POINT'. */
2154 #define PUSH_FAILURE_ITEM(item) \
2155 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2156
2157 /* The complement operation. Assumes `fail_stack' is nonempty. */
2158 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2159
2160 /* Used to omit pushing failure point id's when we're not debugging. */
2161 #ifdef DEBUG
2162 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2163 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2164 #else
2165 #define DEBUG_PUSH(item)
2166 #define DEBUG_POP(item_addr)
2167 #endif
2168
2169
2170 /* Push the information about the state we will need
2171 * if we ever fail back to it.
2172 *
2173 * Requires variables fail_stack, regstart, regend, reg_info, and
2174 * num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2175 * declared.
2176 *
2177 * Does `return FAILURE_CODE' if runs out of memory. */
2178
2179 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2180 do { \
2181 char *destination; \
2182 /* Must be int, so when we don't save any registers, the arithmetic \
2183 of 0 + -1 isn't done as unsigned. */ \
2184 int this_reg; \
2185 \
2186 DEBUG_STATEMENT (failure_id++); \
2187 DEBUG_STATEMENT (nfailure_points_pushed++); \
2188 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2189 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2190 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2191 \
2192 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2193 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2194 \
2195 /* Ensure we have enough space allocated for what we will push. */ \
2196 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2197 { \
2198 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2199 return failure_code; \
2200 \
2201 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2202 (fail_stack).size); \
2203 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2204 } \
2205 \
2206 /* Push the info, starting with the registers. */ \
2207 DEBUG_PRINT1 ("\n"); \
2208 \
2209 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2210 this_reg++) \
2211 { \
2212 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2213 DEBUG_STATEMENT (num_regs_pushed++); \
2214 \
2215 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2216 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2217 \
2218 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2219 PUSH_FAILURE_ITEM (regend[this_reg]); \
2220 \
2221 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2222 DEBUG_PRINT2 (" match_null=%d", \
2223 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2224 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2225 DEBUG_PRINT2 (" matched_something=%d", \
2226 MATCHED_SOMETHING (reg_info[this_reg])); \
2227 DEBUG_PRINT2 (" ever_matched=%d", \
2228 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2229 DEBUG_PRINT1 ("\n"); \
2230 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2231 } \
2232 \
2233 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2234 PUSH_FAILURE_ITEM (lowest_active_reg); \
2235 \
2236 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2237 PUSH_FAILURE_ITEM (highest_active_reg); \
2238 \
2239 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2240 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2241 PUSH_FAILURE_ITEM (pattern_place); \
2242 \
2243 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2244 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2245 size2); \
2246 DEBUG_PRINT1 ("'\n"); \
2247 PUSH_FAILURE_ITEM (string_place); \
2248 \
2249 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2250 DEBUG_PUSH (failure_id); \
2251 } while (0)
2252
2253 /* This is the number of items that are pushed and popped on the stack
2254 * for each register. */
2255 #define NUM_REG_ITEMS 3
2256
2257 /* Individual items aside from the registers. */
2258 #ifdef DEBUG
2259 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2260 #else
2261 #define NUM_NONREG_ITEMS 4
2262 #endif
2263
2264 /* We push at most this many items on the stack. */
2265 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2266
2267 /* We actually push this many items. */
2268 #define NUM_FAILURE_ITEMS \
2269 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2270 + NUM_NONREG_ITEMS)
2271
2272 /* How many items can still be added to the stack without overflowing it. */
2273 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2274
2275
2276 /* Pops what PUSH_FAIL_STACK pushes.
2277 *
2278 * We restore into the parameters, all of which should be lvalues:
2279 * STR -- the saved data position.
2280 * PAT -- the saved pattern position.
2281 * LOW_REG, HIGH_REG -- the highest and lowest active registers.
2282 * REGSTART, REGEND -- arrays of string positions.
2283 * REG_INFO -- array of information about each subexpression.
2284 *
2285 * Also assumes the variables `fail_stack' and (if debugging), `bufp',
2286 * `pend', `string1', `size1', `string2', and `size2'. */
2287
2288 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2289 { \
2290 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2291 int this_reg; \
2292 const unsigned char *string_temp; \
2293 \
2294 assert (!FAIL_STACK_EMPTY ()); \
2295 \
2296 /* Remove failure points and point to how many regs pushed. */ \
2297 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2298 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2299 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2300 \
2301 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2302 \
2303 DEBUG_POP (&failure_id); \
2304 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2305 \
2306 /* If the saved string location is NULL, it came from an \
2307 on_failure_keep_string_jump opcode, and we want to throw away the \
2308 saved NULL, thus retaining our current position in the string. */ \
2309 string_temp = POP_FAILURE_ITEM (); \
2310 if (string_temp != NULL) \
2311 str = (const char *) string_temp; \
2312 \
2313 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2314 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2315 DEBUG_PRINT1 ("'\n"); \
2316 \
2317 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2318 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2319 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2320 \
2321 /* Restore register info. */ \
2322 high_reg = (unsigned long) POP_FAILURE_ITEM (); \
2323 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2324 \
2325 low_reg = (unsigned long) POP_FAILURE_ITEM (); \
2326 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2327 \
2328 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2329 { \
2330 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2331 \
2332 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2333 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2334 \
2335 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2336 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2337 \
2338 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2339 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2340 } \
2341 \
2342 DEBUG_STATEMENT (nfailure_points_popped++); \
2343 } /* POP_FAILURE_POINT */
2344 \f
2345 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2346 * BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2347 * characters can start a string that matches the pattern. This fastmap
2348 * is used by re_search to skip quickly over impossible starting points.
2349 *
2350 * The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2351 * area as BUFP->fastmap.
2352 *
2353 * We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2354 * the pattern buffer.
2355 *
2356 * Returns 0 if we succeed, -2 if an internal error. */
2357 #ifdef STDC_HEADERS
2358 int
2359 re_compile_fastmap(struct re_pattern_buffer *bufp)
2360 #else
2361 int
2362 re_compile_fastmap(bufp)
2363 struct re_pattern_buffer *bufp;
2364 #endif
2365 {
2366 int j, k;
2367 fail_stack_type fail_stack;
2368 #ifndef REGEX_MALLOC
2369 char *destination;
2370 #endif
2371 /* We don't push any register information onto the failure stack. */
2372 unsigned num_regs = 0;
2373
2374 register char *fastmap = bufp->fastmap;
2375 unsigned char *pattern = bufp->buffer;
2376 unsigned long size = bufp->used;
2377 const unsigned char *p = pattern;
2378 register unsigned char *pend = pattern + size;
2379
2380 /* Assume that each path through the pattern can be null until
2381 * proven otherwise. We set this false at the bottom of switch
2382 * statement, to which we get only if a particular path doesn't
2383 * match the empty string. */
2384 boolean path_can_be_null = true;
2385
2386 /* We aren't doing a `succeed_n' to begin with. */
2387 boolean succeed_n_p = false;
2388
2389 assert(fastmap != NULL && p != NULL);
2390
2391 INIT_FAIL_STACK();
2392 memset(fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2393 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2394 bufp->can_be_null = 0;
2395
2396 while (p != pend || !FAIL_STACK_EMPTY()) {
2397 if (p == pend) {
2398 bufp->can_be_null |= path_can_be_null;
2399
2400 /* Reset for next path. */
2401 path_can_be_null = true;
2402
2403 p = fail_stack.stack[--fail_stack.avail];
2404 }
2405 /* We should never be about to go beyond the end of the pattern. */
2406 assert(p < pend);
2407
2408 #ifdef SWITCH_ENUM_BUG
2409 switch ((int) ((re_opcode_t) * p++))
2410 #else
2411 switch ((re_opcode_t) * p++)
2412 #endif
2413 {
2414
2415 /* I guess the idea here is to simply not bother with a fastmap
2416 * if a backreference is used, since it's too hard to figure out
2417 * the fastmap for the corresponding group. Setting
2418 * `can_be_null' stops `re_search_2' from using the fastmap, so
2419 * that is all we do. */
2420 case duplicate:
2421 bufp->can_be_null = 1;
2422 return 0;
2423
2424
2425 /* Following are the cases which match a character. These end
2426 * with `break'. */
2427
2428 case exactn:
2429 fastmap[p[1]] = 1;
2430 break;
2431
2432
2433 case charset:
2434 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2435 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2436 fastmap[j] = 1;
2437 break;
2438
2439
2440 case charset_not:
2441 /* Chars beyond end of map must be allowed. */
2442 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2443 fastmap[j] = 1;
2444
2445 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2446 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2447 fastmap[j] = 1;
2448 break;
2449
2450
2451 case wordchar:
2452 for (j = 0; j < (1 << BYTEWIDTH); j++)
2453 if (SYNTAX(j) == Sword)
2454 fastmap[j] = 1;
2455 break;
2456
2457
2458 case notwordchar:
2459 for (j = 0; j < (1 << BYTEWIDTH); j++)
2460 if (SYNTAX(j) != Sword)
2461 fastmap[j] = 1;
2462 break;
2463
2464
2465 case anychar:
2466 /* `.' matches anything ... */
2467 for (j = 0; j < (1 << BYTEWIDTH); j++)
2468 fastmap[j] = 1;
2469
2470 /* ... except perhaps newline. */
2471 if (!(bufp->syntax & RE_DOT_NEWLINE))
2472 fastmap['\n'] = 0;
2473
2474 /* Return if we have already set `can_be_null'; if we have,
2475 * then the fastmap is irrelevant. Something's wrong here. */
2476 else if (bufp->can_be_null)
2477 return 0;
2478
2479 /* Otherwise, have to check alternative paths. */
2480 break;
2481
2482
2483 case no_op:
2484 case begline:
2485 case endline:
2486 case begbuf:
2487 case endbuf:
2488 case wordbound:
2489 case notwordbound:
2490 case wordbeg:
2491 case wordend:
2492 case push_dummy_failure:
2493 continue;
2494
2495
2496 case jump_n:
2497 case pop_failure_jump:
2498 case maybe_pop_jump:
2499 case jump:
2500 case jump_past_alt:
2501 case dummy_failure_jump:
2502 EXTRACT_NUMBER_AND_INCR(j, p);
2503 p += j;
2504 if (j > 0)
2505 continue;
2506
2507 /* Jump backward implies we just went through the body of a
2508 * loop and matched nothing. Opcode jumped to should be
2509 * `on_failure_jump' or `succeed_n'. Just treat it like an
2510 * ordinary jump. For a * loop, it has pushed its failure
2511 * point already; if so, discard that as redundant. */
2512 if ((re_opcode_t) * p != on_failure_jump
2513 && (re_opcode_t) * p != succeed_n)
2514 continue;
2515
2516 p++;
2517 EXTRACT_NUMBER_AND_INCR(j, p);
2518 p += j;
2519
2520 /* If what's on the stack is where we are now, pop it. */
2521 if (!FAIL_STACK_EMPTY()
2522 && fail_stack.stack[fail_stack.avail - 1] == p)
2523 fail_stack.avail--;
2524
2525 continue;
2526
2527
2528 case on_failure_jump:
2529 case on_failure_keep_string_jump:
2530 handle_on_failure_jump:
2531 EXTRACT_NUMBER_AND_INCR(j, p);
2532
2533 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2534 * end of the pattern. We don't want to push such a point,
2535 * since when we restore it above, entering the switch will
2536 * increment `p' past the end of the pattern. We don't need
2537 * to push such a point since we obviously won't find any more
2538 * fastmap entries beyond `pend'. Such a pattern can match
2539 * the null string, though. */
2540 if (p + j < pend) {
2541 if (!PUSH_PATTERN_OP(p + j, fail_stack))
2542 return -2;
2543 } else
2544 bufp->can_be_null = 1;
2545
2546 if (succeed_n_p) {
2547 EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */
2548 succeed_n_p = false;
2549 }
2550 continue;
2551
2552
2553 case succeed_n:
2554 /* Get to the number of times to succeed. */
2555 p += 2;
2556
2557 /* Increment p past the n for when k != 0. */
2558 EXTRACT_NUMBER_AND_INCR(k, p);
2559 if (k == 0) {
2560 p -= 4;
2561 succeed_n_p = true; /* Spaghetti code alert. */
2562 goto handle_on_failure_jump;
2563 }
2564 continue;
2565
2566
2567 case set_number_at:
2568 p += 4;
2569 continue;
2570
2571
2572 case start_memory:
2573 case stop_memory:
2574 p += 2;
2575 continue;
2576
2577
2578 default:
2579 abort(); /* We have listed all the cases. */
2580 } /* switch *p++ */
2581
2582 /* Getting here means we have found the possible starting
2583 * characters for one path of the pattern -- and that the empty
2584 * string does not match. We need not follow this path further.
