]> git.ipfire.org Git - people/ms/u-boot.git/blob - cpu/mpc8260/i2c.c
I2C: adding new "i2c bus" Command to the I2C Subsystem.
[people/ms/u-boot.git] / cpu / mpc8260 / i2c.c
1 /*
2 * (C) Copyright 2000
3 * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
4 *
5 * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
6 * Marius Groeger <mgroeger@sysgo.de>
7 *
8 * See file CREDITS for list of people who contributed to this
9 * project.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; either version 2 of
14 * the License, or (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
24 * MA 02111-1307 USA
25 */
26
27 #include <common.h>
28
29 #if defined(CONFIG_HARD_I2C)
30
31 #include <asm/cpm_8260.h>
32 #include <i2c.h>
33
34 /* define to enable debug messages */
35 #undef DEBUG_I2C
36
37 DECLARE_GLOBAL_DATA_PTR;
38
39 #if defined(CONFIG_I2C_MULTI_BUS)
40 static unsigned int i2c_bus_num __attribute__ ((section ("data"))) = 0;
41 #endif /* CONFIG_I2C_MULTI_BUS */
42
43 /* uSec to wait between polls of the i2c */
44 #define DELAY_US 100
45 /* uSec to wait for the CPM to start processing the buffer */
46 #define START_DELAY_US 1000
47
48 /*
49 * tx/rx per-byte timeout: we delay DELAY_US uSec between polls so the
50 * timeout will be (tx_length + rx_length) * DELAY_US * TOUT_LOOP
51 */
52 #define TOUT_LOOP 5
53
54 /*-----------------------------------------------------------------------
55 * Set default values
56 */
57 #ifndef CFG_I2C_SPEED
58 #define CFG_I2C_SPEED 50000
59 #endif
60
61 #ifndef CFG_I2C_SLAVE
62 #define CFG_I2C_SLAVE 0xFE
63 #endif
64 /*-----------------------------------------------------------------------
65 */
66
67 typedef void (*i2c_ecb_t)(int, int, void *); /* error callback function */
68
69 /* This structure keeps track of the bd and buffer space usage. */
70 typedef struct i2c_state {
71 int rx_idx; /* index to next free Rx BD */
72 int tx_idx; /* index to next free Tx BD */
73 void *rxbd; /* pointer to next free Rx BD */
74 void *txbd; /* pointer to next free Tx BD */
75 int tx_space; /* number of Tx bytes left */
76 unsigned char *tx_buf; /* pointer to free Tx area */
77 i2c_ecb_t err_cb; /* error callback function */
78 void *cb_data; /* private data to be passed */
79 } i2c_state_t;
80
81 /* flags for i2c_send() and i2c_receive() */
82 #define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
83 #define I2CF_START_COND 0x02 /* tx: generate start condition */
84 #define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
85
86 /* return codes */
87 #define I2CERR_NO_BUFFERS 1 /* no more BDs or buffer space */
88 #define I2CERR_MSG_TOO_LONG 2 /* tried to send/receive to much data */
89 #define I2CERR_TIMEOUT 3 /* timeout in i2c_doio() */
90 #define I2CERR_QUEUE_EMPTY 4 /* i2c_doio called without send/receive */
91 #define I2CERR_IO_ERROR 5 /* had an error during comms */
92
93 /* error callback flags */
94 #define I2CECB_RX_ERR 0x10 /* this is a receive error */
95 #define I2CECB_RX_OV 0x02 /* receive overrun error */
96 #define I2CECB_RX_MASK 0x0f /* mask for error bits */
97 #define I2CECB_TX_ERR 0x20 /* this is a transmit error */
98 #define I2CECB_TX_CL 0x01 /* transmit collision error */
99 #define I2CECB_TX_UN 0x02 /* transmit underflow error */
100 #define I2CECB_TX_NAK 0x04 /* transmit no ack error */
101 #define I2CECB_TX_MASK 0x0f /* mask for error bits */
102 #define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
103
104 #define ERROR_I2C_NONE 0
105 #define ERROR_I2C_LENGTH 1
106
107 #define I2C_WRITE_BIT 0x00
108 #define I2C_READ_BIT 0x01
109
110 #define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
111
112
113 #define NUM_RX_BDS 4
114 #define NUM_TX_BDS 4
115 #define MAX_TX_SPACE 256
116
117 typedef struct I2C_BD
118 {
119 unsigned short status;
120 unsigned short length;
121 unsigned char *addr;
122 } I2C_BD;
123 #define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
124
125 #define BD_I2C_TX_CL 0x0001 /* collision error */
126 #define BD_I2C_TX_UN 0x0002 /* underflow error */
127 #define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
128 #define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
129
130 #define BD_I2C_RX_ERR BD_SC_OV
131
132 #ifdef DEBUG_I2C
133 #define PRINTD(x) printf x
134 #else
135 #define PRINTD(x)
136 #endif
137
138 /*
139 * Returns the best value of I2BRG to meet desired clock speed of I2C with
140 * input parameters (clock speed, filter, and predivider value).
