]> git.ipfire.org Git - people/ms/u-boot.git/blob - cpu/mpc83xx/cpu.c
Merge git://www.denx.de/git/u-boot
[people/ms/u-boot.git] / cpu / mpc83xx / cpu.c
1 /*
2 * Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
3 *
4 * See file CREDITS for list of people who contributed to this
5 * project.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
20 * MA 02111-1307 USA
21 */
22
23 /*
24 * CPU specific code for the MPC83xx family.
25 *
26 * Derived from the MPC8260 and MPC85xx.
27 */
28
29 #include <common.h>
30 #include <watchdog.h>
31 #include <command.h>
32 #include <mpc83xx.h>
33 #include <asm/processor.h>
34 #if defined(CONFIG_OF_FLAT_TREE)
35 #include <ft_build.h>
36 #elif defined(CONFIG_OF_LIBFDT)
37 #include <libfdt.h>
38 #endif
39
40 DECLARE_GLOBAL_DATA_PTR;
41
42 int checkcpu(void)
43 {
44 volatile immap_t *immr;
45 ulong clock = gd->cpu_clk;
46 u32 pvr = get_pvr();
47 u32 spridr;
48 char buf[32];
49
50 immr = (immap_t *)CFG_IMMR;
51
52 puts("CPU: ");
53
54 switch (pvr & 0xffff0000) {
55 case PVR_E300C1:
56 printf("e300c1, ");
57 break;
58
59 case PVR_E300C2:
60 printf("e300c2, ");
61 break;
62
63 case PVR_E300C3:
64 printf("e300c3, ");
65 break;
66
67 default:
68 printf("Unknown core, ");
69 }
70
71 spridr = immr->sysconf.spridr;
72 switch(spridr) {
73 case SPR_8349E_REV10:
74 case SPR_8349E_REV11:
75 case SPR_8349E_REV31:
76 puts("MPC8349E, ");
77 break;
78 case SPR_8349_REV10:
79 case SPR_8349_REV11:
80 case SPR_8349_REV31:
81 puts("MPC8349, ");
82 break;
83 case SPR_8347E_REV10_TBGA:
84 case SPR_8347E_REV11_TBGA:
85 case SPR_8347E_REV31_TBGA:
86 case SPR_8347E_REV10_PBGA:
87 case SPR_8347E_REV11_PBGA:
88 case SPR_8347E_REV31_PBGA:
89 puts("MPC8347E, ");
90 break;
91 case SPR_8347_REV10_TBGA:
92 case SPR_8347_REV11_TBGA:
93 case SPR_8347_REV31_TBGA:
94 case SPR_8347_REV10_PBGA:
95 case SPR_8347_REV11_PBGA:
96 case SPR_8347_REV31_PBGA:
97 puts("MPC8347, ");
98 break;
99 case SPR_8343E_REV10:
100 case SPR_8343E_REV11:
101 case SPR_8343E_REV31:
102 puts("MPC8343E, ");
103 break;
104 case SPR_8343_REV10:
105 case SPR_8343_REV11:
106 case SPR_8343_REV31:
107 puts("MPC8343, ");
108 break;
109 case SPR_8360E_REV10:
110 case SPR_8360E_REV11:
111 case SPR_8360E_REV12:
112 case SPR_8360E_REV20:
113 case SPR_8360E_REV21:
114 puts("MPC8360E, ");
115 break;
116 case SPR_8360_REV10:
117 case SPR_8360_REV11:
118 case SPR_8360_REV12:
119 case SPR_8360_REV20:
120 case SPR_8360_REV21:
121 puts("MPC8360, ");
122 break;
123 case SPR_8323E_REV10:
124 case SPR_8323E_REV11:
125 puts("MPC8323E, ");
126 break;
127 case SPR_8323_REV10:
128 case SPR_8323_REV11:
129 puts("MPC8323, ");
130 break;
131 case SPR_8321E_REV10:
132 case SPR_8321E_REV11:
133 puts("MPC8321E, ");
134 break;
135 case SPR_8321_REV10:
136 case SPR_8321_REV11:
137 puts("MPC8321, ");
138 break;
139 case SPR_8311_REV10:
140 puts("MPC8311, ");
141 break;
142 case SPR_8311E_REV10:
143 puts("MPC8311E, ");
144 break;
145 case SPR_8313_REV10:
146 puts("MPC8313, ");
147 break;
148 case SPR_8313E_REV10:
149 puts("MPC8313E, ");
150 break;
151 default:
152 printf("Rev: Unknown revision number:%08x\n"
153 "Warning: Unsupported cpu revision!\n",spridr);
154 return 0;
155 }
156
157 #if defined(CONFIG_MPC834X)
158 /* Multiple revisons of 834x processors may have the same SPRIDR value.