2585 * Instead, look at the next alternative (remembered on the
2586 * stack), or quit if no more. The test at the top of the loop
2587 * does these things. */
2588 path_can_be_null = false;
2589 p = pend;
2590 } /* while p */
2591
2592 /* Set `can_be_null' for the last path (also the first path, if the
2593 * pattern is empty). */
2594 bufp->can_be_null |= path_can_be_null;
2595 return 0;
2596 } /* re_compile_fastmap */
2597 \f
2598 /* Searching routines. */
2599
2600 /* Like re_search_2, below, but only one string is specified, and
2601 * doesn't let you say where to stop matching. */
2602
2603 static int
2604 re_search(bufp, string, size, startpos, range, regs)
2605 struct re_pattern_buffer *bufp;
2606 const char *string;
2607 int size, startpos, range;
2608 struct re_registers *regs;
2609 {
2610 return re_search_2(bufp, NULL, 0, string, size, startpos, range,
2611 regs, size);
2612 }
2613
2614
2615 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2616 * virtual concatenation of STRING1 and STRING2, starting first at index
2617 * STARTPOS, then at STARTPOS + 1, and so on.
2618 *
2619 * STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2620 *
2621 * RANGE is how far to scan while trying to match. RANGE = 0 means try
2622 * only at STARTPOS; in general, the last start tried is STARTPOS +
2623 * RANGE.
2624 *
2625 * In REGS, return the indices of the virtual concatenation of STRING1
2626 * and STRING2 that matched the entire BUFP->buffer and its contained
2627 * subexpressions.
2628 *
2629 * Do not consider matching one past the index STOP in the virtual
2630 * concatenation of STRING1 and STRING2.
2631 *
2632 * We return either the position in the strings at which the match was
2633 * found, -1 if no match, or -2 if error (such as failure
2634 * stack overflow). */
2635
2636 static int
2637 re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2638 struct re_pattern_buffer *bufp;
2639 const char *string1, *string2;
2640 int size1, size2;
2641 int startpos;
2642 int range;
2643 struct re_registers *regs;
2644 int stop;
2645 {
2646 int val;
2647 register char *fastmap = bufp->fastmap;
2648 register char *translate = bufp->translate;
2649 int total_size = size1 + size2;
2650 int endpos = startpos + range;
2651
2652 /* Check for out-of-range STARTPOS. */
2653 if (startpos < 0 || startpos > total_size)
2654 return -1;
2655
2656 /* Fix up RANGE if it might eventually take us outside
2657 * the virtual concatenation of STRING1 and STRING2. */
2658 if (endpos < -1)
2659 range = -1 - startpos;
2660 else if (endpos > total_size)
2661 range = total_size - startpos;
2662
2663 /* If the search isn't to be a backwards one, don't waste time in a
2664 * search for a pattern that must be anchored. */
2665 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) {
2666 if (startpos > 0)
2667 return -1;
2668 else
2669 range = 1;
2670 }
2671 /* Update the fastmap now if not correct already. */
2672 if (fastmap && !bufp->fastmap_accurate)
2673 if (re_compile_fastmap(bufp) == -2)
2674 return -2;
2675
2676 /* Loop through the string, looking for a place to start matching. */
2677 for (;;) {
2678 /* If a fastmap is supplied, skip quickly over characters that
2679 * cannot be the start of a match. If the pattern can match the
2680 * null string, however, we don't need to skip characters; we want
2681 * the first null string. */
2682 if (fastmap && startpos < total_size && !bufp->can_be_null) {
2683 if (range > 0) { /* Searching forwards. */
2684 register const char *d;
2685 register int lim = 0;
2686 int irange = range;
2687
2688 if (startpos < size1 && startpos + range >= size1)
2689 lim = range - (size1 - startpos);
2690
2691 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2692
2693 /* Written out as an if-else to avoid testing `translate'
2694 * inside the loop. */
2695 if (translate)
2696 while (range > lim
2697 && !fastmap[(unsigned char)
2698 translate[(unsigned char) *d++]])
2699 range--;
2700 else
2701 while (range > lim && !fastmap[(unsigned char) *d++])
2702 range--;
2703
2704 startpos += irange - range;
2705 } else { /* Searching backwards. */
2706 register char c = (size1 == 0 || startpos >= size1
2707 ? string2[startpos - size1]
2708 : string1[startpos]);
2709
2710 if (!fastmap[(unsigned char) TRANSLATE(c)])
2711 goto advance;
2712 }
2713 }
2714 /* If can't match the null string, and that's all we have left, fail. */
2715 if (range >= 0 && startpos == total_size && fastmap
2716 && !bufp->can_be_null)
2717 return -1;
2718
2719 val = re_match_2(bufp, string1, size1, string2, size2,
2720 startpos, regs, stop);
2721 if (val >= 0)
2722 return startpos;
2723
2724 if (val == -2)
2725 return -2;
2726
2727 advance:
2728 if (!range)
2729 break;
2730 else if (range > 0) {
2731 range--;
2732 startpos++;
2733 } else {
2734 range++;
2735 startpos--;
2736 }
2737 }
2738 return -1;
2739 } /* re_search_2 */
2740 \f
2741 /* Declarations and macros for re_match_2. */
2742
2743 /* Structure for per-register (a.k.a. per-group) information.
2744 * This must not be longer than one word, because we push this value
2745 * onto the failure stack. Other register information, such as the
2746 * starting and ending positions (which are addresses), and the list of
2747 * inner groups (which is a bits list) are maintained in separate
2748 * variables.