141 * It returns computer speed value and the difference between it and desired
142 * speed.
143 */
144 static inline int
145 i2c_roundrate(int hz, int speed, int filter, int modval,
146 int *brgval, int *totspeed)
147 {
148 int moddiv = 1 << (5-(modval & 3)), brgdiv, div;
149
150 PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
151 hz, speed, filter, modval));
152
153 div = moddiv * speed;
154 brgdiv = (hz + div - 1) / div;
155
156 PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv));
157
158 *brgval = ((brgdiv + 1) / 2) - 3 - (2*filter);
159
160 if ((*brgval < 0) || (*brgval > 255)) {
161 PRINTD(("\t\trejected brgval=%d\n", *brgval));
162 return -1;
163 }
164
165 brgdiv = 2 * (*brgval + 3 + (2 * filter));
166 div = moddiv * brgdiv ;
167 *totspeed = hz / div;
168
169 PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed));
170
171 return 0;
172 }
173
174 /*
175 * Sets the I2C clock predivider and divider to meet required clock speed.
176 */
177 static int i2c_setrate(int hz, int speed)
178 {
179 immap_t *immap = (immap_t *)CFG_IMMR ;
180 volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
181 int brgval,
182 modval, /* 0-3 */
183 bestspeed_diff = speed,
184 bestspeed_brgval=0,
185 bestspeed_modval=0,
186 bestspeed_filter=0,
187 totspeed,
188 filter = 0; /* Use this fixed value */
189
190 for (modval = 0; modval < 4; modval++)
191 {
192 if (i2c_roundrate (hz, speed, filter, modval, &brgval, &totspeed) == 0)
193 {
194 int diff = speed - totspeed ;
195
196 if ((diff >= 0) && (diff < bestspeed_diff))
197 {
198 bestspeed_diff = diff ;
199 bestspeed_modval = modval;
200 bestspeed_brgval = brgval;
201 bestspeed_filter = filter;
202 }
203 }
204 }
205
206 PRINTD(("[I2C] Best is:\n"));
207 PRINTD(("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
208 hz, speed,
209 bestspeed_filter, bestspeed_modval, bestspeed_brgval,
210 bestspeed_diff));
211
212 i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
213 i2c->i2c_i2brg = bestspeed_brgval & 0xff;
214
215 PRINTD(("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod, i2c->i2c_i2brg));
216
217 return 1 ;
218 }
219
220 void i2c_init(int speed, int slaveadd)
221 {
222 volatile immap_t *immap = (immap_t *)CFG_IMMR ;
223 volatile cpm8260_t *cp = (cpm8260_t *)&immap->im_cpm;
224 volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
225 volatile iic_t *iip;
226 ulong rbase, tbase;
227 volatile I2C_BD *rxbd, *txbd;
228 uint dpaddr;
229
230 #ifdef CFG_I2C_INIT_BOARD
231 /* call board specific i2c bus reset routine before accessing the */
232 /* environment, which might be in a chip on that bus. For details */
233 /* about this problem see doc/I2C_Edge_Conditions. */
234 i2c_init_board();
235 #endif
236
237 dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
238 if (dpaddr == 0) {
239 /* need to allocate dual port ram */
240 dpaddr = m8260_cpm_dpalloc(64 +
241 (NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) +
242 MAX_TX_SPACE, 64);
243 *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE])) = dpaddr;
244 }
245
246 /*
247 * initialise data in dual port ram:
248 *
249 * dpaddr -> parameter ram (64 bytes)
250 * rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
251 * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
252 * tx buffer (MAX_TX_SPACE bytes)
253 */
254
255 iip = (iic_t *)&immap->im_dprambase[dpaddr];
256 memset((void*)iip, 0, sizeof(iic_t));
257
258 rbase = dpaddr + 64;
259 tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
260
261 /* Disable interrupts */
262 i2c->i2c_i2mod = 0x00;
263 i2c->i2c_i2cmr = 0x00;
264 i2c->i2c_i2cer = 0xff;
265 i2c->i2c_i2add = slaveadd;
266
267 /*