159 * So use PVR to identify the revision number.
160 */
161 printf("Rev: %02x at %s MHz", PVR_MAJ(pvr)<<4 | PVR_MIN(pvr), strmhz(buf, clock));
162 #else
163 printf("Rev: %02x at %s MHz", spridr & 0x0000FFFF, strmhz(buf, clock));
164 #endif
165 printf(", CSB: %4d MHz\n", gd->csb_clk / 1000000);
166
167 return 0;
168 }
169
170
171 /*
172 * Program a UPM with the code supplied in the table.
173 *
174 * The 'dummy' variable is used to increment the MAD. 'dummy' is
175 * supposed to be a pointer to the memory of the device being
176 * programmed by the UPM. The data in the MDR is written into
177 * memory and the MAD is incremented every time there's a read
178 * from 'dummy'. Unfortunately, the current prototype for this
179 * function doesn't allow for passing the address of this
180 * device, and changing the prototype will break a number lots
181 * of other code, so we need to use a round-about way of finding
182 * the value for 'dummy'.
183 *
184 * The value can be extracted from the base address bits of the
185 * Base Register (BR) associated with the specific UPM. To find
186 * that BR, we need to scan all 8 BRs until we find the one that
187 * has its MSEL bits matching the UPM we want. Once we know the
188 * right BR, we can extract the base address bits from it.
189 *
190 * The MxMR and the BR and OR of the chosen bank should all be
191 * configured before calling this function.
192 *
193 * Parameters:
194 * upm: 0=UPMA, 1=UPMB, 2=UPMC
195 * table: Pointer to an array of values to program
196 * size: Number of elements in the array. Must be 64 or less.
197 */
198 void upmconfig (uint upm, uint *table, uint size)
199 {
200 #if defined(CONFIG_MPC834X)
201 volatile immap_t *immap = (immap_t *) CFG_IMMR;
202 volatile lbus83xx_t *lbus = &immap->lbus;
203 volatile uchar *dummy = NULL;
204 const u32 msel = (upm + 4) << BR_MSEL_SHIFT; /* What the MSEL field in BRn should be */
205 volatile u32 *mxmr = &lbus->mamr + upm; /* Pointer to mamr, mbmr, or mcmr */
206 uint i;
207
208 /* Scan all the banks to determine the base address of the device */
209 for (i = 0; i < 8; i++) {
210 if ((lbus->bank[i].br & BR_MSEL) == msel) {
211 dummy = (uchar *) (lbus->bank[i].br & BR_BA);
212 break;
213 }
214 }
215
216 if (!dummy) {
217 printf("Error: %s() could not find matching BR\n", __FUNCTION__);
218 hang();
219 }
220
221 /* Set the OP field in the MxMR to "write" and the MAD field to 000000 */
222 *mxmr = (*mxmr & 0xCFFFFFC0) | 0x10000000;
223