2749 *
2750 * We are making a (strictly speaking) nonportable assumption here: that
2751 * the compiler will pack our bit fields into something that fits into
2752 * the type of `word', i.e., is something that fits into one item on the
2753 * failure stack. */
2754 typedef union {
2755 fail_stack_elt_t word;
2756 struct {
2757 /* This field is one if this group can match the empty string,
2758 * zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
2759 #define MATCH_NULL_UNSET_VALUE 3
2760 unsigned match_null_string_p:2;
2761 unsigned is_active:1;
2762 unsigned matched_something:1;
2763 unsigned ever_matched_something:1;
2764 } bits;
2765 } register_info_type;
2766 static boolean alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info);
2767 static boolean common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info);
2768 static int bcmp_translate(unsigned char const *s1, unsigned char const *s2, register int len, char *translate);
2769 static boolean group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info);
2770
2771 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
2772 #define IS_ACTIVE(R) ((R).bits.is_active)
2773 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
2774 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
2775
2776
2777 /* Call this when have matched a real character; it sets `matched' flags
2778 * for the subexpressions which we are currently inside. Also records
2779 * that those subexprs have matched. */
2780 #define SET_REGS_MATCHED() \
2781 do \
2782 { \
2783 unsigned r; \
2784 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
2785 { \
2786 MATCHED_SOMETHING (reg_info[r]) \
2787 = EVER_MATCHED_SOMETHING (reg_info[r]) \
2788 = 1; \
2789 } \
2790 } \
2791 while (0)
2792
2793
2794 /* This converts PTR, a pointer into one of the search strings `string1'
2795 * and `string2' into an offset from the beginning of that string. */
2796 #define POINTER_TO_OFFSET(ptr) \
2797 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
2798
2799 /* Registers are set to a sentinel when they haven't yet matched. */
2800 #define REG_UNSET_VALUE ((char *) -1)
2801 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
2802
2803
2804 /* Macros for dealing with the split strings in re_match_2. */
2805
2806 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
2807
2808 /* Call before fetching a character with *d. This switches over to
2809 * string2 if necessary. */
2810 #define PREFETCH() \
2811 while (d == dend) \
2812 { \
2813 /* End of string2 => fail. */ \
2814 if (dend == end_match_2) \
2815 goto fail; \
2816 /* End of string1 => advance to string2. */ \
2817 d = string2; \
2818 dend = end_match_2; \
2819 }
2820
2821
2822 /* Test if at very beginning or at very end of the virtual concatenation
2823 * of `string1' and `string2'. If only one string, it's `string2'. */
2824 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
2825 #define AT_STRINGS_END(d) ((d) == end2)
2826
2827
2828 /* Test if D points to a character which is word-constituent. We have
2829 * two special cases to check for: if past the end of string1, look at
2830 * the first character in string2; and if before the beginning of
2831 * string2, look at the last character in string1. */
2832 #define WORDCHAR_P(d) \
2833 (SYNTAX ((d) == end1 ? *string2 \
2834 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
2835 == Sword)
2836
2837 /* Test if the character before D and the one at D differ with respect
2838 * to being word-constituent. */
2839 #define AT_WORD_BOUNDARY(d) \
2840 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
2841 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
2842
2843
2844 /* Free everything we malloc. */
2845 #ifdef REGEX_MALLOC
2846 #define FREE_VAR(var) if (var) free (var); var = NULL
2847 #define FREE_VARIABLES() \
2848 do { \
2849 FREE_VAR (fail_stack.stack); \
2850 FREE_VAR (regstart); \
2851 FREE_VAR (regend); \
2852 FREE_VAR (old_regstart); \
2853 FREE_VAR (old_regend); \
2854 FREE_VAR (best_regstart); \
2855 FREE_VAR (best_regend); \
2856 FREE_VAR (reg_info); \
2857 FREE_VAR (reg_dummy); \
2858 FREE_VAR (reg_info_dummy); \
2859 } while (0)
2860 #else /* not REGEX_MALLOC */
2861 /* Some MIPS systems (at least) want this to free alloca'd storage. */
2862 #define FREE_VARIABLES() alloca (0)
2863 #endif /* not REGEX_MALLOC */
2864
2865
2866 /* These values must meet several constraints. They must not be valid
2867 * register values; since we have a limit of 255 registers (because
2868 * we use only one byte in the pattern for the register number), we can
2869 * use numbers larger than 255. They must differ by 1, because of
2870 * NUM_FAILURE_ITEMS above. And the value for the lowest register must
2871 * be larger than the value for the highest register, so we do not try
2872 * to actually save any registers when none are active. */
2873 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
2874 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
2875 \f
2876 /* Matching routines. */
2877
2878 /* re_match_2 matches the compiled pattern in BUFP against the
2879 * the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
2880 * and SIZE2, respectively). We start matching at POS, and stop
2881 * matching at STOP.
2882 *
2883 * If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
2884 * store offsets for the substring each group matched in REGS. See the
2885 * documentation for exactly how many groups we fill.
2886 *
2887 * We return -1 if no match, -2 if an internal error (such as the
2888 * failure stack overflowing). Otherwise, we return the length of the
2889 * matched substring. */
2890
2891 int
2892 re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop)
2893 struct re_pattern_buffer *bufp;
2894 const char *string1, *string2;
2895 int size1, size2;
2896 int pos;
2897 struct re_registers *regs;
2898 int stop;
2899 {
2900 /* General temporaries. */
2901 int mcnt;
2902 unsigned char *p1;
2903
2904 /* Just past the end of the corresponding string. */
2905 const char *end1, *end2;
2906
2907 /* Pointers into string1 and string2, just past the last characters in
2908 * each to consider matching. */
2909 const char *end_match_1, *end_match_2;
2910
2911 /* Where we are in the data, and the end of the current string. */
2912 const char *d, *dend;
2913
2914 /* Where we are in the pattern, and the end of the pattern. */
2915 unsigned char *p = bufp->buffer;
2916 register unsigned char *pend = p + bufp->used;
2917
2918 /* We use this to map every character in the string. */
2919 char *translate = bufp->translate;
2920
2921 /* Failure point stack. Each place that can handle a failure further
2922 * down the line pushes a failure point on this stack. It consists of
2923 * restart, regend, and reg_info for all registers corresponding to
2924 * the subexpressions we're currently inside, plus the number of such
2925 * registers, and, finally, two char *'s. The first char * is where
2926 * to resume scanning the pattern; the second one is where to resume
2927 * scanning the strings. If the latter is zero, the failure point is
2928 * a ``dummy''; if a failure happens and the failure point is a dummy,
2929 * it gets discarded and the next next one is tried. */
2930 fail_stack_type fail_stack;
2931 #ifdef DEBUG
2932 static unsigned failure_id = 0;
2933 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
2934 #endif
2935
2936 /* We fill all the registers internally, independent of what we
2937 * return, for use in backreferences. The number here includes
2938 * an element for register zero. */
2939 unsigned num_regs = bufp->re_nsub + 1;
2940
2941 /* The currently active registers. */
2942 unsigned long lowest_active_reg = NO_LOWEST_ACTIVE_REG;
2943 unsigned long highest_active_reg = NO_HIGHEST_ACTIVE_REG;
2944
2945 /* Information on the contents of registers. These are pointers into
2946 * the input strings; they record just what was matched (on this
2947 * attempt) by a subexpression part of the pattern, that is, the
2948 * regnum-th regstart pointer points to where in the pattern we began
2949 * matching and the regnum-th regend points to right after where we
2950 * stopped matching the regnum-th subexpression. (The zeroth register
2951 * keeps track of what the whole pattern matches.) */
2952 const char **regstart = NULL, **regend = NULL;
2953
2954 /* If a group that's operated upon by a repetition operator fails to
2955 * match anything, then the register for its start will need to be
2956 * restored because it will have been set to wherever in the string we
2957 * are when we last see its open-group operator. Similarly for a
2958 * register's end. */
2959 const char **old_regstart = NULL, **old_regend = NULL;
2960
2961 /* The is_active field of reg_info helps us keep track of which (possibly
2962 * nested) subexpressions we are currently in. The matched_something
2963 * field of reg_info[reg_num] helps us tell whether or not we have
2964 * matched any of the pattern so far this time through the reg_num-th
2965 * subexpression. These two fields get reset each time through any
2966 * loop their register is in. */
2967 register_info_type *reg_info = NULL;
2968
2969 /* The following record the register info as found in the above
2970 * variables when we find a match better than any we've seen before.
2971 * This happens as we backtrack through the failure points, which in
2972 * turn happens only if we have not yet matched the entire string. */
2973 unsigned best_regs_set = false;
2974 const char **best_regstart = NULL, **best_regend = NULL;
2975
2976 /* Logically, this is `best_regend[0]'. But we don't want to have to
2977 * allocate space for that if we're not allocating space for anything
2978 * else (see below). Also, we never need info about register 0 for
2979 * any of the other register vectors, and it seems rather a kludge to
2980 * treat `best_regend' differently than the rest. So we keep track of
2981 * the end of the best match so far in a separate variable. We
2982 * initialize this to NULL so that when we backtrack the first time
2983 * and need to test it, it's not garbage. */
2984 const char *match_end = NULL;
2985
2986 /* Used when we pop values we don't care about. */
2987 const char **reg_dummy = NULL;
2988 register_info_type *reg_info_dummy = NULL;
2989
2990 #ifdef DEBUG
2991 /* Counts the total number of registers pushed. */
2992 unsigned num_regs_pushed = 0;
2993 #endif
2994
2995 DEBUG_PRINT1("\n\nEntering re_match_2.\n");
2996
2997 INIT_FAIL_STACK();
2998
2999 /* Do not bother to initialize all the register variables if there are
3000 * no groups in the pattern, as it takes a fair amount of time. If
3001 * there are groups, we include space for register 0 (the whole
3002 * pattern), even though we never use it, since it simplifies the
3003 * array indexing. We should fix this. */
3004 if (bufp->re_nsub) {
3005 regstart = REGEX_TALLOC(num_regs, const char *);
3006 regend = REGEX_TALLOC(num_regs, const char *);
3007 old_regstart = REGEX_TALLOC(num_regs, const char *);
3008 old_regend = REGEX_TALLOC(num_regs, const char *);
3009 best_regstart = REGEX_TALLOC(num_regs, const char *);
3010 best_regend = REGEX_TALLOC(num_regs, const char *);
3011 reg_info = REGEX_TALLOC(num_regs, register_info_type);
3012 reg_dummy = REGEX_TALLOC(num_regs, const char *);
3013 reg_info_dummy = REGEX_TALLOC(num_regs, register_info_type);
3014
3015 if (!(regstart && regend && old_regstart && old_regend && reg_info
3016 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) {
3017 FREE_VARIABLES();
3018 return -2;
3019 }
3020 }
3021 #ifdef REGEX_MALLOC
3022 else {
3023 /* We must initialize all our variables to NULL, so that
3024 * `FREE_VARIABLES' doesn't try to free them. */
3025 regstart = regend = old_regstart = old_regend = best_regstart
3026 = best_regend = reg_dummy = NULL;
3027 reg_info = reg_info_dummy = (register_info_type *) NULL;
3028 }
3029 #endif /* REGEX_MALLOC */
3030
3031 /* The starting position is bogus. */
3032 if (pos < 0 || pos > size1 + size2) {
3033 FREE_VARIABLES();
3034 return -1;
3035 }
3036 /* Initialize subexpression text positions to -1 to mark ones that no
3037 * start_memory/stop_memory has been seen for. Also initialize the
3038 * register information struct. */
3039 for (mcnt = 1; mcnt < num_regs; mcnt++) {
3040 regstart[mcnt] = regend[mcnt]
3041 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3042
3043 REG_MATCH_NULL_STRING_P(reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3044 IS_ACTIVE(reg_info[mcnt]) = 0;
3045 MATCHED_SOMETHING(reg_info[mcnt]) = 0;
3046 EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0;
3047 }
3048
3049 /* We move `string1' into `string2' if the latter's empty -- but not if
3050 * `string1' is null. */
3051 if (size2 == 0 && string1 != NULL) {
3052 string2 = string1;
3053 size2 = size1;
3054 string1 = 0;
3055 size1 = 0;
3056 }
3057 end1 = string1 + size1;
3058 end2 = string2 + size2;
3059
3060 /* Compute where to stop matching, within the two strings. */
3061 if (stop <= size1) {
3062 end_match_1 = string1 + stop;
3063 end_match_2 = string2;
3064 } else {
3065 end_match_1 = end1;
3066 end_match_2 = string2 + stop - size1;
3067 }
3068
3069 /* `p' scans through the pattern as `d' scans through the data.