268 * Set the I2C BRG Clock division factor from desired i2c rate
269 * and current CPU rate (we assume sccr dfbgr field is 0;
270 * divide BRGCLK by 1)
271 */
272 PRINTD(("[I2C] Setting rate...\n"));
273 i2c_setrate (gd->brg_clk, CFG_I2C_SPEED) ;
274
275 /* Set I2C controller in master mode */
276 i2c->i2c_i2com = 0x01;
277
278 /* Initialize Tx/Rx parameters */
279 iip->iic_rbase = rbase;
280 iip->iic_tbase = tbase;
281 rxbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_rbase]);
282 txbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_tbase]);
283
284 PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase));
285 PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase));
286 PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
287 PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
288
289 /* Set big endian byte order */
290 iip->iic_tfcr = 0x10;
291 iip->iic_rfcr = 0x10;
292
293 /* Set maximum receive size. */
294 iip->iic_mrblr = I2C_RXTX_LEN;
295
296 cp->cp_cpcr = mk_cr_cmd(CPM_CR_I2C_PAGE,
297 CPM_CR_I2C_SBLOCK,
298 0x00,
299 CPM_CR_INIT_TRX) | CPM_CR_FLG;
300 do {
301 __asm__ __volatile__ ("eieio");
302 } while (cp->cp_cpcr & CPM_CR_FLG);
303
304 /* Clear events and interrupts */
305 i2c->i2c_i2cer = 0xff;
306 i2c->i2c_i2cmr = 0x00;
307 }
308
309 static
310 void i2c_newio(i2c_state_t *state)
311 {
312 volatile immap_t *immap = (immap_t *)CFG_IMMR ;
313 volatile iic_t *iip;
314 uint dpaddr;
315
316 PRINTD(("[I2C] i2c_newio\n"));
317
318 dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
319 iip = (iic_t *)&immap->im_dprambase[dpaddr];
320 state->rx_idx = 0;
321 state->tx_idx = 0;
322 state->rxbd = (void*)&immap->im_dprambase[iip->iic_rbase];
323 state->txbd = (void*)&immap->im_dprambase[iip->iic_tbase];
324 state->tx_space = MAX_TX_SPACE;
325 state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
326 state->err_cb = NULL;
327 state->cb_data = NULL;
328
329 PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd));
330 PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd));
331 PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf));
332
333 /* clear the buffer memory */
334 memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
335 }
336
337 static
338 int i2c_send(i2c_state_t *state,
339 unsigned char address,
340 unsigned char secondary_address,
341 unsigned int flags,
342 unsigned short size,
343 unsigned char *dataout)
344 {
345 volatile I2C_BD *txbd;
346 int i,j;
347
348 PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
349 address, secondary_address, flags, size));
350
351 /* trying to send message larger than BD */
352 if (size > I2C_RXTX_LEN)
353 return I2CERR_MSG_TOO_LONG;
354
355 /* no more free bds */
356 if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
357 return I2CERR_NO_BUFFERS;
358
359 txbd = (I2C_BD *)state->txbd;
360 txbd->addr = state->tx_buf;
361
362 PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
363
364 if (flags & I2CF_START_COND)
365 {
366 PRINTD(("[I2C] Formatting addresses...\n"));
367 if (flags & I2CF_ENABLE_SECONDARY)
368 {
369 txbd->length = size + 2; /* Length of message plus dest addresses */
370 txbd->addr[0] = address << 1;
371 txbd->addr[1] = secondary_address;
372 i = 2;
373 }
374 else
375 {
376 txbd->length = size + 1; /* Length of message plus dest address */
377 txbd->addr[0] = address << 1; /* Write destination address to BD */
378 i = 1;
379 }
380 }
381 else
382 {
383 txbd->length = size; /* Length of message */
384 i = 0;
385 }
386
387 /* set up txbd */
388 txbd->status = BD_SC_READY;
389 if (flags & I2CF_START_COND)
390 txbd->status |= BD_I2C_TX_START;
391 if (flags & I2CF_STOP_COND)