224 for (i = 0; i < size; i++) {
225 lbus->mdr = table[i];
226 __asm__ __volatile__ ("sync");
227 *dummy; /* Write the value to memory and increment MAD */
228 __asm__ __volatile__ ("sync");
229 }
230
231 /* Set the OP field in the MxMR to "normal" and the MAD field to 000000 */
232 *mxmr &= 0xCFFFFFC0;
233 #else
234 printf("Error: %s() not defined for this configuration.\n", __FUNCTION__);
235 hang();
236 #endif
237 }
238
239
240 int
241 do_reset (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
242 {
243 ulong msr;
244 #ifndef MPC83xx_RESET
245 ulong addr;
246 #endif
247
248 volatile immap_t *immap = (immap_t *) CFG_IMMR;
249
250 #ifdef MPC83xx_RESET
251 /* Interrupts and MMU off */
252 __asm__ __volatile__ ("mfmsr %0":"=r" (msr):);
253
254 msr &= ~( MSR_EE | MSR_IR | MSR_DR);
255 __asm__ __volatile__ ("mtmsr %0"::"r" (msr));
256
257 /* enable Reset Control Reg */
258 immap->reset.rpr = 0x52535445;
259 __asm__ __volatile__ ("sync");
260 __asm__ __volatile__ ("isync");
261
262 /* confirm Reset Control Reg is enabled */
263 while(!((immap->reset.rcer) & RCER_CRE));
264
265 printf("Resetting the board.");
266 printf("\n");
267
268 udelay(200);
269
270 /* perform reset, only one bit */
271 immap->reset.rcr = RCR_SWHR;
272
273 #else /* ! MPC83xx_RESET */
274
275 immap->reset.rmr = RMR_CSRE; /* Checkstop Reset enable */
276
277 /* Interrupts and MMU off */
278 __asm__ __volatile__ ("mfmsr %0":"=r" (msr):);
279
280 msr &= ~(MSR_ME | MSR_EE | MSR_IR | MSR_DR);
281 __asm__ __volatile__ ("mtmsr %0"::"r" (msr));
282
283 /*
284 * Trying to execute the next instruction at a non-existing address
285 * should cause a machine check, resulting in reset
286 */
287 addr = CFG_RESET_ADDRESS;
288
289 printf("resetting the board.");
290 printf("\n");
291 ((void (*)(void)) addr) ();
292 #endif /* MPC83xx_RESET */
293
294 return 1;
295 }
296
297
298 /*
299 * Get timebase clock frequency (like cpu_clk in Hz)
300 */
301
302 unsigned long get_tbclk(void)
303 {
304 ulong tbclk;
305
306 tbclk = (gd->bus_clk + 3L) / 4L;
307
308 return tbclk;
309 }
310
311
312 #if defined(CONFIG_WATCHDOG)
313 void watchdog_reset (void)
314 {
315 int re_enable = disable_interrupts();
316
317 /* Reset the 83xx watchdog */
318 volatile immap_t *immr = (immap_t *) CFG_IMMR;
319 immr->wdt.swsrr = 0x556c;
320 immr->wdt.swsrr = 0xaa39;
321
322 if (re_enable)
323 enable_interrupts ();
324 }
325 #endif
326
327 #if defined(CONFIG_OF_LIBFDT)
328
329 /*
330 * "Setter" functions used to add/modify FDT entries.