3070 * `dend' is the end of the input string that `d' points within. `d'
3071 * is advanced into the following input string whenever necessary, but
3072 * this happens before fetching; therefore, at the beginning of the
3073 * loop, `d' can be pointing at the end of a string, but it cannot
3074 * equal `string2'. */
3075 if (size1 > 0 && pos <= size1) {
3076 d = string1 + pos;
3077 dend = end_match_1;
3078 } else {
3079 d = string2 + pos - size1;
3080 dend = end_match_2;
3081 }
3082
3083 DEBUG_PRINT1("The compiled pattern is: ");
3084 DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend);
3085 DEBUG_PRINT1("The string to match is: `");
3086 DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2);
3087 DEBUG_PRINT1("'\n");
3088
3089 /* This loops over pattern commands. It exits by returning from the
3090 * function if the match is complete, or it drops through if the match
3091 * fails at this starting point in the input data. */
3092 for (;;) {
3093 DEBUG_PRINT2("\n0x%x: ", p);
3094
3095 if (p == pend) { /* End of pattern means we might have succeeded. */
3096 DEBUG_PRINT1("end of pattern ... ");
3097
3098 /* If we haven't matched the entire string, and we want the
3099 * longest match, try backtracking. */
3100 if (d != end_match_2) {
3101 DEBUG_PRINT1("backtracking.\n");
3102
3103 if (!FAIL_STACK_EMPTY()) { /* More failure points to try. */
3104 boolean same_str_p = (FIRST_STRING_P(match_end)
3105 == MATCHING_IN_FIRST_STRING);
3106
3107 /* If exceeds best match so far, save it. */
3108 if (!best_regs_set
3109 || (same_str_p && d > match_end)
3110 || (!same_str_p && !MATCHING_IN_FIRST_STRING)) {
3111 best_regs_set = true;
3112 match_end = d;
3113
3114 DEBUG_PRINT1("\nSAVING match as best so far.\n");
3115
3116 for (mcnt = 1; mcnt < num_regs; mcnt++) {
3117 best_regstart[mcnt] = regstart[mcnt];
3118 best_regend[mcnt] = regend[mcnt];
3119 }
3120 }
3121 goto fail;
3122 }
3123 /* If no failure points, don't restore garbage. */
3124 else if (best_regs_set) {
3125 restore_best_regs:
3126 /* Restore best match. It may happen that `dend ==
3127 * end_match_1' while the restored d is in string2.
3128 * For example, the pattern `x.*y.*z' against the
3129 * strings `x-' and `y-z-', if the two strings are
3130 * not consecutive in memory. */
3131 DEBUG_PRINT1("Restoring best registers.\n");
3132
3133 d = match_end;
3134 dend = ((d >= string1 && d <= end1)
3135 ? end_match_1 : end_match_2);
3136
3137 for (mcnt = 1; mcnt < num_regs; mcnt++) {
3138 regstart[mcnt] = best_regstart[mcnt];
3139 regend[mcnt] = best_regend[mcnt];
3140 }
3141 }
3142 } /* d != end_match_2 */
3143 DEBUG_PRINT1("Accepting match.\n");
3144
3145 /* If caller wants register contents data back, do it. */
3146 if (regs && !bufp->no_sub) {
3147 /* Have the register data arrays been allocated? */
3148 if (bufp->regs_allocated == REGS_UNALLOCATED) { /* No. So allocate them with malloc. We need one
3149 * extra element beyond `num_regs' for the `-1' marker
3150 * GNU code uses. */
3151 regs->num_regs = MAX(RE_NREGS, num_regs + 1);
3152 regs->start = TALLOC(regs->num_regs, regoff_t);
3153 regs->end = TALLOC(regs->num_regs, regoff_t);
3154 if (regs->start == NULL || regs->end == NULL)
3155 return -2;
3156 bufp->regs_allocated = REGS_REALLOCATE;
3157 } else if (bufp->regs_allocated == REGS_REALLOCATE) { /* Yes. If we need more elements than were already
3158 * allocated, reallocate them. If we need fewer, just
3159 * leave it alone. */
3160 if (regs->num_regs < num_regs + 1) {
3161 regs->num_regs = num_regs + 1;
3162 RETALLOC(regs->start, regs->num_regs, regoff_t);
3163 RETALLOC(regs->end, regs->num_regs, regoff_t);
3164 if (regs->start == NULL || regs->end == NULL)
3165 return -2;
3166 }
3167 } else
3168 assert(bufp->regs_allocated == REGS_FIXED);
3169
3170 /* Convert the pointer data in `regstart' and `regend' to
3171 * indices. Register zero has to be set differently,
3172 * since we haven't kept track of any info for it. */
3173 if (regs->num_regs > 0) {
3174 regs->start[0] = pos;
3175 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3176 : d - string2 + size1);
3177 }
3178 /* Go through the first `min (num_regs, regs->num_regs)'
3179 * registers, since that is all we initialized. */
3180 for (mcnt = 1; mcnt < MIN(num_regs, regs->num_regs); mcnt++) {
3181 if (REG_UNSET(regstart[mcnt]) || REG_UNSET(regend[mcnt]))
3182 regs->start[mcnt] = regs->end[mcnt] = -1;
3183 else {
3184 regs->start[mcnt] = POINTER_TO_OFFSET(regstart[mcnt]);
3185 regs->end[mcnt] = POINTER_TO_OFFSET(regend[mcnt]);
3186 }
3187 }
3188
3189 /* If the regs structure we return has more elements than
3190 * were in the pattern, set the extra elements to -1. If
3191 * we (re)allocated the registers, this is the case,
3192 * because we always allocate enough to have at least one
3193 * -1 at the end. */
3194 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3195 regs->start[mcnt] = regs->end[mcnt] = -1;
3196 } /* regs && !bufp->no_sub */
3197 FREE_VARIABLES();
3198 DEBUG_PRINT4("%u failure points pushed, %u popped (%u remain).\n",
3199 nfailure_points_pushed, nfailure_points_popped,
3200 nfailure_points_pushed - nfailure_points_popped);
3201 DEBUG_PRINT2("%u registers pushed.\n", num_regs_pushed);
3202
3203 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3204 ? string1
3205 : string2 - size1);
3206
3207 DEBUG_PRINT2("Returning %d from re_match_2.\n", mcnt);
3208
3209 return mcnt;
3210 }
3211 /* Otherwise match next pattern command. */
3212 #ifdef SWITCH_ENUM_BUG
3213 switch ((int) ((re_opcode_t) * p++))
3214 #else
3215 switch ((re_opcode_t) * p++)
3216 #endif
3217 {
3218 /* Ignore these. Used to ignore the n of succeed_n's which
3219 * currently have n == 0. */
3220 case no_op:
3221 DEBUG_PRINT1("EXECUTING no_op.\n");
3222 break;
3223
3224
3225 /* Match the next n pattern characters exactly. The following
3226 * byte in the pattern defines n, and the n bytes after that
3227 * are the characters to match. */
3228 case exactn:
3229 mcnt = *p++;
3230 DEBUG_PRINT2("EXECUTING exactn %d.\n", mcnt);
3231
3232 /* This is written out as an if-else so we don't waste time
3233 * testing `translate' inside the loop. */
3234 if (translate) {
3235 do {
3236 PREFETCH();
3237 if (translate[(unsigned char) *d++] != (char) *p++)
3238 goto fail;
3239 } while (--mcnt);
3240 } else {
3241 do {
3242 PREFETCH();
3243 if (*d++ != (char) *p++)
3244 goto fail;
3245 } while (--mcnt);
3246 }
3247 SET_REGS_MATCHED();
3248 break;
3249
3250
3251 /* Match any character except possibly a newline or a null. */
3252 case anychar:
3253 DEBUG_PRINT1("EXECUTING anychar.\n");
3254
3255 PREFETCH();
3256
3257 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE(*d) == '\n')
3258 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE(*d) == '\000'))
3259 goto fail;
3260
3261 SET_REGS_MATCHED();
3262 DEBUG_PRINT2(" Matched `%d'.\n", *d);
3263 d++;
3264 break;
3265
3266
3267 case charset:
3268 case charset_not: {
3269 register unsigned char c;
3270 boolean not = (re_opcode_t) * (p - 1) == charset_not;
3271
3272 DEBUG_PRINT2("EXECUTING charset%s.\n", not ? "_not" : "");
3273
3274 PREFETCH();
3275 c = TRANSLATE(*d); /* The character to match. */
3276
3277 /* Cast to `unsigned' instead of `unsigned char' in case the
3278 * bit list is a full 32 bytes long. */
3279 if (c < (unsigned) (*p * BYTEWIDTH)
3280 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3281 not = !not;
3282
3283 p += 1 + *p;
3284
3285 if (!not)
3286 goto fail;
3287
3288 SET_REGS_MATCHED();
3289 d++;
3290 break;
3291 }
3292
3293
3294 /* The beginning of a group is represented by start_memory.