392 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
393
394 /* Copy data to send into buffer */
395 PRINTD(("[I2C] copy data...\n"));
396 for(j = 0; j < size; i++, j++)
397 txbd->addr[i] = dataout[j];
398
399 PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
400 txbd->length,
401 txbd->status,
402 txbd->addr[0],
403 txbd->addr[1]));
404
405 /* advance state */
406 state->tx_buf += txbd->length;
407 state->tx_space -= txbd->length;
408 state->tx_idx++;
409 state->txbd = (void*)(txbd + 1);
410
411 return 0;
412 }
413
414 static
415 int i2c_receive(i2c_state_t *state,
416 unsigned char address,
417 unsigned char secondary_address,
418 unsigned int flags,
419 unsigned short size_to_expect,
420 unsigned char *datain)
421 {
422 volatile I2C_BD *rxbd, *txbd;
423
424 PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags));
425
426 /* Expected to receive too much */
427 if (size_to_expect > I2C_RXTX_LEN)
428 return I2CERR_MSG_TOO_LONG;
429
430 /* no more free bds */
431 if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
432 || state->tx_space < 2)
433 return I2CERR_NO_BUFFERS;
434
435 rxbd = (I2C_BD *)state->rxbd;
436 txbd = (I2C_BD *)state->txbd;
437
438 PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd));
439 PRINTD(("[I2C] txbd = %08x\n", (int)txbd));
440
441 txbd->addr = state->tx_buf;
442
443 /* set up TXBD for destination address */
444 if (flags & I2CF_ENABLE_SECONDARY)
445 {
446 txbd->length = 2;
447 txbd->addr[0] = address << 1; /* Write data */
448 txbd->addr[1] = secondary_address; /* Internal address */
449 txbd->status = BD_SC_READY;
450 }
451 else
452 {
453 txbd->length = 1 + size_to_expect;
454 txbd->addr[0] = (address << 1) | 0x01;
455 txbd->status = BD_SC_READY;
456 memset(&txbd->addr[1], 0, txbd->length);
457 }
458
459 /* set up rxbd for reception */
460 rxbd->status = BD_SC_EMPTY;
461 rxbd->length = size_to_expect;
462 rxbd->addr = datain;
463
464 txbd->status |= BD_I2C_TX_START;
465 if (flags & I2CF_STOP_COND)
466 {
467 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
468 rxbd->status |= BD_SC_WRAP;
469 }
470
471 PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
472 txbd->length,
473 txbd->status,
474 txbd->addr[0],
475 txbd->addr[1]));
476 PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
477 rxbd->length,
478 rxbd->status,
479 rxbd->addr[0],
480 rxbd->addr[1]));
481
482 /* advance state */
483 state->tx_buf += txbd->length;
484 state->tx_space -= txbd->length;
485 state->tx_idx++;
486 state->txbd = (void*)(txbd + 1);
487 state->rx_idx++;
488 state->rxbd = (void*)(rxbd + 1);
489
490 return 0;
491 }
492
493
494 static
495 int i2c_doio(i2c_state_t *state)
496 {
497 volatile immap_t *immap = (immap_t *)CFG_IMMR ;
498 volatile iic_t *iip;
499 volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c;
500 volatile I2C_BD *txbd, *rxbd;
501 int n, i, b, rxcnt = 0, rxtimeo = 0, txcnt = 0, txtimeo = 0, rc = 0;
502 uint dpaddr;
503
504 PRINTD(("[I2C] i2c_doio\n"));
505
506 if (state->tx_idx <= 0 && state->rx_idx <= 0) {
507 PRINTD(("[I2C] No I/O is queued\n"));
508 return I2CERR_QUEUE_EMPTY;
509 }
510
511 dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE]));
512 iip = (iic_t *)&immap->im_dprambase[dpaddr];
513 iip->iic_rbptr = iip->iic_rbase;
514 iip->iic_tbptr = iip->iic_tbase;
515
516 /* Enable I2C */
517 PRINTD(("[I2C] Enabling I2C...\n"));
518 i2c->i2c_i2mod |= 0x01;
519
520 /* Begin transmission */
521 i2c->i2c_i2com |= 0x80;
522
523 /* Loop until transmit & receive completed */
524
525 if ((n = state->tx_idx) > 0) {
526
527 txbd = ((I2C_BD*)state->txbd) - n;
528 for (i = 0; i < n; i++) {
529 txtimeo += TOUT_LOOP * txbd->length;
530 txbd++;