331 */
332 static int fdt_set_eth0(void *blob, int nodeoffset, const char *name, bd_t *bd)
333 {
334 /* Fix it up if it exists, don't create it if it doesn't exist */
335 if (fdt_get_property(blob, nodeoffset, name, 0)) {
336 return fdt_setprop(blob, nodeoffset, name, bd->bi_enetaddr, 6);
337 }
338 return 0;
339 }
340 #ifdef CONFIG_HAS_ETH1
341 /* second onboard ethernet port */
342 static int fdt_set_eth1(void *blob, int nodeoffset, const char *name, bd_t *bd)
343 {
344 /* Fix it up if it exists, don't create it if it doesn't exist */
345 if (fdt_get_property(blob, nodeoffset, name, 0)) {
346 return fdt_setprop(blob, nodeoffset, name, bd->bi_enet1addr, 6);
347 }
348 return 0;
349 }
350 #endif
351 #ifdef CONFIG_HAS_ETH2
352 /* third onboard ethernet port */
353 static int fdt_set_eth2(void *blob, int nodeoffset, const char *name, bd_t *bd)
354 {
355 /* Fix it up if it exists, don't create it if it doesn't exist */
356 if (fdt_get_property(blob, nodeoffset, name, 0)) {
357 return fdt_setprop(blob, nodeoffset, name, bd->bi_enet2addr, 6);
358 }
359 return 0;
360 }
361 #endif
362 #ifdef CONFIG_HAS_ETH3
363 /* fourth onboard ethernet port */
364 static int fdt_set_eth3(void *blob, int nodeoffset, const char *name, bd_t *bd)
365 {
366 /* Fix it up if it exists, don't create it if it doesn't exist */
367 if (fdt_get_property(blob, nodeoffset, name, 0)) {
368 return fdt_setprop(blob, nodeoffset, name, bd->bi_enet3addr, 6);
369 }
370 return 0;
371 }
372 #endif
373
374 static int fdt_set_busfreq(void *blob, int nodeoffset, const char *name, bd_t *bd)
375 {
376 u32 tmp;
377 /* Create or update the property */
378 tmp = cpu_to_be32(bd->bi_busfreq);
379 return fdt_setprop(blob, nodeoffset, name, &tmp, sizeof(tmp));
380 }
381
382 static int fdt_set_tbfreq(void *blob, int nodeoffset, const char *name, bd_t *bd)
383 {
384 u32 tmp;
385 /* Create or update the property */
386 tmp = cpu_to_be32(OF_TBCLK);
387 return fdt_setprop(blob, nodeoffset, name, &tmp, sizeof(tmp));
388 }
389
390
391 static int fdt_set_clockfreq(void *blob, int nodeoffset, const char *name, bd_t *bd)
392 {
393 u32 tmp;
394 /* Create or update the property */
395 tmp = cpu_to_be32(gd->core_clk);
396 return fdt_setprop(blob, nodeoffset, name, &tmp, sizeof(tmp));
397 }
398
399 #ifdef CONFIG_QE
400 static int fdt_set_qe_busfreq(void *blob, int nodeoffset, const char *name, bd_t *bd)
401 {
402 u32 tmp;
403 /* Create or update the property */
404 tmp = cpu_to_be32(gd->qe_clk);
405 return fdt_setprop(blob, nodeoffset, name, &tmp, sizeof(tmp));
406 }
407
408 static int fdt_set_qe_brgfreq(void *blob, int nodeoffset, const char *name, bd_t *bd)
409 {
410 u32 tmp;
411 /* Create or update the property */
412 tmp = cpu_to_be32(gd->brg_clk);
413 return fdt_setprop(blob, nodeoffset, name, &tmp, sizeof(tmp));
414 }
415 #endif
416
417 /*
418 * Fixups to the fdt.