3295 * The arguments are the register number in the next byte, and the
3296 * number of groups inner to this one in the next. The text
3297 * matched within the group is recorded (in the internal
3298 * registers data structure) under the register number. */
3299 case start_memory:
3300 DEBUG_PRINT3("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3301
3302 /* Find out if this group can match the empty string. */
3303 p1 = p; /* To send to group_match_null_string_p. */
3304
3305 if (REG_MATCH_NULL_STRING_P(reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3306 REG_MATCH_NULL_STRING_P(reg_info[*p])
3307 = group_match_null_string_p(&p1, pend, reg_info);
3308
3309 /* Save the position in the string where we were the last time
3310 * we were at this open-group operator in case the group is
3311 * operated upon by a repetition operator, e.g., with `(a*)*b'
3312 * against `ab'; then we want to ignore where we are now in
3313 * the string in case this attempt to match fails. */
3314 old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
3315 ? REG_UNSET(regstart[*p]) ? d : regstart[*p]
3316 : regstart[*p];
3317 DEBUG_PRINT2(" old_regstart: %d\n",
3318 POINTER_TO_OFFSET(old_regstart[*p]));
3319
3320 regstart[*p] = d;
3321 DEBUG_PRINT2(" regstart: %d\n", POINTER_TO_OFFSET(regstart[*p]));
3322
3323 IS_ACTIVE(reg_info[*p]) = 1;
3324 MATCHED_SOMETHING(reg_info[*p]) = 0;
3325
3326 /* This is the new highest active register. */
3327 highest_active_reg = *p;
3328
3329 /* If nothing was active before, this is the new lowest active
3330 * register. */
3331 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3332 lowest_active_reg = *p;
3333
3334 /* Move past the register number and inner group count. */
3335 p += 2;
3336 break;
3337
3338
3339 /* The stop_memory opcode represents the end of a group. Its
3340 * arguments are the same as start_memory's: the register
3341 * number, and the number of inner groups. */
3342 case stop_memory:
3343 DEBUG_PRINT3("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3344
3345 /* We need to save the string position the last time we were at
3346 * this close-group operator in case the group is operated
3347 * upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3348 * against `aba'; then we want to ignore where we are now in
3349 * the string in case this attempt to match fails. */
3350 old_regend[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
3351 ? REG_UNSET(regend[*p]) ? d : regend[*p]
3352 : regend[*p];
3353 DEBUG_PRINT2(" old_regend: %d\n",
3354 POINTER_TO_OFFSET(old_regend[*p]));
3355
3356 regend[*p] = d;
3357 DEBUG_PRINT2(" regend: %d\n", POINTER_TO_OFFSET(regend[*p]));
3358
3359 /* This register isn't active anymore. */
3360 IS_ACTIVE(reg_info[*p]) = 0;
3361
3362 /* If this was the only register active, nothing is active
3363 * anymore. */
3364 if (lowest_active_reg == highest_active_reg) {
3365 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3366 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3367 } else { /* We must scan for the new highest active register, since
3368 * it isn't necessarily one less than now: consider
3369 * (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3370 * new highest active register is 1. */
3371 unsigned char r = *p - 1;
3372 while (r > 0 && !IS_ACTIVE(reg_info[r]))
3373 r--;
3374
3375 /* If we end up at register zero, that means that we saved
3376 * the registers as the result of an `on_failure_jump', not
3377 * a `start_memory', and we jumped to past the innermost
3378 * `stop_memory'. For example, in ((.)*) we save
3379 * registers 1 and 2 as a result of the *, but when we pop
3380 * back to the second ), we are at the stop_memory 1.
3381 * Thus, nothing is active. */
3382 if (r == 0) {
3383 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3384 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3385 } else
3386 highest_active_reg = r;
3387 }
3388
3389 /* If just failed to match something this time around with a
3390 * group that's operated on by a repetition operator, try to
3391 * force exit from the ``loop'', and restore the register
3392 * information for this group that we had before trying this
3393 * last match. */
3394 if ((!MATCHED_SOMETHING(reg_info[*p])
3395 || (re_opcode_t) p[-3] == start_memory)
3396 && (p + 2) < pend) {
3397 boolean is_a_jump_n = false;
3398
3399 p1 = p + 2;
3400 mcnt = 0;
3401 switch ((re_opcode_t) * p1++) {
3402 case jump_n:
3403 is_a_jump_n = true;
3404 case pop_failure_jump:
3405 case maybe_pop_jump:
3406 case jump:
3407 case dummy_failure_jump:
3408 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
3409 if (is_a_jump_n)
3410 p1 += 2;
3411 break;
3412
3413 default:
3414 /* do nothing */
3415 ;
3416 }
3417 p1 += mcnt;
3418
3419 /* If the next operation is a jump backwards in the pattern
3420 * to an on_failure_jump right before the start_memory
3421 * corresponding to this stop_memory, exit from the loop
3422 * by forcing a failure after pushing on the stack the
3423 * on_failure_jump's jump in the pattern, and d. */
3424 if (mcnt < 0 && (re_opcode_t) * p1 == on_failure_jump
3425 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) {
3426 /* If this group ever matched anything, then restore
3427 * what its registers were before trying this last
3428 * failed match, e.g., with `(a*)*b' against `ab' for
3429 * regstart[1], and, e.g., with `((a*)*(b*)*)*'
3430 * against `aba' for regend[3].
3431 *
3432 * Also restore the registers for inner groups for,
3433 * e.g., `((a*)(b*))*' against `aba' (register 3 would
3434 * otherwise get trashed). */
3435
3436 if (EVER_MATCHED_SOMETHING(reg_info[*p])) {
3437 unsigned r;
3438
3439 EVER_MATCHED_SOMETHING(reg_info[*p]) = 0;
3440
3441 /* Restore this and inner groups' (if any) registers. */
3442 for (r = *p; r < *p + *(p + 1); r++) {
3443 regstart[r] = old_regstart[r];
3444
3445 /* xx why this test? */
3446 if ((long) old_regend[r] >= (long) regstart[r])
3447 regend[r] = old_regend[r];
3448 }
3449 }
3450 p1++;
3451 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
3452 PUSH_FAILURE_POINT(p1 + mcnt, d, -2);
3453
3454 goto fail;
3455 }
3456 }
3457 /* Move past the register number and the inner group count. */
3458 p += 2;
3459 break;
3460
3461
3462 /* \<digit> has been turned into a `duplicate' command which is
3463 * followed by the numeric value of <digit> as the register number. */
3464 case duplicate: {
3465 register const char *d2, *dend2;
3466 int regno = *p++; /* Get which register to match against. */
3467 DEBUG_PRINT2("EXECUTING duplicate %d.\n", regno);
3468
3469 /* Can't back reference a group which we've never matched. */
3470 if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno]))
3471 goto fail;
3472
3473 /* Where in input to try to start matching. */
3474 d2 = regstart[regno];
3475
3476 /* Where to stop matching; if both the place to start and
3477 * the place to stop matching are in the same string, then
3478 * set to the place to stop, otherwise, for now have to use
3479 * the end of the first string. */
3480
3481 dend2 = ((FIRST_STRING_P(regstart[regno])
3482 == FIRST_STRING_P(regend[regno]))
3483 ? regend[regno] : end_match_1);
3484 for (;;) {
3485 /* If necessary, advance to next segment in register
3486 * contents. */
3487 while (d2 == dend2) {
3488 if (dend2 == end_match_2)
3489 break;
3490 if (dend2 == regend[regno])
3491 break;
3492
3493 /* End of string1 => advance to string2. */
3494 d2 = string2;
3495 dend2 = regend[regno];
3496 }
3497 /* At end of register contents => success */
3498 if (d2 == dend2)
3499 break;
3500
3501 /* If necessary, advance to next segment in data. */
3502 PREFETCH();
3503
3504 /* How many characters left in this segment to match. */
3505 mcnt = dend - d;
3506
3507 /* Want how many consecutive characters we can match in
3508 * one shot, so, if necessary, adjust the count. */
3509 if (mcnt > dend2 - d2)
3510 mcnt = dend2 - d2;
3511
3512 /* Compare that many; failure if mismatch, else move
3513 * past them. */
3514 if (translate
3515 ? bcmp_translate((unsigned char *)d, (unsigned char *)d2, mcnt, translate)
3516 : memcmp(d, d2, mcnt))
3517 goto fail;
3518 d += mcnt, d2 += mcnt;
3519 }
3520 }
3521 break;
3522
3523
3524 /* begline matches the empty string at the beginning of the string
3525 * (unless `not_bol' is set in `bufp'), and, if
3526 * `newline_anchor' is set, after newlines. */
3527 case begline:
3528 DEBUG_PRINT1("EXECUTING begline.\n");
3529
3530 if (AT_STRINGS_BEG(d)) {
3531 if (!bufp->not_bol)
3532 break;
3533 } else if (d[-1] == '\n' && bufp->newline_anchor) {
3534 break;
3535 }
3536 /* In all other cases, we fail. */
3537 goto fail;
3538
3539
3540 /* endline is the dual of begline. */
3541 case endline:
3542 DEBUG_PRINT1("EXECUTING endline.\n");
3543
3544 if (AT_STRINGS_END(d)) {
3545 if (!bufp->not_eol)
3546 break;
3547 }
3548 /* We have to ``prefetch'' the next character. */
3549 else if ((d == end1 ? *string2 : *d) == '\n'
3550 && bufp->newline_anchor) {
3551 break;
3552 }
3553 goto fail;
3554
3555
3556 /* Match at the very beginning of the data. */
3557 case begbuf:
3558 DEBUG_PRINT1("EXECUTING begbuf.\n");
3559 if (AT_STRINGS_BEG(d))
3560 break;
3561 goto fail;
3562
3563
3564 /* Match at the very end of the data. */
3565 case endbuf:
3566 DEBUG_PRINT1("EXECUTING endbuf.\n");
3567 if (AT_STRINGS_END(d))
3568 break;
3569 goto fail;
3570
3571
3572 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3573 * pushes NULL as the value for the string on the stack. Then
3574 * `pop_failure_point' will keep the current value for the
3575 * string, instead of restoring it. To see why, consider
3576 * matching `foo\nbar' against `.*\n'. The .* matches the foo;
3577 * then the . fails against the \n. But the next thing we want
3578 * to do is match the \n against the \n; if we restored the
3579 * string value, we would be back at the foo.