531 }
532
533 txbd--; /* wait until last in list is done */
534
535 PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd));
536
537 udelay(START_DELAY_US); /* give it time to start */
538 while((txbd->status & BD_SC_READY) && (++txcnt < txtimeo)) {
539 udelay(DELAY_US);
540 if (ctrlc())
541 return (-1);
542 __asm__ __volatile__ ("eieio");
543 }
544 }
545
546 if (txcnt < txtimeo && (n = state->rx_idx) > 0) {
547
548 rxbd = ((I2C_BD*)state->rxbd) - n;
549 for (i = 0; i < n; i++) {
550 rxtimeo += TOUT_LOOP * rxbd->length;
551 rxbd++;
552 }
553
554 rxbd--; /* wait until last in list is done */
555
556 PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd));
557
558 udelay(START_DELAY_US); /* give it time to start */
559 while((rxbd->status & BD_SC_EMPTY) && (++rxcnt < rxtimeo)) {
560 udelay(DELAY_US);
561 if (ctrlc())
562 return (-1);
563 __asm__ __volatile__ ("eieio");
564 }
565 }
566
567 /* Turn off I2C */
568 i2c->i2c_i2mod &= ~0x01;
569
570 if ((n = state->tx_idx) > 0) {
571 for (i = 0; i < n; i++) {
572 txbd = ((I2C_BD*)state->txbd) - (n - i);
573 if ((b = txbd->status & BD_I2C_TX_ERR) != 0) {
574 if (state->err_cb != NULL)
575 (*state->err_cb)(I2CECB_TX_ERR|b, i,
576 state->cb_data);
577 if (rc == 0)
578 rc = I2CERR_IO_ERROR;
579 }
580 }
581 }
582
583 if ((n = state->rx_idx) > 0) {
584 for (i = 0; i < n; i++) {
585 rxbd = ((I2C_BD*)state->rxbd) - (n - i);
586 if ((b = rxbd->status & BD_I2C_RX_ERR) != 0) {
587 if (state->err_cb != NULL)
588 (*state->err_cb)(I2CECB_RX_ERR|b, i,
589 state->cb_data);
590 if (rc == 0)
591 rc = I2CERR_IO_ERROR;
592 }
593 }
594 }
595
596 if ((txtimeo > 0 && txcnt >= txtimeo) || \
597 (rxtimeo > 0 && rxcnt >= rxtimeo)) {
598 if (state->err_cb != NULL)
599 (*state->err_cb)(I2CECB_TIMEOUT, -1, state->cb_data);
600 if (rc == 0)
601 rc = I2CERR_TIMEOUT;
602 }
603
604 return (rc);
605 }
606
607 static void
608 i2c_probe_callback(int flags, int xnum, void *data)
609 {
610 /*
611 * the only acceptable errors are a transmit NAK or a receive
612 * overrun - tx NAK means the device does not exist, rx OV
613 * means the device must have responded to the slave address
614 * even though the transfer failed
615 */
616 if (flags == (I2CECB_TX_ERR|I2CECB_TX_NAK))
617 *(int *)data |= 1;
618 if (flags == (I2CECB_RX_ERR|I2CECB_RX_OV))
619 *(int *)data |= 2;
620 }
621
622 int
623 i2c_probe(uchar chip)
624 {
625 i2c_state_t state;
626 int rc, err_flag;
627 uchar buf[1];
628
629 i2c_newio(&state);
630
631 state.err_cb = i2c_probe_callback;
632 state.cb_data = (void *) &err_flag;
633 err_flag = 0;
634
635 rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf);
636
637 if (rc != 0)
638 return (rc); /* probe failed */
639
640 rc = i2c_doio(&state);
641
642 if (rc == 0)
643 return (0); /* device exists - read succeeded */
644
645 if (rc == I2CERR_TIMEOUT)
646 return (-1); /* device does not exist - timeout */
647
648 if (rc != I2CERR_IO_ERROR || err_flag == 0)
649 return (rc); /* probe failed */
650
651 if (err_flag & 1)
652 return (-1); /* device does not exist - had transmit NAK */
653
654 return (0); /* device exists - had receive overrun */
655 }
656
657
658 int
659 i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
660 {
661 i2c_state_t state;
662 uchar xaddr[4];
663 int rc;
664
665 xaddr[0] = (addr >> 24) & 0xFF;
666 xaddr[1] = (addr >> 16) & 0xFF;
667 xaddr[2] = (addr >> 8) & 0xFF;
668 xaddr[3] = addr & 0xFF;
669
670 #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
671 /*
672 * EEPROM chips that implement "address overflow" are ones
673 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
674 * and the extra bits end up in the "chip address" bit slots.