419 */
420 static const struct {
421 char *node;
422 char *prop;
423 int (*set_fn)(void *blob, int nodeoffset, const char *name, bd_t *bd);
424 } fixup_props[] = {
425 { "/cpus/" OF_CPU,
426 "timebase-frequency",
427 fdt_set_tbfreq
428 },
429 { "/cpus/" OF_CPU,
430 "bus-frequency",
431 fdt_set_busfreq
432 },
433 { "/cpus/" OF_CPU,
434 "clock-frequency",
435 fdt_set_clockfreq
436 },
437 { "/" OF_SOC,
438 "bus-frequency",
439 fdt_set_busfreq
440 },
441 { "/" OF_SOC "/serial@4500",
442 "clock-frequency",
443 fdt_set_busfreq
444 },
445 { "/" OF_SOC "/serial@4600",
446 "clock-frequency",
447 fdt_set_busfreq
448 },
449 #ifdef CONFIG_TSEC1
450 { "/" OF_SOC "/ethernet@24000",
451 "mac-address",
452 fdt_set_eth0
453 },
454 { "/" OF_SOC "/ethernet@24000",
455 "local-mac-address",
456 fdt_set_eth0
457 },
458 #endif
459 #ifdef CONFIG_TSEC2
460 { "/" OF_SOC "/ethernet@25000",
461 "mac-address",
462 fdt_set_eth1
463 },
464 { "/" OF_SOC "/ethernet@25000",
465 "local-mac-address",
466 fdt_set_eth1
467 },
468 #endif
469 #ifdef CONFIG_QE
470 { "/" OF_QE,
471 "brg-frequency",
472 fdt_set_qe_brgfreq
473 },
474 { "/" OF_QE,
475 "bus-frequency",
476 fdt_set_qe_busfreq
477 },
478 #ifdef CONFIG_UEC_ETH1
479 #if CFG_UEC1_UCC_NUM == 0 /* UCC1 */
480 { "/" OF_QE "/ucc@2000",
481 "mac-address",
482 fdt_set_eth0
483 },
484 { "/" OF_QE "/ucc@2000",
485 "local-mac-address",
486 fdt_set_eth0
487 },
488 #elif CFG_UEC1_UCC_NUM == 2 /* UCC3 */
489 { "/" OF_QE "/ucc@2200",
490 "mac-address",
491 fdt_set_eth0
492 },
493 { "/" OF_QE "/ucc@2200",
494 "local-mac-address",
495 fdt_set_eth0
496 },
497 #endif
498 #endif /* CONFIG_UEC_ETH1 */
499 #ifdef CONFIG_UEC_ETH2
500 #if CFG_UEC2_UCC_NUM == 1 /* UCC2 */
501 { "/" OF_QE "/ucc@3000",
502 "mac-address",
503 fdt_set_eth1
504 },
505 { "/" OF_QE "/ucc@3000",
506 "local-mac-address",
507 fdt_set_eth1
508 },
509 #elif CFG_UEC2_UCC_NUM == 3 /* UCC4 */
510 { "/" OF_QE "/ucc@3200",
511 "mac-address",
512 fdt_set_eth1
513 },
514 { "/" OF_QE "/ucc@3200",
515 "local-mac-address",
516 fdt_set_eth1
517 },
518 #endif
519 #endif /* CONFIG_UEC_ETH2 */
520 #endif /* CONFIG_QE */
521 };
522
523 void
524 ft_cpu_setup(void *blob, bd_t *bd)
525 {
526 int nodeoffset;
527 int err;
528 int j;
529 int tmp[2];
530
531 for (j = 0; j < (sizeof(fixup_props) / sizeof(fixup_props[0])); j++) {
532 nodeoffset = fdt_path_offset(blob, fixup_props[j].node);
533 if (nodeoffset >= 0) {
534 err = fixup_props[j].set_fn(blob, nodeoffset,
535 fixup_props[j].prop, bd);
536 if (err < 0)
537 debug("Problem setting %s = %s: %s\n",
538 fixup_props[j].node, fixup_props[j].prop,
539 fdt_strerror(err));
540 } else {
541 debug("Couldn't find %s: %s\n",
542 fixup_props[j].node, fdt_strerror(nodeoffset));