3580 *
3581 * Because this is used only in specific cases, we don't need to
3582 * check all the things that `on_failure_jump' does, to make
3583 * sure the right things get saved on the stack. Hence we don't
3584 * share its code. The only reason to push anything on the
3585 * stack at all is that otherwise we would have to change
3586 * `anychar's code to do something besides goto fail in this
3587 * case; that seems worse than this. */
3588 case on_failure_keep_string_jump:
3589 DEBUG_PRINT1("EXECUTING on_failure_keep_string_jump");
3590
3591 EXTRACT_NUMBER_AND_INCR(mcnt, p);
3592 DEBUG_PRINT3(" %d (to 0x%x):\n", mcnt, p + mcnt);
3593
3594 PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
3595 break;
3596
3597
3598 /* Uses of on_failure_jump:
3599 *
3600 * Each alternative starts with an on_failure_jump that points
3601 * to the beginning of the next alternative. Each alternative
3602 * except the last ends with a jump that in effect jumps past
3603 * the rest of the alternatives. (They really jump to the
3604 * ending jump of the following alternative, because tensioning
3605 * these jumps is a hassle.)
3606 *
3607 * Repeats start with an on_failure_jump that points past both
3608 * the repetition text and either the following jump or
3609 * pop_failure_jump back to this on_failure_jump. */
3610 case on_failure_jump:
3611 on_failure:
3612 DEBUG_PRINT1("EXECUTING on_failure_jump");
3613
3614 EXTRACT_NUMBER_AND_INCR(mcnt, p);
3615 DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt);
3616
3617 /* If this on_failure_jump comes right before a group (i.e.,
3618 * the original * applied to a group), save the information
3619 * for that group and all inner ones, so that if we fail back
3620 * to this point, the group's information will be correct.
3621 * For example, in \(a*\)*\1, we need the preceding group,
3622 * and in \(\(a*\)b*\)\2, we need the inner group. */
3623
3624 /* We can't use `p' to check ahead because we push
3625 * a failure point to `p + mcnt' after we do this. */
3626 p1 = p;
3627
3628 /* We need to skip no_op's before we look for the
3629 * start_memory in case this on_failure_jump is happening as
3630 * the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3631 * against aba. */
3632 while (p1 < pend && (re_opcode_t) * p1 == no_op)
3633 p1++;
3634
3635 if (p1 < pend && (re_opcode_t) * p1 == start_memory) {
3636 /* We have a new highest active register now. This will
3637 * get reset at the start_memory we are about to get to,
3638 * but we will have saved all the registers relevant to
3639 * this repetition op, as described above. */
3640 highest_active_reg = *(p1 + 1) + *(p1 + 2);
3641 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3642 lowest_active_reg = *(p1 + 1);
3643 }
3644 DEBUG_PRINT1(":\n");
3645 PUSH_FAILURE_POINT(p + mcnt, d, -2);
3646 break;
3647
3648
3649 /* A smart repeat ends with `maybe_pop_jump'.
3650 * We change it to either `pop_failure_jump' or `jump'. */
3651 case maybe_pop_jump:
3652 EXTRACT_NUMBER_AND_INCR(mcnt, p);
3653 DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.\n", mcnt);
3654 {
3655 register unsigned char *p2 = p;
3656
3657 /* Compare the beginning of the repeat with what in the
3658 * pattern follows its end. If we can establish that there
3659 * is nothing that they would both match, i.e., that we
3660 * would have to backtrack because of (as in, e.g., `a*a')
3661 * then we can change to pop_failure_jump, because we'll
3662 * never have to backtrack.
3663 *
3664 * This is not true in the case of alternatives: in
3665 * `(a|ab)*' we do need to backtrack to the `ab' alternative
3666 * (e.g., if the string was `ab'). But instead of trying to
3667 * detect that here, the alternative has put on a dummy
3668 * failure point which is what we will end up popping. */
3669
3670 /* Skip over open/close-group commands. */
3671 while (p2 + 2 < pend
3672 && ((re_opcode_t) * p2 == stop_memory
3673 || (re_opcode_t) * p2 == start_memory))
3674 p2 += 3; /* Skip over args, too. */
3675
3676 /* If we're at the end of the pattern, we can change. */
3677 if (p2 == pend) {
3678 /* Consider what happens when matching ":\(.*\)"
3679 * against ":/". I don't really understand this code
3680 * yet. */
3681 p[-3] = (unsigned char) pop_failure_jump;
3682 DEBUG_PRINT1
3683 (" End of pattern: change to `pop_failure_jump'.\n");
3684 } else if ((re_opcode_t) * p2 == exactn
3685 || (bufp->newline_anchor && (re_opcode_t) * p2 == endline)) {
3686 register unsigned char c
3687 = *p2 == (unsigned char) endline ? '\n' : p2[2];
3688 p1 = p + mcnt;
3689
3690 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
3691 * to the `maybe_finalize_jump' of this case. Examine what
3692 * follows. */
3693 if ((re_opcode_t) p1[3] == exactn && p1[5] != c) {
3694 p[-3] = (unsigned char) pop_failure_jump;
3695 DEBUG_PRINT3(" %c != %c => pop_failure_jump.\n",
3696 c, p1[5]);
3697 } else if ((re_opcode_t) p1[3] == charset
3698 || (re_opcode_t) p1[3] == charset_not) {
3699 int not = (re_opcode_t) p1[3] == charset_not;
3700
3701 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
3702 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3703 not = !not;
3704
3705 /* `not' is equal to 1 if c would match, which means
3706 * that we can't change to pop_failure_jump. */
3707 if (!not) {
3708 p[-3] = (unsigned char) pop_failure_jump;
3709 DEBUG_PRINT1(" No match => pop_failure_jump.\n");
3710 }
3711 }
3712 }
3713 }
3714 p -= 2; /* Point at relative address again. */
3715 if ((re_opcode_t) p[-1] != pop_failure_jump) {
3716 p[-1] = (unsigned char) jump;
3717 DEBUG_PRINT1(" Match => jump.\n");
3718 goto unconditional_jump;
3719 }
3720 /* Note fall through. */
3721
3722
3723 /* The end of a simple repeat has a pop_failure_jump back to
3724 * its matching on_failure_jump, where the latter will push a
3725 * failure point. The pop_failure_jump takes off failure
3726 * points put on by this pop_failure_jump's matching
3727 * on_failure_jump; we got through the pattern to here from the
3728 * matching on_failure_jump, so didn't fail. */
3729 case pop_failure_jump: {
3730 /* We need to pass separate storage for the lowest and
3731 * highest registers, even though we don't care about the
3732 * actual values. Otherwise, we will restore only one
3733 * register from the stack, since lowest will == highest in
3734 * `pop_failure_point'. */
3735 unsigned long dummy_low_reg, dummy_high_reg;
3736 unsigned char *pdummy;
3737 const char *sdummy;
3738
3739 DEBUG_PRINT1("EXECUTING pop_failure_jump.\n");
3740 POP_FAILURE_POINT(sdummy, pdummy,
3741 dummy_low_reg, dummy_high_reg,
3742 reg_dummy, reg_dummy, reg_info_dummy);
3743 }
3744 /* Note fall through. */
3745
3746
3747 /* Unconditionally jump (without popping any failure points). */
3748 case jump:
3749 unconditional_jump:
3750 EXTRACT_NUMBER_AND_INCR(mcnt, p); /* Get the amount to jump. */
3751 DEBUG_PRINT2("EXECUTING jump %d ", mcnt);
3752 p += mcnt; /* Do the jump. */
3753 DEBUG_PRINT2("(to 0x%x).\n", p);
3754 break;
3755
3756
3757 /* We need this opcode so we can detect where alternatives end
3758 * in `group_match_null_string_p' et al. */
3759 case jump_past_alt:
3760 DEBUG_PRINT1("EXECUTING jump_past_alt.\n");
3761 goto unconditional_jump;
3762
3763
3764 /* Normally, the on_failure_jump pushes a failure point, which
3765 * then gets popped at pop_failure_jump. We will end up at
3766 * pop_failure_jump, also, and with a pattern of, say, `a+', we
3767 * are skipping over the on_failure_jump, so we have to push
3768 * something meaningless for pop_failure_jump to pop. */
3769 case dummy_failure_jump:
3770 DEBUG_PRINT1("EXECUTING dummy_failure_jump.\n");
3771 /* It doesn't matter what we push for the string here. What
3772 * the code at `fail' tests is the value for the pattern. */
3773 PUSH_FAILURE_POINT(0, 0, -2);
3774 goto unconditional_jump;
3775
3776
3777 /* At the end of an alternative, we need to push a dummy failure
3778 * point in case we are followed by a `pop_failure_jump', because
3779 * we don't want the failure point for the alternative to be
3780 * popped. For example, matching `(a|ab)*' against `aab'
3781 * requires that we match the `ab' alternative. */
3782 case push_dummy_failure:
3783 DEBUG_PRINT1("EXECUTING push_dummy_failure.\n");
3784 /* See comments just above at `dummy_failure_jump' about the
3785 * two zeroes. */
3786 PUSH_FAILURE_POINT(0, 0, -2);
3787 break;
3788
3789 /* Have to succeed matching what follows at least n times.