675 * This makes a 24WC08 (1Kbyte) chip look like four 256 byte
676 * chips.
677 *
678 * Note that we consider the length of the address field to still
679 * be one byte because the extra address bits are hidden in the
680 * chip address.
681 */
682 chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
683 #endif
684
685 i2c_newio(&state);
686
687 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
688 if (rc != 0) {
689 printf("i2c_read: i2c_send failed (%d)\n", rc);
690 return 1;
691 }
692
693 rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
694 if (rc != 0) {
695 printf("i2c_read: i2c_receive failed (%d)\n", rc);
696 return 1;
697 }
698
699 rc = i2c_doio(&state);
700 if (rc != 0) {
701 printf("i2c_read: i2c_doio failed (%d)\n", rc);
702 return 1;
703 }
704 return 0;
705 }
706
707 int
708 i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
709 {
710 i2c_state_t state;
711 uchar xaddr[4];
712 int rc;
713
714 xaddr[0] = (addr >> 24) & 0xFF;
715 xaddr[1] = (addr >> 16) & 0xFF;
716 xaddr[2] = (addr >> 8) & 0xFF;
717 xaddr[3] = addr & 0xFF;
718
719 #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
720 /*
721 * EEPROM chips that implement "address overflow" are ones
722 * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address
723 * and the extra bits end up in the "chip address" bit slots.
724 * This makes a 24WC08 (1Kbyte) chip look like four 256 byte
725 * chips.
726 *
727 * Note that we consider the length of the address field to still
728 * be one byte because the extra address bits are hidden in the
729 * chip address.
730 */
731 chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
732 #endif
733
734 i2c_newio(&state);
735
736 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]);
737 if (rc != 0) {
738 printf("i2c_write: first i2c_send failed (%d)\n", rc);
739 return 1;
740 }
741
742 rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
743 if (rc != 0) {
744 printf("i2c_write: second i2c_send failed (%d)\n", rc);
745 return 1;
746 }
747
748 rc = i2c_doio(&state);
749 if (rc != 0) {
750 printf("i2c_write: i2c_doio failed (%d)\n", rc);
751 return 1;
752 }
753 return 0;
754 }
755
756 uchar
757 i2c_reg_read(uchar chip, uchar reg)
758 {
759 uchar buf;
760
761 i2c_read(chip, reg, 1, &buf, 1);
762
763 return (buf);
764 }
765
766 void
767 i2c_reg_write(uchar chip, uchar reg, uchar val)
768 {
769 i2c_write(chip, reg, 1, &val, 1);
770 }
771
772 #if defined(CONFIG_I2C_MULTI_BUS)
773 /*
774 * Functions for multiple I2C bus handling
775 */
776 unsigned int i2c_get_bus_num(void)
777 {
778 return i2c_bus_num;
779 }
780
781 int i2c_set_bus_num(unsigned int bus)
782 {
783 #if defined(CONFIG_I2C_MUX)
784 if (bus < CFG_MAX_I2C_BUS) {
785 i2c_bus_num = bus;
786 } else {
787 int ret;
788
789 ret = i2x_mux_select_mux(bus);
790 if (ret == 0)
791 i2c_bus_num = bus;
792 else
793 return ret;
794 }
795 #else
796 if (bus >= CFG_MAX_I2C_BUS)
797 return -1;
798 i2c_bus_num = bus;
799 #endif
800 return 0;
801 }
802 /* TODO: add 100/400k switching */
803 unsigned int i2c_get_bus_speed(void)
804 {
805 return CFG_I2C_SPEED;
806 }
807
808 int i2c_set_bus_speed(unsigned int speed)
809 {
810 if (speed != CFG_I2C_SPEED)
811 return -1;
812
813 return 0;
814 }
815
816 #endif /* CONFIG_I2C_MULTI_BUS */
817 #endif /* CONFIG_HARD_I2C */