543 }
544 }
545
546 /* update, or add and update /memory node */
547 nodeoffset = fdt_path_offset(blob, "/memory");
548 if (nodeoffset < 0) {
549 nodeoffset = fdt_add_subnode(blob, 0, "memory");
550 if (nodeoffset < 0)
551 debug("failed to add /memory node: %s\n",
552 fdt_strerror(nodeoffset));
553 }
554 if (nodeoffset >= 0) {
555 fdt_setprop(blob, nodeoffset, "device_type",
556 "memory", sizeof("memory"));
557 tmp[0] = cpu_to_be32(bd->bi_memstart);
558 tmp[1] = cpu_to_be32(bd->bi_memsize);
559 fdt_setprop(blob, nodeoffset, "reg", tmp, sizeof(tmp));
560 }
561 }
562 #elif defined(CONFIG_OF_FLAT_TREE)
563 void
564 ft_cpu_setup(void *blob, bd_t *bd)
565 {
566 u32 *p;
567 int len;
568 ulong clock;
569
570 clock = bd->bi_busfreq;
571 p = ft_get_prop(blob, "/cpus/" OF_CPU "/bus-frequency", &len);
572 if (p != NULL)
573 *p = cpu_to_be32(clock);
574
575 p = ft_get_prop(blob, "/" OF_SOC "/bus-frequency", &len);
576 if (p != NULL)
577 *p = cpu_to_be32(clock);
578
579 p = ft_get_prop(blob, "/" OF_SOC "/serial@4500/clock-frequency", &len);
580 if (p != NULL)
581 *p = cpu_to_be32(clock);
582
583 p = ft_get_prop(blob, "/" OF_SOC "/serial@4600/clock-frequency", &len);
584 if (p != NULL)
585 *p = cpu_to_be32(clock);
586
587 #ifdef CONFIG_TSEC1
588 p = ft_get_prop(blob, "/" OF_SOC "/ethernet@24000/mac-address", &len);
589 if (p != NULL)
590 memcpy(p, bd->bi_enetaddr, 6);
591
592 p = ft_get_prop(blob, "/" OF_SOC "/ethernet@24000/local-mac-address", &len);
593 if (p != NULL)
594 memcpy(p, bd->bi_enetaddr, 6);
595 #endif
596
597 #ifdef CONFIG_TSEC2
598 p = ft_get_prop(blob, "/" OF_SOC "/ethernet@25000/mac-address", &len);
599 if (p != NULL)
600 memcpy(p, bd->bi_enet1addr, 6);
601
602 p = ft_get_prop(blob, "/" OF_SOC "/ethernet@25000/local-mac-address", &len);
603 if (p != NULL)
604 memcpy(p, bd->bi_enet1addr, 6);
605 #endif
606
607 #ifdef CONFIG_UEC_ETH1
608 #if CFG_UEC1_UCC_NUM == 0 /* UCC1 */
609 p = ft_get_prop(blob, "/" OF_QE "/ucc@2000/mac-address", &len);
610 if (p != NULL)
611 memcpy(p, bd->bi_enetaddr, 6);
612
613 p = ft_get_prop(blob, "/" OF_QE "/ucc@2000/local-mac-address", &len);
614 if (p != NULL)
615 memcpy(p, bd->bi_enetaddr, 6);
616 #elif CFG_UEC1_UCC_NUM == 2 /* UCC3 */
617 p = ft_get_prop(blob, "/" OF_QE "/ucc@2200/mac-address", &len);
618 if (p != NULL)
619 memcpy(p, bd->bi_enetaddr, 6);
620
621 p = ft_get_prop(blob, "/" OF_QE "/ucc@2200/local-mac-address", &len);
622 if (p != NULL)
623 memcpy(p, bd->bi_enetaddr, 6);
624 #endif
625 #endif
626
627 #ifdef CONFIG_UEC_ETH2
628 #if CFG_UEC2_UCC_NUM == 1 /* UCC2 */
629 p = ft_get_prop(blob, "/" OF_QE "/ucc@3000/mac-address", &len);
630 if (p != NULL)
631 memcpy(p, bd->bi_enet1addr, 6);
632
633 p = ft_get_prop(blob, "/" OF_QE "/ucc@3000/local-mac-address", &len);