3790 * After that, handle like `on_failure_jump'. */
3791 case succeed_n:
3792 EXTRACT_NUMBER(mcnt, p + 2);
3793 DEBUG_PRINT2("EXECUTING succeed_n %d.\n", mcnt);
3794
3795 assert(mcnt >= 0);
3796 /* Originally, this is how many times we HAVE to succeed. */
3797 if (mcnt > 0) {
3798 mcnt--;
3799 p += 2;
3800 STORE_NUMBER_AND_INCR(p, mcnt);
3801 DEBUG_PRINT3(" Setting 0x%x to %d.\n", p, mcnt);
3802 } else if (mcnt == 0) {
3803 DEBUG_PRINT2(" Setting two bytes from 0x%x to no_op.\n", p + 2);
3804 p[2] = (unsigned char) no_op;
3805 p[3] = (unsigned char) no_op;
3806 goto on_failure;
3807 }
3808 break;
3809
3810 case jump_n:
3811 EXTRACT_NUMBER(mcnt, p + 2);
3812 DEBUG_PRINT2("EXECUTING jump_n %d.\n", mcnt);
3813
3814 /* Originally, this is how many times we CAN jump. */
3815 if (mcnt) {
3816 mcnt--;
3817 STORE_NUMBER(p + 2, mcnt);
3818 goto unconditional_jump;
3819 }
3820 /* If don't have to jump any more, skip over the rest of command. */
3821 else
3822 p += 4;
3823 break;
3824
3825 case set_number_at: {
3826 DEBUG_PRINT1("EXECUTING set_number_at.\n");
3827
3828 EXTRACT_NUMBER_AND_INCR(mcnt, p);
3829 p1 = p + mcnt;
3830 EXTRACT_NUMBER_AND_INCR(mcnt, p);
3831 DEBUG_PRINT3(" Setting 0x%x to %d.\n", p1, mcnt);
3832 STORE_NUMBER(p1, mcnt);
3833 break;
3834 }
3835
3836 case wordbound:
3837 DEBUG_PRINT1("EXECUTING wordbound.\n");
3838 if (AT_WORD_BOUNDARY(d))
3839 break;
3840 goto fail;
3841
3842 case notwordbound:
3843 DEBUG_PRINT1("EXECUTING notwordbound.\n");
3844 if (AT_WORD_BOUNDARY(d))
3845 goto fail;
3846 break;
3847
3848 case wordbeg:
3849 DEBUG_PRINT1("EXECUTING wordbeg.\n");
3850 if (WORDCHAR_P(d) && (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1)))
3851 break;
3852 goto fail;
3853
3854 case wordend:
3855 DEBUG_PRINT1("EXECUTING wordend.\n");
3856 if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1)
3857 && (!WORDCHAR_P(d) || AT_STRINGS_END(d)))
3858 break;
3859 goto fail;
3860
3861 case wordchar:
3862 DEBUG_PRINT1("EXECUTING non-Emacs wordchar.\n");
3863 PREFETCH();
3864 if (!WORDCHAR_P(d))
3865 goto fail;
3866 SET_REGS_MATCHED();
3867 d++;
3868 break;
3869
3870 case notwordchar:
3871 DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.\n");
3872 PREFETCH();
3873 if (WORDCHAR_P(d))
3874 goto fail;
3875 SET_REGS_MATCHED();
3876 d++;
3877 break;
3878
3879 default:
3880 abort();
3881 }
3882 continue; /* Successfully executed one pattern command; keep going. */
3883
3884
3885 /* We goto here if a matching operation fails. */
3886 fail:
3887 if (!FAIL_STACK_EMPTY()) { /* A restart point is known. Restore to that state. */
3888 DEBUG_PRINT1("\nFAIL:\n");
3889 POP_FAILURE_POINT(d, p,
3890 lowest_active_reg, highest_active_reg,
3891 regstart, regend, reg_info);
3892
3893 /* If this failure point is a dummy, try the next one. */
3894 if (!p)
3895 goto fail;
3896
3897 /* If we failed to the end of the pattern, don't examine *p. */
3898 assert(p <= pend);
3899 if (p < pend) {
3900 boolean is_a_jump_n = false;
3901
3902 /* If failed to a backwards jump that's part of a repetition
3903 * loop, need to pop this failure point and use the next one. */
3904 switch ((re_opcode_t) * p) {
3905 case jump_n:
3906 is_a_jump_n = true;
3907 case maybe_pop_jump:
3908 case pop_failure_jump:
3909 case jump:
3910 p1 = p + 1;
3911 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
3912 p1 += mcnt;
3913
3914 if ((is_a_jump_n && (re_opcode_t) * p1 == succeed_n)
3915 || (!is_a_jump_n
3916 && (re_opcode_t) * p1 == on_failure_jump))
3917 goto fail;
3918 break;
3919 default:
3920 /* do nothing */
3921 ;
3922 }
3923 }
3924 if (d >= string1 && d <= end1)
3925 dend = end_match_1;
3926 } else
3927 break; /* Matching at this starting point really fails. */
3928 } /* for (;;) */
3929
3930 if (best_regs_set)
3931 goto restore_best_regs;
3932
3933 FREE_VARIABLES();
3934
3935 return -1; /* Failure to match. */
3936 } /* re_match_2 */
3937 \f
3938 /* Subroutine definitions for re_match_2. */
3939
3940 /* We are passed P pointing to a register number after a start_memory.
3941 *
3942 * Return true if the pattern up to the corresponding stop_memory can
3943 * match the empty string, and false otherwise.
3944 *
3945 * If we find the matching stop_memory, sets P to point to one past its number.
3946 * Otherwise, sets P to an undefined byte less than or equal to END.
3947 *
3948 * We don't handle duplicates properly (yet). */
3949
3950 boolean
3951 group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info)
3952 {
3953 int mcnt;
3954 /* Point to after the args to the start_memory. */
3955 unsigned char *p1 = *p + 2;
3956
3957 while (p1 < end) {
3958 /* Skip over opcodes that can match nothing, and return true or
3959 * false, as appropriate, when we get to one that can't, or to the
3960 * matching stop_memory. */
3961
3962 switch ((re_opcode_t) * p1) {
3963 /* Could be either a loop or a series of alternatives. */
3964 case on_failure_jump:
3965 p1++;
3966 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
3967
3968 /* If the next operation is not a jump backwards in the
3969 * pattern. */
3970
3971 if (mcnt >= 0) {
3972 /* Go through the on_failure_jumps of the alternatives,
3973 * seeing if any of the alternatives cannot match nothing.
3974 * The last alternative starts with only a jump,
3975 * whereas the rest start with on_failure_jump and end
3976 * with a jump, e.g., here is the pattern for `a|b|c':
3977 *
3978 * /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
3979 * /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
3980 * /exactn/1/c
3981 *
3982 * So, we have to first go through the first (n-1)
3983 * alternatives and then deal with the last one separately. */
3984
3985
3986 /* Deal with the first (n-1) alternatives, which start
3987 * with an on_failure_jump (see above) that jumps to right
3988 * past a jump_past_alt. */
3989
3990 while ((re_opcode_t) p1[mcnt - 3] == jump_past_alt) {
3991 /* `mcnt' holds how many bytes long the alternative
3992 * is, including the ending `jump_past_alt' and
3993 * its number. */
3994
3995 if (!alt_match_null_string_p(p1, p1 + mcnt - 3,
3996 reg_info))
3997 return false;
3998
3999 /* Move to right after this alternative, including the
4000 * jump_past_alt. */
4001 p1 += mcnt;
4002
4003 /* Break if it's the beginning of an n-th alternative
4004 * that doesn't begin with an on_failure_jump. */
4005 if ((re_opcode_t) * p1 != on_failure_jump)
4006 break;
4007
4008 /* Still have to check that it's not an n-th
4009 * alternative that starts with an on_failure_jump. */
4010 p1++;
4011 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
4012 if ((re_opcode_t) p1[mcnt - 3] != jump_past_alt) {
4013 /* Get to the beginning of the n-th alternative. */
4014 p1 -= 3;
4015 break;
4016 }
4017 }
4018
4019 /* Deal with the last alternative: go back and get number
4020 * of the `jump_past_alt' just before it. `mcnt' contains
4021 * the length of the alternative. */
4022 EXTRACT_NUMBER(mcnt, p1 - 2);
4023
4024 if (!alt_match_null_string_p(p1, p1 + mcnt, reg_info))
4025 return false;
4026
4027 p1 += mcnt; /* Get past the n-th alternative. */
4028 } /* if mcnt > 0 */
4029 break;
4030
4031
4032 case stop_memory:
4033 assert(p1[1] == **p);
4034 *p = p1 + 2;
4035 return true;
4036
4037
4038 default:
4039 if (!common_op_match_null_string_p(&p1, end, reg_info))
4040 return false;
4041 }
4042 } /* while p1 < end */
4043
4044 return false;
4045 } /* group_match_null_string_p */
4046
4047
4048 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4049 * It expects P to be the first byte of a single alternative and END one
4050 * byte past the last. The alternative can contain groups. */
4051
4052 boolean
4053 alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info)
4054 {
4055 int mcnt;
4056 unsigned char *p1 = p;
4057
4058 while (p1 < end) {
4059 /* Skip over opcodes that can match nothing, and break when we get
4060 * to one that can't. */
4061
4062 switch ((re_opcode_t) * p1) {
4063 /* It's a loop. */
4064 case on_failure_jump:
4065 p1++;
4066 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
4067 p1 += mcnt;
4068 break;
4069
4070 default:
4071 if (!common_op_match_null_string_p(&p1, end, reg_info))
4072 return false;
4073 }
4074 } /* while p1 < end */
4075
4076 return true;
4077 } /* alt_match_null_string_p */
4078
4079
4080 /* Deals with the ops common to group_match_null_string_p and
4081 * alt_match_null_string_p.