634 if (p != NULL)
635 memcpy(p, bd->bi_enet1addr, 6);
636 #elif CFG_UEC2_UCC_NUM == 3 /* UCC4 */
637 p = ft_get_prop(blob, "/" OF_QE "/ucc@3200/mac-address", &len);
638 if (p != NULL)
639 memcpy(p, bd->bi_enet1addr, 6);
640
641 p = ft_get_prop(blob, "/" OF_QE "/ucc@3200/local-mac-address", &len);
642 if (p != NULL)
643 memcpy(p, bd->bi_enet1addr, 6);
644 #endif
645 #endif
646 }
647 #endif
648
649 #if defined(CONFIG_DDR_ECC)
650 void dma_init(void)
651 {
652 volatile immap_t *immap = (immap_t *)CFG_IMMR;
653 volatile dma83xx_t *dma = &immap->dma;
654 volatile u32 status = swab32(dma->dmasr0);
655 volatile u32 dmamr0 = swab32(dma->dmamr0);
656
657 debug("DMA-init\n");
658
659 /* initialize DMASARn, DMADAR and DMAABCRn */
660 dma->dmadar0 = (u32)0;
661 dma->dmasar0 = (u32)0;
662 dma->dmabcr0 = 0;
663
664 __asm__ __volatile__ ("sync");
665 __asm__ __volatile__ ("isync");
666
667 /* clear CS bit */
668 dmamr0 &= ~DMA_CHANNEL_START;
669 dma->dmamr0 = swab32(dmamr0);
670 __asm__ __volatile__ ("sync");
671 __asm__ __volatile__ ("isync");
672
673 /* while the channel is busy, spin */
674 while(status & DMA_CHANNEL_BUSY) {
675 status = swab32(dma->dmasr0);
676 }
677
678 debug("DMA-init end\n");
679 }
680
681 uint dma_check(void)
682 {
683 volatile immap_t *immap = (immap_t *)CFG_IMMR;
684 volatile dma83xx_t *dma = &immap->dma;
685 volatile u32 status = swab32(dma->dmasr0);
686 volatile u32 byte_count = swab32(dma->dmabcr0);
687
688 /* while the channel is busy, spin */
689 while (status & DMA_CHANNEL_BUSY) {
690 status = swab32(dma->dmasr0);
691 }
692
693 if (status & DMA_CHANNEL_TRANSFER_ERROR) {
694 printf ("DMA Error: status = %x @ %d\n", status, byte_count);
695 }
696
697 return status;
698 }
699
700 int dma_xfer(void *dest, u32 count, void *src)
701 {
702 volatile immap_t *immap = (immap_t *)CFG_IMMR;
703 volatile dma83xx_t *dma = &immap->dma;
704 volatile u32 dmamr0;
705
706 /* initialize DMASARn, DMADAR and DMAABCRn */
707 dma->dmadar0 = swab32((u32)dest);
708 dma->dmasar0 = swab32((u32)src);
709 dma->dmabcr0 = swab32(count);
710
711 __asm__ __volatile__ ("sync");
712 __asm__ __volatile__ ("isync");
713
714 /* init direct transfer, clear CS bit */
715 dmamr0 = (DMA_CHANNEL_TRANSFER_MODE_DIRECT |
716 DMA_CHANNEL_SOURCE_ADDRESS_HOLD_8B |
717 DMA_CHANNEL_SOURCE_ADRESSS_HOLD_EN);
718
719 dma->dmamr0 = swab32(dmamr0);
720
721 __asm__ __volatile__ ("sync");
722 __asm__ __volatile__ ("isync");
723
724 /* set CS to start DMA transfer */
725 dmamr0 |= DMA_CHANNEL_START;
726 dma->dmamr0 = swab32(dmamr0);
727 __asm__ __volatile__ ("sync");
728 __asm__ __volatile__ ("isync");
729
730 return ((int)dma_check());
731 }
732 #endif /*CONFIG_DDR_ECC*/