4082 *
4083 * Sets P to one after the op and its arguments, if any. */
4084
4085 boolean
4086 common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info)
4087 {
4088 int mcnt;
4089 boolean ret;
4090 int reg_no;
4091 unsigned char *p1 = *p;
4092
4093 switch ((re_opcode_t) * p1++) {
4094 case no_op:
4095 case begline:
4096 case endline:
4097 case begbuf:
4098 case endbuf:
4099 case wordbeg:
4100 case wordend:
4101 case wordbound:
4102 case notwordbound:
4103 break;
4104
4105 case start_memory:
4106 reg_no = *p1;
4107 assert(reg_no > 0 && reg_no <= MAX_REGNUM);
4108 ret = group_match_null_string_p(&p1, end, reg_info);
4109
4110 /* Have to set this here in case we're checking a group which
4111 * contains a group and a back reference to it. */
4112
4113 if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4114 REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
4115
4116 if (!ret)
4117 return false;
4118 break;
4119
4120 /* If this is an optimized succeed_n for zero times, make the jump. */
4121 case jump:
4122 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
4123 if (mcnt >= 0)
4124 p1 += mcnt;
4125 else
4126 return false;
4127 break;
4128
4129 case succeed_n:
4130 /* Get to the number of times to succeed. */
4131 p1 += 2;
4132 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
4133
4134 if (mcnt == 0) {
4135 p1 -= 4;
4136 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
4137 p1 += mcnt;
4138 } else
4139 return false;
4140 break;
4141
4142 case duplicate:
4143 if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
4144 return false;
4145 break;
4146
4147 case set_number_at:
4148 p1 += 4;
4149
4150 default:
4151 /* All other opcodes mean we cannot match the empty string. */
4152 return false;
4153 }
4154
4155 *p = p1;
4156 return true;
4157 } /* common_op_match_null_string_p */
4158
4159
4160 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4161 * bytes; nonzero otherwise. */
4162
4163 int
4164 bcmp_translate(unsigned char const *s1, unsigned char const*s2, register int len, char *translate)
4165 {
4166 register unsigned char const *p1 = s1, *p2 = s2;
4167 while (len) {
4168 if (translate[*p1++] != translate[*p2++])
4169 return 1;
4170 len--;
4171 }
4172 return 0;
4173 }
4174 \f
4175 /* Entry points for GNU code. */
4176
4177 \f
4178 /* POSIX.2 functions */
4179
4180 /* regcomp takes a regular expression as a string and compiles it.
4181 *
4182 * PREG is a regex_t *. We do not expect any fields to be initialized,
4183 * since POSIX says we shouldn't. Thus, we set
4184 *
4185 * `buffer' to the compiled pattern;
4186 * `used' to the length of the compiled pattern;
4187 * `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4188 * REG_EXTENDED bit in CFLAGS is set; otherwise, to
4189 * RE_SYNTAX_POSIX_BASIC;
4190 * `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4191 * `fastmap' and `fastmap_accurate' to zero;
4192 * `re_nsub' to the number of subexpressions in PATTERN.
4193 *
4194 * PATTERN is the address of the pattern string.
4195 *
4196 * CFLAGS is a series of bits which affect compilation.
4197 *
4198 * If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4199 * use POSIX basic syntax.
4200 *
4201 * If REG_NEWLINE is set, then . and [^...] don't match newline.
4202 * Also, regexec will try a match beginning after every newline.
4203 *
4204 * If REG_ICASE is set, then we considers upper- and lowercase
4205 * versions of letters to be equivalent when matching.
4206 *
4207 * If REG_NOSUB is set, then when PREG is passed to regexec, that
4208 * routine will report only success or failure, and nothing about the
4209 * registers.
4210 *
4211 * It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4212 * the return codes and their meanings.) */
4213
4214 int
4215 regcomp(preg, pattern, cflags)
4216 regex_t *preg;
4217 const char *pattern;
4218 int cflags;
4219 {
4220 reg_errcode_t ret;
4221 unsigned syntax
4222 = (cflags & REG_EXTENDED) ?
4223 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4224
4225 /* regex_compile will allocate the space for the compiled pattern. */
4226 preg->buffer = 0;
4227 preg->allocated = 0;
4228
4229 /* Don't bother to use a fastmap when searching. This simplifies the
4230 * REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4231 * characters after newlines into the fastmap. This way, we just try
4232 * every character. */
4233 preg->fastmap = 0;
4234
4235 if (cflags & REG_ICASE) {
4236 unsigned i;
4237
4238 preg->translate = (char *) malloc(CHAR_SET_SIZE);
4239 if (preg->translate == NULL)
4240 return (int) REG_ESPACE;
4241
4242 /* Map uppercase characters to corresponding lowercase ones. */
4243 for (i = 0; i < CHAR_SET_SIZE; i++)
4244 preg->translate[i] = ISUPPER(i) ? tolower(i) : i;
4245 } else
4246 preg->translate = NULL;
4247
4248 /* If REG_NEWLINE is set, newlines are treated differently. */
4249 if (cflags & REG_NEWLINE) { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4250 syntax &= ~RE_DOT_NEWLINE;
4251 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4252 /* It also changes the matching behavior. */
4253 preg->newline_anchor = 1;
4254 } else
4255 preg->newline_anchor = 0;
4256
4257 preg->no_sub = !!(cflags & REG_NOSUB);
4258
4259 /* POSIX says a null character in the pattern terminates it, so we
4260 * can use strlen here in compiling the pattern. */
4261 ret = regex_compile(pattern, strlen(pattern), syntax, preg);
4262
4263 /* POSIX doesn't distinguish between an unmatched open-group and an
4264 * unmatched close-group: both are REG_EPAREN. */
4265 if (ret == REG_ERPAREN)
4266 ret = REG_EPAREN;
4267
4268 return (int) ret;
4269 }
4270
4271
4272 /* regexec searches for a given pattern, specified by PREG, in the
4273 * string STRING.
4274 *
4275 * If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4276 * `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4277 * least NMATCH elements, and we set them to the offsets of the
4278 * corresponding matched substrings.
4279 *
4280 * EFLAGS specifies `execution flags' which affect matching: if
4281 * REG_NOTBOL is set, then ^ does not match at the beginning of the
4282 * string; if REG_NOTEOL is set, then $ does not match at the end.
4283 *
4284 * We return 0 if we find a match and REG_NOMATCH if not. */
4285
4286 int
4287 regexec(preg, string, nmatch, pmatch, eflags)
4288 const regex_t *preg;
4289 const char *string;
4290 size_t nmatch;
4291 regmatch_t pmatch[];
4292 int eflags;
4293 {
4294 int ret;
4295 struct re_registers regs;
4296 regex_t private_preg;
4297 int len = strlen(string);
4298 boolean want_reg_info = !preg->no_sub && nmatch > 0;
4299
4300 private_preg = *preg;
4301
4302 private_preg.not_bol = !!(eflags & REG_NOTBOL);
4303 private_preg.not_eol = !!(eflags & REG_NOTEOL);
4304
4305 /* The user has told us exactly how many registers to return
4306 * information about, via `nmatch'. We have to pass that on to the
4307 * matching routines. */
4308 private_preg.regs_allocated = REGS_FIXED;
4309
4310 if (want_reg_info) {
4311 regs.num_regs = nmatch;
4312 regs.start = TALLOC(nmatch, regoff_t);
4313 regs.end = TALLOC(nmatch, regoff_t);
4314 if (regs.start == NULL || regs.end == NULL)
4315 return (int) REG_NOMATCH;
4316 }
4317 /* Perform the searching operation. */
4318 ret = re_search(&private_preg, string, len,
4319 /* start: */ 0, /* range: */ len,
4320 want_reg_info ? &regs : (struct re_registers *) 0);
4321
4322 /* Copy the register information to the POSIX structure. */
4323 if (want_reg_info) {
4324 if (ret >= 0) {
4325 unsigned r;
4326
4327 for (r = 0; r < nmatch; r++) {
4328 pmatch[r].rm_so = regs.start[r];
4329 pmatch[r].rm_eo = regs.end[r];
4330 }
4331 }
4332 /* If we needed the temporary register info, free the space now. */
4333 free(regs.start);
4334 free(regs.end);
4335 }
4336 /* We want zero return to mean success, unlike `re_search'. */
4337 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4338 }
4339
4340
4341 /* Returns a message corresponding to an error code, ERRCODE, returned
4342 * from either regcomp or regexec. We don't use PREG here. */
4343
4344 size_t
4345 regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size)
4346 {
4347 const char *msg;
4348 size_t msg_size;
4349
4350 if (errcode < 0
4351 || errcode >= (sizeof(re_error_msg) / sizeof(re_error_msg[0])))
4352 /* Only error codes returned by the rest of the code should be passed
4353 * to this routine. If we are given anything else, or if other regex
4354 * code generates an invalid error code, then the program has a bug.
4355 * Dump core so we can fix it. */
4356 abort();
4357
4358 msg = re_error_msg[errcode];
4359
4360 /* POSIX doesn't require that we do anything in this case, but why
4361 * not be nice. */
4362 if (!msg)
4363 msg = "Success";
4364
4365 msg_size = strlen(msg) + 1; /* Includes the null. */
4366
4367 if (errbuf_size != 0) {
4368 if (msg_size > errbuf_size) {
4369 strncpy(errbuf, msg, errbuf_size - 1);
4370 errbuf[errbuf_size - 1] = 0;
4371 } else
4372 strcpy(errbuf, msg);
4373 }
4374 return msg_size;
4375 }
4376
4377
4378 /* Free dynamically allocated space used by PREG. */
4379
4380 void
4381 regfree(preg)
4382 regex_t *preg;
4383 {
4384 if (preg->buffer != NULL)
4385 free(preg->buffer);
4386 preg->buffer = NULL;
4387
4388 preg->allocated = 0;
4389 preg->used = 0;
4390
4391 if (preg->fastmap != NULL)
4392 free(preg->fastmap);
4393 preg->fastmap = NULL;
4394 preg->fastmap_accurate = 0;
4395
4396 if (preg->translate != NULL)
4397 free(preg->translate);
4398 preg->translate = NULL;
4399 }
4400 #endif /* USE_GNUREGEX */
4401 \f
4402 /*
4403 * Local variables:
4404 * make-backup-files: t
4405 * version-control: t
4406 * trim-versions-without-asking: nil
4407 * End:
4408 */